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Abstract— A hybrid feedback is developed for robust, global
stabilization of the attitude of an underactuated rigid body. For
the case where two angular velocities are considered as cools,
this objective is achieved. For the case where the two conti®
are torques, the objective is achieved in a “practical” sens,
i.e., robust, global asymptotic stability of some arbitraiily small
neighborhood of the desired attitude is achieved. To assistith
the exposition, a robustly, globally stabilizing hybrid catroller
is also developed for the case where three angular velocisare
considered as controls. This solution provides an alternate to
one that has appeared recently in the literature.

I. INTRODUCTION

The main contribution of this paper is the description of
hybrid feedback for robust, global stabilization of the ngoi

€ :=(0,0,0,1)T for the nonlinear control system

E=Ww) €€C={cecR:T¢=1} (1)
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using feedback controls in the set
Q12 ::{w€R3:w3:w1w2:O, wlw<1 } . (3

Notice that any control choice renders the &gtinvariant
sinceW (w) + W T (w) = 0 for all w € R3.

vectorw corresponds to angular velocities, and the equations
(5) correspond to angular velocity dynamics

Jaw1 — (jy - jz)WQWS = M,
jyu'}Q - (jz - Jz)WSLUl = My
szA.}S - (jz - jy)wlu}Q = Mz

(where the moments of inerti&,, J,, and 7, are positive
scalars) in the case of two input torques such thét = 0,
and after an input transformation fropM,,, M,,) to u. The
conditiona # 0 corresponds to the conditiaff, # J,,.

The stabilization problem for underactuated angular veloc

a|lty dynamics has been studied in several papers, notahly [1]

[12], [10] which consider the case of one input torque. The
attitude stabilization for the case of two input torques has
been studied in [6], [2], [8], [9], [13], [5], [4]. For adddnal
discussions about the attitude control problem, see [14].

In the paper [4], the authors address the attitude stabi-
lization problem with two input torques by first solving the
kinematic stabilization problem globally using contraighe
setQ;23 and then using the controls in the system (5) to
regulate the variables to their desired values. We also first
address the kinematic stabilization problem globally, wat
consider the problem with controls iny2 rather than;s3.
Such a solution is useful for the situation where 0 is very
small in magnitude so that it is significantly more difficult

We are motivated by the work in [4] which provides whatto changews than it is to changev, or w,. Moreover, the
is apparently the first hybrid feedback (in that case, a samplsolution that we provide will also succeed in regulating the

and-hold controller) for global stabilization df* for the

system (1). The feedback in [4] uses controls in the set

Oq93 := {w € R?: wiwy = wows = wawy =0 , wlw<l }

(4)

(notice thatQ2;5 is a strict subset 0f2;53) which facilitates
extending the solution to the stabilization problem for th

system (1)-(2) augmented with the dynamics

d)l = u
u')2 = U2 =: f(w) + Bu (5)
u')3 = awiwsgz

using feedback controls. It is assumed that # 0.

Rigid body dynamics motivate the control system (1)-(2)

attitude wherne = 0 andws starts at zero.

In addition to a solution to the kinematic stabilization
problem with controls in2;5, we will also give a global
hybrid feedback controller using controls f,55. This
control law can serve as an alternative to the algorithm

roposed in [4], which is based on using sample-and-hold

ontrol. We will present the solution to the kinematic cohtr
problem with controls in2,»3 first since many of the ideas
in that solution appear again in the solution to the kinemati
control problem with controls in the sét;,.

The paper is organized as follows: In Section Il we review
hybrid systems and the notion of global asymptotic stabilit
for said systems. In Section Il we solve the robust, global
stabilization problem for the kinematics using controlsha

(5). The system (1)-(2) corresponds to the kinematics of theyi() .. In Section IV we solve this problem using controls

rigid body, expressed in terms of a unit quaternion, ghd

in the sef)5. In Section V we show how to use the solution

corresponds to the desired attitude of the rigid body. Th@ the kinematic control problem with controls i, to
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wherea # 0 using controls(w;,ws). In Section VI, we
discuss the application of our ideas to the problem of rgbust
global stabilization of an underactuated rigid body.



[I. HYBRID SYSTEMS AND ASYMPTOTIC STABILITY Definition 1: Let Q c R? be closed. The controller (7)
is said tosolve the robust, global asymptotic stabilization
. . _ problem for (1)-(2) using controls i if

70% treatmrclant_ of h);br]d syste}ms foIIovzshthat given in 1) C and D are closed sets and U D = Cy x K,

[7]. The emphasis in [7] is on a framework that guarantees 2) The functionsk, @ : C — Q are continuous( is

that asymptotic stability in hybrid systems is robust to_H;r_na outer-semicontinuous, locally bounded and nonempty
perturbations, whether they come from parameter varigfion on D

external disturbances or measurement noise. Here, we call‘g) the closed-loop system (1),(7) is forward complete and
such systems “well-posed” hybrid systems. For the purposes non-Zeno fromCy x K and’has the compact sdt=

of this paper, a well-posed hybrid system is written as {€*) x K globally asymptotically stable

A. Well-posed hybrid systems

i = f(z) zeC 5 In both of the problems below, the internal statewill
st € G&) zeD ( contain a timerr taking values in the intervalo, 1], a
_ (discrete) logic statep € P that indicates which angular
where (see [7] for more details) velocity component is being used, and a (discrete) logie sta
e the setsC' ¢ R™ and D C R™ are closed, g € Q that indicates the current mode of the system. When
e f:C — R" is continuous, using controls in the se®12, 1 will also contain a variable

e the set-valued mappings : R" = R" is outer- ¢ € {—1,1}, a variablepy € [0,7/4] and a variabley € Q.
semicontinuous, locally bounded, and nonemptylan Both controllers will make use of functions, (i = 1,2,3
Solutions to the hybrid system (6) are defined on hybrid timfr controls in€;,3 andi = 1, 2 for controls inf2;,) defined
domains, which are subsets of the reals times the nonnegatf the sef{0,1,2,3} and satisfyings;(p) = 1 whenp =i
integers [7]. The system (6) is said to fieward complete andoi(p) =0 whenp # i.
and non-Zendrom C U D if every maximal solution to (6)
starting inC U D has a hybrid time domain whose real
component is unbounded. The integer component may orWe defineP := {1,2,3}, Q := {1,2,3} andK := [0, 1] x

IIl. ATTITUDE STABILIZATION USING CONTROLS IN {2793

may not be unbounded. P x Q. The controller state ig := (7, p, q)’. We take
B. Asymptotic stability . | max{0,2—¢q} 8
a(,m) : 0y , ®)

For the hybrid system (6), the compact sétC R" is

said to be globally asymptotically stable if the followingi.e., a; (¢, (7,p,1)") = 1 anday (&, (7,p,q)") = 0 whengq #
properties hold: 1, as(&,m) = as(&,n) =0 for all (&,n). We also take
1) For eache > 0 there exists§ > 0 such that
. . C = {(&n) €CoxK:(&,p) € Cy}
< < . 9
|£(0,0)|4 <6 = |z(t,))|a <e V(i,j) € domzx D = {(em)€CyxK:(erp) € Dy} 9)

2) Each solution is bounded and each solution
with an unbounded hybrid time domain satisfiesand then, for eacly € Q, we specifyC,, D,, G(&,n) =
hmt+j*>00 |x(t7j)|A = 0. G(gv (Tvpa Q)/) andﬁ(&n) = K(f, (Tapv Q)I) below.
For well-posed hybrid systems, [7, Theorem 6.5] shows thate Mode ¢ = 1: Use zero controls for a short amount of
global asymptotic stability is equivalent to the existemnée time then and evaluate what mode should be uketl
a functiong € KL such that each solution satisfies e € (0,1). According to (8), the timer state evolves

) ] ] according tor = 1 in this mode. The flow set is
|lz(t,5)a < B(|z(0,0)|a,t +5) V(¢ j) € domuz
Ci:=C 0, P,
and [7, Theorem 6.6] shows that global asymptotic stability ! 0 x [0,¢] x

is robust to small perturbations. Moreover, global asynipto the controls arev; = (&, (7,p,1)") := 0:(0), i.e.,
stability implies the existence of a smooth Lyapunov furrcti w; = 0 fori=1,2,3, and the jump set is given by the
[3], and global asymptotic stability can be establishedagisi closure of the complement (relative @ x [0, 1] x P) of
invariance principles a la LaSalle [11]. Cy. The jump map is defined ob;. The first compo-

o nent of the jump map is zero, i.€3; (&, (1,p,1)") :=0
C. Control objective for all (¢,7,p) € D;. The second component is

Our controllers for the attitude stabilization problemd wi

A .2 2\
contain an internal state taking values in a compact skt Ga(&, (1.9 1)) = {Q EP:§ 28 Vie P} '

Our first goal is to find a hybrid controller The third component of the jump map is expressed in
w = k(&) terms of a parametérthat must be in the intervab, 6)
S p wheref and @ are specified in subsequent modes. The
o= elem (Gmed 0 third component of the jump map is given b
o€ GEm) (EmeD ' P Jump map IS given by

that solves the robust, global asymptotic stabilizatioobpr , 2 if {4 <0

lem for (1)-(2) using controls if2;23, respectively inQ;-. Gs(&, (Tp, 1)) = 3 !f §a>0

This problem is defined as follows: {2,3} if&=0.



e Modegq = 2: Get¢, above a threshold € (—1,1//3).
The flow set for this mode is

Co={peP,&<0,E+&>1/3}.

There always existp € P such thaté? + 512, >1/3
since, if not

1>8+8+4+3G=1+2>1

which is a contradiction. The controls are given by
w; = Ki(&, (1,p,2)") := o;(p). The jump setD, is the
closure of the complement (relative € x [0, 1] x P)
of Cy. The jump map isG(¢, (1,p,2)") = (0,p,1)". (It

is possible to add an extra controller state that takes

values in the discrete sé¢t-1,1} and multiplieso;(p)
in the definition ofx; in order to make$, move in

account for the fact that it is not possible to link the states
&3 and¢, directly since we are insisting that; = 0.

We defineP :=
[0,1] xPxQx{-1,1} x
isn:=(7,p,q,6, 0, x). We take

{1,2}, © := {1,2,...,8} and K :=
[0,7/4] x Q. The controller state

O5x1

aten) = | G| (10)

wherea; (1)=a;(6)=1, anda;(q)=0 for ¢ ¢ {1,6}. Also
C = {(&7.pq ¢ x) €CoxK,
(577- DS, ¥, X ) S Cq}
D = {(&7,p.q5,0,x) €CoxK,
(€

§,T,0,S 9, X) € Dy}
(11)

We SpeCifqu! DQ' G(fﬂ]) = G(&, (Tapv(Lga(va)/) and

the “better” of the two directions that can be taken ta(&, 1) = k(§, (7,0, 4,5, 9, X)) for eachq € Q below.

get it above the desired threshold. This feature is not ¢ Mode ¢ =

necessary for global asymptotic stability and so it is
omitted to simplify the presentation.)

e Mode ¢ = 3: Normal operation, which is allowed when
& >0 € (—1,0). In this mode, the controller increases
&4 by making sure it is connected to a stdte &, or
&3 that is bounded away from zero in an appropriate
sense. The control laws here are

Wi = _O'l(p)gl = K;i(ga’rap73)

(note thaté; be replaced by any functiofi having the
property that;, f(£;) is continuous and positive definite)
and the flow set is given by

Cy={peP.&>0,&>p(E+6)}

where thep, j and k are distinct elements oP and

p € (0,1/2). Notice that the flow equation fafy will

satisfy £, = £2. The only value oft € Cs that makes

this derivative zero is the valie= £*. The jump setDg

is the closure of the complement (relative(gx [0, 1] x

P) of Cs. The jump map is7(¢, (1,p,2)") = (0,p,1)".
Theorem 1:The hybrid controller specified above solves
the robust, global asymptotic stabilization problem for(2)

using controls in3.

Sketch of proof:The first two items and the first part of
the third item of the robust, global asymptotic stabiliza-
tion problem are satisfied by construction. Regarding dloba

asymptotic stability, we note that the energy function &,

is strictly decreasing in mode 3 and constant in mode 1.°®

Since mode 2 only runs whe§ is bounded away from
one, this establishes stability of the poifit. Due to the

hysteresis, after mode 2 activates once, it never activates
again. Moreover, the only time it activates is perhaps at
t € [0,¢] and when it activates, it is for a uniformly bounded
duration. It then follows from the invariance principles in

[11] that the set4 is globally asymptotically stable. H

IV. ATTITUDE STABILIZATION USING CONTROLS IN{212
A. Controller description and result

The control strategy in this section is based on the strategy
However, some additional modes are used to

for Q1903.

1: Use zero controls for a short amount
of time and then evaluate what mode should be used
This mode is just like the = 1 mode for the previous
controller. Lete € (0,1). The flow set is

Cy:=Cyx[0,e] xPx{-1,1} x [0,7/4] x Q

andw; = k(& (1,p,1,5,0,%x)") := 04(0), i.e.,,w; =

0 for ¢ = 1,2. The jump set is the closure of the
complement (relative tb := Cyx [0, 1] x Px{—1,1} x
[0,7/4] x Q) of C;. The jump map is defined ob;.
The first component is always zero. The fourth through
sixth components are always, ¢, x)’. The second and
third components are given as follows. Define

I(¢) :={oeP: &> Vie P} .

The parameters, § and v will be specified in modes
2, 3, and 4, respectively. Letd € (¢,0) and let
vo € (1/3,v). If x ¢ {5,6,7}, & < 0, and &F +
max {&7,65} > v2 then (p*,q%) € Z(¢) x {2}; if
X ¢ {5.6,7} & < 0 and &} + max (.63} < w
then (p*,q™) € Z(£) x {4}. If both conditions hold
then(p™,q") € Z(¢) x {2,4}. The parametexn will be
specified in mod8&. Letyi > pu/(1—p). If x ¢ {5,6,7},
& > 0, and¢? + &2 > ig2 then(p*, ¢t) € Z(¢) x {3};
X ¢ (567 & > 0 and& + @ < g

then( t.¢7) = (1,5). If both conditions hold then
(p* q*) ( (&) x {3}) U (1.5). If x € {5.6,7) then
(pT,q%) = (mod(x + 1, )—i—lx—i—l)

Modeq = 2: Get¢, above a threshold € (1/2,1/+/3).
The flow set for this mode is

Co={peP, &<, G+ >1/3},

andw; = xi(§, (1,p,2,6,,x)") = oi(p). The jump
set D, is the closure of the complement (relative to
I) of Cy. The jump map isG(&, (,p,2,5, ¢, X)) =
0,p,1,5,0,9)".

Mode ¢ = 3: Normal operation, which is allowed when
& >0 € (1/V5,0). Increaset, by making sure it is
connected to a state that is bounded away from zero in
an appropriate sense. The control laws here are

Wy = K;i(g(T?pa 37§7 @, X)/) = _O-i(p)gi



(again¢; can be replaced by a more general function) andw; = (&, (7,p,8,5,¢,%)") := coi(p). The jump

and the flow set is given by set Dg is the closure of the complement (relative to
I') of Cs. The jump map isG N =

Cs:={peP, &=>9, 5122#(5724'5??)} (3p 1 §8<p q)/_] P Map IS, (7. 4, 9. X)')

where the;j and p are distinct elements of the set Theorem 2:The hybrid controller specified above solves

P andp € (0,1/2). The flow equation forés will  the robust, global asymptotic stabilization problem for(d)

satisfy &, = 52. The jump setDs is the closure of using controls in;s.

the complement (relative t6) of Cs. The jump map is Sketch of proofThe proof is similar to that of the previous

G(&, (m.p:3,5,9.X)) = (0,p,1,6,90,9)". result. However, aftert, is brought above its minimum

Mode ¢ = 4: Enable getting¢, above thresholdLet  threshold, there is still one mode (mode 6) where the functio

v € (1/3,1/2). The flow set for this mode is 1 —¢&,4 can (and typically does) increase. In Section IV-B we
Cy = {p eP, & <0, €+ max {512753} < V} : explain why this function cannot increase very much if it

_ starts close to zero, thereby ensuring stability. In Sedii6
andw; = r;(&, (1,p,4,5,9,x)") := 0i(p). Notice that C we explain why the sequence of modes- 1 — 6 —
&3 will be driven toward zero, but won't be able toreach; — 7 — 1 — 8, which will always be the sequence by

it, as & = 0 implies &7 + max {¢7,£3} > 1/2. The  which mode 6 is reached, ensures that the sequence of modes
jump setD, is the closure of the complement (relatives —1—7—1—8 decrease the functioh— &,.

to I') of Cy. The jump map i+(&, (7,p, 4,5, ¢, X)) = Figure 1 shows a simulation of the closed-loop system
0,p,1,6,0,x)". _ _ with hybrid controller using controls if2;,. Initially, the
Mode ¢ = 5: Increasey by emptying, into 4. The  controller takesé, above thresholds using modeand 2,
flow set for this mode is and shortly after enters into the sequefce 1 —6— 1 —
Cs = {p=1. —c£,>0; & > 0V2 2} 7 7—1—38, which makesl — ¢, decrease and in turn, steers
° {p <& 2 05 & 2 0VY ¢ asymptotically to¢*.

andw; = #i(&, (1,p,5,5,%,X)") := soi(p). The jump

set D5 is the closure of the complement (relative to L ) i
I) of Cs. The jump map is such that™ is equal to Recall the definition ofCg, that7 = 1 in mode 6, and
s € (0,7/4] such that that the functiong in the definition ofCs takes values in

[0,7/4]. It follows that the maximum amount of time that

cot(2s) = . _ & (12) c°an be spentin mode 6 before moving back to modery/ is
2 sin(s) cos(s) &3 seconds. However, the time in mode 6 will be much shorter

_ -1 _ thanz /4 when¢&, starts close td. This is seen as follows.
g3hf’$22_#0'§,cgad ;EQQ&’[R :Tc;rzlﬁgi 23 (p: 5_2 ():fcg)r' Let L /> 0 be tt§4e Lipschitz constant for the functignand
Also ¢t = sgn(é2€3) and whenéag; = 0 we setct € let V(&) := 1 —&;. Sincep(l) =0, it foI_Iows tThat¢(§4) <
{~1,1}. Finally 7+ = 0, p* = p, ¢* = 1, andx " = q. LV (&). In mode 6,64, = —w1& and, sincew'w < 1 and

Mode ¢ = 6: “open loop” maneuver to decrease the €16 =1, we havelw &1 < [&1| < V2yT—&. Thus

B. On the amount of time spent in Mode 6

cos?(s) — sin’(s)

magnitude of¢s; & connected tct, The controls are (VV (&), —wi&h) < V2V (&) . (13)
giVen bywz = K:i(g? (Tvp767§7¢ax)/) = §0',L'(p). The dard . h it foll h . d
flow set of this mode is By standard comparison theorems, it follows that in mode 6
. 1 2
Co = {p=1; 7 € [0,min{4(&), ¥}]} - Ve <5 (VV@o) +t) . a4
The function¢ : [-1,1] — [0,7/4] is Lipschitz | follows that the amount of time that can be spent is mode

continuous, nonincreasing, and satisfigs) = 0. The g pefore leaving is upper bounded by the smaller of the two
jump setDg is the closure of the complement (relativegqutionst* of the equation

to ') of Cs. The jump map satisfiest = 0, p™ = 2,

2
q++: Lcte{se{-1,1}:-s& >0} ¢t =, and = g (\/21/(54(0)) +t*) (15)
X = . . :
Mode ¢ = 7: increase¢, by emptyings, into &. The and the maximum value df (§4) over this interval is*/L.
flow set of this mode is It can be seen that tends to zero a¥ (£4(0)) tends to zero.
Cy = {p =2;—¢&, > 0;& > Q\/ﬁ/g} C. Calculations related to Modes 5-8

, ) After leaving mode 5 and entering mode 6 through mode
andw; = ri(&, (7,p,6,¢, ¢, X)) := coip). The JuMP 4 e \ill haves, = 0 andé2 < 7ie2 and&y > 6 > 0. We
setDy is the closure of the CO_mpIe+ment (relftlveﬂy) consider the effect of applying constant controls where firs
Oi Cr ani the jump map satisfies” = O+'p =L #0, for n, seconds, and them, # 0, for m seconds,

" =1Lt e{se{-L1}:—s& 20} o7 =9 and  ;or5ing outs,, and theno, + 0, for 75 seconds, zeroing out

+ = . . L
X =4q . . . &;. To save on notation, consider the definitions
Mode ¢ = 8: increaseé, by emptyings; into &. The .
flow set of this mode is s1 = sin(wim) a = cos(wim)
s2 = sin(waeTa) ca = cos(waTa) (16)

T+ T+ 73 .

Ti2 = T1+7T2 T123

Cs = {p=1i—s = 061 > 622} |
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Fig. 1. Closed-loop trajectories for the attitude stahtiian problem using
controls in2;2. Component{ converges ta€* by executing a sequence
5—-1—6—1—7—1—8, after modet and2 take ¢4 above thresholds.

Initial condition: ¢0 = (;,;,J_,O), 70 =0,p0 = 1,¢° = 1,¢°
0 _ 0 _ 1 g_ 040, 5 _

1,¢ _\/—0% = 1. Parametersp = 7, 0 = —5=;, 6 =
1/V% 1/341/2 1/3 - 2

0— /2+ e=1v= /;/ g = /2+V i=

We claim that|&3(73)] < p(€4)|€3] wherep is a continuous

1/2+1/V3
s

function that is less than one except whign= 1. Then

€3 (1123
&5 (T123) + &5 (7123)
= &(m2) +&(n2)

1—¢&(ms) =

= &3(112)

) + &5 (T123) + &3 (T123)
17)

=1-E& () < p(&a)’E3
< pl&)? (G +E+83) (18)
= p(&)?(1-¢3)

which shows that the net effect of the maneuvers is to
increasel, uniformly toward one. To establish the claim,
first consider the effect ab; 7, and the general form of the
solutions from the initial conditiog. We get

&(n) = silat+aé, &) = si&3+aé
&(n) = afs—s1&, &ln) = al—sié
and
1(m12) = c2(s16a+c1&1) — 52 (c1&3 — s1&2)
&(12) = c2(s1&3 + o) + s2 (1€ — 5161)
&(m12) = s2(s1&a+ &) +c2(c1és — 5182)
&(m2) = —s2(518 + 1&2) + 2 (c1€s — 5161)

Knowing that&;(m12) will be zero, we get

c2 (51€3 + c1&2)

SS9 = —
c1é&y — 5161

and thus

G2 (s1&3 + c1&2)
c1&y — 5161

+c (c1€3 — 5182)

§3(m2) = (5184 + c1&1)

C2 2 2
= _— Ci — S
c1&y — 5161 [(ef =5

—20151 (5254 + 5153)] .

Now, usingé; = 0 and&, > 0, we get
C
&o(nz) = = [(ef = s — 2a0m16] -

Now, we have chosew; so that the sign of;£; matches
the sign ofés, and we have chosen so that|(c? — s2)&3] >
|2¢151€2| Using these facts, it follows that

) (§384 — £1&2)

2 —s
[€3(12)| < =

i
€] -

We note that the coefficient is less than one, except when
c1 = 1, and its size will depend o, because of the
description of the flow set in mode 6.

V. ROBUST, GLOBAL STABILIZATION OF KINEMATICS
PLUS NON-ACTUATED ANGULAR VELOCITY

We now consider the robust, global asymptotic stabiliza-
tion problem using controléw,,ws) for the system (1)-(2)
combined with the dynamic equation

a#0. (29)

Let A € (0,1), let 0 : R — [—X,\] be a continuously
differentiable function so that the functias — awso(ws)
is negative definite, and defing andw, as

d)g = awiwy

~ o ; w1 — o(w3g)w
“ro= 1—012(W3) (er (ws)ewn) =: d(w)
S e LA (20)



These relationships can be inverted sinde;)? < \? < 1
for all ws to give

w1 = &1 —+ G(u}g)&Q
Wy = &2 + 0'(&}3)&1 (21)
and, in turn,
u.}g = a (&1 + 0'(&}3)[:}2) ((:)/2 + 0'(&}3)&1)

ao(ws) (@ +@3) +a (1 + 0 (w3)) &1 @2
(22)

Given the controller (24) for the system (22)-(23) and
given a continuously differentiable, positive definite ¢tion
1 : Cyp x R — R>(, we propose the controller

%(5777,‘«03) - ¢(§aw3)/’v(§a77)
e = &_%(5777,‘#3)
W(w)g
v = —ke+ <VE(€777)1 o‘(ia 77) > (28)
o= a&n)  (En)ed
nto= G&n)  (&meD

Thus, we can consider the new control system, with controherek > 0.

w1, we given by (22) together with

The proof of the final result is beyond this paper’s scope.

Theorem 4:The system (1)-(2), (5) together with the

&1 —|— O'(w:;)a}g
(.:}2 —|— O'(w:;)a}l
w3

E=W ¢, 'e=1. (23

We will take the control&s € Q5. Let (C, D, k, a, G) solve
the robust, global asymptotic stabilization problem using
controls inQ25, and picko = «(&, n), i.e.,

w = k(&n)
n = an (&n) el (24)
nt e GEmn) (En)eD.

Theorem 3:If the controller (7) solves the robust, global
asymptotic stabilization problem using controls{in, for
the system (1)-(2) then the controller (21),(24) solvesrthe
bust, global asymptotic stabilization problem (using colst
in R?) for the system (1)-(2), (19).

Sketch of proofSincew € 1., it follows that 1]

(25) @

Thus, the functionv? is monotonically nonincreasing along [3]
solutions. By local robustness properties establishedjn [

it follows that the setd x {0} is stable. Next, we note that
solutions are non-Zeno by virtue of the assumption of thd4]
properties of the controller (7) for the system (1)-(2). Now
according to the invariance principle [11], trajectoriesl w
converge to an invariant set where, during flows, either=

wo = 0 andws is constant orws = 0. In the latter case,
(&,m) converges tod by assumption. It remains to rule out
the possibility thatus remains at a nonzero constant. Indeed,
if w3 is not zero ther¢ will not remain at¢* and thenw,
andw, cannot remain at zero. This contradiction leads to the
conclusion that all trajectories convergeox {0}. (8]

VI.

w3 = CLU(W3) (JJ% + &%) .

(5]

(6]

ROBUST, GLOBAL PRACTICAL STABILIZATION OF AN
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We now discuss extending the solution of the previou
) 0
subsection to the control problem where two torques are the
controls. Through the globally invertible input transfation  [11]

v:=(VO(w), f(w)) + Bu (26) [12]

where® is defined in (20) andt and B are defined in (5),
we get the control systemv = v together with (22)-(23). [13;
The inverse of the input transformation is given by

V1 + U(w3)U2 + Va(xg)awlwgﬁg [14]

vy + 0(ws)v1 + Vo (zs)awiweln .

U1
U2

(27)

controller (27), (28), (20) is such that x {0} is robustly,
globally, practically asymptotically stable in the pardere
k >0, i.e., for each neighborhood oA x {0} there exists
k* such that for eactt > k* there is a compact set in the
eighborhood that is robustly, globally asymptoticaligtse.
We note that, instead of making large, an alternative
is to slow down the evolution of the kinematics through a
scaling of the angular velocities.

We conjecture that the functiopn can be chosen in such
a way that robust, global asymptotic stability results for
above a certain threshold. Establishing such a result is the
topic of ongoing research. Through simulations, we are also
currently studying how the choice of different parameters i
the control algorithm affects performance.
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