
A Discretization of the Hybrid Gradient Algorithm for Linear

Regression with Sampled Hybrid Signals

Nathan Wu, Ryan S. Johnson, and Ricardo G. Sanfelice

Abstract— We consider the problem of estimating a vector
of unknown constant parameters for a linear regression model
whose inputs and outputs are discretized hybrid signals –
that is, they are samples of hybrid signals that exhibit both
continuous (flow) and discrete (jump) evolution. Using a hybrid
systems framework, we propose a hybrid gradient descent
algorithm that operates during both flows and jumps. We show
that this algorithm guarantees exponential convergence of the
parameter estimate to the unknown parameter under a new
notion of discretized hybrid persistence of excitation that relaxes
the classical discrete-time persistence of excitation condition.
Simulation results validate the properties guaranteed by the
new algorithm.

I. INTRODUCTION

Hybrid systems are a class of dynamical systems with

state variables that can exhibit both continuous and discrete

evolution. Such systems provide new and promising mod-

eling frameworks for a wide range of applications, includ-

ing switching systems [1] and systems with event-triggered

control [2]. In such applications, it is often necessary to

estimate the unknown parameters of the system in order to

achieve the desired control objective [3]. However, the hybrid

nature of these systems stymies the applicability of classical

continuous-time or discrete-time parameter estimation algo-

rithms.

Several approaches exist in the literature for parameter

estimation for certain classes of hybrid dynamical systems

[4], [5], [6], such as by interpreting hybrid systems as

a part of the piecewise affine framework (PWA) [7], [8].

However, these works all assume that measurements are

available continuously during flows. This assumption is often

violated in practice since, due to the need for analog to

digital conversion, measurements are typically only available

at discrete time instants during flows. In addition, the PWA

description is broad, and a focused attempt at the identi-

fication of specifically hybrid systems may lead to more

optimized approaches that would not apply to the PWA class

as a whole.

Motivated by the need for an estimation algorithm that

is capable of operating with discretized hybrid signals, in

this paper, we propose a discretized hybrid gradient descent
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algorithm to estimate the unknown parameters of discretized

hybrid linear regression models. We begin with a literature

review of the continuous-time and discrete-time gradient

descent algorithms in Section II, followed by a motivational

example in Section III. In Section IV, we show that our

proposed algorithm ensures exponential convergence of the

parameter estimation error to zero under a new discretized

hybrid persistence of excitation condition. Examples are

given in Section V and concluding remarks are in Section

VI. Due to space constraints, some proofs are sketched or

omitted and will be published elsewhere.

II. PRELIMINARIES

A. Notation

We use the following notation and definitions. The sym-

bols N, R, and R≥0 denote the sets of all nonnegative

integers, real numbers, and nonnegative real numbers, re-

spectively. The Euclidean norm of vectors and the associated

induced matrix norm are denoted by | · |. Given nonempty

sets X ⊂ R
n and Y ⊂ R

n, X\Y denotes set subtraction.

For a function ϕ : Rn → R
m, domϕ denotes the domain of

ϕ. The symbol 0 denotes either the scalar zero or the zero

matrix of appropriate dimension.

B. Discretized Hybrid Systems

Consider a hybrid system defined as in [9]

ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D
(1)

where x ∈ R
n is the state, f : C → R

n is the flow map

which models continuous dynamics on the flow set C ⊂ R
n,

and g : D → R
n is the jump set which models discrete

dynamics on the jump set D ⊂ R
n. A discretization of the

hybrid system in (1) is denoted Hs and is defined by [10]

x+ = fs(x) x ∈ Cs
x+ = gs(x) x ∈ Ds

where s ∈ (0, s∗], for some s∗ > 0, is the step size of the

discretization of the continuous-time dynamics, fs : Cs →
R
n is the flow map modeling the discretized dynamics of

H on the discretized flow set Cs ∈ R
n, and gs : Ds →

R
n is the jump map modeling the discretized dynamics on

the discretized jump set Ds ∈ R
n. Inspired by the forward

Euler’s method [10], one way to discretize a hybrid system



is to define fs and gs as1

fs(x) := x+ sf(s) x ∈ Cs := C

gs(x) := g(x) x ∈ Ds := D.
(2)

Solutions to discretized hybrid systems are given on dis-

cretized hybrid time domains.

Definition 1: (Discretized hybrid time domain) A set

Es ⊂ N × N is a discretized hybrid time domain if for

each (K, J) ∈ Es, there exists a unique finite nondecreasing

sequence {kj}J+1
j=0 such that k0 = 0, kj+1 ∈ N\{0} for each

j ∈ {0, 1, . . . , J}, and

Es ∩ ({0, 1, . . . ,K} × {0, 1, . . . , J}) =
J
⋃

j=0

kj+1
⋃

k=kj

(k, j).

The operations supk Es and supj Es denote the supremum

in the k and j coordinates, respectively, in Es.

Definition 2: (Global pre-exponential stability) Let A ⊂
R
n be closed. The set A is globally pre-exponentially stable2

for the hybrid system Hs if there exist strictly positive real

numbers κ and λ such that each solution ϕs to Hs satisfies

|ϕs(k, j)|A ≤ κe−λ(k+j)|ϕs(0, 0)|A ∀(k, j) ∈ domϕs.

C. Linear Regression

In preparation for our proposed discreitzed hybrid gradient

descent (GD) algorithm, we review GD algorithms in contin-

uous time and in discrete time [3]. Consider the continuous

time linear regression problem

yc(t) = θ⊤ψc(t) ∀t ≥ 0 (3)

where t 7→ yc(t) ∈ R is a measured output, θ ∈ R
n is a

vector of constant unknown parameters, and t 7→ ψc(t) ∈ R
n

is a measured input. To estimate θ, an estimator of the output

can be constructed as follows:

ŷc(t) = θ̂c(t)
⊤ψc(t)

where t 7→ ŷc(t) ∈ R is the estimated output and t 7→ θ̂c(t) ∈
R
n is an estimate of θ. The error between the estimated and

true outputs is then

ec(t) := ŷc(t)− yc(t) = θ̃c(t)
⊤ψc(t)

where θ̃c := θ̂c − θ is the parameter estimation error.

In order to minimize the cost function Jc(ec) :=
e2c
2 , the

GD algorithm estimates θ̂c using the following update law:

˙̂
θc(t) = −γcψc(t)ec(t) (4)

where γc > 0 is a design parameter.

1It is possible that the state x of a system Hs reaches a point outside of
a set C∪D, where it would normally remain in if not due to discretization.
In [10], the jump map and jump set are modified to “catch” these points
and ensure that solutions of hybrid systems are better approximated by
their discretizations. In this paper, discretized measurement data is assumed
to account for these modifications, although they are not presented or
elaborated on.

2The term “pre-exponential,” differentiates itself from the term “exponen-
tial,” in the case where a solution exists that is maximal but not complete.
In this way, the conditions for completeness can be separated from those
for stability and attractivity – see [9] for details.

In a discrete-time setting, consider the linear regression

problem

yd(j) = θ⊤ψd(j) ∀j ∈ N. (5)

To estimate θ, an estimator of the output can be constructed

as follows:

ŷd(j) = θ̂d(j)
⊤ψd(j)

The error between the estimated and true outputs is then

ed(j) := ŷd(j)− yd(j) = θ̃⊤d ψd(j).

In order to minimize the cost function Jd(ed) :=
e2d
2 , a

discrete-time GD algorithm is suggested such that θ̂d evolves

according to the following update law:

θ̂d(j + 1) = θ̂d(j)−
γdψd(j)ed(j)

1 + γdψ
⊤
d (j)ψd(j)

. (6)

The following persistence of excitation conditions are

sufficient and necessary for the convergence of θ̂c and θ̂d to

θ for the continuous-time and discrete-time GD algorithms,

respectively; see, e.g., [3].

Definition 3: (Persistence of excitation)

(C0) A signal R≥0 ∋ t 7→ ψ(t) ∈ R
n is persistently exciting

(PE) if there exist T, µ > 0 such that, for each to ≥ 0,
∫ to+T

to

ψ(t)ψ(t)⊤dt ≥ µI.

(C1) A signal N ∋ j 7→ ψ(j) ∈ R
n is PE if there exist

J ∈ N \ {0} and µ > 0 such that, for each jo ∈ N,

jo+J
∑

j=jo

ψ(j)ψ(j)⊤ ≥ µI.

III. MOTIVATION

Consider the linear regression models in (3) and (5),

but now with a hybrid signal ψ as a regressor, defined

on a hybrid time domain E. A hybrid gradient algorithm

was introduced in [4] to solve this hybrid linear regression

problem, such that the estimate θ̂ converges to θ. The

parameter estimate θ̂ behaves according to the update law in

(4) during periods of flow, and according to the update law

in (6) at jumps. However, in practice, the hybrid signal (t, j)
7→ ψ(t, j) is only available at discrete-time instants during

flows, as measurements cannot truly be taken continuously.

Given discretized hybrid signals (k, j) 7→ ys(k, j) and (k, j)
7→ ψs(k, j) defined on a discretized hybrid time domain

Es ⊂ N × N, we instead seek to solve a discretized hybrid

linear regression model of the form

ys(k, j) := θ⊤ψs(k, j) ∀(k, j) ∈ Es (7)

where

ψs(k, j) := h(k, ψ(t, j)) ∀(k, t, j) ∈ N× domψ

for some h : N× rge ψ → Es, where rge ψ is the range of

ψ, that samples ψ at time instances (ks, j) ∈ domψ [10].

For systems of this type, we cannot directly apply the

hybrid gradient algorithm in [4] to estimate the unknown



parameter θ, as it requires continuous measurements during

flows, which are often not feasible in practice. Thus, in this

paper, we propose a hybrid algorithm for estimating unknown

parameters in discretized hybrid linear regression models.

As further motivation for the proposed algorithm, consider

a model as in (7), with discretized hybrid time domain

Es =

∞
⋃

i=0

[(
{

(α+ 1)i, (α+ 1)i+ 1, . . . , (α+ 1)(i+ 1)
}

× {2i}) ∪ ({(α+ 1)(i+ 1)} × {2i+ 1})],

step size s = 2π
α

for some α ∈ N\{0}, known output signal

(k, j) 7→ ys(k, j) ∈ R, unknown parameter θ =
[

1 1
]⊤

,

and known regressor signal (k, j) 7→ ψs(k, j) ∈ R
2. During

flows, the value of ψs is

ψs(k, j) =
[

sin(sk) 0
]⊤

and, each time ψs jumps, the value of ψs after the jump is

ψs(k, j + 1) =











[

0.5 1
]⊤

j ∈ {0, 2, 4, . . .}
[

0 0
]⊤

j ∈ {1, 3, 5, . . .}.

Suppose our goal is to estimate θ. We first employ the

discretized continuous-time GD algorithm in (4) and the

discrete-time GD algorithm in (6). The discretized continu-

ous GD algorithm utilizes measurements only during flows,

and the discrete-time GD algorithm utilizes measurements

immediately after each jump. Both algorithms fail to estimate

the unknown parameter θ, as shown in Figure 1. To see why

they fail, note that the discrete-time signal that is obtained by

neglecting the evolution of ψs at jumps does not satisfy the

discrete-time PE condition in (C1). Similarly, the discrete-

time signal that is obtained by neglecting the evolution of ψs
during flows also does not satisfy (C1). On the other hand,

the discretized hybrid GD algorithm proposed in this paper

successfully estimates θ by leveraging information during

both flows and jumps, as shown in Figure 1.3

Fig. 1: The projection onto t of the norm of the estimation

error θ̃s given sampled data, simulated using the HyEQ

Toolbox [11].

3The simulation files for this example can be found here:
https://github.com/HybridSystemsLab/HybridGradientDiscrete-Motivation

IV. DISCRETE HYBRID GD ALGORITHM

A. Linear Regression for Discretized Hybrid Systems

Inspired by [4], we propose a discretized hybrid GD

algorithm to update the estimate θ̂s according to the update

law in (4), discretized based on (2) such that

θ̂s(k + 1, j) = θ̂s(k, j)− sγcψs(k, j)

×(θ̂⊤s (k, j)ψs(k, j)− ys(k, j))

during intervals of flow, where s > 0 is the step size due to

discretization and γc > 0 is a design parameter. In addition,

based on the update law in (6), the value of θ̂s after each

time ψs jumps is given by

θ̂s(k,j+1) = θ̂s(k,j)− γdψs(k,j+1)
1+γdψs(k,j+1)⊤ψs(k,j+1)

×(θ̂⊤s (k,j)ψs(k,j+1)−ys(k,j+1)).

where γd > 0 is a design parameter. Then, the dynamics of

the estimation error θ̃s:=θ̂s − θ are

θ̃s(k+1,j) = θ̃s(k,j)−sγcψs(k,j)ψs(k,j)⊤θ̃s(k,j)
θ̃s(k,j+1) = θ̃s(k,j)− γdψs(k,j+1)ψs(k,j+1)⊤

1+γdψs(k,j+1)⊤ψs(k,j+1)
θ̃s(k,j)

during flows and at jumps, respectively.

Given a regressor ψs : Es → R
n and an output ψs :

y → R satisfying (7), where Es is a discretized hybrid time

domain, the dynamics of θ̂s are captured by the system Hg
s ,

with state x := (θ̂s, k, j) ∈ X := R
n × Es and data

Hg
s :

{

ẋ = F gs (x) x ∈ Cgs

x+ = Ggs(x) x ∈ Dg
s

where

F gs (x):=





θ̂s−sγcψs(k,j)(θ̂⊤s ψs(k,j)−ys(k,j))
k+1
j





Ggs(x):=







θ̂s−γdψs(k,j+1)(θ̂⊤s ψs(k,j+1)−ys(k,j+1))
1+γdψs(k,j+1)⊤ψs(k,j+1)

k

j+1







Cgs :={x∈X :(k+1,j)∈Es}
Dg
s :={x∈X :(k,j+1)∈Es}

Note that this construction is such that our proposed

algorithm flows and jumps in tandem with ψs.

Remark 1: After each jump, the output ys satisfies

ys(k, j + 1) = θ⊤s ψs(k, j + 1) for each (k, j) ∈ domψs
such that (k, j + 1) ∈ domψs. This system is not causal,

and in practice, since post-jump measurements of ψs and

ys are not available until after they jump, each jump in the

estimator state will occur at the discrete time instant right

after the corresponding jump in ψs occurs.

B. Stability Analysis

Convergence of θ̃s to zero implies that θ̂s converges to θ.

We define a hybrid system H̃g
s with state x̃ = (θ̃s, k, j) ∈ X



that captures the dynamics of the error θ̃s, as follows:




θ̃+s
k+

j+



 =





θ̃s − sγcψs(k, j)ψs(k, j)
⊤θ̃s

k + 1
j



 x̃ ∈ Cgs





θ̃+s
k+

j+



 =







θ̃s − γdψs(k,j+1)ψs(k,j+1)⊤

1+γdψs(k,j+1)⊤ψs(k,j+1)
θ̃s

k

j + 1






x̃ ∈ Dg

s .

(8)

Inspired by [4], we propose the following notion of

persistence of excitation to enable us to guarantee global

pre-exponential stability of the set

A := {x̃ ∈ X : θ̃ = 0} (9)

for the discretized hybrid system H̃g
s . Global pre-exponential

stability of A implies that, for each solution x̃ to H̃g
s , the

distance from x̃ to the set A – or, equivalently, the distance

from θ̃s to the origin – is bounded above by an exponentially

decreasing function of the initial condition (see Definition 2).

As a consequence, for each complete solution x̃ to H̃g
s , the

parameter estimation error converges exponentially to zero.

Assumption 1: (Discretized hybrid persistence of excita-

tion) Given a discretized hybrid signal ψs : Es → R
n, as

well as parameters γc, γd, s > 0, there exist Γ, µ > 0 such

that for each (k′, j′), (k∗, j∗) ∈ Es satisfying Γ + 1 ≥
k∗ − k′ + j∗ − j′ ≥ Γ, the following holds:

j∗
∑

j=j′

min{k∗,kj+1}
∑

k=max{k′,kj}

sγcψs(k, j)ψs(k, j)
⊤

+

j∗−1
∑

j=j′

γdψs(kj+1, j + 1)ψs(kj+1, j + 1)⊤

1 + γdψs(kj+1, j + 1)⊤ψs(kj+1, j + 1)
≥ µI

(10)

where {kj}Jj=0 is the sequence defining Es as in Definition 1,

kJ+1 = K, J := supj Es, and K := supk Es.
Remark 2: The hybrid PE condition in Assumption 1

relaxes the discrete-time PE condition (C1). Indeed, it is

possible that ψs satisfies Assumption 1 when (C1) is not

satisfied by the discrete-time signal that is obtained by

neglecting the evolution of ψs during flows.

We now establish our main result stating conditions to

ensure the set A in (9) is globally pre-exponentially stable

for H̃g
s .

Theorem 1: Given a hybrid system H̃g
s , a discretized

hybrid signal ψs(k, j) : Es → R
n, and design parameters

γc, γd, s > 0, suppose Assumption 1 holds and there exists

ψM such that |ψs(k, j)| ≤ ψM for all (k, j) ∈ Es and

γc ∈ (0, 1
sψ2

M

]. Then, the θ̃s component of each solution

x̃ to H̃g
s satisfies

|θ̃s(k, j)| ≤ κe−λ(k+j)|θ̃s(0, 0)|
for all (k, j) ∈ Es, with κ and λ given by

κ:=

√

1

1− σ
, λ:=

1

2(Γ + 1)
ln

(

1

1− σ

)

where σ := µ

(1+
√

2(Γ+2)3)2
with Γ, µ from Assumption 1.

Proof: This proof is in Appendix A.

V. EXAMPLES

A. Clock Skew Estimation

Consider a clock used to time periodic events, which

evolves according to the differential equation τ̇ = 1 + ϵ,

where τ ∈ R≥0 is a timer variable, and ϵ ∈ R is an

unknown parameter representing the skew between it and a

reference clock. The dynamics of the clock can be written as

a hybrid system (1) with an added piecewise constant input

u ∈ {0, 1}, where u = 1 during events to be timed, and u =
0 otherwise.4 The clock has state z := (τ, q) ∈ R≥0×{0, 1},

where q is a logic variable, and dynamics
[

τ̇

q̇

]

=

[

(1 + ϵ)q
0

]

(τ, q, u) ∈ Cc
[

τ+

q+

]

=

[

0
1− q

]

(τ, q, u) ∈ Dc

(11)

where

Cc :={(τ,q,u)∈R≥0×{0,1}×{0,1} : q=u}
Dc :={(τ,q,u)∈R≥0×{0,1}×{0,1} : q∈{0,1}\{u}}.
Given τ : E → R≥0 and q : E → {0, 1} satisfying (11),

where E = dom τ = dom q is a hybrid time domain, we

define

y(t, j) := τ(t, j), ψ(t, j) :=

{

0 τ(t, j) = 0

t− tj τ(t, j) > 0

for all (t, j) ∈ domE. The signals y and ψ satisfy y(t, j) =
θ⊤ψ(t, j) for all (t, j) ∈ E, with θ = 1+ϵ. We sample y and

ψ during flows and jumps, with a sample period of s > 0
during flows, and at jumps, at the times when y and ψ jump.

The resulting signals, denoted as ys and ψs, respectively, are

defined on a discretized hybrid time domain Es ⊂ N×N as in

Definition 1. Then, ys and ψs satisfy (7) for all (k, j) ∈ Es.

First, let events to be timed occur every 1 second and have

a duration of 0.5 seconds. Given measurement data ψs with

ϵ = 0.1 and a step size of s = 0.05, such that and ψM = 0.5,

we can set γc = 20 and γd = 2, and it can be shown that

ψs satisfies Assumption 1 with with Γ = 22 and µ = 20.59.

Then, the conditions of Theorem 1 hold, and we can apply

Hg
s to estimate θ. The results of simulating this system with

initial conditions xc(0, 0) = (0, 1), θ̂s = 0 are shown in

Figure 25 and Figure 3, showing that θ̃s converges to 0 in

accordance with Theorem 1.

Fig. 2: Projection onto t of τ for the clock model.

4See [9] for details on hybrid systems with inputs.
5The simulation files for this example can be found here:

https://github.com/HybridSystemsLab/HybridGradientDiscrete-ClockSkew



Fig. 3: The projection onto t of the norm of θ̃s given

measurement data of the clock model using Hg
s .

B. Controller Gain Matrix Estimation

Consider a model of a pressure mounter machine that

captures the dynamics of its main shaft. Its dynamics re-

semble those of an closed-loop mass-spring-damper system

with an appropriate controller. Note that a similar problem

was studied in [5]. Let z1 ∈ R denote the vertical position

of the shaft (z1 = 0 at rest, z1 = zmax > 0 while in contact

with the workbench), and z2 ∈ R denote the vertical velocity

of the machine. During flows, the dynamics are

ż1 = z2, ż2 = − k

m
z1 −

c

m
z2 +

1

m
u

where m > 0 is the mass of the machine, k > 0 is the

spring constant, and c > 0 is the friction coefficient. The

input u ∈ R is provided by a full-state feedback controller

of the form

u = −KP z + v (12)

where KP ∈ R
2 is the unknown controller gain matrix and

v ∈ R is a reference command. During jumps, the machine

will impact a plate at position zmax, and then rebound from

the plate at a velocity scaling with the restitution coefficient,

λ ∈ (0, 1), as

z+1 = z1, z+2 = −λz2.
Combining the expressions above, we write the closed-loop

dynamics of the pressure mounter machine as a hybrid

system as in (1) with an added input (t, j) 7→ v(t, j) as
[

ż1
ż2

]

=

([

0 1
− k
m

− c
m

]

−
[

0
1
m

]

KP

)[

z1
z2

]

+

[

0
1
m

]

v(t,j) z∈CP
[

z+1
z+2

]

=

[

1 0
0 −λ

][

z1
z2

]

z∈DP

where CP := {z ∈ R
2 : z1 ≤ zmax} and DP := {z ∈ R

2 :
z1 = zmax, z2 ≥ 0}, with zmax > 0.

Given z : E → R
2, v : E → R, and u : E → R satisfying

(12), where E := dom z = dom v = domu is a hybrid time

domain, we sample these signals during flows and jumps,

with a sample period of s > 0 during flows. The resulting

signals, denoted as zs, vs, and us, respectively, are defined on

a discretized hybrid time domain, denoted by Es ⊂ N × N

as in Definition 1. Then, it follows from (12) that, for all

(k, j) ∈ Es,

us(k, j) = −KP zs(k, j) + vs(k, j). (13)

By defining ys(k, j) := us(k, j) − vs(k, j) and ψs(k, j) :=
−zs(k, j) for all (k, j) ∈ Es, we rewrite (13) into the form

of the discretized hybrid linear regression model in (7) as

ys(k, j) = θ⊤ψs(k, j) for all (k, j) ∈ Es, where θ := K⊤
P .

We sample y and ψ during flows and jumps, with a sample

period of s > 0 during flows, and at jumps, at the times when

y and ψ jump. Then, we employ our proposed estimation

algorithm Hs
g to estimate the unknown controller gain matrix

KP . The pressure mounter machine has parameters m = 0.5,

k = 25, c = 1.5, λ = 0.95, zmax = 3, and KP =
[0.495, 0.678]⊤. Our proposed estimator has parameters γc =
0.138 and γd = 1, with a sample period of s = 0.02 seconds.

So that Theorem 1 holds numerically, we choose v such that

the machine’s trajectories achieve a limit cycle in steady-

state. The simulation has initial conditions z(0, 0) = (0, 0)
and θ̂(0, 0) = (0, 0). The trajectory of the pressure mounter

state is shown in the plots6 of Figure 4. The parameter

estimation error for our proposed algorithm is shown in

Figure 5. The estimation error converges exponentially to

zero in accordance with Theorem 1.

Fig. 4: The projection onto t of z1 and z2.

Fig. 5: The projection onto t of the parameter estimation

error for Hg
s .

VI. CONCLUSION

In this paper, we proposed an algorithm for estimating

unknown parameters in hybrid linear regression models,

given samples of the hybrid signals. The algorithm applies

a discretized version of continuous GD during flows, and

discrete GD at jumps. It was shown that a discretized hybrid

persistence of excitation condition is sufficient to guarantee

convergence of the estimation error to zero. In future work,

we will consider identification of flow and jump maps and

sets for a similar class of discretized hybrid systems, as well

as identification of flow and jump maps for hybrid systems

with nonlinear dynamics.

6The simulation files for this example can be found here:
https://github.com/HybridSystemsLab/HybridGradientDiscrete-GainID



APPENDIX

A stability analysis of the set A for H̃g
s is presented. Given

Ac, Ad : Es → R
n×n, where Es := domAc = domAd is

a discretized hybrid time domain, note that H̃g
s belongs to

a class of discretized hybrid systems H̃s with state x =
(θ̃s, k, j) ∈ X = R

n × Es and dynamics




θ̃+s
k+

j+



 =





θ̃s −Ac(k, j)θ̃s
k + 1
j



 =: Fs(x) x ∈ Cs





θ̃+s
k+

j+



 =





θ̃s −Ad(k, j)θ̃s
k

j + 1



 =: Gs(x) x ∈ Ds

(14)

where Cs := Cgs and Ds := Dg
s .

Remark 3: System H̃g
s in (8) reduces to H̃s in (14) when

Ac(k, j) = sγcψs(k, j)ψs(k, j)
⊤ (15)

for all (k, j) ∈ Es and

Ad(k, j) =
γdψs(k, j + 1)ψs(k, j + 1)⊤

1 + γdψs(k, j + 1)⊤ψs(k, j + 1)
(16)

for all (k, j) ∈ Es such that (k, j + 1) ∈ Es.

To establish pre-exponential stability of A for H̃g
s , we for-

mulate results for H̃s. To this end, we assume the following

regarding Ac and Ad in H̃s.

Assumption 2: Given Ac, Ad : Es → R
n×n, where Es :=

domAc = domAd is a discretized hybrid time domain, the

following conditions hold:

(B0) Ac(k, j)= Ac(k, j)
⊤ ≥ 0 for all (k, j) ∈ Es and

Ad(k, j) = Ad(k, j)
⊤ ≥ 0 for all (k, j) ∈ Es such

that (k, j + 1) ∈ Es,

(B1) |Ac(k, j)| ≤ 1 for all (k, j) ∈ Es and |Ad(k, j)| ≤ 1
for all (k, j) ∈ Es such that (k, j + 1) ∈ Es.

Assumption 3: Given Ac, Ad : Es → R
n×n, where

Es := domAc = domAd, there exist Γ, µ > 0 such

that for each (k′, j′), (k∗, j∗) ∈ Es satisfying Γ + 1 ≥
k∗ − k′ + j∗ − j′ ≥ Γ, the following holds:

j∗
∑

j=j′

min{k∗,kj+1}
∑

k=max{k′,kj}

Ac(k, j) +

j∗−1
∑

j=j′

Ad(kj+1, j) ≥ µI (17)

where {kj}Jj=0 is the sequence defining Es as in Definition

1, kJ+1 = K, J := supj Es, and K := supk Es.
To prove Theorem 1, we establish the following auxiliary

result:

Theorem 2: Given Ac, Ad : Es → R
n×n, where Es :=

domAc = domAd, suppose Assumption 2 and Assumption

3 hold. Then, the θ̃s component of each solution x to H̃s in

(14) satisfies

|θ̃s(k, j)| ≤ κe−λ(k+j)|θ̃s(0, 0)| (18)

for all (k, j) ∈ Es, with κ and λ given by

κ:=

√

1

1− σ
, λ:=

1

2(Γ + 1)
ln

(

1

1− σ

)

(19)

where σ := µ

(1+
√

2(Γ+2)3)2
with Γ, µ from Assumption 3.

Sketch of Proof : Consider the Lyapunov function

V (x) := |x|2A = θ̃⊤s θ̃s ∀x ∈ Cs ∪Ds ∪Gs(Ds).

Since (k, j) 7→ ψs(k, j) ∈ R
n satisfies the hybrid persistency

of excitation condition in Assumption 2, it can be shown that

V (x(k, j)) ≤ 1

1− σ
(1− σ)

k+j
Γ+1V (x(0, 0))

for all (k, j) ∈ Es, with κ and λ given in (19). Hence, (18)

follows from the definition of V .

A. Proof of Theorem 1

Given the construction of Ac and Ad in (15) and (16),

item (B0) of Assumption 2 holds. In addition, by substituting

Ac and Ad in (15) and (16) into (10), we obtain (17), and

thus Assumption 3 follows from Assumption 1. Given that

γc ∈ (0, 1
sψ2

M

] and γd > 0, we have from (15) and (16) that

|Ac(k, j)| ≤ | 1
sψ2

M

sψs(k, j)ψs(k, j)
⊤| ≤ 1 for all (k, j) ∈

Es and |Ad(k, j)| = | ψs(k,j+1)ψs(k,j+1)⊤

1
γd

+ψs(k,j+1)⊤ψs(k,j+1)
| ≤ 1 for all

(k, j) ∈ Es such that (k, j + 1) ∈ Es. Thus, item (B1) of

Assumption 2 holds.

Since Assumption 2 and Assumption 3 hold, from the

equivalence between the data of H̃g
s in (8) and H̃s in (14),

with Ac and Ad as in (15) and (16), Theorem 1 holds.
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