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Abstract— This paper proposes global accelerated nonconvex
geometric (GANG) optimization algorithms for optimizing a
class of nonconvex functions on the compact Lie group SO(3).
Nonconvex optimization is a challenging problem because the
objective function may have multiple critical points, including
saddle points. We propose two accelerated geometric algorithms
to escape maxima and saddle points using random perturba-
tions. The first algorithm uses the value of the Hessian of
the objective function and random perturbations to escape
the undesired critical points. In contrast, the second algorithm
uses only the gradient information and random perturbations
to escape maxima and saddle points. The efficacy of these
geometric algorithms is verified in simulations.

I. INTRODUCTION

The cornerstone of many machine learning and data analy-
sis algorithms entails minimizing or maximizing (optimizing)
an objective function in an efficient manner. Unlike standard
gradient descent, the heavy ball method is an accelerated
method, with acceleration achieved by adding velocity to the
gradient to speed up the rate of convergence [1], [2]. One
of the challenges associated with accelerated optimization
methods is when the objective function is defined on a space
that is not globally diffeomorphic to a Euclidean space [3].
We call these methods global accelerated nonconvex geo-
metric (GANG) because the underlying space has geometric
constraints. It is possible to find a local solution to these
geometric optimization problems by selecting a local chart,
which locally renders the space as Euclidean space, and
then using standard optimization algorithms. However, such
solutions lead to local results. In this work, we consider a
geometric optimization problem defined on a Lie group with-
out using any local charts or embedding the given manifold
in a higher dimensional space [4]. In particular, our space is
the set of three-by-three rotation matrices, denoted by SO(3),
which has a group structure as well as a smooth manifold
structure. We propose a coordinate-free (hence geometric)
solution to minimize a class of objective functions defined on
the compact manifold SO(3) such that the resulting solution
evolves on the manifold and is computationally efficient.
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Compact Lie groups, such as SO(3), have a number
of applications in the area of robotics, computer vision,
simultaneous localization and mapping (SLAM), and pose
camera estimation [5]. Gradient-based methods and acceler-
ated methods on compact manifolds have been an active area
of research [3], [6]. Gradient-based algorithms on Lie groups
are generally interpreted as a continuous-time dynamical
system, and special care needs to be taken while discretizing
the dynamics. In particular, there is a vast amount of liter-
ature on methods that preserve the manifold structure even
after discretization [7]–[9]. However, due to their associated
challenges, considerably less attention has been given to
GANG methods.

In this paper, we consider the problem of finding a local
minimizer of a non-convex objective function (a Morse
function) defined on SO(3), which may have multiple local
minimizers, maximizers, and saddle points with global con-
vergence. The term “global convergence” means convergence
from everywhere on SO(3) rather than convergence from
nearby a global minimum [2]. Using random perturbations,
we design two accelerated (heavy ball) methods to minimize
a non-convex objective function. In summary, we propose (i)
a perturbed accelerated geometric gradient descent algorithm
(PAGGD-1) that uses the information of Hessian to escape
maximizers and saddle points (Algorithm 3), and (ii) a
perturbed accelerated geometric gradient descent algorithm
(PAGGD-2) that uses only the gradient information to escape
maximizers and saddle points (Algorithm 4). These algo-
rithms are validated numerically in examples.

A. Notation and Math Preliminaries

The n-dimensional Euclidean space is represented by Rn.
For a point x ∈ Rn, the Euclidean norm is denoted by
|x|, and the distance of a point x from a subset S ⊂ Rn

is represented by |x|S := infy∈S |x− y|. We denote the
inner product of two vectors x, y ∈ Rn as ⟨x, y⟩Rn . A k-
dimensional vector x is represented as (x1, x2, . . . , xk) :=[
x1, x2, · · · , xk

]⊤
, where ⊤ denotes transposition.

The domain of a map f is represented by dom f . The
value of the gradient of the map f : Rm → Rn with
respect to its argument evaluated at x is given by grad f(x).
The trace and determinant of a matrix A ∈ Rn×n are
represented by trace(A) and det(A), respectively. A positive
definite, positive semidefinite, negative definite, and negative
semidefinite matrix is denoted by A ≻ 0, A ≽ 0, A ≺ 0, A ≼
0, respectively. The set of 3× 3 rotation matrices is defined
as SO(3) =

{
R ∈ R3×3 : R⊤ = R−1,det(R) = +1

}
and

it has a Lie group structure. The associated Lie algebra of
SO(3) is the set of 3× 3 skew-symmetric matrices so(3) ={
A ∈ R3×3 : A = −A⊤} , which is isomorphic to R3. The



isomorphism is denoted by1 ·̂ : R3 → so(3) and its inverse
is denoted (·)∨ : so(3)→ R3.

Let M be a smooth manifold and p be a point on M. The
tangent space of M at the point p is denoted by TpM, and
the tangent bundle of M is denoted by TM.

Definition 1 (Differential and derivative of a map):
Let f : M → R. The differential of f is a smooth
section of the cotangent bundle T∗M and is denoted by
Df : M → T∗M. The derivative of f on M at a point
x ∈ M is defined as a map in terms of the differential of f
as Df(x) : TxM→ R, ξ 7→ Df(x) · ξ.
A Riemannian structure on SO(3) is defined by associating
an inner product on its tangent space at each point. It should
be noted that the choice of a Riemannian metric is not unique
and in this work, we consider the canonical metric on SO(3)
and is defined as ⟨ξ1, ξ2⟩g := trace

(
ξ⊤1 ξ2

)
, for any g ∈

SO(3) and ξ1, ξ2 ∈ TgSO(3). The norm of a tangent vector
ξ ∈ TgSO(3) is |ξ| =

√
⟨ξ, ξ⟩ =

√
trace (ξ⊤ξ). To define

the gradient on a smooth manifold, we must first specify a
Riemannian metric.

Definition 2 (Gradient on a manifold): Let SO(3) be
equipped with the canonical Riemannian metric and
f : SO(3) → R. The gradient vector field of f on M,
denoted by grad f : M→ TM, with respect to the canonical
Riemannian metric on SO(3) is uniquely characterized by
the following two properties:

1) grad f(x) ∈ TxSO(3), for all x ∈ M, and
2) Df(x) · ξ = ⟨grad f(x), ξ⟩x, for all ξ ∈ TxM,
Global point stabilization on Lie groups is a nontriv-

ial problem because of topological obstructions [10], [11].
Morse theory is a way to characterize the topological ob-
structions of a manifold by using the concept of Morse
functions [12].

Definition 3 (Set of critical points): Let G be a Lie group.
For a smooth (Morse) function L : G → R, the gra-
dient and the Hessian (see [13] for details) matrix are
gradL and HessL, respectively. The set of all critical
points of L is defined as A := {g ∈ G : gradL(g) = 0} .
The set of local minimizers of L is defined as Amin :=
{g ∈ G : gradL(g) = 0,HessL(g) ≻ 0} ⊂ A.

Definition 4 (Nondegenerate critical points): Suppose
p ∈ M is a critical point. The “second derivative”
of L is defined by the symmetric bilinear form
T 2
pL : TpM× TpM→ R. In local coordinates (x1, . . . , xn),

this bilinear map can be given by the Hessian matrix [13].
If the bilinear map (Hessian matrix) is nonsingular at p, we
call p a nondegenerate point; otherwise, it is a degenerate
point.

Definition 5 (Morse function): A map L : M → R is a
Morse function if its critical points are nondegenerate; that
is, the HessL at each critical point is nonsingular.
We present an important consequence of Morse Lemma [12].

Corollary 6: Nondegenerate critical points of Morse func-
tions (smooth, real-valued functions) on smooth manifolds
are isolated. Moreover, Morse functions on a compact mani-
fold have finitely many critical points, and they are isolated.

1Given ω ∈ R3, we express ω̂ ∈ so(3) or equivalently (ω)∧ ∈ so(3).

The set of critical points A may consist of minimizers,
maximizers, and saddle points.

Definition 7 (strict saddle points): For a smooth function
L : SO(3)→ R, a critical point is called a strict saddle point
if the eigenvalues of HessL satisfy λmin < 0, λmax > 0,
and λi ̸= 0 for each i = {1, 2, 3}.

II. BACKGROUND AND MOTIVATION

A. Preliminaries
It is well known that a convex objective function defined

on Rn can be globally minimized using a first-order op-
timization method, such as standard gradient descent, or
a first-order accelerated optimization method, such as a
heavy ball method [14]. A convex objective function has
a unique critical point (or stationary point, i.e., a unique
point where the gradient of the function vanishes). Let the
convex objective function be f : Rn → R. It is possible
to interpret a standard gradient descent algorithm as a first-
order dynamical system of the form ẋ = u, and then design
a controller κ : Rn → Rn and assign the value of κ to u
(u = κ(x)) as the negative of the gradient of f , i.e.,

ẋ = − grad f(x). (1)

A discrete-time realization of (1) gives the standard gradient
descent algorithm and is given by

xk+1 = xk + dt(− grad f(xk)), (2)

where k ∈ {1, 2, . . .} denotes the discrete time and dt > 0 is
the step size. For a convex objective function, this algorithm
searches for the global minimum by taking steps along the
negative gradient direction.

Similarly, it is possible to associate a second-order dy-
namical system to minimize the given objective function f
with acceleration. One such accelerated method is the heavy
ball method, which has tunable “friction” and “gravity”
parameters [1]. A discrete-time realization of the heavy ball
algorithm for the convex objective function f is given by [15]

yk = λyk−1 + dt(−γ grad f(xk))

xk+1 = xk + dt(yk),
(3)

where dt > 0 is the step size, and λ and γ are the friction
and gravity parameters, respectively. When the objective
function is convex, both the gradient descent and heavy-ball
(accelerated gradient descent) method successfully find the
global minimum of the convex objective function [14].

B. Challenges to Optimization on SO(3)

Finding a local minimizer of a cost function defined on
SO(3) that is not necessarily convex and may have multi-
ple isolated local minimizers with a guarantee of “global”
convergence to a minimizer is a challenging problem. By
global, we mean convergence to the set of minimizers from
everywhere on the Lie group. The first challenge in solving
this problem is that if the initial condition belongs to the set
of critical points excluding the set of local minimizers, under
gradient descent (as given in (2)), heavy ball (as given in (3)),
or even Nesterov algorithm (as in [16]), convergence to the
set of local minimizers is not guaranteed. A second challenge



is that the objective function is defined on a manifold.
Standard integration techniques, such as those given in (2)
and (3), do not guarantee that the integrated solution stays
on the manifold [9].

To address the integration issue, we associate the optimiza-
tion problem with a dynamical system evolving on SO(3). A
first-order dynamical system evolving on SO(3) is given by
Ṙ = RΩ̂, where R ∈ SO(3) and Ω̂ ∈ so(3), which can be
interpreted as the state and the control input, respectively. To
assure a decrease of the objective function L : SO(3) → R
in the gradient direction, we set Ω = gradL(R). It should
be noted that elementary integration techniques used to
discretize a continuous-time system defined on Rn, when
applied to a system evolving on a manifold, do not guarantee
that the resulting solution stays on the manifold [7]. On the
other hand, geometric numerical integration preserves the
geometric structure of a dynamical system. Using geometric
numerical integration, the first-order system takes the form

Rk+1 = Rk exp(dt gradL(Rk))
∧, (4)

where dt > 0 is the step size. The geometric gradient
descent (4) can be formulated as Algorithm 1, and we call
it the geometric gradient descent algorithm.

Algorithm 1 Local geometric gradient descent (LGGD)
algorithm on SO(3)

Input: Initialize R in (4) to some R0, and pick positive
scalar parameters γ, λ, a fixed step size dt, ϵ > 0, and a
time horizon T .

1: for k = 0 to T do
2: Compute gradL(Rk)
3: Update R according to (4)
4: if |gradL(Rk)| < ϵ then
5: Break
6: end if
7: end for

To achieve accelerated convergence, we associate the
following second-order control system whose configuration
space is the Lie group SO(3) and the state space is the
tangent bundle of the Lie group TSO(3):

Ṙ = RΩ̂, Ω̇ = u, (5)

where R ∈ SO(3), Ω̂ ∈ so(3),Ω ∈ R3, and u ∈ R3.
Designing an appropriate controller for (5) to steer the
state (R,Ω) to a desired set is equivalent to designing an
appropriate optimization algorithm to minimize the objective
function [9], [17], [18]. Using geometric numerical integra-
tion, the second-order system takes the following discrete-
time form [19]:

Rk+1 = Rk exp
(
dtΩ̂k

)
Ωk+1 = Ωk + dt

(
κ
(
gradL(Rk), (Rk, Ω̂k)

))
,

(6)

where dt is the integration time step, Rk ∈ SO(3) and Ωk ∈
R3 is the rotation matrix and the velocity at the kth iteration,

respectively, and

κ
(
gradL(Rk), (Rk, Ω̂k)

)
:= (−γ gradL(Rk))

∨ − λΩk.

(7)

We call (6) along with (7) the accelerated geometric gradient
descent algorithm. These equations can be formulated as
Algorithm 2.

Algorithm 2 Local accelerated geometric gradient descent
(LAGGD) algorithm on SO(3)

Input: Initialize R and Ω in (6) to some R0 and Ω0,
respectively, and pick positive scalar parameters γ, λ, a fixed
step size dt, ϵ > 0, and a time horizon T .

1: for k = 0 to T do
2: Compute gradL(Rk)
3: Compute κ using (7)
4: Update R and Ω according to (6)
5: if |gradL(Rk)| < ϵ then
6: Break
7: end if
8: end for

Next, we provide an example of an objective function on
SO(3) and apply Algorithms 1 and 2.

Example 1: Let A ∈ R3×3 be a symmetric and positive
definite matrix with distinct eigenvalues. Consider the objec-
tive function

L : SO(3)→ R, R 7→ trace (A(I −R)). (8)

The gradient of L at the identity is given by

gradL(R) =
(
A⊤R−R⊤A

)∨
. (9)

It follows from [20, Lemma 2] that L has four isolated
critical points, namely, A = {I} ∪ R(π,E R

v (A)), where
E R
v (A) is the set of real eigenvectors of A, and R(π,E R

v (A))
represents rotation of 180◦ about each axis given by real
eigenvectors of A. Let Amin = {I}. Since SO(3) is compact,
and L is a continuous function, this implies that L is a
bounded map. Direct calculation shows that L attains its
lower value at R = I , and the lower bound is 0. Moreover, L
has one maximum point and two saddle points [21, Lemma
2.2].

We apply Algorithms 1 and 2 to the cost function (8)
and show results of only Algorithm 2 in Figure 1, due
to space limitations. Let A be a symmetric positive def-
inite matrix with distinct eigenvalues, given by A =
[4, 1, 0; 1, 5, 2; 0, 2, 9]. If Rk ∈ (A \ Amin), the algorithm
fails to converge, as shown in Figure 1 in the red (dashed)
plot. However, the algorithm provides convergence from
every other point on SO(3), i.e., SO(3) \ (A \ Amin), as
shown by the solid blue line in Figure 1.

Algorithms 1 and 2 fail to minimize the given objective
function if initialized at any critical point or a stationary
point. Moreover, even if the starting point does not belong to
the set of maximizers or saddle points, there is no guarantee
that the solution will not get stuck at a saddle point. This
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Fig. 1. Optimization of Objective function L using Algorithm 2.

motivates the need for new algorithms that guarantees con-
vergence to the set of minimizers even when initialized from
any critical point. In the subsequent sections, we propose
two algorithms that promise to address the issues observed
in Example 1.

III. PROBLEM FORMULATION AND ASSUMPTIONS

We aim to optimize a non-convex objective function
defined on the Special Orthogonal group. By optimizing
the objective function, we mean designing an algorithm that
seeks (a local) minimum of the objective function starting
from every point on the manifold. Formally, we consider the
following problem in this work.

Problem 1: Given a continuously differentiable objective
function on SO(3), i.e., L : SO(3) → R, which may
have multiple isolated minimizers, maximizers, and saddle
points, design an optimization algorithm that guarantees
global convergence to a local minimizer (not necessarily
a global minimizer) everywhere on SO(3), including local
maximizers and saddle points.

The algorithms aimed at solving this problem require the
following assumptions and properties.

Assumption 1: The function L is a Morse function.
Lemma 8: The function L has isolated critical points.

Moreover, every saddle point is a strict-saddle point.
Assumption 2: The function L satisfies L(R) > 0 for all

R ∈ SO(3) \ {I} and L(R) = 0 for R = I .
Next, we assume a Lipschitz-like condition on the gradient
and the Hessian of L. Since L is defined on a Lie group,
we exploit the property of left invariance and the exponential
map and define the following maps. Let K : TRSO(3) →
TISO(3), which is equivalent to K : TRSO(3)→ so(3), be-
cause TISO(3) is isomorphic to so(3). With exp : so(3)→
SO(3), we define the map ξ := L◦exp ◦K : TRSO(3)→ R.
Similar to [22], we make the following assumptions on the
gradient and the Hessian of L.

Assumption 3: There exist b1 > 0 and M > 0 such that
for all R ∈ SO(3) and for all VR ∈ TRSO(3) with |VR| ≤
b1, we have

|grad ξ (VR)− grad ξ (0)| ≤M |VR| .

Assumption 4: There exist b2 > 0 and N > 0 such that for
all R ∈ SO(3) and for all VR ∈ TRSO(3) with |VR| ≤ b2,

|Hess ξ (VR)−Hess ξ (0)| ≤ N |VR| .
Assumptions 3 and 4 imply that the gradient and the Hessian
are Lipschitz continuous. In general, verifying Assump-
tions 3 and 4 is challenging. However, the following lemma,
a special case of [22, Lemma 3.2], ensures that the objective
function satisfies Assumptions 3 and 4.

Lemma 9: Given a smooth objective function L defined
on a compact manifold SO(3), for arbitrary b1, b2 > 0, there
exist L⋆, the minimum value of L, and M,N > 0 such that
Assumption 3 and 4 are satisfied.

Given the objective function satisfying Assumption 1, 2, 3
and 4, we propose two accelerated geometric algorithms
in the next section that minimize the objective function L
defined in Problem 1. Finally, for the objective function
L : SO(3) → R, it is possible to compute a closed-form
expression of its gradient at R, namely, [8]

gradL =
1

2

(
DL−R (DL)

⊤
R
)
. (10)

IV. PERTURBED GEOMETRIC ACCELERATED
ALGORITHMS

Achieving global convergence, i.e., convergence from ev-
ery point on SO(3), is a challenging problem because of
the possibility of multiple critical points, including saddle
points. This requires detecting if the state of the system,
or equivalently, the argument of the objective function, is
arbitrarily close to the set of critical points except for the set
of minimizers. This section proposes two schemes that, based
on numerics, escape saddle points and a set of maximizers.

A. Perturbed accelerated geometric gradient descent algo-
rithm (Hessian-based)

First, we propose an accelerated geometric gradient de-
scent algorithm that uses random perturbations to escape
critical points other than the local minimizers. We call
this the perturbed accelerated geometric gradient descent
(PAGGD-1) algorithm. One way to detect if the argument of
the objective function is close to a critical point (stationary
point) is by using the values of the gradient and Hessian
of L. Calculating the Hessian is computationally expensive,
especially on manifolds. However, on SO(3), it is possible
to compute the Hessian efficiently in local coordinates. As
outlined in [23], SO(3) can be covered by at least four charts,
and by computing a closed-form expression of the Hessian
in one of these four charts, the eigenvalues of the Hessian
can be analyzed. It should be noted that the Hessian needs to
be computed only at the critical points, i.e., the points where
the gradient vanishes. Therefore, the proposed scheme is not
computationally expensive.

First, we compute the gradient of the objective function
gradL(Rk) at the kth iteration. If at the kth iteration,
gradL(Rk) is arbitrarily close to zero, either we have
reached the desired point (the minimum) or another critical
point (including a maximum or a saddle point). To determine
if the objective function has reached the minimum point, we
compute the smallest eigenvalue of the Hessian matrix in the



appropriate chart. If λmin(HessL) > 0, the objective func-
tion has achieved the minimum value. If not, we perturb the
system with a random and exponentially decaying rotation
matrix. The decaying exponential disturbance is chosen so
the system remains on the manifold. For each i ∈ {1, 2, 3},
let µi be a random number drawn from the open interval
(0, 1). The random matrix Rµ ∈ SO(3) is constructed as

Rµ = exp
([

exp (−tµ1) exp (−tµ2) exp (−tµ3)
]∧)

.

(11)

By construction of Rµ, it follows that as t → ∞, Rµ → I .
We demonstrate this algorithm in the simulation section and
show that, at least numerically, it leads to global convergence
to the set of minimizers. A formal analysis of this algorithm
is beyond the scope of this paper.

Algorithm 3 Perturbed accelerated geometric gradient de-
scent (PAGGD-1) algorithm on SO(3)

Input: Initialize R and Ω in (6) to some R0 and Ω0,
respectively, and pick positive scalar parameters γ, λ, a fixed
step size dt, ϵ1 > 0, and a time horizon T .

for k = 0 to T do
2: Compute gradL using (10)

if |gradL(Rk)| < ϵ1 then
4: Compute HessL in local coordinates

Compute the minimum eigenvalue of HessL, i.e.,
λmin(HessL)

6: if λmin(HessL) < 0 then
Rk+1 = (RµRk) exp

(
dtΩ̂k

)
8: Compute gradL using (10)

else
10: Break

end if
12: end if

Compute κ using (7)
14: Update R and Ω according to (6)

end for

B. Perturbed accelerated geometric gradient descent algo-
rithm (gradient-based)

Next, we propose an algorithm that escapes the maxima
and strict saddle points without using the information of
the Hessian. We call this the perturbed accelerated geomet-
ric gradient descent (PAGGD-2) algorithm. This algorithm
minimizes the objective function until the gradient of L
is arbitrarily close to zero. When the gradient of L is
sufficiently close to zero, the current value of the objective
function is stored in the variable L⋆. Next, we perturb the
current position using the perturbation matrix Rµ defined
in (11). After that, the perturbed system is propagated under
geometric gradient descent Algorithm 2 for a small horizon
H . Then the value of the objective function is compared
with L⋆. If L(R) does not achieve a value smaller than
L⋆, optimization is stopped. Otherwise, the critical point (or
stationary point) is escaped, and the procedure is repeated.
We formalize this procedure in Algorithm 4. We show, at
least numerically, that the algorithm escapes saddle points,

and maxima with high probability, as demonstrated in the
simulation section.

Algorithm 4 Perturbed accelerated geometric gradient de-
scent (PAGGD-2) algorithm on SO(3)

Input: Initialize R and Ω in (6) to some R0 and Ω0,
respectively, and pick positive scalar parameters γ, λ, a fixed
step size dt, ϵ1 > 0 and ϵ2 > 0, a time horizon T , and a
small horizon window H > 0.

for k = 0 to T do
Compute gradL using (10)

3: if |gradL(Rk)| < ϵ1 then
L⋆ ← L(R).
Generate perturbation Rµ ∈ SO(3) as in (11)

6: Rk ← RµRk

for j = 0 to H do
Compute κ using (7)

9: Update R and Ω according to (6)
Compute gradL using (10)
Compute L(Rk)

12: end for
if (L⋆ − L(Rk)) < ϵ2 then

Break
15: end if

end if
Compute κ using (7)

18: Update R and Ω according to (6)
end for

V. SIMULATIONS

We simulate the objective function introduced in Exam-
ple 1 with A = [4, 1, 0; 1, 5, 2; 0, 2, 9]. In all simulations,
gravity γ and friction λ parameters are selected as 3 and 2,
respectively. It follows from [21, Lemma 2.2] that L has a
maximum point, a minimum point, and two saddle points.
As mentioned in Example 1, the minimum point, denoted by
Cm, is the identity matrix. The maximum point, and the two
saddle points, denoted by CM , Cs1 , and Cs2 , respectively,
are computed by applying a rotation of 180◦ about each
eigenvector of A, i.e., R(π,E R

v (A)). In summary, the set
of critical points consists of {CM , Cs1 , Cs2 , Cm}. Next, we
simulate Algorithms 3 and 4; the code is available online2.

A. Simulation results of Algorithm 3 (PAGGD-1)

The goal is to optimize the objective function (8) given in
Example 1 using Algorithm 3. We ran the algorithm three
times, starting from different initial conditions, as shown by
three plots in Figure 2. The initial conditions are chosen
to be the most challenging possible, i.e., starting from the
maximum point and each of the two saddle points. It should
be noted that non-perturbed algorithms, such as Algorithm 1
and Algorithm 2 fail and these failed results are not shown in
Figure 2. In the first case, the initial condition is Rk = CM ,
i.e., a stationary point, which is a maximum point. As seen in
Figure 2, the value of the objective function is L(R0) = 14.8,

2https://github.com/HybridSystemsLab/
AcceleratedGeometricGD
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Fig. 2. Optimizing the objective function L using Algorithm 3.
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Fig. 3. Optimizing the objective function L using Algorithm 4.

and under Algorithm 3, the objective function achieves its
minimum value in less than 5000 iterations, as seen by the
solid blue curve in Figure 2. In the second and third cases,
the initial conditions are chosen to be the saddle points Cs1

and Cs2 . The value of the objective function L(R0) at each
saddle point is 13 and 8.1, respectively. As seen by the dotted
green and dashed magenta plots in Figure 2, in each case,
Algorithm 3 practically minimizes the objective function
successfully in a finite number of steps. We want to highlight
that, the Hessian information is used only near the critical
points, and hence the algorithm is not computationally very
expensive.

B. Simulation results of Algorithm 4 (PAGGD-2)

Next, we optimize the same objective function (8), used
in the previous section and as given in Example 1, but using
Algorithm 4. This algorithm aims to escape saddle points
and maxima without using the Hessian information. Similar
to the previous subsection, we ran Algorithm 4 three times,
where at each time, the initial conditions are the maximum
point and the two saddle points. As seen in Figure 3, starting
from all three points, the objective function approximately
achieves the minimum value in a finite number of steps.

VI. CONCLUSIONS

This work proposes two accelerated geometric algorithms
to minimize a nonconvex objective function defined on a Lie

group. The algorithms are based on the idea of detecting a
critical point other than the minimizer and then adding a
random perturbation to escape maxima and saddle points.
Numerical simulations demonstrate that the algorithms suc-
cessfully and efficiently escape saddle points and maxima.
Future work includes formalizing mathematically the prop-
erties of the algorithms seen numerically.
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