
A Rapidly-Exploring Random Trees Motion Planning Algorithm for
Hybrid Dynamical Systems*

Nan Wang and Ricardo G. Sanfelice

Abstract— This paper proposes a rapidly-exploring random
trees (RRT) algorithm to solve the motion planning problem
for hybrid systems. At each iteration, the proposed algorithm,
called HyRRT, randomly picks a state sample and extends the
search tree by flow or jump, which is also chosen randomly
when both regimes are possible. Through a definition of
concatenation of functions defined on hybrid time domains,
we show that HyRRT is probabilistically complete, namely,
the probability of failing to find a motion plan approaches
zero as the number of iterations of the algorithm increases.
This property is guaranteed under mild conditions on the data
defining the motion plan, which include a relaxation of the
usual positive clearance assumption imposed in the literature
of classical systems. The motion plan is computed through the
solution of two optimization problems, one associated with the
flow and the other with the jumps of the system. The proposed
algorithm is applied to a walking robot so as to highlight its
generality and computational features.

I. INTRODUCTION

Motion planning consists of finding a state trajectory
and associated inputs, connecting the initial and final state
while satisfying the dynamics of the system as well as a
given safety criterion. Motion planning problems for purely
continuous-time systems and purely discrete-time systems
have been well studied in the literature; see, e.g., [1]. In
recent years, various planning algorithms have been de-
veloped to solve motion planning problems, from graph
search algorithms [2] to artificial potential field methods [3].
A main drawback of graph search algorithms is that the
number of vertices grows exponentially as the dimension of
states grows, which makes computing motion plans ineffi-
cient for high-dimensional systems. The artificial potential
field method suffers from getting stuck at local minimum.
Arguably, the most successful algorithm to solve motion
planning problems for purely continuous-time systems and
purely discrete-time systems is the sampling-based RRT
algorithm [4]. This algorithm incrementally constructs a tree
of state trajectories toward random samples in the state
space. Similar to graph search algorithms, RRT suffers from
the curse of dimensionality, but, in practice, achieves rapid
exploration in solving high-dimensional motion planning
problems [5]. Compared with the artificial potential field
method, RRT is probabilistically complete [6], which means

*Research partially supported by NSF Grants no. ECS-1710621, CNS-
2039054, and CNS-2111688, by AFOSR Grants no. FA9550-19-1-0053,
FA9550-19-1-0169, and FA9550-20-1-0238, and by ARO Grant no.
W911NF-20-1-0253.

Nan Wang and Ricardo G. Sanfelice are with the Department of Electrical
and Computer Engineering, University of California, Santa Cruz, CA 95064,
USA; nanwang@ucsc.edu, ricardo@ucsc.edu

that the probability of failing to find a motion plan converges
to zero, as the number of samples approaches infinity.

While RRT algorithms have been used to solve motion
planning problems for purely continuous-time systems [6]
and purely discrete-time systems [7], fewer efforts have been
devoted to applying RRT-type algorithms to solve motion
planning problems for systems with combined continuous
and discrete behavior. In [8], a hybrid RRT algorithm is
proposed for motion planning problems for a special class
of hybrid systems, which follows the classical RRT scheme
but does not establish key properties of the algorithm, such
as probabilistic completeness.

This paper focuses on motion planning problems for
hybrid systems modeled as hybrid equations [9]. In this
modeling framework, differential and difference equations
with constraints are used to describe the continuous and
discrete behavior of the hybrid system, respectively. This
general hybrid system framework can capture most hybrid
systems emerging in robotic applications, not only the class
of hybrid systems considered in [8], but also systems with
memory states, timers, impulses, and constraints. For this
broad class of hybrid systems, a motion planning algorithm
is proposed in this paper. Following [6], the proposed algo-
rithm, called HyRRT, incrementally constructs search trees,
rooted in the initial state set and toward the random samples.
At first, HyRRT draws samples from the state space. Then,
it selects the vertex such that the state associated with this
vertex has minimal distance to the sample. Next, HyRRT
propagates the state trajectory from the state associated
with the selected vertex. Following [10], it is established
that, under certain assumptions, HyRRT is probabilistically
complete. To the authors’ best knowledge, HyRRT is the first
RRT-type algorithm for systems with hybrid dynamics that is
probabilistically complete. The proposed algorithm is applied
to a walking robot example so as to assess its capabilities.

The remainder of the paper is structured as follows.
Section II presents notation and preliminaries. Section III
presents the problem statement and introduction of appli-
cation. Section IV presents the HyRRT algorithm. Section
V presents the analysis of the probabilistic completeness
of HyRRT algorithm. Section VI presents the illustration of
HyRRT in the example. Due to space constraints, proofs will
be published elsewhere.

II. NOTATION AND PRELIMINARIES

A. Notation

The real numbers are denoted as R and its nonnegative
subset is denoted as R≥0. The set of nonnegative integers is

denoted as N. The notation int I denotes the interior of the
interval I . The notation S denotes the closure of the set S.
The notation ∂S denotes the boundary of the set S. Given
sets P ⊂ Rn and Q ⊂ Rn, the Minkowski sum of P and
Q, denoted as P + Q, is the set {p + q : p ∈ P, q ∈ Q}.
The notation | · | denotes the Euclidean norm. The notation
rge f denotes the range of the function f . Given a point
x ∈ Rn and a subset S ⊂ Rn, the distance between x and
S is denoted dist(x, S) := infs∈S |x − s|. The notation B
denotes the closed unit ball of appropriate dimension in the
Euclidean norm.

B. Preliminaries

A hybrid system H with inputs is modeled as [9]

H :

{
ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, C ⊂
Rn × Rm represents the flow set, f : Rn × Rm → Rn
represents the flow map, D ⊂ Rn×Rm represents the jump
set, and g : Rn × Rm → Rn represents the jump map,
respectively. The continuous evolution of x is captured by
the flow map f . The discrete evolution of x is captured by
the jump map g. The flow set C collects the points where
the state can evolve continuously. The jump set D collects
the points where jumps can occur.

Given a flow set C, the set UC := {u ∈ Rm : ∃x ∈
Rn such that (x, u) ∈ C} includes all possible input values
that can be applied during flows. Similarly, given a jump set
D, the set UD := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈
D} includes all possible input values that can be applied at
jumps. These sets satisfy C ⊂ Rn×UC and D ⊂ Rn×UD.
Given a set K ⊂ Rn × U?, where ? is either C or D, we
define Π?(K) := {x : ∃u ∈ U? s.t. (x, u) ∈ K} as the
projection of K onto Rn, and define C ′ := ΠC(C) and
D′ := ΠD(D).

In addition to ordinary time t ∈ R≥0, we employ j ∈
N to denote the number of jumps of the evolution of x
and u for H in (1), leading to hybrid time (t, j) for the
parameterization of its solutions and inputs. The domain
of a solution to H is given by a hybrid time domain. A
hybrid time domain is defined as a subset E of R≥0 × N
that, for each (T, J) ∈ E, E ∩ ([0, T] × {0, 1, ..., J}) can
be written as ∪Jj=0([tj , tj+1], j) for some finite sequence of
times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T . A hybrid arc
φ : domφ→ Rn is a function on a hybrid time domain that,
for each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous
on each interval Ij := {t : (t, j) ∈ domφ} with nonempty
interior. The definition of solution pair to a hybrid system is
given as follows. For more details, see [9].

Definition 2.1: (Solution pair to a hybrid system) Given
a pair of functions φ : domφ → Rn and u : domu→ Rm,
(φ, u) is a solution pair to (1) if dom(φ, u) := domφ =
domu is a hybrid time domain, (φ(0, 0), u(0, 0)) ∈ C ∪D,
and the following hold:

1) For all j ∈ N such that Ij has nonempty interior,

a) the function t 7→ φ(t, j) is locally absolutely contin-
uous,

b) (φ(t, j), u(t, j)) ∈ C for all t ∈ int Ij ,
c) the function t 7→ u(t, j) is Lebesgue measurable and

locally bounded,
d) for almost all t ∈ Ij , φ̇(t, j) = f(φ(t, j), u(t, j)).

2) For all (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈
dom(φ, u),

(φ(t, j), u(t, j)) ∈ D φ(t, j + 1) = g(φ(t, j), u(t, j)).

HyRRT requires concatenating solution pairs. The con-
catenation operation of solution pairs is defined next.

Definition 2.2: (Concatenation operation) Given two
functions φ1 : domφ1 → Rn and φ2 : domφ2 → Rn,
where domφ1 and domφ2 are hybrid time domains, φ2 can
be concatenated to φ1 if φ1 is compact and φ : domφ→ Rn
is the concatenation of φ2 to φ1, denoted φ = φ1|φ2, namely,

1) domφ = domφ1 ∪ (domφ2 + {(T, J)}), where
(T, J) = max domφ1 and the plus sign denotes
Minkowski addition;

2) φ(t, j) = φ1(t, j) for all (t, j) ∈ domφ1\{(T, J)} and
φ(t, j) = φ2(t − T, j − J) for all (t, j) ∈ domφ2 +
{(T, J)}.

In the main result of this paper, the following definition
of closeness between hybrid arcs is used; see [9].

Definition 2.3: ((τ, ε)-closeness of hybrid arcs) Given
τ, ε > 0, two hybrid arcs φ1 and φ2 are (τ, ε)-close if

1) for all (t, j) ∈ domφ1 with t + j ≤ τ , there exists s
such that (s, j) ∈ domφ2, |t − s| < ε, and |φ1(t, j) −
φ2(s, j)| < ε;

2) for all (t, j) ∈ domφ2 with t + j ≤ τ , there exists s
such that (s, j) ∈ domφ1, |t − s| < ε, and |φ2(t, j) −
φ1(s, j)| < ε.

III. PROBLEM STATEMENT AND APPLICATIONS

The motion planning problem for hybrid systems studied
in this paper is formulated as follows.

Problem 1: Given a hybrid system H with input u ∈ Rm
and state x ∈ Rn, the initial state set X0 ⊂ Rn, the final
state set Xf ⊂ Rn, and the unsafe set Xu ⊂ Rn ×Rm, find
a pair (φ, u) : dom(φ, u) → Rn × Rm, namely, a motion
plan, such that for some (T, J) ∈ dom(φ, u), the following
hold:

1) φ(0, 0) ∈ X0, namely, the initial state of the solution
belongs to the given initial state set X0;

2) (φ, u) is a solution pair to H as defined in Definition
2.1;

3) (T, J) is such that φ(T, J) ∈ Xf , namely, the solution
belongs to the final state set at hybrid time (T, J);

4) (φ(t, j), u(t, j)) /∈ Xu for each (t, j) ∈ dom(φ, u) such
that t+ j ≤ T + J , namely, the solution pair does not
intersect with the unsafe set before its state trajectory
reaches the final state set.

Therefore, given sets X0, Xf and Xu, and a hybrid system
H with data (C, f,D, g), a motion planning problem P is
formulated as P = (X0, Xf , Xu, (C, f,D, g)).

There are some interesting special cases of Problem 1. For
example, when D = ∅ (C = ∅) and C (D) is nonempty,
then P denotes the motion planning problem for purely
continuous-time (discrete-time, respectively) systems under
constraints. Therefore, Problem 1 covers the motion planning
problems for purely continuous-time and purely discrete-time
system studied in [6] and [1]. Moreover, note that the unsafe
set Xu can be used to constrain both states and inputs.

Problem 1 is illustrated in the following example.
Example 3.1: (Walking robot) The state x of the compass

model of a walking robot is composed of the angle vector θ
and the velocity vector ω [11]. The angle vector θ contains
the planted leg angle θp, the swing leg angle θs, and the
torso angle θt. The velocity vector ω contains the planted
leg angular velocity ωp, the swing leg angular velocity ωs,
and the torso angular velocity ωt. The input u is the input
torque, where up is the torque applied on the planted leg
from the ankle, us is the torque applied on the swing leg
from the hip, and ut is the torque applied on the torso
from the hip. The continuous dynamics of x = (θ, ω)
comes from the Lagrangian method and is given by θ̇ =
ω, ω̇ = Df (θ)−1(−Cf (θ, ω)ω − Gf (θ) + Bu) =: α(x, u)
where Df and Cf are the inertial and Coriolis matrices,
respectively, and B is the actuator relationship matrix. In
[12], the input torques that produce an acceleration a for
a special state x are determined by a function µ, defined as
µ(x, a) := B−1(Df (θ)a+Cf (θ, ω)ω+Gf (θ)). By applying
u = µ(x, a) to ω̇ = α(x, u), we obtain ω̇ = a. Then, the
flow map f is defined as

f(x, a) :=

[
ω
a

]
∀(x, a) ∈ C.

Flow is allowed when only one leg is in contact with the
ground. To determine if the biped has reached the end of a
step, a function h is defined as h(x) := φs−θp for all x ∈ R6

where φs denotes the step angle. The condition h(x) ≥ 0
indicates that only one leg is in contact with the ground.
Thus, the flow set is given as C := {(x, a) ∈ R6 × R3 :
h(x) ≥ 0}. Furthermore, a step occurs when the change
of h is such that θp is approaching φs, and h equals zero.
Thus, the jump set D is defined as D := {(x, a) ∈ R6×R3 :
h(x) = 0, ωp ≥ 0}.

Following [11], when a step occurs, the swing leg becomes
the planted leg, and the planted leg becomes the swing
leg. The function Γ is defined to swap angles and velocity
variables as θ+ = Γ(θ). The angular velocities after a step
are determined by a contact model denoted as Ω(x) :=
(Ωp(x),Ωs(x),Ωt(x)), where Ωp, Ωs, and Ωt are the angular
velocity of the planted leg, swing leg, and torso, respectively.
Then, the jump map g is defined as

g(x, a) :=

[
Γ(θ)
Ω(x)

]
∀(x, a) ∈ D. (2)

A particular motion planning problem for the walking
robot is to generate a walking gait. The final state set is
defined as Xf = {(φs,−φs, 0, 0.1, 0.1, 0)} so that after the
impact, the walking robot starts the next walking cycle. The

initial state set is chosen as X0 = {x0 ∈ R6 : x0 =
g(xf , 0), xf ∈ Xf}. In setting X0, the input argument of
g can be set arbitrarily because input does not affect the
value of g; see (2). In practice, there are constraints on the
acceleration of the planted leg, swinging leg, and the torso,
respectively. To capture these, the unsafe set is defined as
Xu = {(x, a) ∈ R6 × R3 : a1 /∈ [amin

1 , amax
1] or a2 /∈

[amin
2 , amax

2] or a3 /∈ [amin
3 , amax

3] or (x, a) ∈ D}, where
amin
1 , amin

2 , and amin
3 are the lower bounds of a1, a2, and

a3, respectively, and amax
1 , amax

2 , and amax
3 are the upper

bounds of a1, a2, and a3, respectively.
In the forthcoming Example 6.1, we employ HyRRT to solve
this motion planning problem formulated in Example 3.1.

IV. HYRRT: A MOTION PLANNING ALGORITHM FOR
HYBRID SYSTEMS

A. Overview

HyRRT searches for a motion plan by incrementally
constructing a search tree. The search tree is modeled by
a directed tree. A directed tree T is a pair T = (V,E),
where V is a set whose elements are called vertices and E
is a set of paired vertices whose elements are called edges.
The edges in the directed tree are directed, which means
the pairs of vertices that represent edges are ordered. The
set of edges E is defined as E ⊆ {(v1, v2) : v1 ∈ V, v2 ∈
V, v1 6= v2}. The edge e = (v1, v2) ∈ E represents an
edge from v1 to v2. A path in T = (V,E) is a sequence of
vertices p = (v1, v2, ..., vk) such that (vi, vi+1) ∈ E for all
i = 1, 2, ..., k − 1.

X0
xvcurxnew Xf

Xu

xv1 xv2 xv3

ψnew

xrand
ψe1 ψe2 ψe3

(a) States and solution pairs.

X0 Xf
vcur vnewv1 v2

e1 e2 e3 e4

v3

(b) Search tree associated with the states and solution
pairs in Figure 1(a).

Fig. 1. The association between states/solution pairs and the vertices/edges
in the search tree. The blue region denotes X0, the green region denotes Xf ,
and the black region denotes Xu. The dots and lines between dots in Figure
1(b) denote the vertices and edges associated with the states and solution
pairs in Figure 1(a). The path p = (v1, v2, v3, vcur, vnew) in the search
graph in Figure 1(b) represents the solution pair ψ̃p = ψe1

|ψe2
|ψe3

|ψnew

in Figure 1(a).

Each vertex in the search tree T is associated with a state
value of H. Each edge in the search tree is associated with
a solution pair to H that connects the state values associated
with their endpoint vertices. The state value associated with

vertex v ∈ V is denoted as xv and the solution pair associ-
ated with edge e ∈ E is denoted as ψe, as shown in Figure 1.
The solution pair that the path p = (v1, v2, ..., vk) represents
is the concatenation of all those solutions associated with the
edges therein, namely,

ψ̃p := ψ(v1,v2)|ψ(v2,v3)| ... |ψ(vk−1,vk)
(3)

where ψ̃p denotes the solution pair associated with the path
p. For the notion of concatenation, see Definition 2.2. An
example of the path p and its associated solution pair ψ̃p is
shown in Figure 1.

The proposed HyRRT algorithm requires a library of
possible inputs. The input library (UC ,UD) includes the
input signals that can be applied during flows (collected
in UC) and the input values that can be applied at jumps
(collected in UD).

Next, we introduce the main steps executed by
HyRRT. Given the motion planning problem P =
(X0, Xf , Xu, (C, f,D, g)) and the input library (UC ,UD),
HyRRT performs the following steps:

Step 1: Sample a finite number of points from X0 and
initialize a search tree T = (V,E) by adding
vertices associated with each sampling point.

Step 2: Randomly select one regime among flow regime
and jump regime for the evolution of H.

Step 3: Randomly select a point xrand from C ′ (D′) if
the flow (jump, respectively) regime is selected in
Step 2.

Step 4: Find the vertex associated with the state value that
has minimal Euclidean distance to xrand, denoted
vcur, as is shown in Figure 1(b).

Step 5: Randomly select an input signal (value) from UC
(UD) if the flow (jump, respectively) regime is
selected. Then, compute a solution pair starting
from xvcur

with the selected input applied, de-
noted ψnew = (φnew, unew). Denote the final
state of φnew as xnew, as is shown in Figure 1(a).
If ψnew does not intersect with Xu, add a vertex
vnew associated with xnew to V and an edge
(vcur, vnew) associated with ψnew to E. Then,
go to Step 2.

B. HyRRT Algorithm

Following the overview in Section IV-A, the proposed
algorithm is given in Algorithm 1. The inputs of Algorithm
1 are the problem P = (X0, Xf , Xu, (C, f,D, g)), the input
library (UC ,UD), a parameter pn ∈ (0, 1), which tunes
the probability of proceeding with the flow regime or the
jump regime, an upper bound K ∈ N>0 for the number
of iterations to execute, and two tunable sets Xc ⊃ C ′ and
Xd ⊃ D′, which act as constraints in finding a closest vertex
to xrand. Each function in Algorithm 1 is defined next.

1) T .init(X0): The function call T .init is used to ini-
tialize a search tree T = (V,E). It randomly selects a finite
number of points from X0. For each sampling point x0, a
vertex v0 associated with x0 is added to V . At this step, no
edge is added to E.

2) xrand←random state(S): The function call
random state randomly selects a point from the set
S ⊂ Rn. It is designed to select from C ′ and D′ separately
depending on the value of r rather than to select from
C ′∪D′. The reason is that if C ′ (D′) has zero measure while
D′ (C ′) does not, the probability that the point selected
from C ′ ∪ D′ lies in C ′ (D′, respectively) is zero, which
would prevent establishing probabilistic completeness.

3) vcur←nearest neighbor(xrand,T ,H, f lag): The
function call nearest neighbor searches for a vertex vcur
in the search tree T = (V,E) such that its associated
state value has minimal distance to xrand. This function is
implemented as follows.
• When flag = flow, the following optimization prob-

lem is solved over Xc.
Problem 2: Given a hybrid system H = (C, f,D, g),
xrand ∈ C ′, and a search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ Xc.
• When flag = jump, the following optimization prob-

lem is solved over Xd.
Problem 3: Given a hybrid system H = (C, f,D, g),
xrand ∈ D′, and a search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ Xd.
The data of Problem 2 and Problem 3 comes from the
arguments of the nearest neighbor function call. This opti-
mization problem can be solved by traversing all the vertices
in T = (V,E).

4) return← new state(xrand, vcur, (UC ,UD),H, Xu,
xnew, ψnew): If xvcur

∈ C ′\D′ (xvcur
∈D′\C ′), the function

call new state generates a new solution pair ψnew to hybrid
system H starting from xvcur

by applying a input signal
ũ (an input value uD) randomly selected from UC (UD,
respectively). If xvcur∈ C ′∩D′, then this function generates
ψnew by randomly selecting flows or jump. The final state
of ψnew is denoted as xnew.

Note that the choices of inputs are random. Some RRT
variants choose the optimal input that drives xnew closest
to xrand. However, [13] proves that such a choice makes
the RRT algorithm probabilistically incomplete. After ψnew
and xnew are generated, the function new state checks if
there exists (t, j) ∈ domψnew such that ψnew(t, j) ∈ Xu. If
so, then ψnew intersects with the unsafe set and new state
returns false. Otherwise, this function returns true.

5) vnew←T .add vertex(xnew) and T .add edge(vcur,
vnew, ψnew): The function call T .add vertex(xnew) adds
a new vertex vnew associated with xnew to T and returns
vnew. The function call T .add edge(vcur, vnew, ψnew) adds
a new edge enew = (vcur, vnew) associated with ψnew to T .

C. Solution Checking during HyRRT Construction

When the function call extend returns Reached or
Advanced, a solution checking function is employed to

check if a path in T can be used to construct a motion
plan to the given motion planning problem. If this func-
tion finds a path p = ((v0, v1), (v1, v2), ..., (vn−1, vn)) =:
(e0, e1, ..., en−1) in T such that 1) xv0 ∈ X0 and 2)
xvn ∈ Xf , then the solution pair ψ̃p is a motion plan to
the given motion planning problem. In practice, item 2) is
too restrictive. Given ε > 0 representing the tolerance with
this condition, we implement item 2) as dist(xvn , Xf) ≤ ε.

Algorithm 1 HyRRT algorithm
Input: X0, Xf , Xu,H = (C, f,D, g), (UC ,UD), pn ∈

(0, 1), K ∈ N>0

1: T .init(X0);
2: for k = 1 to K do
3: randomly select a real number r from [0, 1];
4: if r ≤ pn then
5: xrand ← random state(C ′);
6: extend(T , xrand, (UC ,UD),H, Xu, f low);
7: else
8: xrand ← random state(D′);
9: extend(T , xrand, (UC ,UD),H, Xu, jump);

10: end if
11: end for
12: return T ;

extend(T , x, (UC ,UD),H, Xu, f lag)

1: vcur ← nearest neighbor(x, T ,H, f lag);
2: if new state(x, vcur, (UC ,UD),H, Xu, xnew, ψnew)

then
3: vnew ← T .add vertex(xnew);
4: T .add edge(vcur, vnew, ψnew);
5: if xnew == x then
6: return Reached;
7: else
8: return Advanced;
9: end if

10: end if
11: return Trapped;

V. PROBABILISTIC COMPLETENESS ANALYSIS

This section analyzes the probabilistic completeness prop-
erty of HyRRT algorithm. Probabilistic completeness means
that the probability that the planner fails to return a motion
plan, if it exists, approaches zero as the number of samples
approaches infinity. Section V-A presents the preliminaries
to establish the probabilistic completeness. Section V-B
presents our main result showing that the HyRRT algorithm
is probabilistically complete under certain assumptions.

A. Preliminaries about Probabilistic Completeness
The following defines the clearance of a motion plan.
Definition 5.1: (clearance of a solution pair) Given a

motion plan ψ = (φ, u) to the motion planning problem
P = (X0, Xf , Xu, (C, f,D, g)), the clearance of ψ = (φ, u)
is equal to the maximal δclear > 0 if the following hold:

1) For all (t, j) ∈ domψ such that Ij has nonempty
interior, (φ(t, j) + δclearB, u(t, j) + δclearB) ⊂ C;

2) For all (t, j) ∈ domψ such that (t, j + 1) ∈ domψ,
(φ(t, j) + δclearB, u(t, j) + δclearB) ⊂ D;

3) For all (t, j) ∈ domψ, (φ(t, j) + δclearB, u(t, j) +
δclearB) ∩Xu = ∅.

The following assumption is imposed on the input library.
Assumption 5.2: The input library (UC ,UD) is such that

1) Each input signal in UC is constant and UC includes
all possible input signals such that their time domains
are subsets of the interval [0, Tm] for some Tm > 0
and their images belong to UC . In other words, there
exists Tm > 0 such that UC = {ũ : dom ũ = [0, T] ⊂
[0, Tm], ũ is constant and rge ũ ∈ UC};

2) UD = UD.
The following assumption is imposed on the random

selection in HyRRT.
Assumption 5.3: The probability distributions of the ran-

dom selection in the function calls T.init, random state,
and new state are the uniform distribution.

The following assumptions are imposed on the flow map
f and the jump map g of the hybrid system H in (1).

Assumption 5.4: The flow map f is Lipschitz continuous.
In particular, there exist Kf

x ,K
f
u ∈ R>0 such that, for all

(x0, x1, u0, u1) such that (x0, u0) ∈ C, (x0, u1) ∈ C, and
(x1, u0) ∈ C,

|f(x0, u0)− f(x1, u0)| ≤ Kf
x |x0 − x1|

|f(x0, u0)− f(x0, u1)| ≤ Kf
u |u0 − u1|.

Assumption 5.5: The jump map g is such that there exist
Kg
x ∈ R>0 and Kg

u ∈ R>0 such that, for all (x0, u0) ∈ D
and (x1, u1) ∈ D,

|g(x0, u0)− g(x1, u1)| ≤ Kg
x |x0 − x1|+Kg

u|u0 − u1|.
The following assumption assumes that the existing mo-

tion plan is away from the boundary of initial state set, final
state set, and unsafe set, and uses a piecewise-constant input
during flows.

Assumption 5.6: Given a motion planning problem P =
(X0, Xf , Xu, (C, f,D, g)), there exists a motion plan ψ =
(φ, u) to P such that for some δ′ > 0

1) φ(0, 0) + δ′B ⊂ X0;
2) φ(T, J) + δ′B ⊂ Xf , where (T, J) = max domψ;
3) for all (t, j) ∈ domψ, (φ(t, j) + δ′B, u(t, j) + δ′B) ∩

Xu = ∅;
4) for all j ∈ N such that Ij has nonempty interior, t 7→

u(t, j) is piecewise constant with resolution ∆t.

B. Inflated Hybrid System and Main Result

In the probabilistic completeness result in [10, Theorem
2], a motion plan with positive clearance is assumed to
exist. However, such assumption is restrictive for hybrid
systems. Indeed, if the motion plan reaches the boundary
of the flow set or of the jump set, then the motion plan
has no clearance. To overcome this issue and to assure
that HyRRT is probabilistically complete, the hybrid system
H = (C, f,D, g) is modified as follows.

Definition 5.7: (δ-inflation of hybrid system) Given a hy-
brid system H = (C, f,D, g) and δ > 0, the δ-inflation of
the hybrid system H, denoted Hδ , is given by

Hδ :

{
ẋ = fδ(x, u) (x, u) ∈ Cδ

x+ = gδ(x, u) (x, u) ∈ Dδ

(4)

where
1) Cδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ C such that x ∈

y + δB, u ∈ v + δB},
2) fδ(x, u) := f(x, u) ∀(x, u) ∈ Cδ ,
3) Dδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ D such that x ∈

y + δB, u ∈ v + δB},
4) gδ(x, u) := g(x, u) ∀(x, u) ∈ Dδ .
Note that any solution to H in (1) is a solution to its

inflation in (4). The clearance property in Definition 5.1 is
satisfied for free since items 1) and 2) therein are satisfied by
constructing Cδ and Dδ , and item 3) therein is satisfied by
item 3) in Assumption 5.6. Next, we state our main result.

Theorem 5.8: Given a motion planning problem P =
(X0, Xf , Xu, (C, f,D, g)), suppose that Assumptions 5.2,
5.3, 5.4, and 5.5 are satisfied and that there exists a mo-
tion plan (φ, u) to P satisfying Assumption 5.6 for some
δ′ > 0. When HyRRT is used to solve the problem Pδ =
(X0, Xf , Xu, (Cδ, fδ, Dδ, gδ)), where, for some δ > 0,
(Cδ, fδ, Dδ, gδ) denotes the δ-inflation of (C, f,D, g) in
(4), the probability that HyRRT fails to find a motion plan
ψ′ = (φ′, u′) to Pδ such that φ′ is (τ̃ , δ̃)-close to φ after k
iterations is at most a exp(−bk), for some constant a, b ∈
R>0, where (T, J) = max domψ, (T ′, J ′) = max domψ′,
τ̃ = max{T + J, T ′ + J ′}, and δ̃ = min{δ, δ′}.
VI. HYRRT SOFTWARE TOOL FOR MOTION PLANNING

FOR HYBRID SYSTEMS AND EXAMPLES

Algorithm 1 leads to a software tool1 to solve the
motion planning problems for hybrid systems. This soft-
ware only requires the motion planning problem data
(X0, Xf , Xu, (C, f,D, g)), an input library (UC ,UD), a tun-
able parameter pn ∈ (0, 1), an upper bound K over the
iteration number and two constraint sets Xc and Xd. The tool
is illustrated in Example 3.1. We have successfully applied
HyRRT to other hybrid systems, including the actuated
bouncing ball and a point-mass robotics manipulator.

Example 6.1: (Walking robot system in Example 3.1, re-
visited) The simulation result in Figure 2 with tolerance ε
set to 0.3 shows that HyRRT is able to solve the instance
of motion planning problem for the walking robot. In this
simulation, the constraint set Xc is chosen as {(x, a) ∈
R6×R3 : h(x) ≥ −s} and Xd as {(x, a) ∈ R6×R3 : h(x) =
0, ωp ≥ −s} with a tunable parameter s set to 0, 0.3, 0.5, 1,
and 2, such that C = Xc|s=0 (Xc|s=0.3 (Xc|s=0.5 (
Xc|s=1 (Xc|s=2 and D = Xd|s=0 (Xd|s=0.3 (
Xd|s=0.5 (Xd|s=1 (Xd|s=2.

The simulation is implemented in MATLAB and pro-
cessed by a 3.5 GHz Intel Core i5 processor. The sim-
ulation takes 71.5/85.3/99.4/167.7/242.8 seconds with s

1Code at https://github.com/HybridSystemsLab/hybridRRT.

set to 0/0.3/0.5/1.0/2.0, respectively. The simulation takes
at least 71.5 seconds to finish. Compared with the for-
ward/backward propagation algorithm based on breadth-
first search which takes 1608.2 seconds to solve the same
problem, the improvement provided by the rapid exploration
is significant: 95.5% computation time improvement. It is
also observed that as the sets Xc and Xd grow, HyRRT
considers more vertices in solving Problems 2 and 3 leading
to higher computation time.

0 2 4
-1

-0.5

0

0.5

1

state 1

Initial state

Final state

0 2 4
-1

-0.5

0

0.5

1

state 2

Initial state

Final state

0 2 4
-0.05

0

0.05

0.1

state 3

Initial state

Final state

Fig. 2. Selected state trajectories of the generated motion plan for the
walking robot system. In each figure above, the green and blue squares
denote the corresponding initial and final state components, respectively.

The software tool also succeeds in finding motion plans for
the actuated bouncing ball and point-mass robotics manipu-
lator systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, a HyRRT algorithm is proposed to solve
motion planning problems for hybrid systems. The proposed
algorithm is illustrated in the walking robot example and the
results show its capacity to solve the problem. In addition,
this paper provides a result showing HyRRT algorithm is
probabilistically complete under mild assumptions. Future
research direction includes the optimal motion planning.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[2] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm,,” in ICAPS,
vol. 5, 2005, pp. 262–271.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous Robot Vehicles. Springer, 1986, pp. 396–404.

[4] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[5] P. Cheng, “Sampling-based motion planning with differential con-
straints,” Tech. Rep., 2005.

[6] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[7] M. S. Branicky, M. M. Curtiss, J. A. Levine, and S. B. Morgan, “Rrts
for nonlinear, discrete, and hybrid planning and control,” in 42nd IEEE
International Conference on Decision and Control (IEEE Cat. No.
03CH37475), vol. 1. IEEE, 2003, pp. 657–663.

[8] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan, “Sampling-
based planning and control,” in Proceedings of the 12th Yale Workshop
on Adaptive and Learning Systems, New Haven, CT. Citeseer, 2003.

[9] R. G. Sanfelice, “Hybrid feedback control,” 2021.
[10] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,

“Probabilistic completeness of RRT for geometric and kinodynamic
planning with forward propagation,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. x–xvi, 2018.

[11] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
Transactions on Automatic Control, vol. 46, no. 1, pp. 51–64, 2001.

[12] B. E. Short and R. G. Sanfelice, “A hybrid predictive control approach
to trajectory tracking for a fully actuated biped,” in 2018 Annual
American Control Conference (ACC). IEEE, 2018, pp. 3526–3531.

[13] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step and
best-input extension are not probabilistically complete,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 233–244.

