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Abstract

Moving Target Defense (MTD) prevents adversaries from being able to pre-
dict the effect of their attacks by adding uncertainty in the state of a system
during runtime. In this paper, we present an MTD algorithm that randomly
changes the availability of the sensor data, so that it is difficult for adversaries to
tailor stealthy attacks while, at the same time, minimizing the impact of false-
data injection attacks. Using tools from the design of state estimators, namely,
observers, and switched systems, we formulate an optimization problem to find
the probability of the switching signals that increase the visibility of stealthy
attacks while decreasing the deviation caused by false data injection attacks.
We show that the proposed MTD algorithm can be designed to guarantee the
stability of the closed-loop system with desired performance. In addition, we
formulate an optimization problem for the design of the parameters so as to
minimize the impact of the attacks. The results are illustrated in two case
studies, one about a generic linear time-invariant system and another about a
vehicular platooning problem.

Keywords: Cyber-security, Moving Target Defense, Industrial Control
Systems, Sensor Attacks

1. Introduction

1.1. Motivation and Related Work

The emergence of physical systems that are controlled and coordinated over
networks by computer algorithms has propelled the development of security
tools that can determine if both physical and cyber components are shielded5

from attacks. Such systems sometimes referred to as computer-controlled sys-
tems, more recently called cyber-physical systems (CPSs), require algorithms
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that operate in contested environments, where attackers may attempt to com-
promise their operation.

While several frameworks for analysis and design of secure control systems10

have recently been developed, including the work in [1, 2] using a static repre-
sentation of systems, and dynamic approaches in [3, 4] using game theoretical
tools, in [5, 6] using information theory, in [7, 8] using classical control theoret-
ical tools for discrete-time systems or continuous-time systems, and in [9, 10]
using switched/hybrid systems tools, these systems do not provide defense-in-15

depth against a knowledgeable and strategic adversary. This powerful adversary
knows the details of the control algorithm, the model of the plant, and the de-
fense mechanism proposed. Therefore, if the attacker can predict the behavior
of the system under attack, the success of the attack will be more likely.

To overcome this vulnerability, Moving Target Defense (MTD) has emerged20

as a strategy to add uncertainty about the state and execution of a system in
order to prevent adversaries from having predictable effects with their attacks
and also to improve the chances of detecting stealthy attacks [11]. According
to the National Science and Technology Council, MTD

25

“enables us to create, analyze, evaluate, and deploy mechanisms and strate-
gies that are diverse and that continually shift and change over time to increase
complexity and cost for attackers, limit the exposure of vulnerabilities and op-
portunities for attack, and increase system resiliency. The characteristics of an
MTD system are dynamically altered in ways that are manageable by the de-30

fender yet make the attack space appear unpredictable to the attacker.” [12]

Several authors have proposed MTD approaches for state estimation in the
smart grid [13, 14, 15], where the main idea consists of changing the physical
topology of the power grid in order to reveal false data injection attacks. A35

similar idea uses an authenticating signal in the control of the system, and if an
anomaly detection system does not detect this signal watermark in the sensor
readings, then it raises an alert [16, 17]. Finally, another set of MTD strategies
increase the uncertainty of the system by randomly switching among several
controllers [18], varying the power system configuration [19], adding random40

noise to the controller in order to make harder for an adversary to estimate
the controller output [20], or using IoT devices to replicate sensor data that is
randomly transmitted [21].

1.2. Contribution

In this paper, we propose the use of MTD for a class of cyber-physical sys-45

tems. By combining ideas from state estimation for linear systems and stability
results for switched systems, we generate techniques and implementable algo-
rithms to detect attacks and minimize the impact on the system. Specifically,
in this paper, we propose an MTD algorithm with the following properties:

• Detection of attacks with high accuracy. Starting from the premise that50

it should be hard for the attacker to evade an intrusion detection system
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(IDS), we propose a methodology that utilizes an MTD algorithm in order
to facilitate the detection of strong stealthy attacks [22, 23] . Our method
works even when the adversary knows the system dynamics, the attack-
detection strategy, and has access to all control inputs, and all sensor55

readings.

• Minimization of the impact of a sensor compromise. Even when the at-
tacker compromises a sensor in a control system, we show that once the
proposed MTD algorithm is activated, the impact of the attack can be
minimized in a controlled manner. For this purpose, we formulate an op-60

timization problem for the design of the parameters in our MTD algorithm
with the objective of minimizing the impact of attacks.

One of the key features of our proposed method is that it can be designed in a
way that stability of the original control system, namely, the attack-free system
without an MTD strategy, is preserved and performance of the resulting system65

with our MTD algorithm is specified by design. For this purpose, we formulate
conditions guaranteeing asymptotic stability and an optimization problem that
incorporates information about system performance. Another salient feature of
our MTD algorithm is that it does not have to be active at all times. In fact,
our MTD algorithm might be activated only when external indicators suggest70

the presence of an attack.
A preliminary version of this work appeared in the conference publication

[24], and we have extended it by including additional insights on the derivation
of the stability condition and the design optimization problem. We have intro-
duced an additional simplified optimization problem that it is easy to solve but75

it is applicable only for a low number of sensors. Furthermore, the proposed
MTD strategy is also applied to a vehicular platooning scenario, and we show
that the proposed MTD can help to avoid crashes.

1.3. Organization and Notation
The class of systems and attack models, as well as the proposed MTD strat-80

egy, are presented in Section 2. The conditions for stability of the resulting
system with MTD are given in Section 3. Section 4 shows how the proposed
MTD algorithm enables the detection of stealthy attacks. Design conditions for
the MTD algorithm are given in Section 5, where, in particular, we present an
optimization problem for the minimization of the impact of attacks.85

Notation: The n-th dimensional Euclidean space is denoted Rn. The diagonal
matrix with diagonal entries θ1, θ2, . . . , θq is denoted diag(θ1, θ2, . . . , θq). The
operator E[·] denotes the expectation operator that takes a random variable
and returns its average value. For a matrix A ∈ Rn×n, let λ1, . . . , λn be their
respective eigenvalues. Then, λmax = maxi=1,...,n(Re(λi)), for Re(·) the real90

part of a complex number corresponds. Similarly, λmin = mini=1,...,n(λi). The
set of positive integers including zero is denoted Z+. The norm operator ‖ · ‖
refers to the Euclidean norm. A class K function α : [0, a] → [0,∞] is strictly
increasing and α(0) = 0. If a =∞, and α(r)→∞ as r →∞, then α is said to
be a K∞ function.95
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2. Modeling and Proposed MTD Algorithm

We consider the control system depicted in Fig.1 which consists of a phys-
ical process (i.e., plant) that possesses sensors and actuators, a moving target
defense (MTD) mechanism that randomizes which sensor values the controller
uses at a given time, an observer-based controller that uses the available sensor100

measurements modified by the MTD mechanism to compute the estimation of
the system states and calculate control commands, and an intrusion detection
system (IDS). The main goal of the MTD mechanism is to add uncertainty to
the system so it is harder for the attacker to hide its attacks and simultaneously
limit the impact of the attack; namely, to limit how much control the adversary105

gets over the plant.

2.1. System Description

We consider a continuous-time linear time-invariant systems of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + δa(t)

ỹ(t) = Θ(t)y(t) (1)

where t 7→ x(t) ∈ Rn, t 7→ u(t) ∈ Rm, t 7→ y(t) ∈ Rq are the states, input,
and output vectors, respectively. The signal t 7→ δa(t) ∈ Rq denotes the attack
vector injected to the sensors. The signal t 7→ ỹ(t) ∈ Rq is the output received110

by the estimator, where t 7→ Θ(t) denotes the MTD mechanism.
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Figure 1: General architecture of the feedback control system with the proposed MTD strat-
egy.

2.2. Moving Target Defense Mechanism

We propose an MTD approach that randomly changes the availability of the
sensors as depicted in Fig. 1. Let t 7→ Θ(t) be a diagonal matrix that, for each
t ≥ 0, is of the form Θ(t) = diag(θ1(t), θ2(t), . . . , θq(t)) and let S = {1, 2, . . . , q}
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be the sensor index set, where q is an integer larger than or equal to one.
Therefore,

ỹi(t) = θi(t)yi(t)

= θi(t)(Cix(t) + δi(t)), (2)

for all i ∈ S, where Ci ∈ R1×n denotes the ith row of matrix C and, for each
t ≥ 0, θi(t) ∈ {0, 1} is a piecewise binary signal. In particular, we focus our
attention on random switching, where we only need to define the probability115

distribution of a group of Bernoulli random variables.
Let T = {t0, t1, . . . , tk, . . .} denote the set of time instances at which the

MTD strategy is updated, satisfying 0 < Tmin < tk − tk−1 < Tmax, where Tmin
and Tmax. Moreover, let {Sk}k∈Z+

be the sequence of holding times where

Sk+1 = tk+1 − tk. We can define βj(tk) ∼ B(pj) as a random variable drawn120

from a Bernoulli distribution such that βj(tk) = 1 with probability pj (and
zero otherwise) for all tk ∈ T . Therefore, we have that on each time interval
[tk, tk+1), k ∈ Z+,

θj(t) = βj(tk) ∀t ∈ [tk, tk+1).

Remark 2.1. We will see later that the sequence {Sk}k∈Z+
= tk+1− tk is con-125

sidered random, which adds an extra level of uncertainty to the MTD strategy,
making it even harder for an adversary to predict the system’s behavior.

2.3. State-Observer and Control with MTD Measurements

We propose a state observer given by

˙̂x(t) = Ax̂(t) +Bu(t) + LΘ(t)(ỹ(t)− Cx̂(t)), (3)

which measures t 7→ ỹ(t), which switches over time, as well as the input t 7→ u(t)
and the state t 7→ x̂(t). When the pair (C,A) is detectable and the function t 7→130

Θ(t) is properly designed (the conditions for the design of Θ will be introduced
in Section 3), the gain L ∈ Rn×q can be designed to reconstruct the system
state. Since the values that Θ assumes at each t are under full control of our
algorithm, the observer in (3) is aware of which sensor readings are active –
through knowledge of Θ(t) – and updates its estimation using only those active135

readings. Let us define, for each t ≥ 0, e(t) = x(t)− x̂(t) as the estimation error.
Combining (1) and (3), and since Θ(t)Θ(t) = Θ(t) we obtain

ė(t) = (A− LΘ(t)C)e(t)− LΘ(t)δa(t), (4)

and the observer design becomes a stabilization problem where L and Θ(t) have
to be chosen in such a way that the switched system in (4) has e = 0 globally
asymptotically stable when δa(t) = 0 for all t ≥ 0. Finally, we consider that the140

pair (A,B) is controllable, and the output-feedback controller of the form

u(t) = Kx̂(t), (5)

for each t ≥ 0.
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Remark 2.2. In this work we assume that the gain L is given and fixed in order
to consider the worst case scenario for the defender, such that the attacker also
knows L. In addition, it is desired to design the proposed MTD with existing145

system parameters to facilitate its seamless integration with the system.

2.4. Intrusion Detection

Taking advantage of the state estimator in (3), we can construct anomaly
detection modules that compare the estimated sensor readings with the real
ones to determine the presence of an attack. Therefore, we define the residuals
as

r(t) = y(t)− Cx̂(t)

= Ce(t) + δa(t). (6)

The anomaly detection then takes the vector of residuals r(t) and computes a
measure of how deviated the sensor readings are from the estimation. There are
different types of anomaly detection strategies, such as the χ2-test, distributed
bad-data detection, and CUSUM [23]. For simplicity, we will focus our attention
on the distributed bad-data detection with the detection statistic given by

h(t) = |r(t)|, (7)

where |·| is evaluated component-wise. If any hi(t) > τi, for some fixed detection
threshold τi > 0, then an alarm is triggered. Particularly, each τi is selected to
maintain a tolerable false-alarm rate under normal operation. Note that, since150

the proposed MTD affects state estimation, τi would be chosen to be larger than
for the case without MTD.

Remark 2.3. We have omitted the effect of system and sensor noise in our
formulation to focus on how the proposed MTD approach provides a nominal
defense mechanism against cyberattacks. Adding noise would only affect the155

selection of τi but it would not affect the proposed MTD design.

2.5. Adversary Model

In this work we consider a motivated and resourceful adversary that intents
to disrupt the normal system operation. The adversary’s capabilities and knowl-
edge are as follows.160

Capabilities and goals: the attacker has gained access to a set of sensors
and is able to inject false signals δa to drive the system away from the operational
states. This can be achieved by introducing malware in monitoring devices or
performing man-in-the-middle-attacks in the communication network between165

the sensor and the controller. We assume the adversary has reading access to
the control commands u(t) in order to construct sophisticated stealthy attacks.

Knowledge: the attacker knows the non-MTD system model; i.e., the at-
tacker knows A,B,C,K, the estimation gain L, and the detection threshold τ
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but does not know the existence of the MTD mechanism (i.e., the attacker does170

not know Θ). Also, the attacker does not have access to the state estimate x̂
used for the controller and for the IDS. These strong assumptions allow us to
consider worst-case scenarios, implying that our MTD will be effective against
weaker adversaries.

2.6. Motivational Example175

To illustrate why our MTD approach can make it difficult for an adversary
to design strong attacks and also minimize the impact of an attack in the system
states, we consider the simple example where a = −0.1, b = 1, L = 0.2,K =
−0.3, C = 1,with an intrusion detection threshold of τi = τ = 0.1.

Without MTD. Θ(t) = 1, and if δa = 0.3, then the detection statistic in the180

limit converges to

lim
t→∞

h(t) = |c(a− Lc)−1Lδa + δa| = 0.1,

and therefore the attack remains stealthy (undetected by our residual-based
IDS). We can measure the impact of the attack in terms of how much the
system state deviates from the origin. Without MTD, we have that

lim
t→∞

x(t) = (a+ bK)−1bK(a− Lc)−1Lδa = −0.15

With MTD. With the proposed MTD mechanism where Θ(t) = θ(t) with185

p = 0.3, and δa = 0.3, we have that

lim
t→∞

E[h(t)] = |c(a− Lpc)−1Lpδa + δa| = 0.1875,

and the same attack is no longer stealthy.
Now, with the MTD mechanism, the expected state converges to

lim
t→∞

E[x(t)] = (a+ bK)−1bK(a− LpC)−1Lpδa = −0.084.

Note that for this particular example the random MTD mechanism causes
the residuals to increase while the state deviation decreases which illustrates the190

potential benefits of the proposed approach.
The cost of MTD can be observed in terms of the convergence speed. In our

example, the slowest (and only) eigenvalue of the expected estimation error is
λMTD = a − LpC and without MTD is λnoMTD = a − LC. Clearly λMTD >
λnoMTD for any 0 ≤ p < 1 and therefore the observer convergence is degraded195

when p is small.
In the next section, we formulate our problem as a switched system and

derive conditions for stability.
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3. Stability of the MTD System

3.1. Switched System200

In order to formulate our problem as a switched system and exploit some
existing tools, we define the family of non-identical diagonal binary matrices
{Θ1,Θ2, . . . ,Θs}, and the finite index set Σ = {1, 2, . . . , s}, where s = 2q. Each
Θi ∈ Rq×q describes one possible combination of {1, 0} for each θ1, θ2, . . . , θq,
where i ∈ Σ. We also define the piecewise switching signal σ : [0,∞) → Σ,205

which is updated at the time points tk ∈ T and remains constant in the time
interval (tk, tk+1). The signal t 7→ σ(t) is used to specify, at each time instant
t, the index i ∈ Σ of each active subsystem.

Then, our MTD approach in (2) can be rewritten as

ỹ(t) = Θσ(t)y(t), (8)

where σ(t) randomly chooses among the index set Σ, according to the probability
mass function Ω : Σ→ [0, 1], where, for each i ∈ Σ,

Ω(i) = p̃i =
∏

j∈S
[Θi]jpj + (1− [Θi]j)(1− pj)

=
∏

j∈S
(1− pj − [Θi]j + 2[Θi]jpj), (9)

for [Θi]j refers to the jth diagonal element of matrix Θi.210

Example: Let pi = p, and the number of sensors is q = 2. Then there exist 4
possible matrices Θi, given by Θ1 = diag(0, 0), Θ2 = diag(1, 0), Θ3 = diag(0, 1),
Θ4 = diag(1, 1), with a probability mass function Ω(i) = {(1−p)2, p(1−p), p(1−
p), p2}. for all i ∈ Σ215

Having formulated our MTD strategy as a switched system, we can rewrite
the observer in (3) as follows

˙̂x(t) = Ax̂(t) +Bu(t) + LΘσ(t)(ỹ(t)− Cx̂(t)), (10)

and the estimation error can be described by

ė = (A− LΘσ(t)C)e− LΘσ(t)δ
a(t). (11)

Let us define FE,σ(t) = A − LΘσ(t)C, and let z(t) = [x>(t), e>(t)]> denote the
extended state vector, such that

ż =

[
A+BK −BK

0 FE,σ(t)

]
z +

[
0

−LΘσ(t)

]
δa

=: Fσ(t)z +Gσ(t)δ
a. (12)

Thanks to the separation principle, we can design K independently of the ob-
server gain or the switching signal (e.g., an LQR that satisfies specific perfor-220

mance conditions). Therefore, if K is such that A+BK is stable, the stability
of (12) is dictated by FE,σ(t).
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3.2. Stability Conditions

Assume δa(t) = 0 for t ≥ 0. Recall that we have the family of matrices
FE,i = A − LΘiC for all i ∈ Σ. The following lemma describes sufficient225

conditions to guarantee global uniform asymptotic stability (GUAS) [25].

Lemma 3.1. Suppose that each FE,i is Hurwitz stable for all i ∈ Σ. If there
exists Q = Q> > 0 such that

F>E,iQ+QFE,i < 0, for all i ∈ Σ,

then, there exists a quadratic common Lyapunov function e 7→ V (e) and the
equilibrium e = 0 is GUAS for any arbitrary switching.230

From Lemma 3.1, stability is guaranteed if we can find an adequate gain L.
However, the limitation of the conditions stated in Lemma 3.1 lies in the fact
that it requires all subsystems represented by FE,i are Hurwitz stable, which
may not be feasible if the pair (A,ΘiC) is not observable for any i ∈ Σ. In
addition, for the particular case when Θ1 = diag(0, 0, . . . , 0), which corresponds235

to the subsystem when all sensors signals are off, we have that FE,1 = A. As
a consequence, to guarantee the conditions of Lemma 3.1 it would be necessary
for A to be Hurwitz stable, which cannot be always guaranteed in many appli-
cations. For this reason, we need to find a more general stability condition for
switched systems in the presence of unstable subsystems and random switching.240

The authors in [26], have introduced globally asymptotic stability conditions
(GAS) for switched systems with stable and unstable subsystems, and where
the switching signal has specific random properties. In fact, it only requires
that the probability that the unstable subsystems are active to be small.

We are interested in the following definition of stability introduced in [26].245

Definition 3.1. The system (12) is said to be globally asymptotically stable
almost surely (GAS a.s.) if the following two properties are simultaneously
verified:

Pr

(
∀ε > 0 ∃β > 0, such that ‖x0‖ < β =⇒ sup

t≥0
‖x(t)‖ < ε)

)
= 1.

Pr

(
∀r, ε′ > 0 ∃T ≥ 0 such that ‖x0‖ < r =⇒ sup

t≥T
‖x(t)‖ < ε′

)
= 1

Definition 3.1 indicates that the solutions t 7→ x(t) converge to an equilibrium250

with probability 1 in finite time and from any bounded initial condition x0.
The conditions for stability under random switching introduced in [26] em-

ploy a family of Lyapunov functions, one for each subsystem FE,i for i ∈ Σ,
that possesses the following properties.
Assumption A1: There exist a family of continuously differentiable real-valued255

functions Vi(x) ∈ R for all i ∈ Σ, functions α1, α2 ∈ K∞, numbers µ ≥ 1, λi ∈ R
such that
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(A1.1): α1(‖x‖) ≤ Vi(x) ≤ α2(‖x‖), ∀x ∈ Rn,∀i ∈ Σ.
(A1.2): V̇i(x) ≤ −λiVi(x), ∀x ∈ Rn,∀i ∈ Σ,
(A1.3): Vi(x) ≤ µVj(x), ∀x ∈ Rn,∀i, j ∈ Σ.260

We also impose some assumptions on the switching signal.
Assumption A2: The switching signal t 7→ σ(t) satisfies the following proper-
ties:

• The sequence (Sk)k∈N, Sk+1 = tk+1 − tk of holding times is a sequence of265

i.i.d. uniform random variables with parameter Tmax > 0 and Tmin = 0.

• The probability that the ith subsystem is active is Pr(σ(tk) = i) = p̃i.

• Sk and σi are mutually independent.

The following result shows that Assumption A1 is satisfied for linear time-
invariant systems.270

Lemma 3.2. For the linear time-invariant system ẋ = Hix, with Hi not nec-
essarily stable or unstable, the real-valued function x 7→ Vi(x) := x>Qix, where
Qi = Q>i > 0, satisfies Assumption A1 with

λi ∈
{
λ ∈ R : Hi +

λ

2
I is Hurwitz

}
. (13)

Proof: The first condition, (A1.1), can be easily verified since V (x) = x>Qix is
a convex quadratic function, such that there always exist class-K∞ functions α1275

and α2 defined as α1(‖x‖) = ᾱ1‖x‖2 and α2(‖x‖) = ᾱ2‖x‖2 for positive scalars
ᾱ1 < ᾱ2 such that ᾱ1‖x‖ ≤ Vi(x) ≤ ᾱ2‖x‖. For condition (A1.2), we have
that V̇ (x) = x>(H>i Qi + QiHi)x for each x. Therefore, V̇ (x) + λiV (x) < 0 is
equivalent to

x>
[
(Hi +

1

2
λiI)>Qi +Qi(Hi +

1

2
λiI)

]
x < 0. (14)

Suppose that Hi is Hurwitz and let κi denote the eigenvalue with largest real280

part (i.e., the eigenvalue closest to imaginary axis). Recall that, by definition,
κi satisfies Hiv = κiv, for v the corresponding eigenvector. For a scalar λi, the
eigenvalues of Hi + 1

2λiI are such that (Hi + 1
2λiI)v = (κi + 1

2λi)v. Therefore,
if λi satisfies 0 < λi < −2Re(κi), then Hi + 1

2λiI is Hurwitz and (14) holds.
Similarly, if Hi is not stable with largest eigenvalue κi (further from zero), any285

λi < −2Re(κi) < 0 makes the term Hi + 1
2λiI Hurwitz and (14) is satisfied.

The third assumption always holds for quadratic Lyapunov functions [26]. �

The following theorem follows [26, Theorem 3.4], and introduces sufficient
conditions for GAS a.s. of the switched system in (12) according to Definition290

3.1.
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Theorem 3.1. Suppose that Assumptions A1 and A2 hold where t 7→ σ(t) has
parameter Tmax and probabilities p̃i = Ω(i) for all i ∈ Σ according to (9). If

µ
∑
i∈Σ

p̃i

(
1− e−λiTmax
λiTmax

)
< 1, (15)

then the switched system is GAS a.s..

Theorem 3.1 is an adaptation of [26, Theorem 3.4] for linear systems, where295

σi(tk) follows the probability distribution Ω defined in (9). The proof is sum-
marized in Appendix A

Remark 3.1. If λi < 0, which is related to the unstable matrices, and it has

large magnitude, the term
(

1−e−λiTmax
λiTmax

)
may be greater than one, such that the

probability associated to that term has to be small enough; Therefore, in order to300

guarantee that (15) holds, p̃i has to be chosen such that the unstable subsystems
are selected with low probability.

4. Detecting Stealthy Sensor Attacks

One of the main advantages of MTD is that it makes it harder for an ad-
versary to tailor stealthy attacks due to the uncertainty added by the MTD305

mechanism. In particular, with our proposed sensor MTD, the adversary fails
to predict how his attack affects the IDS, such that the attacks that are stealthy
under normal conditions are visible with the MTD strategy.

We focus on a very powerful type of stealthy attack that has been introduced
in [22, 23, 27]. Then, we show how, by appropriately selecting the probabilities310

pi, it is possible to make these attacks visible, even when the adversary has access
to the control inputs, all sensor readings, knows A,B,L,C,K, and knows the
thresholds τ of the detection mechanism.

While we could try to define a similar non-stochastic defense by changing C
deterministically, this would give the adversary more chances of finding the de-315

terministic changes and adapt its attack accordingly. The uncertainty presented
to the adversary is one of the advantages of MTD.

4.1. Construction of Stealthy Attacks

Suppose the attacker has access to all sensor readings and computes its own
estimation of the system states x̂a(t) in order to forge powerful cyber-attacks.320

The attacker’s estimator is described by

˙̂xa(t) = Ax̂a(t) +Bu(t) + L(Cx(t)− Cx̂a(t) + δa(t)). (16)

Let s(t) = x̂(t)− x̂a(t) denote the error between the system estimation used by
the controller and the attacker estimation. We introduce the following lemma.
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Lemma 4.1. Suppose there is no MTD mechanism, i.e., Θσ(t) = I, and L
is such that A − LC is Hurwitz. Then, the error s(t) converges in the limit to325

limt→∞ s(t) = 0 and the attacker is able to compute an estimation that converges
to the one used by the IDS.

Proof: Notice that ṡ(t) = ˙̂x(t)− ˙̂xa(t). Combining (10) and (16) we get

ṡ(t) = FE,σ(t)s(t) + L(Θσ(t) − I)Ce(t)

− L(Θσ(t) − I)Cs(t) + L(Θσ(t) − I)δa(t). (17)

Since Θσ(t) = I, we have that ṡ(t) = (A−LC)s(t), which is stable independently
of δa(t) and the trajectories will always converge to 0. �
In the remainder of this section we will assume that the system is in a steady330

state before the attack, such that x(0) = 0, s(0) = 0. These assumption will
facilitate the derivation of the MTD design methodology but they are not nec-
essary for the correct operation of the proposed MTD approach.

In the following lemma, we will introduce a type of stealthy attack that
uses x̂a(t) to bypass the IDS algorithm. This attack does not depend on the335

zero-dynamics, which makes it suitable for more general applications.

Lemma 4.2. Suppose that the detection strategy corresponds to the bad-data
detection introduced in (7) with detection thresholds τ = [τ1, . . . , τq]

>. If there
is no MTD mechanism and the adversary launches an attack of the form

δa(t) = −y(t) + Cx̂a(t) + τ (18)

then the attack remains stealthy.340

Proof: Replacing (18) in (6), we obtain

r(t) = C(x(t)− x̂(t))− C(x(t)− x̂a(t)) + τ

= −Cs(t) + τ (19)

Without MTD, s(t) = 0 and the residuals are then r(t) = τ . As a conse-
quence, h(t) = |τ | and the alarm is never triggered. �

Remark 4.1. This type of attack is very powerful when the matrix A is not
stable. If we apply the attack in (18) to (12), the dynamics of the estimation
error become ė(t) = Ae(t) + LΘσ(t)Cs(t) + Lσ(t)τ . If we define the extended345

state w = [x>, e>, s>]>, it is easy to see from ẇ = Qw + Jτ that part of the
eigenvalues of Q correspond to the eigenvalues of A. If A is not stable, the
attack causes the entire system to become unstable without being detected.

4.2. Revealing Stealthy Attacks

We assume that the adversary does not know the MTD mechanism, such350

that he launches the stealthy attack in (18). The following theorem introduces
the conditions to reveal the stealthy attack.
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Theorem 4.1. Suppose that the conditions in Theorem 3.1 are satisfied and
an adversary launches the stealthy attack described in (18) for the bad-data
detection strategy. Let E[Θσ(t)] = P = diag(p1 . . . , pq) such that F̄E = A−LPC355

is Hurwitz. The stealthy attack is revealed if any of the following conditions holds
for at least one j ∈ S,

CjF̄
−1
E L(P − I)τ > 0,

CjF̄
−1
E L(P − I)τ < −2τj .

(20)

Proof: Replacing the attack in (18) with the dynamics of the error in (17), we
obtain

ṡ(t) = (A− LΘσ(t)C)s(t) + L(Θσ(t) − I)τ. (21)

Since τ is finite and constant, and since when δa(t) = 0, (12) is GAS a.s. accord-360

ing to Theorem 3.1, then the term L(Θσ(t) − I)τ will cause an accumulation
of the error between the real effect of the attack and the effect estimated by
the attacker. To facilitate the analysis, and since s(t) is independent of σ(t), we
define E[s(t)] = s̄(t). Then, ˙̄s(t) = F̄E s̄(t)+L(P −I)τ . Therefore, the following
limit exists365

lim
t→∞

s̄(t) = −F̄−1
E L(P − I)τ.

Applying the expectation operator E[·] to the residuals in (19) lead to

lim
t→∞

r̄(t) =
(
CF̄−1

E L(P − I) + I
)
τ.

Given that the expected detection statistic is E[h(t)] = |r̄(t)|, we have that

lim
t→∞

h̄(t) = |CF̄−1
E L(P − I)τ + τ |, (22)

such that the attack is revealed when at least one hj(t) > τj , which is ensured
if any of the conditions in (20) hold. �.

Notice that the conditions for revealing the attack depend on P . As a370

consequence, in the next section, we show how to impose constraints on P
during the design process to guarantee that this type of strong stealthy attack
is always revealed.

Remark 4.2. With our proposed MTD, the attacker is not able to estimate the
system states subject to his own attack. Therefore, any attack that depends on375

the attacker’s estimation can be potentially revealed. Furthermore, as it was
shown in the Motivation example in Section 2.6, other types of stealthy attacks
can be also revealed.

5. MTD Design

So far, Theorem 3.1 provides conditions for almost sure asymptotic stability380

of the system subject to the proposed MTD strategy. In Theorem 4.1 we derived
conditions for revealing a powerful type of stealthy attacks. In this section we
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introduce a methodology to design the probability matrix P that: 1) ensures
that the stealthy attacks introduced in Section 4 are revealed, 2) reduces the
impact of most attack trajectories using an input-to-state stability (ISS) criteria,385

and 3) guarantees stability and desired performance constraints.
Recall that P = E[Θ(t)] = diag(p1, p2, . . . , pq), and let z̄(t) = E[z(t)] =

[x̄>(t), ē>(t)]>. Applying the expectation operator E[·] to (12), we obtain

˙̄z(t) = F̄ z̄(t) + Ḡδ̄a(t), (23)

where E[δa(t)] = δ̄a(t), and

F̄ =

[
A+BK −BK

0 A− LPC

]
, Ḡ =

[
0
−LP

]
.

Impact of the Attack: We can define the impact of the attack in terms of how
much any attack trajectory can deviate the system trajectories in expectation.
To this end, we will utilize input-to-state-state stability (ISS) criteria. Let us
consider the expected dynamic system in (23). When F̄ is Hurwitz, the state
trajectories can be bounded as follows [28]:

|z̄(t)| ≤ β|z̄(0)|+ γ|δ̄a|∞, ∀t ≥ 0, (24)

where β = κe−α(F̄ ), γ = ‖Ḡ‖
α(F̄ )

, and α(F̄ ) := min{|Re(λ)| : λ ∈ eig(F̄ )}. Notice390

that the effect of an attack depends specifically on γ. Therefore, in order to
reduce the impact of any bounded attack trajectory, it is possible to find P
that minimizes γ.

Remark 5.1. If δ̄a(t) is constant, we have that

lim
t→∞

z̄(t) = −F̄−1Ḡδ̄a, (25)

leading to limt→∞ x̄(t) = (A + BK)−1BK(A − LPC)−1LP δ̄a. Therefore, we
can quantify the impact of the attack as follows:

I(P , δ̄a) = ‖Mδ̄a‖,

for M = (A+BK)−1BK(A−LPC)−1LP . The impact I(P , δ̄a) is then reduced
by finding P that minimizes γ = ‖M‖.395

Performance under MTD: It is necessary to design an MTD that, not
only reveals stealthy attacks and decreases the impact of any attack trajectory,
but also guarantees some performance conditions in the attack-free case (e.g.,
convergence speed).

In order to quantify the degradation caused by the MTD mechanism in the400

system, we use as a performance index the slowest eigenvalue of F̄E = A−LPC,
which is related to the convergence speed of the observer. Therefore, our goal
is to design an MTD strategy that guarantees

λmax(A− LPC) ≤ λ̃,
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where λ̃ < 0 and λmax(A− LC) < λ̃ < 0.
Finally, since we want to find P to reveal stealthy attacks according to

Theorem 4.1, let Ψ+
j = CjF̄

−1
E L(P − I)τ and Ψ−j = CjF̄

−1
E L(P − I)τ + 2τj .

Thus, we can define

Ψ =
∑
j∈S

max{Ψ+
j , 0} −min{Ψ−j , 0},

such that at least one hj > τj when Ψ > 0.405

The following optimization problem (Problem OMTD) allows us to find, for

given λ̃ and τ , the MTD probabilities associated to each sensor that guarantee
GAS a.s., ensure that the type of stealthy attacks introduced in 18 are revealed,
and minimizes the impact of the attack.410

Problem OMTD

min
P

γ

s.t.

0 < pj ≤ 1, ∀j ∈ S
Ψ > 0,

(9), (15)

λmax(F̄E) ≤ λ̃. (26)

Note that this is a nonlinear optimization problem that, at times, can be
solved using interior-point or active-set algorithms.

5.1. Simplified Optimization Problem

The optimization problem in (26) possesses non-convex constraints that can415

increase the difficulty to find a solution, specially due to the probability distri-
bution in (9) and the term F̄−1

E . For this reason, we will reformulate Problem
OMTD by taking advantage of some properties of the probability distribution
that maps P into p̃, and we will simplify some of the constraints using upper
and lower bounds. In this case, we will focus our attention on finding p̃ ∈ Rs420

instead of matrix P . The only limitation arises when the number of sensors q
increases because the size of p̃ increases exponentially according to s = 2q.
Recall that we have the set of non-identical binary matrices {Θ1, . . . ,Θs}. Now,
let Θ = [Θ1 Θ2 . . . Θs] be a q × (sq) matrix formed by all matrices Θi. Also,
recall that p̃i denotes the probability that Θi is true. It is easy to see that425

pi =
∑p
j=1 p̃j [Θi]j , which is the converse of (9). As a consequence, we have

that, for p̃ = [p̃1, . . . , p̃s]
>,

P = diag(Θ(p̃⊗ 1q)) (27)

Clearly, the relationship between p̃ and P is linear. Also, the condition in

(15) is linear with respect to p̃i, such that, for vi = µ
(

1−e−λiTmax
λiTmax

)
and for
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v = [v1, . . . , vs]
>, we have that (15) is equivalent to v>p̃ < 1.

Other complexity that can be simplified is the inverse terms in γ and in Ψ.
First, recall that under the stealthy attack in 18, detection statistic is hi(t) =
|ri(t)| = | − Cis(t) + τi|. Therefore, if we make the term −Cis(t) sufficiently
large or small, then it is possible to make the stealthy attack detectable. To
this end, let ‖Cis(t)‖2 = s(t)>C>i Cis(t). Also, recall that s̄ = −F̄−1

E L(P − I)τ .
Therefore, using the Rayleigh-Ritz Inequality we obtain

‖Cis̄‖ = τ>(P − I)L>F−1>

E C>i CiF
−1
E L(P − I)τ

≥ λmin(C>i Ci)λmin(F−1>

E F−1
E )τ>(P − I)L>L(P − I)τ

= λmin(C>i Ci)
1

‖F̄E‖2
‖L(P − I)τ‖2

Therefore, finding P that maximizes ‖L(P−I)τ‖2 and minimizes ‖F̄E‖ can lead
to revealing stealthy attacks. Similarly, the objective function associated with γ
can be rewriten as a minimization of ‖Ḡ‖−α(F̄ ). The new objective function for430

the design optimization problem is now (‖FE‖2−‖L(P −I)τ‖2)−ς(‖Ḡ‖−α(F̄ ))
where ς > 0 defines the priority given to attack detection or to attack minimiza-
tion. The simplified observer-based MTD design problem (SOMTD) is then:

Problem SOMTD

min
p̃

(‖FE‖2 − ‖L(P − I)τ‖2)− ς(‖Ḡ‖ − α(F̄ ))

s.t.

p̃>1n = 1

P = diag(Θ(p̃⊗ 1q))

0 < p̃i ≤ 1, ∀i ∈ Σ

υ>p̃ < 1

λmax(F̄E) ≤ λ̃.

The existence of a solution is conditioned according to the following Lemma.435

Lemma 5.1. Consider Problem SOMTD for given constants ς, λ̃, and detection
thresholds τ . If λ̃ > λmax(A−LC), then there exists at least one local minimizer
that satisfies the constraints.

Proof: The proof is easily verified given that there always exists a combination
of p̃i that satisfy constraints (1)-(4). Given that any P different to the identity440

would lead to slower eigenvalues, γ can never be smaller than the non MTD
case. �

6. Case Studies

In order to verify the viability of the proposed algorithms, we consider two
case studies: i) a generic LTI system and ii) a vehicular platooning problem445
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with 10 vehicles. The MTD design for each case will be performed using the
optimization problems introduced in Section 4.

6.1. LTI Dynamic System

We consider an continuous-time MIMO LTI system described by the follow-
ing matrices450

A =

 1 0.5 0.4
0.3 −2 −0.5
0.1 1 −2

 , B =

0 0
1 1
1 0

 , C =

[
1 0 0
0 1 1

]
.

The feedback control gain K computed by solving the LQR problem with uni-
tary costs and the steady state Kalman filter gain are given by

K =

[
−6.2 −1.23 −0.77
−4 −0.88 −0.35

]
, L =

2.0726 0.3431
0.2040 0.5216
0.1312 0.1362

 .

The MTD design parameters areγ = −1, Tmax = 0.1 and the detection thresh-
olds τ = [0.02, 0.05]>, and they are used for testing the two proposed MTD
design problems.455

For the first case, the solution of Problem OMTD is found using an interior-
point algorithm and corresponds to P ∗ = diag([0.98, 0.62]). Figure 2 illustrates
the trajectories in normal operation of the sensor signal y2 the estimated state
x̂2, and the system state x2 with and without the optimal MTD. Notice that the460

effects of switching are significantly smoothed by the proposed MTD observer
introduced in (10). In particular, small transients can be observed in the state
estimation dynamics but they are less evident in the system states.

Now, for comparison, an arbitrary selection of P = diag([0.7, 0.5]) is also
considered. Figure 3 illustrates the Montecarlo simulation of the trajectories465

of the states and the norm ‖x(t)‖ for the attack δa(t) = [−0.2, 2]> after 20 s.
Clearly, the optimal MTD approach is able to decrease the impact of this attack
when compared to the case without MTD. Given that γ = −1, which is close
to λmax(A − LC) (the maximum eigenvalue without MTD), the performance
degradation is minimal, and the convergence with and without MTD are very470

similar. The arbitrary MTD causes a significant degradation in the performance
and increases the impact of the attack when compared with the case without
MTD, illustrating the importance of the proposed MTD design.

Now, suppose that an adversary launches a stealthy attack as described in
(18) for the anomaly detection threshold τ . Figure 4 shows the detection metrics475

h1, h2 introduced in (7). Without MTD, the attack remains completely stealthy
. However, thanks to the random MTD mechanism, the attack is now revealed.
Notice that by using arbitrary switching probabilities, the detection capabilities
increase due to lower probabilities p1, p2 when compared to the optimal MTD
case; however, as it was illustrated in Fig. 3, the performance is significantly480

degraded. The proposed optimal design maintains an adequate balance between
detection and performance.
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Figure 2: y2, x̂2, and x2 in normal operation with and without MTD. The proposed MTD
induces transient that are smoothed through the MTD observer. Even though small transients
can be observed in the state estimation, they are hardly evident in the system states.

For the second case, the MTD design using Problem SOBMD depends on
the selection of α and γ. Figure 5 depicts the probabilities of each sensor for
different values of α and γ. When α = 0, the optimization problem will focus485

only on increasing the detection of the stealthy attack, without minimizing the
attack impact. On the other hand, large α will give priority to the minimization
of the attack impact and the solution may not detect the stealthy attacks.
Notice also that larger γ leads to a less conservative MTD due to an increase
in the permitted performance degradation. By contrasting both optimization490

problems, we can see that the solution of Problem OMTD is equivalent to the
solution of Problem SOMTD when α is large, such that for this particular
case, focusing on attack impact minimization inherently lead to stealthy attack
detection.
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Figure 3: System states without MTD (top left), with the MTD strategy (top right), and
the norm of the states ‖x(t)‖ (bottom). The shaded area indicate the maximum/minimum
deviation of the Montecarlo simulation at each time instant. Notice that our approach de-
creases the deviation caused by the attack, and since γ = −1 and p1 = 0.98, the performance
degradation is small. An arbitrary selection of switching probabilities P = diag([0.7, 0.5]) can
significantly degrade the system performance.

6.2. Vehicular Platooning495

In this second test case, we consider a system of nv cooperating autonomous
vehicles that form a vehicular platoon [29], as illustrated in Figure 6. We con-
sider that each vehicle uses on-board sensors (e.g., lidar) to maintain a given
distance with its immediate neighbors [30]. In addition, the platoon possesses
a cooperative controller modeled by an additive acceleration term, which is500

computed by a centralized cloud that collects sensor measurements transmitted
through wireless communications. The dynamics of the positions xi and veloci-
ties vi of the vehicles are described with the following differential equations [31],
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Figure 4: Bad-data detection with thresholds τ = [0.02, 0.05]> in the presence of a stealthy
attack where h1, h2 denote the detection score introduced in (7). The attack is never detected
without MTD (left). The addition of uncertainty makes possible to reveal the attack (center,
right). The arbitrary MTD increases the capability to detect the stealthy attack but at the
cost of performance degradation as depicted in Fig. 3



ẋ1 = v1

...
ẋnv = vnv
v̇1 = kp(x2 − x1 − d∗) + kd(v2 − v1) + βv1 + u1

v̇2 = −kp(x2 − x1 − d∗)− kd(v2 − v1)
+kp(x3 − x2 − d∗) + kd(v3 − v2) + βv2 + u2

...
v̇k−1 = −kp(xk−1 − xk−2 − d∗)− kd(vk−1 − vk−2)

+kp(xnv − xnv−1 − d∗) + kd(vk − vk−1) + βvk−1 + uk−1

v̇k = −kp(xk − xk−1 − d∗)− kd(vk − vk−1) + βvk + uk

(28)

where kp = 2 and kd = 1.5 are the proportional and derivative gains of an505

on-board Proportional-Derivative (PD) controller, which regulates the distance
between neighboring vehicles to be the desired distance d∗ = 2 m; β = −0.1
characterizes the loss of velocity as a result of friction; and ui with i ∈ {1, . . . , n}
are feedforward inputs (acceleration) added to each vehicle. In cooperative
cruise control settings, such feedforward inputs are used to optimize the per-510

formance of the platoon by each vehicle sharing its intended maneuvers, thus
requiring the PD control to only compensate for errors. The platoon is most
concisely described by the relative distances between each pair of adjacent ve-
hicles, defined as di,i+1 = xi+1−xi, for i = 1 . . . , nv − 1. We can introduce new
relative distance error variables ei,i+1 = di,i+1−d∗, such that in the equilibrium,515

ei,i+1 = 0 implies di,i+1 = d∗. Considering x = [d1,2, . . . dnv−1,nv , v1, . . . vn]>,
we can rewrite (28) in terms of 2nv − 1 state variables (i.e., nv − 1 relative
distance errors and nv velocities) such that ẋ(t) = Ax(t) + Bu(t), with input
u = [u1, . . . , unv ]T , B = [0, I]T . Let us consider the case when nv = 10, and
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Figure 5: MTD design by solving Problem SOBMD probabilities for each sensor for different
values of α and γ

suppose that each vehicle only transmits the velocities to the cooperative con-520

troller, such that the number of sensors is q = 10 and s = 1024. Given that
s is large, and since A is stable, we can use Problem SBOMD with γ = −0.2,
τi = τ = 2. The solution is then P ∗ = diag([1, 1, 1, 1, 1, 1, 0.9594, 0.65, 0.3, 0.1]).

The goal of an attacker is to cause any of pair of vehicles to crash. We assume
the attacker can only manipulate the sensor measurements sent by the vehicle525

nv, which is the one in front, and inject a bias of 1 m/s. Figure 7(left) depicts
the impact of the attack and how it causes a crash in multiple vehicles. However,
with the proposed MTD approach, the same attack is no longer successful, as
shown in the Montecarlo simulation depicted in Fig. 7(right) for 100 simulations.
Figure 8 illustrates how the same attack in different vehicles have different530

impacts. Clearly, the proposed design algorithms can successfully associate
lower probabilities to the sensors that are most sensitive to attacks.

7. Conclusions

We have proposed and analyzed the security of an MTD strategy for improv-
ing the detectability of attacks, while at the same time minimizing the power535

that an adversary has when compromising a sensor signal. We showed that
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Figure 6: Illustration of a vehicular platooning with cooperative autonomous cruise control.
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Figure 7: Example of a bias attack in vehicle 10. Without MTD the attack is able to cause
a crash between several vehicles (left). A Monte-Carlo simulation shows that with MTD the
impact of the attack is considerably reduced.

our strategy is effective against very powerful stealthy attacks even when the
adversary knows the system dynamics, the detection strategy, and has access to
all sensors and control inputs. We derived conditions for global stability of the
system and defined an optimization problem that allows us to find the probabil-540

ity at which each sensor transmits in such a way the state deviation caused by
the attack is minimized while guaranteeing the detection of stealthy attacks. A
simplified optimization problem was proposed in order to facilitate the compu-
tation of the optimal solution. We evaluated the proposed design approaches in
two case studies and illustrated the benefits of our proposed MTD. In practice545

the MTD strategy can be activated when we notice indicators of attacks, or if we
notice that the system is deviating from the desired space without explanation;
if the MTD is activated then, it will be able to mitigate the attack while at the
same time revealing a previously undetected attack.
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Appendix A. Proof of Theorem 3.1

For t ∈ [τi, τi+1], and Si+1 = τi+1 − τi we have from A1.2 and A1.3 that

Vσ(τi+1)(x(τi+1)) ≤ Vσ(τi+1)(x(τi))e
−λσ(τi)Si+1

≤ µVσ(τi)(x(τi))e
−λσ(τi)Si+1

Iterating the above inequality and employing A1.1 we obtain

Vσ(τi)(x(τi)) ≤ α2(‖x(τ0)‖)
i−1∏
j=0

µe−λσ(τj)Sj+1

Employing the independence hypothesis in A2 we have that

E[Vσ(τi)(x(τi))] ≤ α2(‖x(τ0)‖)
i−1∏
j=0

µE
[
e−λσ(τj)Sj+1

]
. (A.1)

Given that Sj+1 is drawn from an uniform distribution, then

E
[
e−λσ(τj)Sj+1

]
= E

[
Esj+1

[
e−λσ(τj)Sj+1

]]
= E

 Tmax∫
0

1

Tmax
e−λσ(τi)sds


= E

[
1− e−λσ(τi)Tmax
λσ(τi)Tmax

]
=
∑
l∈Σ

p̃l

(
1− e−λlTmax

λlTmax

)
Substituting in (A.1), leads to

E[Vσ(τi)(x(τi))] ≤ α2(‖x0‖)

µ∑
j∈Σ

p̃j

(
1− e−λjTmax

λjTmax

)i

.

Clearly, if the condition in (15) holds, then lim
i→∞

E[Vσ(τi)(x(τi))] = 0. Now,660

based on these results, it is possible to follow the steps in [26] to show how by
satisfying (15), conditions in Definition (3.1) are satisfied. �
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