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Abstract— A hybrid feedback is developed for robust, global
stabilization of the attitude of an underactuated rigid body. For
the case where two angular velocities are considered as controls,
this objective is achieved. For the case where the two controls
are torques, the objective is achieved in a “practical” sense,
i.e., robust, global asymptotic stability of some arbitrarily small
neighborhood of the desired attitude is achieved. To assistwith
the exposition, a robustly, globally stabilizing hybrid controller
is also developed for the case where three angular velocities are
considered as controls. This solution provides an alternative to
one that has appeared recently in the literature.

I. I NTRODUCTION

The main contribution of this paper is the description of a
hybrid feedback for robust, global stabilization of the point
ξ∗ := (0, 0, 0, 1)⊤ for the nonlinear control system

ξ̇ = W (ω)ξ ξ ∈ C0 :=
{
ξ ∈ R

4 : ξ⊤ξ = 1
}

(1)

W (ω) =
1

2




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (2)

using feedback controlsω in the set

Ω12 :=
{
ω ∈ R

3 : ω3 = ω1ω2 = 0 , ω⊤ω ≤ 1
}
. (3)

Notice that any control choice renders the setC0 invariant
sinceW (ω) +W⊤(ω) = 0 for all ω ∈ R

3.
We are motivated by the work in [4] which provides what

is apparently the first hybrid feedback (in that case, a sample-
and-hold controller) for global stabilization ofξ∗ for the
system (1). The feedback in [4] uses controls in the set

Ω123 :=
{
ω ∈ R

3 : ω1ω2 = ω2ω3 = ω3ω1 = 0 , ω⊤ω ≤ 1
}

(4)
(notice thatΩ12 is a strict subset ofΩ123) which facilitates
extending the solution to the stabilization problem for the
system (1)-(2) augmented with the dynamics

ω̇1 = u1

ω̇2 = u2

ω̇3 = aω1ω2



 =: f(ω) +Bu (5)

using feedback controlsu. It is assumed thata 6= 0.
Rigid body dynamics motivate the control system (1)-(2),

(5). The system (1)-(2) corresponds to the kinematics of the
rigid body, expressed in terms of a unit quaternion, andξ∗

corresponds to the desired attitude of the rigid body. The
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vectorω corresponds to angular velocities, and the equations
(5) correspond to angular velocity dynamics

Jxω̇1 − (Jy − Jz)ω2ω3 = Mx

Jyω̇2 − (Jz − Jx)ω3ω1 = My

Jzω̇3 − (Jx − Jy)ω1ω2 = Mz

(where the moments of inertiaJx, Jy, andJz are positive
scalars) in the case of two input torques such thatMz ≡ 0,
and after an input transformation from(Mx,My) to u. The
conditiona 6= 0 corresponds to the conditionJx 6= Jy.

The stabilization problem for underactuated angular veloc-
ity dynamics has been studied in several papers, notably [1],
[12], [10] which consider the case of one input torque. The
attitude stabilization for the case of two input torques has
been studied in [6], [2], [8], [9], [13], [5], [4]. For additional
discussions about the attitude control problem, see [14].

In the paper [4], the authors address the attitude stabi-
lization problem with two input torques by first solving the
kinematic stabilization problem globally using controls in the
setΩ123 and then using the controlsu in the system (5) to
regulate the variablesω to their desired values. We also first
address the kinematic stabilization problem globally, butwe
consider the problem with controls inΩ12 rather thanΩ123.
Such a solution is useful for the situation wherea 6= 0 is very
small in magnitude so that it is significantly more difficult
to changeω3 than it is to changeω1 or ω2. Moreover, the
solution that we provide will also succeed in regulating the
attitude whena = 0 andω3 starts at zero.

In addition to a solution to the kinematic stabilization
problem with controls inΩ12, we will also give a global
hybrid feedback controller using controls inΩ123. This
control law can serve as an alternative to the algorithm
proposed in [4], which is based on using sample-and-hold
control. We will present the solution to the kinematic control
problem with controls inΩ123 first since many of the ideas
in that solution appear again in the solution to the kinematic
control problem with controls in the setΩ12.

The paper is organized as follows: In Section II we review
hybrid systems and the notion of global asymptotic stability
for said systems. In Section III we solve the robust, global
stabilization problem for the kinematics using controls inthe
setΩ123. In Section IV we solve this problem using controls
in the setΩ12. In Section V we show how to use the solution
to the kinematic control problem with controls inΩ12 to
solve the robust, global stabilization problem for the system
(1)-(2) together with the dynamical equationω̇3 = aω1ω2

where a 6= 0 using controls(ω1, ω2). In Section VI, we
discuss the application of our ideas to the problem of robust,
global stabilization of an underactuated rigid body.



II. H YBRID SYSTEMS AND ASYMPTOTIC STABILITY

A. Well-posed hybrid systems

Our treatment of hybrid systems follows that given in
[7]. The emphasis in [7] is on a framework that guarantees
that asymptotic stability in hybrid systems is robust to small
perturbations, whether they come from parameter variations,
external disturbances or measurement noise. Here, we call
such systems “well-posed” hybrid systems. For the purposes
of this paper, a well-posed hybrid system is written as

ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D

(6)

where (see [7] for more details)

• the setsC ⊂ R
n andD ⊂ R

n are closed,
• f : C → R

n is continuous,
• the set-valued mappingG : R

n →→ R
n is outer-

semicontinuous, locally bounded, and nonempty onD.

Solutions to the hybrid system (6) are defined on hybrid time
domains, which are subsets of the reals times the nonnegative
integers [7]. The system (6) is said to beforward complete
and non-Zenofrom C ∪D if every maximal solution to (6)
starting in C ∪ D has a hybrid time domain whose real
component is unbounded. The integer component may or
may not be unbounded.

B. Asymptotic stability

For the hybrid system (6), the compact setA ⊂ R
n is

said to be globally asymptotically stable if the following
properties hold:

1) For each ε > 0 there existsδ > 0 such that
|x(0, 0)|A ≤ δ =⇒ |x(t, j)|A ≤ ε ∀(t, j) ∈ dom x.

2) Each solution is bounded and each solution
with an unbounded hybrid time domain satisfies
limt+j→∞ |x(t, j)|A = 0.

For well-posed hybrid systems, [7, Theorem 6.5] shows that
global asymptotic stability is equivalent to the existenceof
a functionβ ∈ KL such that each solutionx satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀(t, j) ∈ dom x

and [7, Theorem 6.6] shows that global asymptotic stability
is robust to small perturbations. Moreover, global asymptotic
stability implies the existence of a smooth Lyapunov function
[3], and global asymptotic stability can be established using
invariance principles a la LaSalle [11].

C. Control objective

Our controllers for the attitude stabilization problems will
contain an internal stateη taking values in a compact setK.
Our first goal is to find a hybrid controller

ω = κ(ξ, η)
η̇ = α(ξ, η) (ξ, η) ∈ C
η+ ∈ G(ξ, η) (ξ, η) ∈ D

(7)

that solves the robust, global asymptotic stabilization prob-
lem for (1)-(2) using controls inΩ123, respectively inΩ12.
This problem is defined as follows:

Definition 1: Let Ω ⊂ R
3 be closed. The controller (7)

is said tosolve the robust, global asymptotic stabilization
problem for (1)-(2) using controls inΩ if

1) C andD are closed sets andC ∪D = C0 ×K,
2) The functionsκ, α : C → Ω are continuous;G is

outer-semicontinuous, locally bounded and nonempty
onD,

3) the closed-loop system (1),(7) is forward complete and
non-Zeno fromC0 ×K and has the compact setA =
{ξ∗} × K globally asymptotically stable.

In both of the problems below, the internal stateη will
contain a timerτ taking values in the interval[0, 1], a
(discrete) logic statep ∈ P that indicates which angular
velocity component is being used, and a (discrete) logic state
q ∈ Q that indicates the current mode of the system. When
using controls in the setΩ12, η will also contain a variable
ς ∈ {−1, 1}, a variableϕ ∈ [0, π/4] and a variableχ ∈ Q.
Both controllers will make use of functionsσi, (i = 1, 2, 3
for controls inΩ123 andi = 1, 2 for controls inΩ12) defined
on the set{0, 1, 2, 3} and satisfyingσi(p) = 1 whenp = i
andσi(p) = 0 whenp 6= i.

III. A TTITUDE STABILIZATION USING CONTROLS IN Ω123

We defineP := {1, 2, 3}, Q := {1, 2, 3} andK := [0, 1]×
P ×Q. The controller state isη := (τ, p, q)′. We take

α(ξ, η) :=

[
max {0, 2 − q}

02×1

]
, (8)

i.e., α1(ξ, (τ, p, 1)′) = 1 andα1(ξ, (τ, p, q)
′) = 0 whenq 6=

1, α2(ξ, η) = α3(ξ, η) = 0 for all (ξ, η). We also take

C := {(ξ, η) ∈ C0 ×K : (ξ, τ, p) ∈ Cq}
D := {(ξ, η) ∈ C0 ×K : (ξ, τ, p) ∈ Dq} (9)

and then, for eachq ∈ Q, we specifyCq, Dq, G(ξ, η) =
G(ξ, (τ, p, q)′) andκ(ξ, η) = κ(ξ, (τ, p, q)′) below.

• Mode q = 1: Use zero controls for a short amount of
time then and evaluate what mode should be used. Let
ε ∈ (0, 1). According to (8), the timer stateτ evolves
according toτ̇ = 1 in this mode. The flow set is

C1 := C0 × [0, ε] × P ,

the controls areωi = κi(ξ, (τ, p, 1)′) := σi(0), i.e.,
ωi = 0 for i = 1, 2, 3, and the jump set is given by the
closure of the complement (relative toC0×[0, 1]×P) of
C1. The jump map is defined onD1. The first compo-
nent of the jump map is zero, i.e.,G1(ξ, (τ, p, 1)′) := 0
for all (ξ, τ, p) ∈ D1. The second component is

G2(ξ, (τ, p, 1)′) :=
{
̺ ∈ P : ξ2̺ ≥ ξ2i ∀i ∈ P

}
.

The third component of the jump map is expressed in
terms of a parameterθ that must be in the interval(θ, θ)
whereθ andθ are specified in subsequent modes. The
third component of the jump map is given by

G3(ξ, (τ, p, 1)′) :=





2 if ξ4 < θ
3 if ξ4 > θ

{2, 3} if ξ4 = θ .



• Modeq = 2: Getξ4 above a thresholdθ ∈ (−1, 1/
√

3).
The flow set for this mode is

C2 :=
{
p ∈ P , ξ4 ≤ θ , ξ24 + ξ2p ≥ 1/3

}
.

There always existsp ∈ P such thatξ24 + ξ2p ≥ 1/3
since, if not

1 > ξ21 + ξ22 + ξ23 + 3ξ24 = 1 + 2ξ24 ≥ 1

which is a contradiction. The controls are given by
ωi = κi(ξ, (τ, p, 2)′) := σi(p). The jump setD2 is the
closure of the complement (relative toC0 × [0, 1]×P)
of C2. The jump map isG(ξ, (τ, p, 2)′) = (0, p, 1)′. (It
is possible to add an extra controller state that takes
values in the discrete set{−1, 1} and multipliesσi(p)
in the definition ofκi in order to makeξ4 move in
the “better” of the two directions that can be taken to
get it above the desired threshold. This feature is not
necessary for global asymptotic stability and so it is
omitted to simplify the presentation.)

• Modeq = 3: Normal operation, which is allowed when
ξ4 ≥ θ ∈ (−1, θ). In this mode, the controller increases
ξ4 by making sure it is connected to a stateξ1, ξ2, or
ξ3 that is bounded away from zero in an appropriate
sense. The control laws here are

ωi = −σi(p)ξi =: κi(ξ, τ, p, 3)

(note thatξi be replaced by any functionf having the
property thatξif(ξi) is continuous and positive definite)
and the flow set is given by

C3 :=
{
p ∈ P , ξ4 ≥ θ , ξ2p ≥ µ

(
ξ2j + ξ2k

)}

where thep, j and k are distinct elements ofP and
µ ∈ (0, 1/2). Notice that the flow equation forξ4 will
satisfy ξ̇4 = ξ2p . The only value ofξ ∈ C3 that makes
this derivative zero is the valueξ = ξ∗. The jump setD3

is the closure of the complement (relative toC0×[0, 1]×
P) of C3. The jump map isG(ξ, (τ, p, 2)′) = (0, p, 1)′.

Theorem 1:The hybrid controller specified above solves
the robust, global asymptotic stabilization problem for (1)-(2)
using controls inΩ123.
Sketch of proof:The first two items and the first part of
the third item of the robust, global asymptotic stabiliza-
tion problem are satisfied by construction. Regarding global
asymptotic stability, we note that the energy function1− ξ4
is strictly decreasing in mode 3 and constant in mode 1.
Since mode 2 only runs whenξ4 is bounded away from
one, this establishes stability of the pointξ∗. Due to the
hysteresis, after mode 2 activates once, it never activates
again. Moreover, the only time it activates is perhaps at
t ∈ [0, ε] and when it activates, it is for a uniformly bounded
duration. It then follows from the invariance principles in
[11] that the setA is globally asymptotically stable. �

IV. ATTITUDE STABILIZATION USING CONTROLS IN Ω12

A. Controller description and result

The control strategy in this section is based on the strategy
for Ω123. However, some additional modes are used to

account for the fact that it is not possible to link the states
ξ3 andξ4 directly since we are insisting thatω3 ≡ 0.

We defineP := {1, 2}, Q := {1, 2, . . . , 8} and K :=
[0, 1]×P×Q×{−1, 1}× [0, π/4]×Q. The controller state
is η := (τ, p, q, ς, ϕ, χ)′. We take

α(ξ, η) :=

[
α1(q)
05×1

]
(10)

whereα1(1)=α1(6)=1, andα1(q)=0 for q /∈ {1, 6}. Also

C := {(ξ, τ, p, q, ς, ϕ, χ) ∈ C0 ×K ,
(ξ, τ, p, ς, ϕ, χ) ∈ Cq}

D := {(ξ, τ, p, q, ς, ϕ, χ) ∈ C0 ×K ,
(ξ, τ, p, ς, ϕ, χ) ∈ Dq} .

(11)
We specifyCq, Dq, G(ξ, η) = G(ξ, (τ, p, q, ς, ϕ, χ)′) and
κ(ξ, η) = κ(ξ, (τ, p, q, ς, ϕ, χ)′) for eachq ∈ Q below.
• Mode q = 1: Use zero controls for a short amount

of time and then evaluate what mode should be used.
This mode is just like theq = 1 mode for the previous
controller. Letε ∈ (0, 1). The flow set is

C1 := C0 × [0, ε] × P × {−1, 1} × [0, π/4]×Q
and ωi = κi(ξ, (τ, p, 1, ς, ϕ, χ)′) := σi(0), i.e., ωi =
0 for i = 1, 2. The jump set is the closure of the
complement (relative toΓ := C0×[0, 1]×P×{−1, 1}×
[0, π/4] × Q) of C1. The jump map is defined onD1.
The first component is always zero. The fourth through
sixth components are always(ς, ϕ, χ)′. The second and
third components are given as follows. Define

I(ξ) :=
{
̺ ∈ P : ξ2̺ ≥ ξ2i ∀i ∈ P

}
.

The parametersθ, θ and ν will be specified in modes
2, 3, and 4, respectively. Letθ ∈ (θ, θ) and let
ν2 ∈ (1/3, ν). If χ /∈ {5, 6, 7}, ξ4 ≤ θ, and ξ24 +
max

{
ξ21 , ξ

2
2

}
≥ ν2 then (p+, q+) ∈ I(ξ) × {2}; if

χ /∈ {5, 6, 7}, ξ4 ≤ θ and ξ24 + max
{
ξ21 , ξ

2
2

}
≤ ν2

then (p+, q+) ∈ I(ξ) × {4}. If both conditions hold
then(p+, q+) ∈ I(ξ)×{2, 4}. The parameterµ will be
specified in mode3. Let µ̂ > µ/(1−µ). If χ /∈ {5, 6, 7},
ξ4 ≥ θ, andξ21 + ξ22 ≥ µ̂ξ23 then(p+, q+) ∈ I(ξ)×{3};
if χ /∈ {5, 6, 7}, ξ4 ≥ θ, and ξ21 + ξ22 ≤ µ̂ξ23
then (p+, q+) = (1, 5). If both conditions hold then
(p+, q+) ∈ (I(ξ) × {3}) ∪ (1, 5). If χ ∈ {5, 6, 7} then
(p+, q+) = (mod(χ+ 1, 2) + 1, χ+ 1).

• Modeq = 2: Getξ4 above a thresholdθ ∈ (1/2, 1/
√

3).
The flow set for this mode is

C2 :=
{
p ∈ P , ξ4 ≤ θ , ξ24 + ξ2p ≥ 1/3

}
,

and ωi = κi(ξ, (τ, p, 2, ς, ϕ, χ)′) := σi(p). The jump
set D2 is the closure of the complement (relative to
Γ) of C2. The jump map isG(ξ, (τ, p, 2, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, q)′.

• Modeq = 3: Normal operation, which is allowed when
ξ4 ≥ θ ∈ (1/

√
5, θ). Increaseξ4 by making sure it is

connected to a state that is bounded away from zero in
an appropriate sense. The control laws here are

ωi = κi(ξ(τ, p, 3, ς, ϕ, χ)′) := −σi(p)ξi



(againξi can be replaced by a more general function)
and the flow set is given by

C3 :=
{
p ∈ P , ξ4 ≥ θ, ξ2p ≥ µ

(
ξ2j + ξ23

)}

where thej and p are distinct elements of the set
P and µ ∈ (0, 1/2). The flow equation forξ4 will
satisfy ξ̇4 = ξ2p. The jump setD3 is the closure of
the complement (relative toΓ) of C3. The jump map is
G(ξ, (τ, p, 3, ς, ϕ, χ)′) = (0, p, 1, ς, ϕ, q)′.

• Mode q = 4: Enable gettingξ4 above threshold.Let
ν ∈ (1/3, 1/2). The flow set for this mode is

C4 :=
{
p ∈ P , ξ4 ≤ θ, ξ24 + max

{
ξ21 , ξ

2
2

}
≤ ν

}
,

andωi = κi(ξ, (τ, p, 4, ς, ϕ, χ)′) := σi(p). Notice that
ξ3 will be driven toward zero, but won’t be able to reach
it, as ξ23 = 0 implies ξ24 + max

{
ξ21 , ξ

2
2

}
≥ 1/2. The

jump setD4 is the closure of the complement (relative
to Γ) of C4. The jump map isG(ξ, (τ, p, 4, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, χ)′.

• Mode q = 5: Increaseξ4 by emptyingξ1 into ξ4. The
flow set for this mode is

C5 :=
{
p = 1; −ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}
,

andωi = κi(ξ, (τ, p, 5, ς, ϕ, χ)′) := ςσi(p). The jump
set D5 is the closure of the complement (relative to
Γ) of C5. The jump map is such thatϕ+ is equal to
s ∈ (0, π/4] such that

cot(2s) =
cos2(s) − sin2(s)

2 sin(s) cos(s)
=

∣∣∣∣
ξ2
ξ3

∣∣∣∣ . (12)

Thus,ϕ+ = 0.5 cot−1(|ξ2/ξ3|) for ξ3 6= 0, ϕ+ = 0 for
ξ3 = 0, ξ2 6= 0, andϕ+ ∈ [0, π/4] for ξ3 = ξ2 = 0.
Also ς+ = sgn(ξ2ξ3) and whenξ2ξ3 = 0 we setς+ ∈
{−1, 1}. Finally τ+ = 0, p+ = p, q+ = 1, andχ+ = q.

• Mode q = 6: “open loop” maneuver to decrease the
magnitude ofξ3; ξ1 connected toξ4 The controls are
given by ωi = κi(ξ, (τ, p, 6, ς, ϕ, χ)′) := ςσi(p). The
flow set of this mode is

C6 := {p = 1; τ ∈ [0,min {φ(ξ4), ϕ}]} .

The function φ : [−1, 1] → [0, π/4] is Lipschitz
continuous, nonincreasing, and satisfiesφ(1) = 0. The
jump setD6 is the closure of the complement (relative
to Γ) of C6. The jump map satisfiesτ+ = 0, p+ = 2,
q+ = 1, ς+ ∈ {s ∈ {−1, 1} : −sξ2 ≥ 0}, ϕ+ = ϕ, and
χ+ = q.

• Mode q = 7: increaseξ4 by emptyingξ2 into ξ4. The
flow set of this mode is

C7 :=
{
p = 2;−ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}

andωi = κi(ξ, (τ, p, 6, ς, ϕ, χ)′) := ςσi(p). The jump
setD7 is the closure of the complement (relative toΓ)
of C7 and the jump map satisfiesτ+ = 0, p+ = 1,
q+ = 1, ς+ ∈ {s ∈ {−1, 1} : −sξ1 ≥ 0}, ϕ+ = ϕ and
χ+ = q.

• Mode q = 8: increaseξ4 by emptyingξ1 into ξ4. The
flow set of this mode is

C8 :=
{
p = 1;−ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}
,

andωi = κi(ξ, (τ, p, 8, ς, ϕ, χ)′) := ςσi(p). The jump
set D8 is the closure of the complement (relative to
Γ) of C8. The jump map isG(ξ, (τ, p, q, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, q)′.

Theorem 2:The hybrid controller specified above solves
the robust, global asymptotic stabilization problem for (1)-(2)
using controls inΩ12.
Sketch of proof:The proof is similar to that of the previous
result. However, afterξ4 is brought above its minimum
threshold, there is still one mode (mode 6) where the function
1− ξ4 can (and typically does) increase. In Section IV-B we
explain why this function cannot increase very much if it
starts close to zero, thereby ensuring stability. In Section IV-
C we explain why the sequence of modes5 → 1 → 6 →
1 → 7 → 1 → 8, which will always be the sequence by
which mode 6 is reached, ensures that the sequence of modes
6→1→7→1→8 decrease the function1 − ξ4.

Figure 1 shows a simulation of the closed-loop system
with hybrid controller using controls inΩ12. Initially, the
controller takesξ4 above thresholds using mode4 and 2,
and shortly after enters into the sequence5→ 1→ 6→ 1→
7→1→8, which makes1 − ξ4 decrease and in turn, steers
ξ asymptotically toξ∗.

B. On the amount of time spent in Mode 6

Recall the definition ofC6, that τ̇ = 1 in mode 6, and
that the functionφ in the definition ofC6 takes values in
[0, π/4]. It follows that the maximum amount of time that
can be spent in mode 6 before moving back to mode 1 isπ/4
seconds. However, the time in mode 6 will be much shorter
thanπ/4 whenξ4 starts close to1. This is seen as follows.
Let L > 0 be the Lipschitz constant for the functionφ and
let V (ξ4) := 1− ξ4. Sinceφ(1) = 0, it follows thatφ(ξ4) ≤
LV (ξ4). In mode 6,ξ̇4 = −ω1ξ1 and, sinceω⊤ω ≤ 1 and
ξ⊤ξ = 1, we have|ω1ξ1| ≤ |ξ1| ≤

√
2
√

1 − ξ4. Thus

〈∇V (ξ4),−ω1ξ1〉 ≤
√

2V (ξ4) . (13)

By standard comparison theorems, it follows that in mode 6

V (ξ4(t)) ≤
1

2

(√
2V (ξ4(0)) + t

)2

. (14)

It follows that the amount of time that can be spent is mode
6 before leaving is upper bounded by the smaller of the two
solutionst∗ of the equation

t∗ =
L

2

(√
2V (ξ4(0)) + t∗

)2

(15)

and the maximum value ofV (ξ4) over this interval ist∗/L.
It can be seen thatt∗ tends to zero asV (ξ4(0)) tends to zero.

C. Calculations related to Modes 5-8

After leaving mode 5 and entering mode 6 through mode
1, we will haveξ1 = 0 and ξ22 ≤ µ̂ξ23 and ξ4 ≥ θ > 0. We
consider the effect of applying constant controls where first
ω1 6= 0, for τ1 seconds, and thenω2 6= 0, for τ2 seconds,
zeroing outξ2, and thenω1 6= 0, for τ3 seconds, zeroing out
ξ1. To save on notation, consider the definitions

s1 := sin(ω1τ1) c1 := cos(ω1τ1)
s2 := sin(ω2τ2) c2 := cos(ω2τ2)
τ12 := τ1 + τ2 τ123 := τ1 + τ2 + τ3 .

(16)
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Fig. 1. Closed-loop trajectories for the attitude stabilization problem using
controls inΩ12. Componentξ converges toξ∗ by executing a sequence
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We claim that|ξ3(τ3)| ≤ ρ(ξ4)|ξ3| whereρ is a continuous
function that is less than one except whenξ4 = 1. Then

1 − ξ24(τ123) = ξ21(τ123) + ξ22(τ123) + ξ23(τ123)
= ξ22(τ123) + ξ23(τ123)
= ξ22(τ12) + ξ23(τ12) = ξ23(τ12)

(17)

⇒ 1 − ξ24(τ123) ≤ ρ(ξ4)
2ξ23

≤ ρ(ξ4)
2
(
ξ23 + ξ21 + ξ22

)

= ρ(ξ4)
2
(
1 − ξ24

) (18)

which shows that the net effect of the maneuvers is to
increaseξ4 uniformly toward one. To establish the claim,
first consider the effect ofω1τ1 and the general form of the
solutions from the initial conditionξ. We get

ξ1(τ1) = s1ξ4 + c1ξ1 , ξ2(τ1) = s1ξ3 + c1ξ2
ξ3(τ1) = c1ξ3 − s1ξ2 , ξ4(τ1) = c1ξ4 − s1ξ1

and

ξ1(τ12) = c2 (s1ξ4 + c1ξ1) − s2 (c1ξ3 − s1ξ2)
ξ2(τ12) = c2 (s1ξ3 + c1ξ2) + s2 (c1ξ4 − s1ξ1)
ξ3(τ12) = s2 (s1ξ4 + c1ξ1) + c2 (c1ξ3 − s1ξ2)
ξ4(τ12) = −s2 (s1ξ3 + c1ξ2) + c2 (c1ξ4 − s1ξ1)

.

Knowing thatξ2(τ12) will be zero, we get

s2 = −c2 (s1ξ3 + c1ξ2)

c1ξ4 − s1ξ1

and thus

ξ3(τ12) = −c2 (s1ξ3 + c1ξ2)

c1ξ4 − s1ξ1
(s1ξ4 + c1ξ1)

+c2 (c1ξ3 − s1ξ2)

=
c2

c1ξ4 − s1ξ1

[
(c21 − s21) (ξ3ξ4 − ξ1ξ2)

−2c1s1 (ξ2ξ4 + ξ1ξ3)] .

Now, usingξ1 = 0 andξ4 > 0, we get

ξ3(τ12) =
c2
c1

[
(c21 − s21)ξ3 − 2c1s1ξ2

]
.

Now, we have chosenω1 so that the sign ofs1ξ2 matches
the sign ofξ3, and we have chosenτ1 so that|(c21−s21)ξ3| ≥
|2c1s1ξ2| Using these facts, it follows that

|ξ3(τ12)| ≤
c21 − s21
c1

|ξ3| .

We note that the coefficient is less than one, except when
c1 = 1, and its size will depend onξ4 because of the
description of the flow set in mode 6.

V. ROBUST, GLOBAL STABILIZATION OF KINEMATICS

PLUS NON-ACTUATED ANGULAR VELOCITY

We now consider the robust, global asymptotic stabiliza-
tion problem using controls(ω1, ω2) for the system (1)-(2)
combined with the dynamic equation

ω̇3 = aω1ω2 a 6= 0 . (19)

Let λ ∈ (0, 1), let σ : R → [−λ, λ] be a continuously
differentiable function so that the functionω3 7→ aω3σ(ω3)
is negative definite, and definẽω1 and ω̃2 as

ω̃1 :=
1

1 − σ2(ω3)
(ω1 − σ(ω3)ω2)

ω̃2 :=
1

1 − σ2(ω3)
(ω2 − σ(ω3)ω1)





=: Φ(ω)

(20)



These relationships can be inverted sinceσ(ω3)
2 ≤ λ2 < 1

for all ω3 to give

ω1 = ω̃1 + σ(ω3)ω̃2

ω2 = ω̃2 + σ(ω3)ω̃1

(21)

and, in turn,

ω̇3 = a (ω̃1 + σ(ω3)ω̃2) (ω̃2 + σ(ω3)ω̃1)

= aσ(ω3)
(
ω̃2

1 + ω̃2
2

)
+ a

(
1 + σ2(ω3)

)
ω̃1ω̃2 .

(22)
Thus, we can consider the new control system, with controls
ω̃1, ω̃2 given by (22) together with

ξ̇ = W






ω̃1 + σ(ω3)ω̃2

ω̃2 + σ(ω3)ω̃1

ω3




 ξ , ξ⊤ξ = 1 . (23)

We will take the controls̃ω ∈ Ω12. Let (C,D, κ, α,G) solve
the robust, global asymptotic stabilization problem using
controls inΩ12, and pickω̃ = κ(ξ, η), i.e.,

ω̃ = κ(ξ, η)
η̇ = α(ξ, η) (ξ, η) ∈ C
η+ ∈ G(ξ, η) (ξ, η) ∈ D .

(24)

Theorem 3:If the controller (7) solves the robust, global
asymptotic stabilization problem using controls inΩ12 for
the system (1)-(2) then the controller (21),(24) solves thero-
bust, global asymptotic stabilization problem (using controls
in R

2) for the system (1)-(2), (19).
Sketch of proof: Sinceω̃ ∈ Ω12, it follows that

ω̇3 = aσ(ω3)
(
ω̃2

1 + ω̃2
2

)
. (25)

Thus, the functionω2
3 is monotonically nonincreasing along

solutions. By local robustness properties established in [7],
it follows that the setA× {0} is stable. Next, we note that
solutions are non-Zeno by virtue of the assumption of the
properties of the controller (7) for the system (1)-(2). Now,
according to the invariance principle [11], trajectories will
converge to an invariant set where, during flows, eitherω̃1 =
ω̃2 = 0 and ω3 is constant orω3 = 0. In the latter case,
(ξ, η) converges toA by assumption. It remains to rule out
the possibility thatω3 remains at a nonzero constant. Indeed,
if ω3 is not zero thenξ will not remain atξ∗ and thenω̃1

andω̃2 cannot remain at zero. This contradiction leads to the
conclusion that all trajectories converge toA× {0}.

VI. ROBUST, GLOBAL PRACTICAL STABILIZATION OF AN

UNDERACTUATED RIGID BODY

We now discuss extending the solution of the previous
subsection to the control problem where two torques are the
controls. Through the globally invertible input transformation

v := 〈∇Φ(ω), f(ω)〉 +Bu (26)

whereΦ is defined in (20) andf andB are defined in (5),
we get the control systeṁ̃w = v together with (22)-(23).
The inverse of the input transformation is given by

u1 = v1 + σ(ω3)v2 + ∇σ(x3)aω1ω2ω̃2

u2 = v2 + σ(ω3)v1 + ∇σ(x3)aω1ω2ω̃1 .
(27)

Given the controller (24) for the system (22)-(23) and
given a continuously differentiable, positive definite function
ψ : C0 × R → R≥0, we propose the controller

κ̃(ξ, η, ω3) = ψ(ξ, ω3)κ(ξ, η)
e = ω̃ − κ̃(ξ, η, ω3)

v = −ke+ 〈∇κ̃(ξ, η),




W (ω)ξ
α(ξ, η)
aω1ω2



〉

η̇ = α(ξ, η) (ξ, η) ∈ C
η+ = G(ξ, η) (ξ, η) ∈ D

(28)

wherek > 0.
The proof of the final result is beyond this paper’s scope.
Theorem 4:The system (1)-(2), (5) together with the

controller (27), (28), (20) is such thatA × {0} is robustly,
globally, practically asymptotically stable in the parameter
k > 0, i.e., for each neighborhood ofA × {0} there exists
k∗ such that for eachk ≥ k∗ there is a compact set in the
neighborhood that is robustly, globally asymptotically stable.

We note that, instead of makingk large, an alternative
is to slow down the evolution of the kinematics through a
scaling of the angular velocities.

We conjecture that the functionψ can be chosen in such
a way that robust, global asymptotic stability results fork
above a certain threshold. Establishing such a result is the
topic of ongoing research. Through simulations, we are also
currently studying how the choice of different parameters in
the control algorithm affects performance.
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