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Abstract— We present a totally asynchronous multiagent
algorithm, based on the heavy ball method, that guarantees
fast convergence to the minimizer of a twice continuously dif-
ferentiable, convex objective function over a convex constraint
set. The algorithm is parallelized in the sense that the decision
variable is partitioned into blocks, each of which is updated by
only a single agent. We consider two types of asynchrony: in
agents’ computations and in communications between agents,
both under arbitrarily long delays. We show that, for certain
values of the step size and other parameters, the heavy ball
algorithm exponentially converges to a minimizer, even under
total asynchrony. Numerical results validate these findings and
demonstrate significantly faster convergence than a comparable
gradient descent algorithm.

I. INTRODUCTION

Large-scale optimization problems arise in engineering
applications including machine learning, signal processing,
robotics, and others [1], [2], [3], [4]. As these problems
grow in size, parallelized algorithms have been developed
to use collections of agents, e.g., networks of computer
processors, to solve them faster than they can be solved in
a non-parallelized way. Parallelized algorithms decentralize
computations among agents, and agents exchange values of
their decision variables over time.

It can be difficult to synchronize agents’ communications
and computations over time, e.g., due to different clock
speeds driving computations or congested bandwidth when
communicating. This has driven interest in algorithms that
are inherently robust to asynchrony. One class of such
algorithms is termed partially asynchronous [5, Chapter 7],
which refers to algorithms that converge if all delays in
communications and computations are bounded by some
known constant. Algorithms from this class include [6], [7],
[8], [9], [10], [11]. It may be difficult, however, for agents
to know a bound on all delays in all agents’ computations
and communications, and, indeed, such a bound may not
even exist. In such cases, one can ensure the convergence
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of an algorithm by designing it for total asynchrony [5,
Chapter 6], namely, the presence of unbounded delays in
communications and computations. The development of such
algorithms dates back several decades [12], though, to date,
totally asynchronous algorithms are primarily variants of
gradient descent. Accelerated algorithms converge faster by
making each agent’s computations take larger steps towards
an optimum. Doing so is of special importance in totally
asynchronous settings because agents’ computations may be
sporadic and infrequent.

Motivated by the lack of accelerated algorithms in totally
asynchronous settings, we develop a totally asynchronous
version of the heavy ball algorithm. The heavy ball algo-
rithm is appealing because it converges exponentially fast
for strongly convex functions [13], [14] and has a rate up
to O

(
1

(k+1)2

)
for some convex functions [15]. One typically

establishes convergence of totally asynchronous algorithms
by showing that an update law is a contraction with respect
to some block-maximum norm [5, Section 6.3]. The heavy
ball update does not necessarily have such a contraction,
but under suitable conditions on algorithm parameters, we
show that applying the heavy ball update law twice does
provide an infinity norm contraction. Due to this property,
we propose a totally asynchronous algorithm that, at each
step, executes two consecutive updates of a projected heavy
ball algorithm for each agent’s computation. We show that
this algorithm has an exponential convergence rate under the
assumption that the objective function is twice continuously
differentiable and its Hessian is diagonally dominant1. Then
we demonstrate in simulation that our algorithm is substan-
tially faster than a comparable totally asynchronous gradient
descent algorithm. Related work has developed decentralized
synchronous [16], [17] and partially asynchronous versions
of accelerated algorithms [18], [19], [20], [21]. The key
contribution of our algorithm is total asynchrony, i.e., delays
that do not obey a specified upper bound.

The proposed algorithm is block-based, in the sense that
each agent only updates a subset of the decision variables
in a problem, termed a block, and each decision variable
is updated by only a single agent. Block-based algorithms
date back several decades [12], [22], and have been shown
to tolerate total asynchrony for gradient descent applied
to some unconstrained problems [12], [23], [24]. For con-
strained problems, block-based methods have been utilized

1It has been observed in [5, Section 6.3.2] that some form of diagonal
dominance condition is needed to show convergence of totally asynchronous
algorithms, and we therefore include a diagonal dominance condition in this
work.



for primal-dual algorithms [25], [26], [27], including totally
asynchronous primal-dual algorithms [28]. For the first time,
this paper will bring the same tolerance for total asynchrony
to set constrained problems solved with an accelerated algo-
rithm. In this preliminary study, we use scalar blocks, i.e.,
each agent updates a scalar decision variable.

The rest of this paper is organized as follows. Section II
gives notation and background. Section III presents the
problem statement. Section IV introduces the asynchronous
algorithm and its nominal properties. Section V provides
simulation results. Due to space constraints, detailed proofs
of results will be published elsewhere.

II. PRELIMINARIES

A. Notation

We denote the real, positive real, and natural numbers
with R, R>0, and N, respectively. For vectors v ∈ Rm

and w ∈ Rm, (v, w) :=
[
v⊤, w⊤]⊤, |v| = ∥v∥2 =

√
v⊤v

denotes the Euclidean vector norm of v, and ⟨v, w⟩ = v⊤w
the inner product of v and w. The orthogonal projection,
with respect to the Euclidean norm, of a vector v onto the
convex set X is denoted as ΠX [v] = argminw∈X |w − v|.
We denote the max vector norm as ∥v∥∞ = maxi |vi|, which
is the maximum of the absolute value of its components.
The closure of a set S is denoted S. Given a set-valued
mapping M : Rm ⇒ Rp, the domain of M is the set
domM = {x ∈ Rm : M(x) ̸= ∅ }.

B. Properties of Difference Inclusions

In this paper, we consider discrete-time systems with data
(D,G) and dynamics defined as

z+ ∈ G(z) z ∈ D (1)

where z ∈ Rm is the system state, G : Rm ⇒ Rm is
the right-hand side, and D ⊂ Rm is the constraint set.
The notation ⇒ indicates that G is a set-valued map. The
following definition, from [29], [30], [31], is used in the
analysis of the proposed algorithms.

Definition 2.1 (Basic conditions): System (1) is said to
satisfy the basic conditions if its data (D,G) is such that
(A1) D is a closed subset of Rm;
(A2) G : Rm ⇒ Rm is outer semicontinuous and locally

bounded relative to D, and D ⊂ dom G.

III. PROBLEM STATEMENT

This paper solves the following problem.
Problem 1: Given f : Rn → R and X ⊂ Rn, design

an optimization algorithm using accelerated methods that
asynchronously solves minξ∈X f(ξ). Such an algorithm must
have an exponential convergence rate and show improvement
over gradient descent at least in simulation. △

To solve Problem 1, we design a totally asynchronous
algorithm with exponential convergence rate. The algorithm
is designed in three steps. First, we design a synchronous
algorithm in which each agent computes a single constrained
heavy ball update and communicates with its neighbors once

every iteration. Next, we devise a synchronous algorithm
in which, during each iteration, each agent computes two
constrained heavy ball updates and communicates once with
its neighbors. We refer to this algorithm as a double-update
algorithm. Then, as a third step, we leverage the framework
in [5] to establish that, since the synchronous algorithm
has exponential convergence and satisfies the “Synchronous
Convergence and Box Conditions” therein, the totally asyn-
chronous algorithm also has an exponential convergence rate.
Due to space constraints, the intermediate algorithms will be
published elsewhere.

IV. ASYNCHRONOUS, DOUBLE-UPDATE HEAVY BALL

A. Modeling

In its centralized form, the heavy ball algorithm is

ξ(k+1) = ΠX

[
ξ(k)−γ∇f

(
ξ(k)

)
+λ

(
ξ(k)−ξ(k−1)

)]
(2)

for k ∈ N, where ξ(k) ∈ Rn is the state of the algorithm at
discrete time k, and λ > 0 and γ > 0 are tunable parame-
ters representing friction and gravity, respectively [32]. We
interpret (2) as a control system consisting of a plant and
a control algorithm. Let z1 := ξ(k), z2 := ξ(k − 1), and
z := (z1, z2). Then, the plant associated with (2) is given by[
z+1
z+2

]
=

[
u
z1

]
=: GP (z, u) (z, u) ∈ X ×X × Rn =: DP

(3)
with output y = z. The control algorithm leading to (2) is
u = κ(z) := ΠX [z1 − γ∇f(z1) + λ(z1 − z2)].

To extend (2) to a multiagent setting, allowing arbitrary
asynchrony for the agents, we start by extending techniques
used in [28] for parallelized multiagent gradient descent.
The term “parallelized” means that each decision variable is
updated only by a single agent, with each decision variable
assigned to each agent referred to as a “block.”

We consider N ∈ N>0 agents indexed by i ∈ V :=
{1, 2, . . . , N}. We use Ni ⊂ V to denote the set of essential
neighbors of agent i, i.e., Ni is the set of indices of agents
ℓ ̸= i whose decision variables are needed for agent i’s
computations. More formally, agent ℓ ∈ Ni is an essential
neighbor of agent i if ∇if explicitly depends upon agent
ℓ’s decision variable. Only the essential neighbors ℓ ∈ Ni

need to communicate with agent i to ensure it has the in-
formation necessary to compute gradients. Agents exchange
information over an undirected graph Γ = (V, E), where
edges are pairs in the set E ⊂ V × V that directly link
essential neighbors. In particular, an edge from agent ℓ to
agent i, denoted (ℓ, i) ∈ E , implies that ℓ and i are essential
neighbors and agent ℓ can send information to agent i. Since
the graph Γ is undirected, agent i is an essential neighbor
of agent ℓ if and only if agent ℓ is an essential neighbor of
agent i. Conversely, the lack of an edge from agent ℓ to agent
i (and, hence, i to ℓ) implies that ℓ and i are not essential
neighbors and do not communicate.

We use superscripts to denote ownership by an agent, and
use subscripts for indexing. For instance, we denote the vec-
tor containing agent i’s local copy of all decision variables as



zi, and we denote the constraint set corresponding to agent
i’s decision variable (denoted

(
zi1,i, z

i
2,i

)
) as Xi × Xi; see

definitions below. With this in mind, we impose the following
assumption on the constraint set X .

Assumption 4.1 (Properties of the constraint set): The
constraint set X ⊂ RN is nonempty, compact, and convex.
The constraint set can be decomposed as

X = X1 ×X2 × . . .×XN (4)

where, for each i ∈ V , Xi ⊂ R.
In the results to follow, we impose the following assump-

tion on the objective function f .
Assumption 4.2: The function f is twice continuously

differentiable and convex.
Additionally, we impose the following diagonal domi-

nance assumption on the Hessian of the objective function
f .

Assumption 4.3 (Diagonal dominance): The N ×N Hes-
sian matrix x 7→ H(x) = ∇2f(x) is µ-diagonally dominant
on X ⊂ RN for some µ > 0. That is, for each i ∈ V ,
|Hii(x)| − µ ≥

∑N
j=1, j ̸=i |Hij(x)| for all x ∈ X .

For each i ∈ V , agent i stores its own decision variable
and a local copy of the decision variables of all other agents
for use in local computations. We denote agent i’s value for
its own decision variable as(

zi1,i, z
i
2,i

)
∈ Xi ×Xi, (5)

where zi1,i plays the role of z1 in (3) and zi2,i of z2. We
denote agent i’s local copy of the decision variable for agent
ℓ as (

zi1,ℓ, z
i
2,ℓ

)
∈ Xℓ ×Xℓ. (6)

Thus, the full state of agent i is

zi :=
(
zi1, z

i
2

)
∈ X ×X (7)

where
zi1 := (zi1,1, z

i
1,2, ..., z

i
1,i, ..., z

i
1,N )

zi2 := (zi2,1, z
i
2,2, ..., z

i
2,i, ..., z

i
2,N ).

(8)

As in [28], we want to distribute the discrete-time heavy
ball algorithm among multiple agents while allowing agents
to compute and share information asynchronously. There are
two behaviors that could be asynchronous:
1) Computation of Updates to Agents’ Variables: Individual

agents may update their variables at different times.
Namely, the subsets of times at which distinct agents i
and ℓ compute updates are independent;

2) Communication of Updated Agents’ Variables: Commu-
nication of the agents’ variables to their essential neigh-
bors is also totally asynchronous. Namely, the subsets of
times at which distinct agents i and ℓ communicate with
essential neighbors are independent.

To allow total asynchrony, we propose an algorithm that
uses the update law

κ̃i(zi) := ΠXi

[
κi(zi)− γ∇if(w

i
1(z

i
1)) + λ(κi(zi)− zi1,i)

]
(9)

where λ > 0 and γ > 0 come from (2), Xi comes from
Assumption 4.1, zi is defined in (7), zi1 is defined via (8),
κi is defined as

κi(zi) := ΠXi

[
zi1,i − γ∇if(z

i
1) + λ(zi1,i − zi2,i)

]
(10)

and the function wi
1 is defined as wi

1(z
i
1) :=

(
zi1,1, z

i
1,2, . . . ,

κi(zi) . . . , zi1,N
)
∈ X , where κi(zi) is in the i-th entry of

wi
1(z

i
1) and X is defined in (4). The function wi

1 collects
the first update to the zi1,i component of agent i’s decision
variable and collects each of the zi1,ℓ components of agent
i’s local copies of the decision variables of all other agents,
for use in the computation of ∇if in (9). Each agent i ∈ V
executes κ̃i to update its decision variable and communicates
to other agents at potentially different times, with arbitrarily
long delays allowed.

The asynchronous, double-update algorithm for con-
strained heavy ball is summarized in Algorithm 1. Since
computations are totally asynchronous, we denote the set of
times at which agent i computes updates as the set Ki ⊂ N.
Note that each i ∈ V has its own Ki. At each discrete
time instant k ∈ N, if k ∈ Ki – which defines the time
of a computation event – the corresponding agent i updates
the value of

(
zi1,i, z

i
2,i

)
; see lines 4-5 of Algorithm 1. In

particular, if k ∈ Ki, then zi1,i is updated to κ̃i(zi) in (9)
and zi2,i is updated to κi(zi) in (10). Then, agent i sends(
zi1,i, z

i
2,i

)
to all agents ℓ ∈ Ni; see line 6 of Algorithm

1. Due to the possibility of communication delays, such
information might not be received for some time, and might
be received at different times by different agents.

Since communications are totally asynchronous, then we
denote the set of times at which agent i receives information
from agent ℓ ∈ Ni as the set Ri,ℓ ⊂ N. Note that each
(i, ℓ) ∈ E has its own Ri,ℓ. Then, at each discrete time instant
k ∈ N, if k ∈ Ri,ℓ – which defines the time of reception of
information, referred to as a communication event – agent i
updates

(
zi1,ℓ, z

i
2,ℓ

)
of its state zi to(

zℓ1,ℓ(τ
i
ℓ(k)), z

ℓ
2,ℓ(τ

i
ℓ(k))

)
∈ Xℓ ×Xℓ, (11)

where
τ iℓ(k) ∈ Kℓ (12)

denotes the time at which agent ℓ originally computed the
value of its decision variable onboard agent i at time k; see
lines 8-12 of Algorithm 1. Note that τ ii (k) = k for all i ∈ V .
For each ℓ that is not an essential neighbor of i, (zi1,ℓ, z

i
2,ℓ)

is left unchanged; see lines 13-15 of Algorithm 1.
To explain how we model the delay between sending

and receiving information, and the role of τ iℓ in this delay,
we use a simple two-agent example, as follows. Let2 i =
1, ℓ = 2, K1 = {1}, and R2,1 = {3}. At k = 1,
agent 1 updates

(
z11,1, z

1
2,1

)
to

(
κ̃1(z1), κ1(z1)

)
, and sends

these values to agent 2. But these values do not arrive at

2Although the sets Ki and Rℓ,i are later assumed to be unbounded, we
do not consider unboundedness in this example, for simplicity. However,
this illustration also applies for unbounded sets K1 and R2,1 such that
1 ∈ K1, 0, 2, 3, 4 /∈ K1, 3 ∈ R2,1, and 0, 1, 2, 4 /∈ R2,1.



agent 2 until k = 3. When agent 2 receives agent 1’s
decision variable at k = 3, agent 2 updates its value of(
z21,1, z

2
2,1

)
to

(
z11,1(τ

2
1 (3)), z

1
2,1(τ

2
1 (3))

)
, where τ21 (3) = 1 ∈

K1. In this way,
(
z21,1(4), z

2
2,1(4)

)
=

(
z11,1(2), z

1
2,1(2)

)
=(

κ̃1(z1(1)), κ1(z1(1))
)
.

Algorithm 1 Constrained, Asynchronous, Double-Update
Heavy Ball

1: For each i ∈ V , set the initial state zi◦ to an arbitrary
value in X ×X .

2: for each k ∈ N do
3: for each i ∈ V do
4: if k ∈ Ki then
5: Update

(
zi1,i, z

i
2,i

)
in (5) to

(
κ̃i(zi), κi(zi)

)
, with

κ̃i defined via (9) and κi defined in (10);
6: Agent i sends

(
zi1,i, z

i
2,i

)
to all agents ℓ ∈ Ni.

Due to communication delays,
(
zi1,i, z

i
2,i

)
may

not be received for some time.
7: end if
8: for each ℓ ∈ Ni do
9: if k ∈ Ri,ℓ then

10: Update
(
zi1,ℓ, z

i
2,ℓ

)
in (6) to(

zℓ1,ℓ(τ
i
ℓ(k)), z

ℓ
2,ℓ(τ

i
ℓ(k))

)
in (11).

11: end if
12: end for
13: for each ℓ /∈ Ni do
14: Keep

(
zi1,ℓ, z

i
2,ℓ

)
constant.

15: end for
16: end for
17: end for

Now we model Algorithm 1 mathematically. From Algo-
rithm 1, for each i ∈ V , agent i has its state zi in (7) updated
via the following difference equation:(
zi
)+

= Gi
async

(
z1, z2, . . . , zN

)
zi ∈ Di

async := X ×X,
(13)

where Gi
async is defined as Gi

async

(
z1, z2, . . . , zN

)
:=(

gi1
(
z1, z2, . . . , zN

)
, gi2

(
z1, z2, . . . , zN

))
, where, for each

p ∈ {1, 2}, gip is defined as gip
(
z1, z2, . . . , zN

)
:=(

gip,1
(
z1, z2, . . . , zN

)
, gip,2

(
z1, z2, . . . , zN

)
, . . . ,

gip,N
(
z1, z2, . . . , zN

))
and, for each s ∈ V , gip,s is defined

as

gi1,s
(
z1, z2, . . . , zN

)
:=

κ̃i(zi) if s = i, at each computation event
zs1,s if s ∈ Ni, at each communication event
zi1,s otherwise

(14)

if p = 1, where κ̃i is defined in (9), and as

gi2,s
(
z1, z2, . . . , zN

)
:=

κi(zi) if s = i, at each computation event
zs2,s if s ∈ Ni, at each communication event
zi2,s otherwise

(15)

if p = 2, where κi is defined via (10). In (14)-(15),
a computation event by agent i occurs when k ∈ Ki

and a communication event occurs when agent i receives
information from agent s at k ∈ Ri,s. Due to this, the maps
gi1 and gi2 depend on the current and past state values. Such a
dependency is omitted in (14)-(15), for simplicity of notation.

Then, the full multiagent system corresponding to inter-
connecting N agents with dynamics as in (13) is(

z1, z2, . . . , zN
)+

= Gasync
(
z1, z2, . . . , zN

)(
z1, z2, . . . , zN

)
∈ Dasync := (X ×X)

N
(16)

where Gasync is defined as Gasync
(
z1, z2, . . . , zN

)
:=(

G1
async

(
z1, z2, . . . , zN

)
, G2

async

(
z1, z2, . . . , zN

)
, . . . ,

GN
async

(
z1, z2, . . . , zN

))
B. Convergence rate of Algorithm 1

For the forthcoming result for the asynchronous algorithm
(Dasync, Gasync) in (16), we impose the following assumption.

Assumption 4.4: (Infinitely many events): For each i ∈ V
and each ℓ ∈ Ni, the sets Ki ⊂ N and Ri,ℓ ⊂ N are
unbounded. If {ks}s∈N is an increasing sequence of times
in Ki, then for each solution to the algorithm in (16),
lims→∞ τ ℓi (ks) = ∞ for each ℓ ∈ V such that i ∈ Nℓ,
where τ ℓi is defined via (12).

In the upcoming result, the convergence rate of (16)
is characterized by leveraging results in [26] and [28] in
terms of the number of operations – denoted ops(k) – the
agents have completed (counted in the appropriate sequence).
Namely, we count operations as follows. Initially, we set
ops(0) = 0. Then, after all agents i ∈ V have updated(
zi1,i, z

i
2,i

)
to

(
κ̃i(zi), κi(zi)

)
and have sent such updates

to and had such updates received by all essential neighbors
ℓ ∈ Ni – say, by time k′ – we increment ops to ops(k′) = 1.
Note that it is possible for any agent i to compute and
send – and essential neighbors ℓ ∈ Ni to receive – multiple
updates of

(
zi1,i, z

i
2,i

)
between ops(0) = 0 and ops(k′) = 1.

In other words, different subsequences of {ks}s∈N in Ki

exist for each i ∈ V and different subsequences of {ks}s∈N
in Ri,ℓ exist for each (i, ℓ) ∈ E between ops(0) = 0 and
ops(k′) = 1. After ops(k′) = 1, then we wait until all
agents i ∈ V have subsequently computed a new update of(
zi1,i, z

i
2,i

)
and such updates have been sent to and received

by all other essential neighbors. If this occurs at time k′′,
then we set ops(k′′) = 2, and this process continues.

Given X in (4), we denote by

z := (z1, z2) ∈ X ×X (17)

the “true value” of agents’ decision variables, in the sense
that z in (17) contains the current values of the deci-
sion variables of all agents. We define z1 and z2 as
z1 :=

(
z11,1, z

2
1,2, . . . , z

N
1,N

)
and z2 :=

(
z12,1, z

2
2,2, . . . , z

N
2,N

)
.

Namely, z1 collects the zi1,i components and z2 collects the
zi2,i components of the states of all agents i ∈ V .

For the result to follow, we denote the portion of the
algorithm (Dasync, Gasync) in (16) corresponding to the update



of the true value z in (17) as

z+ = g (z) z ∈ X ×X (18)

where g is defined as g (z) :=
((
g̃11,1(z

1), g̃21,2(z
2), . . . ,

g̃N1,N (zN )
)
,
(
g̃12,1(z

1), g̃22,2(z
2), . . . , g̃N2,N (zN )

))
where, for

each i ∈ V , g̃i1,i and g̃i2,i are defined as

g̃i1,i
(
zi
)
:=

{
κ̃i(zi) at each computation event by agent i
zi1,i otherwise

g̃i2,i
(
zi
)
:=

{
κi(zi) at each computation event by agent i
zi2,i otherwise

(19)
where κ̃i is defined via (9) and κi is defined in (10). Recall
that a computation event by agent i occurs when k ∈ Ki.
Since (18)-(19) represent only the updates of the true values
of the decision variables, and not the local copies onboard
each agent i, communication events are not represented in
(19).

Theorem 4.5: (Exponential convergence rate for (16))
Suppose X ⊂ RN satisfies Assumption 4.1, f satisfies
Assumption 4.2, H satisfies Assumption 4.3 with µ > 0,
and z◦ ∈ Z◦ := X × X denotes the initial state of z in

(17). For each γ ∈
(
0, 1

max
i∈V

max
η∈X

|Hii(η)|

)
and λ ∈

(
0, γµ

2

)
,

each maximal solution3 k 7→
(
z1(k), z2(k), . . . , zN (k)

)
to the asynchronous, double-update heavy ball algorithm
(Dasync, Gasync) in (16) from

(
z1◦, z

2
◦, . . . , z

N
◦
)

∈ ZN
◦ , for

which Assumption 4.4 holds, satisfies

max
i∈V

∥∥zi(k)− z∗
∥∥
∞ ≤ aops(k) max

i∈V

∥∥zi◦ − z∗
∥∥
∞ (20)

for all k ∈ N, where a := max{a1, a2}, with
a1 := (1− γµ+ λ)

2
+ λ+ λ (1− γµ+ λ) ∈ [0, 1) and

a2 := 1− γµ+ 2λ ∈ [0, 1), and z∗ := (x∗, x∗), where
x∗ ∈ X is the minimizer of f over X .

V. NUMERICAL EXAMPLE

To demonstrate the effectiveness of the asynchronous,
double-update heavy ball algorithm (Dasync, Gasync) in (16),
we compare it in simulation with a multiagent con-
strained gradient descent algorithm. In particular, we com-
pare (Dasync, Gasync) with a version of the asynchronous
primal-dual algorithm for constrained gradient descent, in
[28], with the dual variables fixed to zero. This renders
that algorithm equivalent to totally asynchronous projected
gradient descent. First, we compare the convergence rates of
(Dasync, Gasync) and the algorithm [28] analytically. For the
asynchronous algorithm in [28], when the dual variables are
fixed at zero, the constrained update law for block i simplifies
to κ̄i(zi1) := ΠXi

[
zi1,i − γ∇if(z

i
1)
]

where

γ <
1

max
i∈V

max
η∈X

∑N
ℓ=1 |Hij(η)|

. (21)

3A solution is called maximal if it cannot be extended further, and is
called complete if its domain is unbounded. When Assumption 4.4 holds,
such solutions are defined for all k ∈ N.
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Fig. 1. The evolution over time of |z1 − x∗| for N = 10 agents running
the totally asynchronous Algorithm 1.
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Fig. 2. The evolution over time of |z1 − x∗| for N = 10 agents running
totally asynchronous gradient descent.

In [28], the asynchronous algorithm is designed and analyzed
for convex functions f which satisfy Assumption 4.2, H
satisfies Assumption 4.3, the set X satisfies Assumption 4.1,
and the algorithm itself satisfies Assumption 4.4.

It is shown in [28, Theorem 2] that, for the dual variables
fixed, each maximal solution k 7→ z1(k) to the asynchronous
primal-dual algorithm therein satisfies

max
i∈N

∥zi1(k)− x∗∥∞ ≤ qops(k)
p max

ℓ∈N
∥zℓ1◦ − x∗∥∞ (22)

where qp := (1 − γµ) ∈ [0, 1) and x∗ ∈ X denotes the
fixed point of the constrained gradient descent update law,
with the dual variables fixed. Comparing the constant qp
in (22) with the constant a, defined below (20), based on
the established theoretical bounds, the primal convergence
rate of the asynchronous algorithm in [28] is faster than
the convergence rate of (Dasync, Gasync). However, as we
illustrate below, the convergence rate of (Dasync, Gasync) is
much better in practice.

Next, we compare the algorithms in simulation4 for N =
10 agents with the objective function

f(z1) :=
3

10

N∑
i=1

(
zi1,i

)2
+

1

200

N∑
i=1

N∑
ℓ=1
ℓ ̸=i

(
zi1,i − zi1,ℓ

)2
for which µ = 1

2 . We also require that zi1,i ∈ Xi = [1, 10]
and zi2,i ∈ Xi = [1, 10] for each i ∈ V . We use the parameter

4Code at github.com/HybridSystemsLab/MultiagentHBF.



value γ = 0.3 for the step size of both algorithms, which

satisfies γ ∈
(
0, 1

max
i∈V

max
z1∈X

|Hii(z1)|

)
for (Dasync, Gasync) in

(16) and the definition of γ in (21) for the asynchronous
algorithm in [28]. Additionally, we use the value λ = 0.075
for (Dasync, Gasync), which satisfies λ ∈ (0, γµ

2 ). In this
example, both algorithms have a communication rate of 1
(i.e., each agent has a 100% chance of communicating the
latest update to another agent at each iteration) and solutions
to both algorithms are simulated at computation rates of
1 (i.e., each decision variable has a 100% probability of
updating at each iteration), 0.75, 0.65, and 0.5. The initial
conditions for (Dasync, Gasync) are zi◦ = (101, 101), for all
i ∈ V , where 1 is the 10 × 1 vector of ones, and for the
asynchronous algorithm in [28] are zi1,◦ = 101 for all i ∈ V .

Figures 1 and 2 demonstrate marked performance im-
provement of (Dasync, Gasync) over the asynchronous gradient
descent algorithm, with the error for (Dasync, Gasync) as small
as 10−8 after 5 iterations and the error for asynchronous
gradient descent algorithm as small as 10−8 after 11 it-
erations, when the computation rate is 1. In other words,
(Dasync, Gasync) converges twice as fast as the asynchronous
gradient descent algorithm, which is true for all computation
rates in Figures 1 and 2. From this example, we see that
although the theoretical convergence rate of (Dasync, Gasync)
in (20) is slower than the convergence bound of the asyn-
chronous gradient descent algorithm in (22), the bound on
(Dasync, Gasync) is conservative compared to its numerical
performance, and the asynchronous heavy ball algorithm is
much faster in practice.

VI. CONCLUSION

We developed a totally asynchronous, block-based op-
timization algorithm utilizing two constrained heavy ball
computations per agent update. The algorithm guarantees
fast convergence to the unique minimizer of f . Future
work includes extending the results to nonscalar blocks and
establishing robustness to perturbations in agents’ updates.

REFERENCES

[1] S. M. Fosson, “Online optimization in dynamic environments: a regret
analysis for sparse problems,” in 2018 IEEE Conference on Decision
and Control (CDC). IEEE, 2018, pp. 7225–7230.

[2] F. Y. Jakubiec and A. Ribeiro, “D-map: Distributed maximum a pos-
teriori probability estimation of dynamic systems,” IEEE Transactions
on Signal Processing, vol. 61, no. 2, pp. 450–466, 2013.

[3] S. M. Fosson, “Centralized and distributed online learning for sparse
time-varying optimization,” IEEE Transactions on Automatic Control,
vol. 66, no. 6, pp. 2542–2557, 2021.

[4] O. Arslan and D. E. Koditschek, “Exact robot navigation using power
diagrams,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 1–8.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computa-
tion: numerical methods. Prentice Hall Englewood Cliffs, NJ, 1989.

[6] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.
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