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HyNTP: A Distributed Hybrid Algorithm for
Time Synchronization

Marcello Guarro and Ricardo G. Sanfelice

Abstract— This paper presents a distributed hybrid al-
gorithm that synchronizes the time and rate of a set of
clocks connected over a network. Clock measurements of
the nodes are given at aperiodic time instants and the con-
troller at each node uses these measurements to achieve
synchronization. Due to the continuous and impulsive na-
ture of the clocks and the network, we introduce a hybrid
system model to effectively capture the dynamics of the
system and the proposed hybrid algorithm. Moreover, the
hybrid algorithm allows each agent to estimate the skew
of its internal clock in order to allow for synchronization
to a common timer rate. We provide sufficient conditions
guaranteeing synchronization of the timers, exponentially
fast, with robustness. Numerical results illustrate the syn-
chronization property induced by the proposed algorithm
as well as its performance against comparable algorithms
from the literature.

I. INTRODUCTION

A. Motivation
Since the advent of asynchronous packet-based networks

in communication and information technology, the topic of
clock synchronization has received significant attention due
to the temporal requirements of packet-based networks for the
exchange of information. In recent years, as distributed packet-
based networks have evolved in terms of size, complexity, and,
above all, application scope, there has been a growing need
for new clock synchronization schemes with tractable design
conditions to meet the demands of these evolving networks.

Distributed applications such as robotic swarms, automated
manufacturing, and distributed optimization rely on precise
time synchronization among distributed agents for their oper-
ation; see [1]. For example, in the case of distributed control
and estimation over networks, the uncertainties of packet-
based network communication requires timestamping of sensor
and actuator messages in order to synchronize the information
to the evolution of the dynamical system being controlled or
estimated. Such a scenario is impossible without the existence
of a common timescale among the non-collocated agents in
the system. In fact, the lack of a shared timescale among
the networked agents can result in performance degradation
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that can destabilize the system; see [2]. Moreover, one cannot
always assume that consensus on time is a given, especially
when the network associated to the distributed system is
subject to perturbations such as noise, delay, or jitter. Hence,
it is essential that these networked systems utilize clock syn-
chronization schemes that establish and maintain a common
timescale for their algorithms.

B. Background and Related Work

For many networked control system settings, each agent
in the system is fitted with its own internal hardware clock
and one or more software clocks that inherits the dynamics
of the hardware clock. In an ideal scenario, the i-th agent
in the system would have a clock τi ∈ R≥0 such that
τi(t) = t, where t is the global or real time. However, many
hardware clocks utilize quartz-crystal or MEMS oscillators,
susceptible to manufacturing imperfections and environmental
factors that affect oscillator frequency; see [3] and [4]. Due to
the variability in oscillator frequency, one generally considers
the continuous-time dynamics of the i-th hardware clock node
given by

τ̇i = ai (1)

where ai ∈ R defines the clock’s rate of change. Solving the
differential equation gives the following relationship to the
ideal clock or real time reference t:

τi(t) = ait+ τi(0) (2)

where the initial condition τi(0) gives the offset from t. For
a network of n agents, the notion of clock synchronization
can be defined as the state of the networked system such that
τi = τj for all i, j ∈ {1, 2, . . . , n}, i 6= j.

In an ideal setting with no delay and identical clock rates (or
skews), synchronization between two nodes, Node 1 and Node
2, can be achieved by the following simple reference-based
algorithm. Node 1 sends its time to Node 2. Node 2 calculates
its offset relative to 1. Node 2 applies the offset correction to
its clock. For the case of non-identical clock skews, a pair of
measurements from Node 1 would allow Node 2 to calculate
its relative skew a1

a2
and apply a correction accordingly. In

a realistic setting, however, network communication between
nodes is subject to a variety of delays to which such simple
reference-based algorithms are nonrobust; see [5]. Moreover,
these algorithms become cumbersome in terms of network
utilization and computation as the number of nodes on the
network increases.
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The seminal Networking Time Protocol (NTP) presented in
[6] mitigates these challenges through the implementation of
a centralized algorithm. In particular, the networked agents in
the system synchronize to a known reference that is either
injected or provided by an elected leader agent. The effects
of communication delay are mitigated via assumptions on
the round-trip delay that occurs in the communication of
any two nodes on the network. Conversely, other centralized
approaches, such as those in [7] and [8], assume the com-
munication delay to be negligible and instead utilize least-
squares minimization to estimate the errors in the offset and
rates of change between the synchronizing nodes and the
elected reference agent. Unfortunately, these approaches suffer
robustness issues when communication with the reference
node is lost or if the random delays in the transmission do
not follow a normal distribution, see [3]. Moreover, algorithms
like NTP were not designed for dynamic network topologies
as they rely on predefined network hierarchies that define the
relationships between the reference nodes and their children.
Any change to the topology requires a reconstruction of the
hierarchy adding considerable delay to the synchronization of
the clocks.

Recently, the observed robustness issues in the central-
ized protocols have motivated leader-less, consensus-based
approaches by leveraging the seminal results on networked
consensus in [9], [10], and [11]. In particular, the works of [1],
[12], [13], and, more recently, [14] employ average consensus
to give asymptotic results on clock synchronization under
asynchronous and asymmetric communication topology. How-
ever, due to the constraints on the communication modeling of
the system the convergence results do not hold globally. More-
over, the lack of global convergence precludes any guarantees
of robust asymptotic stability; see the forthcoming Remark
3.2.

The work in [15] also considers a consensus-based approach
by using a controller that uses a proportional gain to compen-
sate for the clock rates and an integrator gain acting on an
auxiliary control state that compensates for the clock offsets.
Though the solution in [15] provides faster convergence than
the other approaches using average consensus, the algorithm
assumes periodic synchronous communication of the nodes.
This assumption is relaxed in [16] by considering asyn-
chronous communication events. The authors in [17] consider
a similar relaxation but also relax assumptions on the graph
structure. However, in both [16] and [17] the clocks are slower
to converge compared to the synchronous communication
setting. Still, both synchronous and asynchronous scenarios
require a large number of iterations before synchronization
is achieved. Moreover, the algorithm subjects the clocks to
significant nonsmooth adjustments in clock rate and offset that
may prove undesirable in certain application settings or even
prevent the rigorous establishment of robustness properties.

C. Contributions

The lack of performance guarantees in the aforementioned
works have motivated the design of a hybrid clock syn-
chronization algorithm with tractable design conditions. In

particular, this paper introduces a distributed hybrid algorithm
that exponentially synchronizes a set of clocks connected over
a network via measurements given at aperiodic time instants.

Inspired by the contributions in [18], we present a dis-
tributed hybrid algorithm to synchronize the network clocks
in the presence of non-ideal clock skews while capturing the
continuous and impulsive dynamics of the network into a
hybrid model. To achieve synchronization with a common rate
of change, the algorithm also allows for local estimation of the
skew of the internal clock at each agent. The use of a hybrid
systems model to solve the problem under consideration allows
for the application of a Lyapunov-based analysis to show
stability of a desired set of interest. Using results from [19], we
show that, via a suitable change of coordinates, our distributed
hybrid clock synchronization algorithm guarantees synchro-
nization of the timers, exponentially fast, with robustness.

The main contributions of this paper are given as follows:
• In Section IV, we introduce HyNTP, a distributed hybrid

algorithm that synchronizes the clock rates and offsets to
solve the problem outlined in Section III. Moreover, we
present a hybrid systems model to capture the network
dynamics for the case of synchronous and aperiodic
communication events. In Section V, we present a re-
duced model of the system and a subsequent auxiliary
model that is generated from an appropriately defined
change of coordinates. With the auxiliary model, we
present necessary and sufficient conditions for which
stability of a compact set, representing synchronization,
holds. Moreover, we show that the system is robust to
perturbations on the communication noise, clock drift,
the desired clock rate reference, and to communication
delays in Section VI.

• In Section VII, we compare the merits of our algorithm
to competing algorithms in the literature.

We inform the reader that some details have been omitted due
to space constraints and can be found in the technical report
[20]. This work is an extension of our conference paper [21],
which pertains to the nominal case and has no proofs.

D. Notation
The set of natural numbers including zero, i.e., {0, 1, 2, . . .}

is denoted by N. The set of natural numbers is denoted as N>0,
i.e., N>0 = {1, 2, . . .}. The set of real numbers is denoted as
R. The set of nonnegative real numbers is denoted by R≥0, i.e.,
R≥0 = [0,∞). The n-dimensional Euclidean space is denoted
Rn. Given sets A and B, F : A ⇒ B denotes a set-valued
map from A to B. For a matrix A ∈ Rn×m, AT denotes
the transpose of A. Given a vector x ∈ Rn, |x| denotes the
Euclidean norm. Given a vector x ∈ Rn and a nonempty set
Σ ⊂ Rn, |x|Σ denotes the Euclidean point-to-set distance, i.e.,
|x|Σ

.
= infy∈Σ|x−y|. Given two vectors x ∈ Rn and y ∈ Rm,

we use the equivalent notation (x, y) = [xT yT ]T. Given a
matrix A ∈ Rn×m, |A| := max{

√
|λ| : λ ∈ eig(ATA)}. For

two symmetric matrices A ∈ Rn×m and B ∈ Rn×m, A � B
means that A − B is positive definite; conversely, A ≺ B
means that A − B is negative definite. A vector of N ones
is denoted 1N . The matrix In is used to denote the identity
matrix of size n× n.
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II. PRELIMINARIES

A. Preliminaries on Graph Theory
Let G = (V, E , A) be a weighted directed graph (digraph)

where V = {1, 2, . . . , n} represents the set of n nodes,
E ⊂ V × V the set of edges, and A ∈ {0, 1}n×n represents
the adjacency matrix. An edge of G is denoted by eij = (i, j).
The elements of A are denoted by aij , where aij = 1 if
eij ∈ E and aij = 0 otherwise. The in-degree and out-
degree of a node i are defined by din(i) =

∑n
k=1 aki and

dout(i) =
∑n
k=1 aik, respectively. The largest and smallest

in-degree of a digraph are given by d̄ = maxi∈Vdin(i) and
d = mini∈Vdin(i), respectively. The in-degree matrix is an
n × n diagonal matrix, denoted D, with elements given by
dij = din(i) if i = j, dij = 0 if i 6= j for each i ∈ V . The
Laplacian matrix of a digraph G, denoted by L, is defined
as L = D − A and has the property that L1n = 0. The set
of nodes corresponding to the neighbors that share an edge
with node i is denoted by N (i) := {k ∈ V : eki ∈ E }. In
the context of networks, N (i) represents the set of nodes for
which an agent i can communicate with.

B. Preliminaries on Hybrid Systems
A hybrid system H in Rn is composed by the following

data: a set C ⊂ Rn, called the flow set; a differential equation
defined by the function f : Rn → Rn with C ⊂ dom f , called
the flow map; a set D ⊂ Rn, called the jump set; and a set-
valued mapping G : Rn ⇒ Rn with D ⊂ dom G, called the
jump map. Then, a hybrid system H := (C, f,D,G) is written
in the compact form

H :

{
x ∈ C ẋ = f(x)

x ∈ D x+ ∈ G(x)
(3)

where x is the system state. Solutions to hybrid systems are
denoted by φ and are parameterized by (t, j), where t ∈ R≥0

defines ordinary time and j ∈ N is a counter that defines the
number of jumps. A solution φ is defined by a hybrid arc on
its domain dom φ with hybrid time domain structure [19]. The
domain dom φ is a hybrid time domain if dom φ ⊂ R≥0 ×N
and for each (T, J) ∈ dom φ, dom φ∩ ([0, T ]×{0, 1, ..., J})
is of the form

⋃J
j=0([tj , tj+1] × {j}), with 0 = t0 ≤ t1 ≤

t2 ≤ tJ+1. A function φ : dom φ → Rn is a hybrid arc if
dom φ is a hybrid time domain and if for each j ∈ N, the
function t 7→ φ(t, j) is locally absolutely continuous on the
interval Ij = {t : (t, j) ∈ dom φ}. A solution φ satisfies the
system dynamics; see [19, Definition 2.6] for more details. A
solution φ is said to be maximal if it cannot be extended by
flow or a jump, and complete if its domain is unbounded. The
set of all maximal solutions to a hybrid system H is denoted
by SH and the set of all maximal solutions to H with initial
condition belonging to a set A is denoted by SH(A). A hybrid
system is well-posed if it satisfies the hybrid basic conditions
in [19, Assumption 6.5].

Definition 2.1: Given a hybrid system H defined on Rn,
the closed set A ⊂ Rn is said to be globally exponentially
stable (GES) for H if there exist κ, α > 0 such that every
maximal solution φ to H is complete and satisfies |φ(t, j)|A ≤
κe−α(t+j)|φ(0, 0)|A for each (t, j) ∈ dom φ.

III. PROBLEM STATEMENT

Consider a group of n sensor nodes connected over a
network represented by a digraph G = (V, E , A). Two clocks
are attached to each node i of G: an (uncontrollable) internal
clock τ∗i ∈ R≥0 whose dynamics are given by

τ̇∗i = ai (4)

and an adjustable clock τ̃i ∈ R≥0 with dynamics

˙̃τi = ai + ui (5)

where ui ∈ R is a control input. In both of these models,
the (unknown) constant ai represents the unknown drift of the
internal clock.

At times tj for j ∈ N>0 (we assume t0 = 0), node i
receives measurements τ̃k from its neighbors, namely, for each
k ∈ N (i). The resulting sequence of time instants {tj}∞j=1 is
assumed to be strictly increasing and unbounded. Moreover,
for such a sequence, the time elapsed between each time
instant when the clock measurements are exchanged satisfies

T1 ≤ tj+1 − tj ≤ T2, 0 ≤ t1 ≤ T2 ∀j ∈ N>0 (6)

where 0 < T1 ≤ T2, with T1 defining a minimum time be-
tween consecutive measurements and T2 defines the maximum
allowable transfer interval (MATI).

Remark 3.1: The models for the clocks are based on the
hardware and software relationship of the real-time system
that implements them. That is, the internal clock τ∗i is treated
as a type of hardware oscillator while the adjustable clock
τ̃i is treated as a virtual clock, implemented in software (as
part of the proposed algorithm), that evolves according to
the dynamics of the hardware oscillator. Any virtual clock
implemented in node i inherits the drift parameter ai of the
internal clock, which cannot be controlled. More importantly,
this drift parameter is not known due to the fact that universal
time information is not available to any node. The input ui is
unconstrained as allowed by hardware platforms.

Remark 3.2: Note that the proposed communication strat-
egy does not capture the situation when the agents in the
network communicate at different times (asynchronous). The
decision for modeling a synchronous communication strategy
is due to the challenges in guaranteeing global, robust clock
synchronization in an asynchronous setting.

For instance, in the problem settings of the work by [1],
[13], and [22] the algorithms therein allow for the nodes to
communicate at different time between nodes:

1) These articles consider n networked nodes whose inter-
connections are represented by a undirected graph G;

2) Each node i is equipped with a local hardware clock τi
and software clock τ̂i;

3) Information is exchanged between an agent pair (i, k)
at times instants ti,kj .

However, the convergence properties guaranteed are neither
global nor robust; see [20, Remark 3.2]. In this paper, we
demonstrate through the use of a simpler network model
commonly used in the literature (see [15] and [17]) and the
use of hybrid systems tools that such properties are possible.
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Under such a setup, our goal is to design a distributed hybrid
controller that, without knowledge of the drift parameter and
of the communication times in advance, assigns the input ui to
drive each clock τ̃i to synchronization with every other clock
τ̃k, with τ̃k evolving at a common prespecified constant rate
of change σ∗ > 0 for each k ∈ V . This problem is formally
stated as follows:

Problem 3.1: Given a network of n agents with dynamics
as in (4) and (5) represented by a directed graph G and
σ∗ > 0, design a distributed hybrid controller that achieves the
following properties when information τ̃k for each k ∈ N (i)
is received by node i at times tj satisfying (6):

i) Global clock synchronization: for each initial condition,
the components τ̃1, τ̃2, . . . , τ̃n of each complete solution
to the system satisfy

lim
t→∞

|τ̃i(t)− τ̃k(t)| = 0 ∀i, k ∈ V, i 6= k

ii) Common clock rate: for each initial condition, the com-
ponents τ̃1, τ̃2, . . . , τ̃n of each complete solution to the
system satisfy

lim
t→∞

| ˙̃τi(t)− σ∗| = 0 ∀i ∈ V

IV. DISTRIBUTED HYBRID CONTROLLER FOR
TIME SYNCHRONIZATION

We define the hybrid model that provides the framework and
a solution to Problem 3.1. First, since we are interested in the
ability of the rate of each clock to synchronize to a constant
rate σ∗, we propose the following change of coordinates: for
each i ∈ V , define ei := τ̃i−r, where r ∈ R≥0 is an auxiliary
variable such that ṙ = σ∗. The state r is only used for analysis.
Then, the dynamics for ei are given by

ėi = ˙̃τi − σ∗ ∀i ∈ V (7)

By making the appropriate substitutions, one has

ėi = ai + ui − σ∗ ∀i ∈ V (8)

To model the network dynamics for aperiodic communication
events at tj’s satisfying (6), we consider a timer variable τ
with hybrid dynamics

τ̇ = −1 τ ∈ (0, T2], τ+ ∈ [T1, T2] τ = 0 (9)

This model is such that when τ = 0, a communication event
is triggered, and τ is reset to a point in the interval [T1, T2]
in order to preserve the bounds given in (6); see [23]. Note
that τ is a global variable that models the network dynamics
of the system triggering the communication events between
the nodes. Moreover, information on τ is not available to the
nodes. One can think of this mechanism as a type of network
manager that governs the communication events of the system;
see [15] and [17] for similar network models.

The proposed hybrid algorithm assigns a value to ui so as
to solve Problem 3.1, which in the ei coordinates requires
ei to converge to zero for each i ∈ V . In fact, the algorithm
implements two feedback laws: a distributed feedback law and
a local feedback law. The distributed feedback law utilizes
a control variable ηi ∈ R that is impulsively updated at

communication event times using both local and exchanged
measurement information τ̃k. Specifically, it takes the form

η+
i =

∑
k∈N (i)

Kk
i (τ̃i, τ̃k)

where Kk
i (τ̃i, τ̃k) := −γi(ei − ek) with γi > 0. Between

communication event times, ηi evolves continuously.The local
feedback strategy utilizes a continuous-time linear adaptive
estimator with states τ̂i ∈ R and âi ∈ R to estimate the drift
ai of the internal clock.1 The estimate of the drift is then
injected as feedback to compensate for the effect of ai on
the evolution of τ̃i. Furthermore, the local feedback strategy
injects σ∗ to attain the desired clock rate for τ̃i.

Inspired by the protocol in [18, Protocol 4.1], the dynamics
of the i-th hybrid controller are given by

u̇i = hiηi − µi(τ̂i − τ∗i ), η̇i = hiηi
˙̂ai = −µi(τ̂i − τ∗i ), ˙̂τi = âi − (τ̂i − τ∗i )

}
τ ∈ [0, T2]

u+
i = −γi

∑
k∈N (i)

(τ̃i−τ̃k)−âi+σ∗, â+
i = âi

η+
i = −γi

∑
k∈N (i)

(τ̃i − τ̃k), τ̂+
i = τ̂i

 τ = 0

(10)
where hi ∈ R, γi > 0 are controller parameters for the
distributed hybrid consensus controller and µi > 0 is a
parameter for the local parameter estimator. The state ηi is
an auxiliary controller state that is injected into the control
input ui. At communication events tj , i.e. when τ = 0, both
ui and ηi reset to new values using measurement information
τ̃k from the neighbors k ∈ N (i) of node i, as denoted by
the superscript +. Moreover, the values for âi and σ∗ that are
injected as feedback into ui are kept constant across jumps.

With the timer variable and hybrid controller defined in (10),
we construct the hybrid closed-loop system H obtained from
the interconnection between the distributed hybrid controller
and the local adaptive estimator given in error coordinates.
The state of the closed-loop system is

x = (e, u, η, τ∗, â, τ̂ , τ) ∈ X (11)

where X := Rn × Rn × Rn × Rn≥0 × Rn × Rn≥0 × [0, T2]
with e = (e1, e2, . . . , en), u = (u1, u2, . . . un), η =
(η1, η2, . . . , ηn), τ∗ = (τ∗1 , τ

∗
2 , . . . , τ

∗
N ), τ̂ = (τ̂1, τ̂2, . . . , τ̂N ),

a = (a1, a2, . . . , aN ), and â = (â1, â2, . . . , ân). Then, let

H := (C, f,D,G) (12)

where the dynamics and data (C, f,D,G) are given
by (ė, u̇, η̇, τ̇∗, ˙̂a, ˙̂τ, τ̇) = (a + u − σ∗1n, hη − µ(τ̂ −
τ∗), hη, a,−µ(τ̂ − τ∗), â − (τ̂ − τ∗),−1) =: f(x) for each
x ∈ C and (e+, u+, η+, τ∗+, â+, τ̂+, τ+) = (e,−γLe −
â + σ∗1n,−γLe, τ∗, â, τ̂ , [T1, T2]) =: G(x) for each x ∈ D
where C := X and D := {x ∈ X : τ = 0}. Note that
X ⊂ Rm where m = 7n.

With the hybrid system H defined, the next two results
establish existence of solutions to H and that every maximal

1 In [20] we demonstrate the need for such a strategy to estimate ai since
first difference methods would not be viable in our problem setting.
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solution to H is complete. In particular, we show that, through
the satisfaction of some basic conditions on the hybrid system
data, which is shown first, the system H is well-posed and that
each maximal solution to the system is defined for arbitrarily
large t+ j.

Lemma 4.1: The hybrid system H satisfies the hybrid basic
conditions defined in [19, Assumption 6.5].

Lemma 4.2: For every ξ ∈ C ∪ D(= X ), every maximal
solution φ to H with φ(0, 0) = ξ is complete.

The properties given in these two lemmas are easily estab-
lished from the information given in the data of H; see [20]
for full details on the proofs of these results.

With the hybrid closed-loop system H in (12), the set to
asymptotically stabilize so as to solve Problem 3.1 is

A := {x ∈ X : ei = ek, ηi = 0, âi = ai, τ̂i = τ∗i ,

ui = ηi − âi + σ∗ ∀i, k ∈ V}
(13)

Note that ei = ek and ηi = 0 for all i, k ∈ V imply
synchronization of the clocks, meanwhile âi = ai and τ∗i = τ̂i
for all i, k ∈ V ensure no error in the estimation of the
clock skew and that the internal and estimated clocks are
synchronized, respectively. The inclusion of ui = −âi+σ∗ in
A ensures that, for each i ∈ V , ei remains constant (at zero)
so that ei does not leave the set A. This property is captured
in the following result using the notion of forward invariance
of a set.

Remark 4.3: Given that each maximal solution φ to H is
complete, with the state variable τ acting as a timer for H, for
every initial condition φ(0, 0) ∈ C ∪ D we can characterize
the domain of each solution φ to H as follows:

dom φ =
⋃
j∈N

[tj , tj+1]× {j} (14)

with t0 = 0 and tj+1− tj as in (6). Furthermore, the structure
of the above hybrid time domain implies that for each (t, j) ∈
dom φ we have

t ≤ T2(j + 1) (15)

Lemma 4.4: Given a strongly connected digraph G, the set
A in (13) is forward invariant for the hybrid system H, i.e.,
each maximal solution φ to H with φ(0, 0) ∈ A is complete
and satisfies φ(t, j) ∈ A for each (t, j) ∈ dom φ (see [19]).

With the definitions of the closed-loop system H in (12)
and the set of interest A in (13) to asymptotically stabilize
in order to solve Problem 3.1, we introduce our main result
showing global exponential stability of A to H. This result
is established through an analysis of an auxiliary system H̃ε
presented in (25) and its global exponential stability for the
auxiliary set Ãε in (27), the details of which, along with a
proofs, can be found in Section V-D.

Theorem 4.5: Given a strongly connected digraph G, if the
parameters T2 ≥ T1 > 0, µ > 0, h ∈ R, and γ > 0, the
positive definite matrices P1, P2, and P3 are such that

P2Af3 +A>f3P2 ≺ 0, P3Af4 +A>f4P3 ≺ 0 (16)

A>g2exp(A>f2ν)P1exp(Af2ν)Ag2−P1 ≺ 0 ∀ν ∈ [T1, T2] (17)

∣∣∣ exp
( κ̄1

α2
T2

)(
1− κ̄2

α2

)∣∣∣ < 1 (18)

hold, where Af2
, Ag2

are given in (26) and

κ̄1 = max
{κ1

2ε
,
κ1ε

2
−β2

}
, κ̄2 = min{1, κ2}

κ1 = 2 max
ν∈[0,T2]

∣∣ exp (A>f2ν)P1 exp (Af2ν)
∣∣

κ2 ∈
(

0,−min
ν∈[T1,T2]

{
λmin(A>g2exp (A>f2ν)P1exp (Af2ν)Ag2−P1)

})
α2 = max

ν∈[0,T2]

{
exp (2hν), λmax

(
exp (A>f2ν)P1 exp (Af2ν)

)
,

λmax(P2), λmax(P3)
}
(19)

with ε > 0, and β1 > 0 and β2 > 0 such that, in light of (16),
P2Af3

+A>f3
P2 � −β1I2 and P3Af4

+A>f4
P3 � −β2I2(n−1)

then, the set A in (13) is globally exponentially stable for the
hybrid system H in (12).

To validate our theoretical stability result in Theorem
4.5, consider five agents with dynamics as in (4) and (5)
over a strongly connected digraph with the following adja-
cency matrix GA = ([0, 1, 1, 0, 1], [1, 0, 1, 0, 0], [1, 0, 0, 1, 0],
[0, 0, 1, 0, 1], [1, 0, 1, 1, 0]). Given T1 = 0.01, T2 = 0.1, and
σ∗ = 1, then it can be found that the parameters h = −1.3,
µ = 3, γ = 0.125, suitable matrices P1, P2, P3 (see [20]
for details), and ε = 1.607 satisfy conditions (17) and (18)
in Theorem 4.5 with κ̄1 = 9.78, κ1 = 31.44, κ̄2 = 1, and
α2 = 18.923. Figure 1 shows the trajectories of ei − ek,
εai for components i ∈ {1, 2, 3, 4, 5} of a solution φ for
the case where σ = σ∗ with initial conditions φe(0, 0) =
(1,−1, 2,−2, 0), φη(0, 0) = (0,−3, 1,−4,−1), and clock
rates ai in the range (0.85, 1.15).2

Remark 4.6: Theorem 4.5 not only assures that the pro-
posed algorithm guarantees global exponential stability of the
set A defined in (13), but also that such a property is robust to
perturbations — see Section VI for details. It should be noted
that the property is global in all of its variables, in the sense
that regardless of the initial condition for the state x of H,
in particular, convergence (in distance) to A is assured. These
properties are not evident in other algorithms in the literature
— in particular, the initial conditions for the variables τnew
and τold in [1, Theorem 1] need to be properly chosen to avoid
unboundedness of the update law.

Remark 4.7: Observe that condition (17) may be difficult to
satisfy numerically as it may not be convex in γ and P1. The
authors in [23] utilize a polytopic embedding strategy to arrive
at a linear matrix inequality in which one needs to find some
matrices Xi such that the exponential matrix is an element in
the convex hull of the Xi matrices. Such an algorithm can be
adapted to our setting.

V. KEY PROPERTIES OF H AND
PROOF OF THE MAIN RESULT

A. Reduced Model – First Pass

2See [20] for more simulations under different scenarios
including a larger simulation with N = 100 nodes. Code at
github.com/HybridSystemsLab/HybridClockSync



6

Fig. 1. The trajectories of the solution φ for state component errors
ei−ek, εai , and τ . Plot of V evaluated along the solution φ projected
onto the regular time domain (bottom).

In this section, we recast the hybrid systemH into a reduced
model obtained by setting u = η − â + σ∗1n. This reduced
model enables assessing asymptotic stability of A. It is given
in error coordinates for the parameter estimation of the internal
clock rate and also the error of the internal clock state. We let
εa = a − â denote the estimation error of the internal clock
rate and ετ = τ̂ − τ∗ represent the estimation error of the
internal clock state. The state of the reduced model is given
by xε := (e, η, εa, ετ , τ) ∈ Rn×Rn×Rn×Rn×[0, T2] =: Xε
with dynamics defined by the data

fε(xε) := (η + εa, hη, µετ ,−ετ − εa,−1) ∀xε ∈ Cε,
Gε(xε) := (e,−γLe, εa, ετ , [T1, T2]) ∀xε ∈ Dε

(20)

where Cε := Xε and Dε := {xε ∈ Xε : τ = 0}. This system
is denoted Hε = (Cε, fε, Dε, Gε). Note that the construction
u = η − â + σ∗1n, which holds along all solutions after the
first jump, leads to ė = η + εa.

To relate the properties of the reduced model to those of the
hybrid system H, we establish a result showing an equivalency
between the solutions of H in (12) and Hε defined above. The
result shows that after the first jump, each solution φ to H is
equivalent to a solution φε to Hε when the trajectories of the
timer variable τ for both solutions are equal. To facilitate such
a result, we define the function M : X → Xε given by

M(x) := (e, η, a− â, τ̂ − τ∗, τ) (21)

where x = (e, u, η, τ∗, â, τ̂ , τ), as defined in (11), and the
function M̃ : Xε × Rn≥0 × Rn≥0 → X given by

M̃(xε, τ̂ , τ
∗) := (e, η−(a−εa)+σ∗1n, η, τ̂−ετ , a−εa, ετ+τ∗, τ)

(22)

Lemma 5.1: Let T2 ≥ T1 > 0, digraph G, and hy-
brid systems H and Hε be given as in (12) and (20),

respectively. For each φ ∈ SH and each3 φε ∈ SHε
such that φ(0, 0) = M̃

(
φε(0, 0), φτ̂ (0, 0), φτ∗(0, 0)

)
and

timer components φτ (t, j) = φετ (t, j) for all (t, j) ∈
dom φ, it follows that dom φ = dom φε and φ(t, j) =

M̃
(
φε(t, j), φτ̂ (t, j), φτ∗(t, j)

)
for each (t, j) ∈ dom φ.

With the reduced model Hε in place, we consider the
following set to globally exponentially stabilize for Hε:

Aε:={xε ∈ Xε : ei=ek, ηi=0 ∀i, k ∈ V, εa=0, ετ=0} (23)

This set is equivalent to A in the sense that the point-to-set
distance metrics |x|A and |x|Aε are equivalent when the map
M̃ is applied, as demonstrated in the results that follow.

Lemma 5.2: Given sets A and Aε as in (13) and (23),
respectively, for each x = (e, u, η, τ∗, â, τ̂ , τ), xε, τ̂ , and τ∗

such that x ∈ X , (xε, τ̂ , τ
∗) ∈ X , and u = η− â+σ∗1n then

|x|A = |xε|Aε and |M̃(xε, τ̂ , τ
∗)|A = |x|A.

Lemma 5.3: Given T2 ≥ T1 > 0 and a strongly connected
digraph G, the set A in (13) is GES for the hybrid system H
if Aε in (23) is GES for the hybrid system Hε.

For proofs, see [20] and the Appendix.

B. Reduced Model – Second Pass

Global exponential stability of Aε for Hε is established by
performing a Lyapunov analysis on a version of Hε obtained
after an appropriate change of coordinates, one where the flow
and jump dynamics are linearized. The model is obtained by
exploiting an important property of the eigenvalues of the
Laplacian matrix for strongly connected digraphs.

To this end, let G be a strongly connected digraph. By
exploiting certain known properties of strongly connected
graphs as outlined in [20, Lemma 2.1] and [20, Lemma 2.2],
one has that zero is a simple eigenvalue of the Laplacian matrix
L with an associated eigenvector v1 = 1√

N
1N . Furthermore,

there exists a nonsingular matrix

T = [v1, T1] (24)

where T1 ∈ RN×N−1 is a matrix whose columns are the
remaining eigenvectors of L, i.e., [v2, . . . , vN ], such that

T −1LT =

[
0 0
0 L̄

]
, where L is the graph Laplacian of G

and L̄ is a diagonal matrix with the nonnegative eigenvalues
of L as the diagonal elements given by (λ2, λ3, . . . , λN ), see
[9], [10], and [24] for more details.

To perform the said change of coordinates, we use T
to first perform the following transformations: ē = T −1e,
η̄ = T −1η, ε̄a = T −1εa and ε̄τ = T −1ετ . Then, we
define vectors z̄ = (z̄1, z̄2) and w̄ = (w̄1, w̄2), where z̄1 :=
(ē1, η̄1), z̄2 := (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1

, ε̄τ1), and
w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Finally, we define χε :=
(z̄1, z̄2, w̄1, w̄2, τ) ∈ R2×R2(n−1)×R2×R2(n−1)× [0, T2] =:
Xε as the state of the new version of Hε, which is denoted

3Note that for a given solution φε(t, j) to Hε, the solution components
are given by φε(t, j) =

(
φεe(t, j), φ

ε
η(t, j), φ

ε
εa

(t, j), φεετ (t, j), φ
ε
τ (t, j)

)
.
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H̃ε and has data given by

f̃ε(χε):=


Af1

z̄1

Af2
z̄2

Af3
w̄1

Af4w̄2

−1

+


Bf1

w̄1

Bf2
w̄2

0
0
0

 , G̃ε(χε):=

Ag1

z̄1

Ag2
z̄2

w̄1

w̄2

[T1, T2]


(25)

for each χε in C̃ε := Xε and in D̃ε := {χε ∈ Xε : τ = 0},
respectively, with

Af1
=

[
0 1
0 h

]
, Af2

=

[
0 Im
0 hIm

]
, Af3

=

[
0 µ
−1 −1

]
Af4

=

[
0 µIm
−Im −Im

]
, Bf1

=

[
1 0
0 0

]
, Bf2

=

[
Im 0
0 0

]
Ag1=

[
1 0
0 0

]
, Ag2=

[
Im 0
−γL̄ 0

]
(26)

and m = N−1. Then, H̃ε = (C̃ε, f̃ε, D̃ε, G̃ε) denotes the new
version of Hε. The set Aε to stabilize in the new coordinates
for this hybrid system is given by

Ãε := {χε ∈ Xε : z̄1=(e∗, 0), z̄2=0, w̄1=0, w̄2=0, e∗∈ R}
(27)

In the following two results, we first demonstrate the
relationship between the sets Ãε for H̃ε and Aε for Hε so
as to solve Problem 3.1. Then, similar to Lemma 5.3, we
show that global exponential stability of Ãε for H̃ε implies
global exponential stability of Aε for Hε. See the appendix
for proofs.

Lemma 5.4: Let T2 ≥ T1 > 0, digraph G, and hybrid
systems Hε and H̃ε be given as in (20) and (25), respectively.
For each solution φ ∈ SHε there exists a solution φ̃ ∈ SH̃ε
such that φ(t, j) = Γφ̃(t, j) for each (t, j) ∈ dom φ if and
only if for each solutions φ̃ ∈ SH̃ε there exists a solution φ ∈
SHε such that φ̃(t, j) = Γ−1φ(t, j) for each (t, j) ∈ dom φ̃,
where Γ = diag(T , T , T , T , 1).

Lemma 5.5: Given 0 < T1 ≤ T2 and a strongly connected
digraph G, ξ ∈ Aε if and only if χε := Γ−1ξ ∈ Ãε, where
Γ−1 = diag(T −1, T −1, T −1, T −1, 1) and T is given in (24).
Moreover, for each xε ∈ Xε and each χε ∈ Xε, |χε|Ãε ≤
|Γ−1||xε|Aε and |xε|Aε ≤ |Γ||χε|Ãε .

Lemma 5.6: Given 0 < T1 ≤ T2 and a strongly connected
digraph G, the set Ãε is GES for the hybrid system H̃ε if and
only if Aε is GES for the hybrid system Hε.

C. Parameter Estimator
Exponential stability of the set Ãε for H̃ε hinges upon

the convergence of the estimate â to a. We present a result
establishing convergence of â to a by considering a model
reduction of H̃ε. To this end, consider the state χεr :=
(w̄1, w̄2, τ) ∈ R2 × R2(n−1) × [0, T2] =: Xεr . Its dynamics
are given by the system H̃εr = (C̃εr , f̃εr , D̃εr , G̃εr ) with data
f̃ε(χεr ) for each χεr ∈ C̃εr and G̃εr (χεr ) for each χεr ∈ D̃εr

where
f̃εr (χεr ) :=

(
Af3w̄1, Af4w̄2,−1

)
,

G̃εr (χεr ) :=
(
w̄1, w̄2, [T1, T2]

) (28)

where C̃εr := Xεr and D̃εr := {χεr∈Xεr : τ = 0}. For this
system, the set to exponentially stabilize is given by

Ãεr := {0} × {0} × [0, T2] (29)

In the next result, we show global exponential stability
of the set Ãεr for H̃εr through the satisfaction of matrix
inequalities. See the appendix for proof.

Proposition 5.7: If there exists a positive scalar µ and
positive definite symmetric matrices P2, P3 such that, with
Af3

and Af4
as in (26), the conditions in (16) hold, then the

set Ãεr is globally exponentially stable for the hybrid system
H̃εr . Furthermore, every solution φ̃ to H̃εr satisfies

|φ̃(t, j)|Ãεr ≤
√
αw̄2

αw̄1

exp
(
− γ̄β̃

2αw̄2

(t+ j)
)
|φ̃(0, 0)|Ãεr

(30)
for each (t, j) ∈ dom φ̃, with αw̄1 = min{λmin(P2),
λmin(P3)}, αw̄2

= max{λmax(P2), λmax(P3)}, β̃ > 0, and
γ̄ = min{1− γ, γT1}.

D. Proof of Theorem 4.5
Consider the following Lyapunov function candidate for H̃ε
V (χε) := V1(χε) + V2(χε) + Vεr (χε) ∀χε ∈ Xε (31)

where V1(χε)= exp (2hτ)η̄2
1 ,

V2(χε)=z̄
>
2 exp (A>f2

τ)P1 exp (Af2
τ)z̄2

and Vεr (χε) = w̄>1 P2w̄1 +w̄>2 P3w̄2. Note that there exist two
positive scalars α1, α2 such that

α1|χε|2Ãε ≤ V (χε) ≤ α2|χε|2Ãε ∀χε ∈ C̃ε ∪ D̃ε (32)

With P1 positive definite and noting the nonsingularity of
exp (Af2

τ) for every τ , we have α1 = min
ν∈[0,T2]

{
exp (2hν),

λmin
(

exp (A>f2
ν)P1 exp (Af2

ν)
)
, λmin(P2), λmin(P3)

}
and

α2 as in (19). For each χε ∈ C̃ε, one has

〈∇V (χε), f̃ε(χε)〉 = 2z̄>2
(

exp (A>f2
τ)P1 exp (Af2

τ)
)
Bf2

w̄2

+ w̄>1 (P2Af3
+A>f3

P2)w̄1

+ w̄>2 (P3Af4
+A>f4

P3)w̄2

(33)
Now, by noting the conditions in (16), with β1 > 0 and β2 > 0
such that P2Af3

+ A>f3
P2 ≤ −β1I , and P3Af4

+ A>f4
P3 ≤

−β2I then one has

〈∇V (χε), f̃ε(χε)〉 ≤ κ1|z̄2||w̄2| − β1|w̄1|2 − β2|w̄2|2 (34)

where κ1 is as given in (19). Applying Young’s inequality to
κ1|z̄2||w̄2|,4 we obtain

〈∇V (χε), f̃ε(χε)〉 ≤
κ1

2ε
|z̄2|2−β1|w̄1|2 +

(κ1ε

2
− β2

)
|w̄2|2

(35)
where ε > 0. We then upper bound the inequality by picking
the largest coefficient, i.e, κ̄1 = max

{
κ1

2ε ,
(
κ1ε
2 − β2

)}
,

leading to
〈∇V (χε), f̃ε(χε)〉 ≤

κ̄1

α2
V (χε) (36)

4In particular, we are utilizing the relation ab ≤ a2

2ε
+ εb2

2
where a, b ∈ R

and ε > 0.
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Now, for the analysis across jumps, note that for all χε ∈ D̃ε,
τ = 0. At jumps, τ is mapped to some point ν ∈ [T1, T2].
Then, at jumps, for each g ∈ G̃ε one has

V (g)−V (χε) =

−η̄2
1+z̄>2

(
A>g2

exp (A>f2
ν)P1 exp (Af2

ν)Ag2
−P1

)
z̄2

≤ −κ̄2

(
|η̄1|2 + |z̄2|2

)
where κ̄2 and κ2 are as given in (19), from where we have

V (g)− V (χε) ≤ −κ̄2

(
|η̄1|2 + |z̄2|2

)
(37)

Utilizing the upper bound α2 from the definition of V in (32),
for all χε ∈ D̃ε, one has V (χε) ≤ α2

(
|η̄1|2 + |z̄2|2 + |w̄|2

)
.

Dividing by α2 and rearranging terms, one has

−(|η̄1|2 + |z̄2|2) ≤ − 1

α2
V (χε) + |w̄|2 (38)

Then, by inserting (38) into (37), we obtain

V (g)− V (χε) ≤ κ̄2

(
− 1

α2
V (χε) + |w̄|2

)
(39)

Now, by noting that 〈∇V (χε), f̃(χε)〉 ≤ κ̄1

α2
V (χε) and by

(39), pick a solution φ̃ to H̃ε with initial condition φ̃(0, 0) ∈
C̃ε∪D̃ε. Let the jumps of φ̃ occur at times (tj , j) ∈ {j′ : ∃t′ :
(t′, j′) ∈ dom φ}. For each (t, j) ∈ [0, t1]× {0} one has

V (φ̃(t, 0)) ≤ exp
( κ̄1

α2
t1

)
V (φ̃(0, 0))

At (t1, 1), one has

V (φ̃(t1, 1))≤
(

1− κ̄2

α2

)
exp

( κ̄1

α2
t1

)
V (φ̃(0, 0))+κ̄2|w̄(t1, 0)|2

Then, for each (t, j) ∈ [t1, t2]× {1}

V (φ̃(t, 1)) = exp
( κ̄1

α2
t2

)(
1− κ̄2

α2

)
V (φ̃(0, 0))

+ exp
( κ̄1

α2
(t2 − t1)

)
κ̄2|w̄(t1, 0)|2

At (t2, 2), one has

V (φ̃(t2, 2)) ≤ exp
( κ̄1

α2
t2

)(
1− κ̄2

α2

)2

V (φ̃(0, 0))

+ κ̄2

[
exp

( κ̄1

α2
(t2 − t1)

)
|w̄(t1, 0)|2 + |w̄(t2, 1)|2

]
A general form of the bound is given by

V (φ̃(t, j)) ≤ exp
( κ̄1

α2
tj

)(
1− κ̄2

α̃1

)j
V (φ̃(0, 0))

+ κ̄2

( j∑
k=1

exp
( κ̄1

α2
(tk+1−tk)

)
|w̄(tk, k−1)|2

)
(40)

Noting that tj+1 − tj ≤ T2 and κ̄1

α2
> 0, the latter term can

be further bounded as

κ̄2

( j∑
k=1

exp
( κ̄1

α2
(tk+1−tk)

)
|w̄(tk, k−1)|2

)
≤ κ̄2exp

( κ̄1

α2
T2

)
sup(t,j)∈domφ̃|w̄(t, j)|2

Moreover, since tj ≤ T2(j + 1) and κ̄1

α2
> 0, we can also put

a stricter bound on the first term in (40) as follows:

exp
( κ̄1

α2
tj

)(
1− κ̄2

α2

)j
V (φ̃(0, 0))

≤ exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
V (φ̃(0, 0))

Thus

V (φ̃(t, j)) ≤

exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
V (φ̃(0, 0))

+ κ̄2 exp
( κ̄1

α2
T2

)
sup(t,j)∈domφ̃|w̄(t, j)|2

Then, from the result of Proposition 5.7, we have (30)
with αw̄1 = min{λmin(P2), λmin(P3)} and αw̄2 =
max{λmax(P2), λmax(P3)}. Now, to improve readability, we
have omitted including the use of the notation V (φ̃(t, j))
when evaluating V along the trajectory for the solution φ̃
opting instead for the use of the state components of χε
directly. In particular, we remind the reader that the notation
w̄(t, j) corresponds to the w̄ component of a solution, i.e.,
φw̄(t, j). Now, combining the inequality with (32) and noting
V (φ̃(0, 0)) ≤ α2|φ̃(0, 0)|2Ãε one has for each (t, j) ∈ dom φ

|φ(t, j)|Ãε ≤√
α2

α1
|φ(0, 0)|Ãε exp

( κ̄1

2α2
T2

)(
exp

( κ̄1

2α2
T2

)(
1− κ̄2

2α2

))j
+
√
κ̄2 exp

( κ̄1

2α2
T2

)√αw̄2

αw̄1

exp
( −γ̄β̃

2αw̄2

(t+j)
)2

|φw̄(0, 0)|2Ãεr
(41)

By the given conditions, the set Ãε is globally exponentially
stable and attractive for H̃ε. Now, by utilizing Lemmas 5.4
- 5.6, we can establish global exponential stability to the set
Aε for Hε. In particular, Lemma 5.4 establishes the relation
between H̃ε andHε. In turn, we can then make use of Lemmas
5.1 - 5.3, where Lemma 5.1 establishes the reduction from H
to Hε, to show that the set A is globally exponentially stable
and attractive for H in (12).

VI. ROBUSTNESS TO COMMUNICATION NOISE, CLOCK
DRIFT PERTURBATIONS, AND ERROR ON σ

Under a realistic scenario, it is often the case that the
system is subjected to disturbances. In this section, we present
results on input-to-state stability (ISS) of the system when it
is affected by different types of disturbances. First, we present
an ISS result that considers communication noise. Then, we
present an ISS result on the parameter estimation sub-system
when it is subjected to noise on the internal clock output.
Finally, we present an ISS result on noise introduced to the
desired clock rate reference σ∗.

Definition 6.1: (Input-to-state stability) A hybrid system H
with input m is input-to-state stable with respect to a set A ⊂
Rn if there exist β ∈ KL and κ ∈ K such that each solution
pair (φ,m) to H satisfies |φ(t, j)|A ≤ max{β(|φ(0, 0)|A, t+
j), κ(|m|∞)} for each (t, j) ∈ dom φ.
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A. Robustness to Communication Noise
We consider the case when the measurements of the timer

τ̃i is affected by noise mei ∈ R, i ∈ V . As a result, the output
of each agent is given by τ̃i + mei . In the presence of this
noise, the update law to η+

i in the hybrid controller in (10)
becomes

η+
i = −γ

∑
k∈N (i)

(τ̃i − τ̃k)− γ
∑

k∈N (i)

(mei −mek )

Performing the same change of coordinates, as in the proof of
Theorem 4.5, we show that H̃ε is ISS to communication noise
me := (me1 ,me2 , . . . ,men) ∈ Rn. Recalling the change of
coordinates ē = T −1e and η̄ = T −1η, let m̄e = T −1me. The
update law η̄+, is given by η̄+ = (0,−γL̄ē− γL̄m̄e) with η̄1

unaffected by the communication noise.
Using the update law for η̄ under the effect of m̄e, we

define the perturbed hybrid system H̃m with state vector
χm := (z̄1, z̄2, w̄1, w̄2, τ) ∈ Xε, where, again z̄1 = (ē1, η̄1),
z̄2 = (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1 , ε̄τ1), and w̄2 =
(ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Moreover, let m̄z̄2 = (0, m̄e).
The data (C̃m, f̃m, D̃m, G̃m) for the new system H̃m is
given by f̃m(χm) := f̃ε(χm) for each χm ∈ C̃m and
G̃m(χm, m̄ε) := G̃ε(χm)− (0, Bgm̄z̄2 , 0, 0, 0) for each χm ∈
D̃m where C̃m := Xε, D̃m := {χm ∈ Xm : τ = 0}, and
Bg =

[
0 γL̄

]>
.

Theorem 6.2: Given a strongly connected digraph G, if the
parameters T2 ≥ T1 > 0, µ > 0, h ∈ R, γ > 0, and positive
definite symmetric matrices P1, P2, and P3 are such that (17)
and (18) hold, the hybrid system H̃m with input m̄e is ISS with
respect to Ãε in (27). Furthermore, for each (t, j) ∈ dom φ
every solution φ to H̃m satisfies |φ(t, j)|Ãε ≤√
α2

α1
|φ(0, 0)|Ãε exp

( κ̄1

2α2
T2

)(
exp

( κ̄1

2α2
T2

)(
1− κ̄2

2α2

))j
+
√
κ̄2 exp

( κ̄1

2α2
T2

)√αw̄2

αw̄1

exp
( −γ̄β̃

2αw̄2

(t+j)
)2

|φw̄(0, 0)|2Ãεr

+
√
κ̃m̄2

exp
( κ

4ε2
T2

)√
sup

(t,j)∈dom φ

|m̄z̄2(t, j)|2

The proof of this result utilizes a Lyapunov analysis using
the function candidate V in (31). Since the disturbance is
present during jumps, we show that V can be upper bounded
resulting in a bounded disturbance in V when evaluated along
a given solution to H̃mσ ; see [20] for more details.

B. Robustness to Perturbations on Internal Clock Drift
In this section, we consider a disturbance mτ∗

i
∈ R, i ∈ V

added to the output of the internal clock. Let yτ
∗

i := τ∗i +mτ∗
i

,
i ∈ V , define the perturbed internal clock output. Then the
dynamics of the original estimation system in (12) under this
disturbance becomes

˙̂τi = âi−(τ̂i−yτ
∗

i ), ˙̂ai = −µ(τ̂i−yτ
∗

i ) τ ∈ [0, T2]

τ̂+
i = τ̂i, â+

i = âi τ = 0
(42)

In error coordinates εâi = ai− âi, ετi = τ̂i− τ∗i , this leads to

ε̇τi = −ετi − εai +mτ∗
i
, ε̇âi = µετi − µmτ∗

i
τ ∈ [0, T2]

ε+
τi = ετi , ε+

ai = εai τ = 0

Similar to the result presented in Proposition 5.7, for the
estimation sub-system we will consider the same reduction
H̃εr that now captures the perturbation. Recall the coor-
dinate transformations ε̄a = T −1εa and ε̄τ = T −1ετ
for the respective internal clock and parameter estimation
errors. Moreover, recall w̄ = (w̄1, w̄2) where w̄1 =
(ε̄a1 , ε̄τ1) and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Let m̄τ∗ =
T −1mτ∗ and q̄ = (q̄1, q̄2) where q̄1 = (m̄τ∗

1
, m̄τ∗

1
) and

q̄2 = (m̄τ∗
2
, . . . , m̄τ∗

n
, m̄τ∗

2
, . . . , m̄τ∗

n
). Now, consider the

reduced coordinates χmr := (w̄1, w̄2, τ) ∈ Rn × Rn ×
[0, T2] =: Xε. The data of this reduced system is given by
H̃mr = (C̃ε, f̃ε, D̃ε, G̃ε) where f̃mr (χmr , q̄) := f̃εr (χmr ) +
(Bm1 q̄1, Bm2 q̄2, 0) for each χmr ∈ C̃mr and G̃mr (χmr ) :=
(w̄1, w̄2, [T1, T2]) for each χmr ∈ D̃mr where C̃mr := Xε,
D̃mr := {χm ∈ Xε : τ = 0}, and Bm1

= ([µ, 0], [0, 1]),
Bm2

= ([µI, 0], [0, I]).

Theorem 6.3: If there exists a positive scalar µ and positive
definite symmetric matrices P2, P3 such that the conditions in
(16) hold, the hybrid system H̃mr with input m̄τ∗ is ISS with
respect to Ãεr given in (29).

The proof of this result is established by picking a solution
to the model reduction H̃εr , integrating the disturbance that
is treated as an input to the system, and then bounding the
integral. A proof of this result can be found in [20].

C. Robustness to Error on σ

In this section, we consider a disturbance on σ∗ to capture
the scenario where σ∗ is not precisely known, i.e., σi 6= σ∗.
Let εσi = σi − σ∗ represent the error between the injected
and the ideal clock rate. Treating εσ as a perturbation to the
system Hε, one has ẋε = fε(xε) + (εσ, 0, 0, 0, 0) for each
xε ∈ Cε and x+

ε ∈
(
e,−γLe, εa, ετ , [T1, T2]

)
for each xε ∈

Dε. To show how the perturbation affects H̃ε, let ε̄σ =
T −1εσ , then let m̄σ = (m̄σ1

, m̄σ2
) where m̄σ1

= ε̄σ1
and

m̄σ2
= (ε̄σ2

, . . . , ε̄σn).
We define this perturbed hybrid system H̃mσ with state

vector χmσ := (z̄1, z̄2, w̄1, w̄2, τ) ∈ Xε. Its dynamics are
given by the new system H̃mσ = (C̃mσ , f̃mσ , D̃mσ , G̃mσ )
with data f̃mσ (χmσ ) for each χmσ ∈ C̃mσ := Xε and
G̃mσ (χmσ ) for each χmσ ∈ D̃mσ := {χmσ ∈ Xε : τ = 0}
where f̃mσ (χmσ , m̄σ) := f̃ε(χmσ ) +

(
m̄σ1 , m̄σ2 , 0, 0, 0

)
and

G̃mσ (χmσ ) := G̃ε(χmσ ) leading to the following result.

Theorem 6.4: Given a strongly connected digraph G, if the
parameters T2 ≥ T1 > 0, µ > 0, h ∈ R, γ > 0, and positive
definite symmetric matrices P1, P2, and P3 are such that (17)
and (18) hold, the hybrid system H̃mσ with input m̄σ is ISS
with respect to Ãε given in (27).

The proof of this result largely follows the same approach
used in the proof of Theorem 6.2, namely, a Lyapunov analysis
using the function candidate V in (31). Since the disturbance
is present during flows, we show that the derivative of V can
be upper bounded resulting in a bounded disturbance in V
when evaluated along a given solution to H̃mσ ; see [20] for
more details.



10

Fig. 2. The trajectories of the solution φ for state component errors
ei−ek, εai , τ , and τδi

D. Robustness to Communication Event Delays
In this section, we consider communication delays and show

that the asymptotic stability ofH is robust (in a practical sense)
to them. To model communication delays, we define a new
hybrid system, denoted Hδ , that is an augmentation of H̃ε
implementing the following mechanism: when a communica-
tion event is triggered due to τ reaching zero, the information
to communicate is stored in a memory state and only available
to the agents after T δ seconds after. Due to space constraints,
the details behind the construction of Hδ are in [20].

Theorem 6.5: Given a strongly connected digraph G, if
the parameters T2 ≥ T1 > 0, µ > 0, h ∈ R, γ > 0,
and the positive definite symmetric matrices P1, P2, and P3

are such that the conditions in Theorem 4.5 hold, then the
set A is semiglobally practically asymptotically stability with
respect to T δ for H in (12), namely, for each compact set
K ⊂ X and each ε > 0, there exist a class KL-function
β and T δ > 0 such that each solution φxδ to H with
φxδ(0, 0) ∈ K and with communication delay no larger than
T δ satisfies |φxδ(t, j)|A ≤ β(|φxδ(0, 0)|A, t + j) + ε for all
(t, j) ∈ domφxδ .

The proof of this result follows from [25, Theorem 5.3]
using the notions given in [25, Section VII-C]. Complete
details and a proof of Theorem 6.5 can be found in [20],
along with a numerical validation. To emphasize the robustness
of H to small delays, Figure 2 depicts trajectories to a
decentralized delay scenario where the data from each node
incurs a maximum delay of T δ = 0.1 seconds, modeled by a
delay timer τδi for each node.

VII. COMPARISONS

In this section, we compare our algorithm to several
consensus-based clock synchronization algorithms from the
literature through a numerical example. We consider a four
agent setting and simulate each algorithm presented in [15]
(PI-Consensus), [17] (RandSync), and [1] (Average TimeSync)
to our hybrid algorithm HyNTP as in (12).

Consider N = 4 agents with clock dynamics as in (4)
and (5) over a strongly connected graph with the following
adjacency matrix GA = [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1],
[1, 0, 1, 0] and aperiodic communication events such that suc-
cessive communications events are lower and upper bounded

(a) (b)

Fig. 3. The evolution of the trajectories of the adjustable clocks τ̄i (3a)
and adjustable clock rates āi (3b) for each clock synchronization algo-
rithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.

by T1 = 0.1 and T2 = 0.5, respectively. The initial conditions
for the clock rates āi and adjustable clock values τ̄i for
each i ∈ V has been randomly chosen within the intervals
(0.5, 1.5) and (0, 200), respectively. Moreover, consider the
case where the system is subjected to a communication noise
mτi(t, j) ∈ (0, 1) on the clock measurements. Figure 3a and
3b show the trajectories of τ̄ and āi, respectively, for agents
i ∈ {1, 2, 3, 4} for the HyNTP algorithm and each of the
comparison algorithms under consideration.

For the HyNTP algorithm, setting σ∗ = 1, it can be found
that the parameters h = −2, µ = 9, γ = 0.06 and ε = 4.752
with suitable matrices P1, P2, and P3 satisfy conditions (17)
and (18) in Theorem 4.5 with κ̄1 = 2.02, κ1 = 19.22, κ̄2 = 1,
and α2 = 44.03.

VIII. CONCLUSION

In this paper, we modeled a network of clocks with
aperiodic communication that utilizes a distributed hybrid
controller to achieve synchronization, using the hybrid sys-
tems framework. Results were given to guarantee and show
synchronization of the timers, exponentially fast. Numerical
results validating the exponentially fast convergence of the
timers were also given. Numerical results were also provided
to demonstrate performance against a similar class of clock
synchronization algorithms.

APPENDIX

Proof of Lemma 4.4: Pick an initial condition ξ ∈ A. Let φ
be a maximal solution to H with φ(0, 0) = ξ.5

• Consider the case where φ(0, 0) ∈ A \ D. The initial
conditions of the components of φ satisfy φei(0, 0) =
φηi(0, 0) = 0 for the clock errors ei, φτ̂i(0, 0) =
φτ∗

i
(0, 0) for the estimated clocks τ̂i, φâi(0, 0) =

φai(0, 0) for the clock rates âi and φui(0, 0) =
φηi(0, 0)−φâi(0, 0)+σ∗ for the control input for each i ∈
V . With f being linear affine, the constrained differential
equation ẋ = f(x) x ∈ C has unique solutions. Let
[0, t1] × {0} ⊂ dom φ with t1 > 0, which exists since
φ(0, 0) ∈ A \ D. From the definition of f , the solution
components of the states u, η, and e during this interval

5Note that for a given solution φ(t, j) to H, the solution
components are given by φ(t, j) =

(
φe(t, j), φu(t, j), φη(t, j),

φτ∗ (t, j), φâ(t, j), φτ̂ (t, j), φτ (t, j)
)
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remain constant. From the definition of f in (12) we have
that the components of the solution φ satisfy φei(t, j) =
φek(t, j), φη(t, j) = 0, φâi(t, j) = φai(t, j), φτ̂i(t, j) =
φτ∗

i
(t, j), and φui(t, j) = φηi(t, j) − φâi(t, j) + σ∗ for

each (t, j) ∈ [0, t1]×{0}. Therefore, the solution φ does
not leave the set A when φ(0, 0) ∈ A \D.

• Consider the case where φ(0, 0) ∈ A ∩D. Since flow is
not possible from φ(0, 0) as φτ (0, 0) = 0, ({0}×{0})∪
({0}×{1}) ⊂ dom φ as the solution φ jumps initially. By
inspection, the jump map G in (12) only affects the states
η, u, and τ , with the other state components unchanged.
Since the quantity −γLe in the jump map is zero at
φ(0, 0), we have that φη(0, 1) = −γLφe(0, 0) = 0.
Moreover, since â is constant across jumps, φâ(0, 1) =
φâ(0, 0), then, φu(0, 1) = −γLφe(0, 0)−φâ(0, 0)+σ∗1n
φη(0, 1)−φâ(0, 1)+σ∗1n The timer τ resets to a point in
the interval [T1, T2], namely, φτ (0, 1) ∈ [T1, T2]. Then,
the full solution φ at (0, 1) satisfies φ(0, 1) ∈ A.

Since these properties hold for each ξ ∈ A, A is forward
invariant for H. �

Proof of Lemma 5.2: For each x ∈ X , the distance
from x to the set A is given as |x|A = infy∈A |x −
y|. Evaluating the distance directly, one has |x|A =
infe∗∈E sqrt

(
(e−e∗)>(e−e∗) +(u−η + â−σ∗1n)>(u−η +

â−σ∗1n) +η>η + (â − a)>(â − a) + (τ̂ − τ∗)>(τ̂ − τ∗)
)

where E := {e∗ ∈ Rn : e∗i = e∗k ∀i, k ∈ V}. When
u = η − â + σ∗1n we have |x|A = infe∗∈E sqrt

(
(e −

e∗)>(e− e∗) + η>η +(â− a)>(â− a) + (τ̂ − τ∗)>(τ̂ − τ∗)
)
.

For each xε ∈ Xε, the distance from xε to the set Aε is
given as |xε|Aε = infy∈Aε |xε − y|. Evaluating the distance
directly, one has |xε|Aε = infe∗∈E sqrt

(
(e − e∗)>(e − e∗)

+η>η + ε>a εa + ε>τ ετ
)
. Making the appropriate substitutions

for ετ and εa, we get |xε|Aε = infe∗∈E sqrt
(
(e−e∗)>(e−e∗)

+η>η + (â−a)>(â−a) + (τ̂ − τ∗)>(τ̂ − τ∗)
)
. Now,

for each (xε, τ̂ , τ
∗) ∈ X , the distance from the point

M̃(xε, τ̂ , τ
∗) to the set A is given by |M̃(xε, τ̂ , τ

∗)|A =

infy∈A |M̃(xε, τ̂ , τ
∗) − y|. Computing this distance, one has

|M̃(xε, τ̂ , τ
∗)|A = infe∗∈E,ατ∗∈Rn≥0

,ατ∈[0,T2] |(e, η − (a −
εa) + σ∗1n, η, τ̂ − ετ , a − εa, ετ + τ∗, τ) −(e∗, η − â +
σ∗1n, 0, ατ∗ , a, τ∗, ατ )|. Making the appropriate substitutions
for ετ and εa, we get |M̃(xε, τ̂ , τ

∗)|A = infe∗∈E sqrt
(
(e −

e∗)>(e− e∗) +η>η+ (â− a)>(â− a) +(τ̂ − τ∗)>(τ̂ − τ∗)
)

Thus, we have that |M̃(xε, τ̂ , τ
∗)|A = |x|A = |xε|Aε . �

Proof of Lemma 5.3: Suppose the set Aε is GES for Hε.
By Definition 2.1 there exist κ, α > 0 such that each maximal
solution φε to Hε satisfies |φε(t, j)|Aε ≤ κ exp(−α(t +
j))|φε(0, 0)|Aε for each (t, j) ∈ dom φε. Now, pick any
maximal solution φ to H. Through an application of Lemma
5.1, there exists a corresponding solution φε to Hε such that
φ(t, j) = M̃

(
φε(t, j), φτ̂ (t, j), φτ∗(t, j)

)
for each (t, j) ∈

dom φ. Given that φε satisfies the given exponential bound,
using the relationship between distances in Lemma 5.2 we
have that φ satisfies |φ(t, j)|A ≤ κ exp(−α(t+ j))|φ(0, 0)|A.
Then, the set A is GES for H. �

Proof of Lemma 5.4: Pick a solution φ̃ ∈ SH̃ε . with
φ̃ = (φ̃z̄1 , φ̃z̄2 , φ̃w̄1

, φ̃w̄2
, τ), however, recall that z̄1 :=

(ē1, η̄1), z̄2 := (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1
, ε̄τ1),

and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn) thus, through a re-
ordering of the solution trajectories, one has that with
some of the above notation, φ̃ can be rewritten as φ̃ =
(φ̃ē, φ̃η̄, φ̃ε̄a , φ̃ε̄τ , τ). Then, recall the change of coordinates
ē = T −1e, η̄ = T −1η, ε̄a = T −1εa, and ε̄τ =
T −1ετ . Since T −1 is an invertible time-invariant linear
operator, applying its inverse T to the components of
φ̃, one has

(
T φ̃ē(t, j), T φ̃η̄(t, j), T φ̃ε̄a(t, j), T φ̃ε̄τ (t, j)

)
=(

φe(t, j), φη(t, j), φεa(t, j), φετ (t, j)
)

for each (t, j) ∈
dom φ̃. Noting that τ is equivalent for Hε and H̃ε. Therefore,
it follows thatφ̃(t, j) = Γ−1φ(t, j) for each (t, j) ∈ dom φ̃.

Conversely, pick a solution φ ∈ SHε , let
φ = (φe, φη, φεa , φετ , τ) and recall the change of
coordinates ē = T −1e, η̄ = T −1η, ε̄a = T −1εa,
and ε̄τ = T −1ετ . Since T −1 is a time-invariant linear
operator, applying it to the components of φ, one has(
T −1φe(t, j), T −1φη(t, j), T −1φεa(t, j), T −1φετ (t, j)

)
=(

φ̃ē(t, j), φ̃η̄(t, j), φ̃ε̄a(t, j), φ̃ε̄τ (t, j)
)

for each (t, j) ∈
dom φ. Thus, it follows that φ(t, j) = Γφ̃(t, j) for each
(t, j) ∈ dom φ. �

Proof of Lemma 5.5: This proof has been omitted as it is
simply exploits the property of norms for linear systems.

Proof of Proposition 5.6: The proof of this result has been
omitted as it follows similarly to that of Lemma 5.3.

Proof of Proposition 5.7: Consider the following Lyapunov
function candidate Vεr (χεr ) = w̄>1 P2w̄1 + w̄>2 P3w̄2 It sat-
isfies αω̄1 |χεr |2Ãεr ≤ Vεr (χεr ) ≤ αω̄2 |χεr |2Ãεr for each

χεr ∈ C̃εr ∪ D̃εr with α1 = min
{
λmin(P2), λmin(P3)}

and α2 = max
{
λmax(P2), λmax(P3)}. For each χεr ∈ C̃εr

〈∇Vεr (χεr ), f̃(χεr )〉 ≤ w̄>1 (P2Af3
+A>f3

P2)w̄1 +w̄>2 (P3Af4

+A>f4
P3)w̄2 The conditions in (16) imply the existence of

positive numbers β1 and β2 such that P2Af3+A>f3
P2 ≤

−β1I P3Af4+A>f4
P3 ≤ −β2I Then 〈∇Vεr (χεr ), f̃εr (χεr )〉 ≤

− β̃
αω̄2

Vεr (χεr ) where β̃ = min{β1, β2} > 0. For all χεr ∈
D̃εr and g ∈ G̃εr (χεr ) , Vεr (g)− Vεr (χεr ) = 0. Now, pick a
solution φ̃ to H̃εr with initial condition φ̃(0, 0) ∈ C̃εr ∪ D̃εr .
Direct integration of (t, j) 7→ Vεr (φ̃(t, j)) over dom φ̃ gives
Vεr (φ̃(t, j)) ≤ exp

(
− β̃
αω̄2

t
)
Vεr (φ̃(0, 0)) for each (t, j) ∈

dom φ̃. Now, given the relation established in (15), for any
solution φ̃ to H̃εr , we have jT2 ≤ t ⇒ −t ≤ −jT2. Then,
for any γ ∈ (0, 1) we have −γt ≤ −γT2j. Moreover, −t =
−(1−γ)t−γt ≤ −(1−γ)t−γT2j ≤ −min{1−γ, γT2}(t+j)
leading to Vεr (φ̃(t, j)) ≤ exp

(
− γ̄β̃
αω̄2

(t+ j)
)
Vεr (φ̃(0, 0)) for

each (t, j) ∈ dom φ̃ where γ̄ = min{1 − γ, γT2}. Then, by
combining this inequality with the definition of Vεr , one has
αω̄1
|χεr |2Ãεr≤Vεr (φ̃(t, j)) ≤ exp

(
− γ̄β̃
αω̄2

(t+ j)
)
Vεr (φ̃(0, 0))

then leveraging Vεr (φ̃(0, 0)) ≤ αω̄2 |φ̃(0, 0)|2Ãεr we have

|φ̃(t, j)|Ãεr ≤
√

αω̄2

αω̄1
exp

(
− γ̄β̃

2αω̄2
(t+ j)

)
|φ̃(0, 0)|Ãεr Ob-

serve that this bound holds for each solution φ̃ to H̃εr .
Maximal solutions to H̃εr are complete due to the reduction
property established in Lemmas 5.4, 5.1, and 4.4. Therefore,
the set Ãεr is globally exponentially stable for H̃εr . �
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