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Abstract— This paper proposes a stable sparse rapidly-
exploring random trees (SST) algorithm to solve the optimal
motion planning problem for hybrid systems. At each iteration,
the proposed algorithm, called HySST, selects a vertex with
minimal cost among all the vertices within the neighborhood
of a random sample, subsequently extending the search tree
through flow or jump, which is also chosen randomly when
both regimes are possible. In addition, HySST maintains a static
set of witness points where all vertices within each witness’s
neighborhood are pruned, except for the ones with lowest cost.
We show that HySST is asymptotically near-optimal, namely,
the probability of failing to find a motion plan with cost close
to the optimal approaches zero as the number of iterations of
the algorithm increases to infinity. The proposed algorithm is
applied to a collision-resilient tensegrity multicopter system so
as to highlight its generality and computational features.

I. INTRODUCTION

Motion planning consists of finding a state trajectory and
associated inputs that connect the initial and final state sets
while satisfying the dynamics of the systems and given
safety requirements. Motion planning for purely continuous-
time systems and purely discrete-time systems has been well
studied in the literature. In recent years, several feasible
motion planning algorithms have been developed, includ-
ing graph search algorithms [1], artificial potential [2] and
fluid [3] field methods, and sampling-based algorithms. The
sampling-based algorithms have drawn much attention in
recent years because of their fast exploration speed for high
dimensional problems and theoretical guarantees; specially,
probabilistic completeness. Two popular sampling-based al-
gorithms are the probabilistic roadmap (PRM) algorithm [4]
and the rapidly-exploring random tree (RRT) algorithm [5].

A feasible solution is not sufficient in most applications as
the quality of the solution returned by the motion planning
algorithms is critical. It has been shown in [6] that the so-
lution returned by RRT converges to a sub-optimal solution.
Therefore, variants of PRM and RRT, such as PRM* and
RRT* [7], have been developed to solve optimal motion
planning problems with guaranteed asymptotic optimality.
However, both PRM* and RRT* require a steering function
returning the solution of a two-point boundary value problem
(TPBVP). Unfortunately, solutions to TPBVPs are difficult to
generate for most dynamical systems, which prevents them
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from being widely applied. On the other hand, the stable
sparse RRT (SST) algorithm [8] does not require a steering
function and is guaranteed to be asymptotically near optimal,
which means that the probability of finding a solution that
has a cost close to the minimal cost converges to one as the
number of iterations approaches infinity.

The aforementioned motion planning algorithms have
been widely applied to purely continuous-time and purely
discrete-time systems. However, much fewer efforts have
been devoted to motion planning for systems with combined
continuous and discrete behaviors, which we refer to as
hybrid systems, such as walking robots [9], quadrupeds [10],
unmanned aerial underwater vehicles [11], and collision
resilient aerial vehicles [12]. In our previous work [13], a
feasible motion planning problem is formulated for hybrid
system given in terms of hybrid equations as in [14], which
is a general framework that captures a broad class of hybrid
systems. In [13], a probabilistically complete RRT algorithm
for hybrid systems is designed to solve the feasible motion
planning problems for such systems.

In this paper, we formulate the optimal motion planning
problem for hybrid systems and design an SST-type algo-
rithm with the goal of assuring asymptotic optimality of the
solution. The proposed algorithm, called HySST, incremen-
tally constructs a search tree rooted in the initial state set
toward the random samples. At first, HySST draws samples
from the state space. Then, it selects a vertex such that the
state associated with this vertex is within a ball centered
at the random sample and has minimal cost. Next, HySST
propagates the state trajectory from the selected vertex, and
adds a new vertex and edge from the propagated trajectory.
In addition, HySST maintains a static set of state points,
called witnesses, to represent the explored regions, and
prunes all the vertices within each witness’s neighborhood
except for those with lowest cost. We show that, under mild
assumptions, HySST is asymptotically near-optimal. To the
authors’ best knowledge, HySST is the first optimal RRT-
type algorithm for hybrid systems. The proposed algorithm
is illustrated in a collision-resilient tensegrity multicopter
system.

The remainder of the paper is organized as follows.
Section II presents notation and preliminaries. Section III
presents the problem statement and introduces an example.
Section IV presents the HySST algorithm. Section V presents
the asymptotically near optimal result for HySST. Section
VI illustrates HySST in the said example. Due to space
constraints, proofs of the results will be published elsewhere.



II. NOTATION AND PRELIMINARIES

A. Notation

The real numbers are denoted as R and its nonnegative
subset is denoted as R≥0. The set of nonnegative integers is
denoted as N. The notation intS denotes the interior of the
set S. The notation S denotes the closure of the set S. The
notation ∂S denotes the boundary of the set S. The notation
B denotes the closed unit ball in the Euclidean norm. Given
vectors u and v, [u>, v>]> is equivalent to (u, v).

B. Preliminaries

A hybrid system H with inputs is modeled as [14]

H :

{
ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, C ⊂
Rn × Rm represents the flow set, f : Rn × Rm → Rn
represents the flow map, D ⊂ Rn×Rm represents the jump
set, and g : Rn × Rm → Rn represents the jump map,
respectively. The continuous evolution of x is captured by
the flow map f . The discrete evolution of x is captured by
the jump map g. The flow set C collects the points where
the state may evolve continuously. The jump set D collects
the points where jumps may occur. Given a flow set C, the
set UC := {u ∈ Rm : ∃x ∈ Rn s.t. (x, u) ∈ C} includes
all possible input values that can be applied during flows.
Similarly, given a jump set D, the set UD := {u ∈ Rm :
∃x ∈ Rn s.t. (x, u) ∈ D} includes all possible input values
that can be applied at jumps. These sets satisfy C ⊂ Rn×UC
and D ⊂ Rn × UD. Given a set K ⊂ Rn × U?, where
? is either C or D, we define Π?(K) := {x : ∃u ∈
U? s.t. (x, u) ∈ K} as the projection of K onto Rn, and
define C ′ := ΠC(C) and D′ := ΠD(D).

In addition to ordinary time t ∈ R≥0, we employ j ∈
N to denote the number of jumps of the evolution of x
and u for H in (1), leading to hybrid time (t, j) for the
parameterization of its solutions and inputs. The domain
of a solution to H is given by a hybrid time domain. A
hybrid time domain is defined as a subset E of R≥0 × N
that, for each (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, ..., J}) can
be written as ∪Jj=0([tj , tj+1], j) for some finite sequence of
times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T . A hybrid arc
φ : domφ→ Rn is a function on a hybrid time domain that,
for each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous
on each interval Ij := {t : (t, j) ∈ domφ} with nonempty
interior. A solution pair to a hybrid system is defined as
follows.

Definition 2.1 (Solution pair to a hybrid system [14]):
Given a pair of functions φ : domφ → Rn and
u : domu → Rm, (φ, u) is a solution pair to (1) if
dom(φ, u) := domφ = domu is a hybrid time domain,
(φ(0, 0), u(0, 0)) ∈ C ∪D, and the following hold:

1) For each j ∈ N such that Ij has nonempty interior,
a) t 7→ φ(t, j) is locally absolutely continuous,
b) (φ(t, j), u(t, j)) ∈ C for all t ∈ int Ij ,

c) the function t 7→ u(t, j) is Lebesgue measurable and
locally bounded,

d) for almost all t ∈ Ij , dφ(t,j)
dt = f(φ(t, j), u(t, j)).

2) For each (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈
dom(φ, u), (φ(t, j), u(t, j)) ∈ D, φ(t, j + 1) =
g(φ(t, j), u(t, j)).

III. PROBLEM STATEMENT

The formulation of the feasible motion planning problem
for hybrid systems can be found in [13, Problem 1] and
is denoted as P = (X0, Xf , Xu, (C, f,D, g)), where the
initial state set is denoted as X0 ⊂ Rn, the final state set
is denoted as Xf ⊂ Rn, and the unsafe set is denoted as
Xu ⊂ Rn×Rm. Let ŜH denote the set of all solution pairs
to H. Let ŜφH denote the set of state trajectories of all the
solution pairs in ŜH. The optimal motion planning problem
for hybrid systems consists of finding a feasible motion plan
with minimum cost [7, Problem 3].

Problem 1: (Optimal motion planning) Given a motion
planning problem P = (X0, Xf , Xu, (C, f,D, g)) and a

cost functional c :
ˆSφH → R≥0, find a feasible motion plan

(φ∗, u∗) to P such that (φ∗, u∗) = arg min(φ,u)∈ŜH c(φ).
Given sets X0, Xf , and Xu, a hybrid system H with
data (C, f,D, g), and a cost functional c, an optimal
motion planning problem P∗ is formulated as P∗ =
(X0, Xf , Xu, (C, f,D, g), c).

Problem 1 is illustrated in the following example.
Example 3.1: (Collision-resilient tensegrity multicopter

system [15]) Consider a planar collision-resilient tensegrity
multicopter that is resilient to collisions with a wall. The
state of the multicopter involves the position vector p :=
(px, py) ∈ R2, the velocity vector v := (vx, vy) ∈ R2,
and the acceleration vector a := (ax, ay) ∈ R2, where,
respectively, px and py denote the position, vx and vy
denote the velocity, and ax and ay denote the acceleration
along the x-axis and y-axis. The state of the system is
x := (p, v, a) ∈ R6 and its input is u := (ux, uy) ∈ R2

which represents the effect of the torque. The environment
is assumed to be known. Define the walls as the region
W ⊂ R2, which is a closed set represented by the blue
rectangles in Figure 1. Flow is allowed when the multicopter
is in C := (R2\W)× R4 × R2, which defines the flow set.
The dynamics of the multicopter when no collision occurs
is captured as ẋ = (v, a, u) =: f(x, u) (x, u) ∈ C.

At collisions, the position is assumed to remain constant.
To model the change of v, denote the velocity component
of v = (vx, vy) that is normal to the wall as vN and
the velocity component that is tangential to the wall as
vT . Then, the velocity component vN after the jump is
modeled as v+N = −λvN =: g̃N (v) where λ ∈ (0, 1)
is the coefficient of restitution. The velocity component
vT after the jump is modeled as v+T = vT + κ(−λ −
1) arctan vT

vN
vN =: g̃T (v), where κ ∈ R is a constant; see

[15]. Denoting the projection of the updated vector (v+N , v
+
T )

onto the x-axis as Πx(v+N , v
+
T ) and the projection of the

updated vector (v+N , v
+
T ) onto the y-axis as Πy(v+N , v

+
T ), we



have v+ = (Πx(g̃N (v), g̃T (v)),Πy(g̃N (v), g̃T (v))) =: g̃(v).
We assume that a+ = 0, which, through a post-impact
hovering maneuver, can be mitigated in the control layer. The
discrete dynamics capturing the collision process is modeled
as x+ = (p, g̃(v), 0) =: g(x, u) (x, u) ∈ D. Jumps are
allowed when the multicopter is on the wall surface with
positive velocity towards the wall. Hence, the jump set is
D := {((p, v, a), u) ∈ R6 × R2 : p ∈ ∂W, vN ≤ 0}.

Given the initial state set as X0 = {(1, 2, 0, 0, 0, 0)}, the
final state set as Xf = {(5, 4)} × R4, and the unsafe set
as Xu = {(x, u) ∈ R6 × R2 :

√
(px − 5)2 + (py − 3)2| ≤

0.3} which represents the green ball in Figure 1 that is
forbidden to fly into or collide with, an instance of the
optimal motion planning problem for the collision-resilient
tensegrity multicopter system is to find the motion plan
with minimal hybrid time. To capture the hybrid time do-
main information, an auxiliary state τ ∈ R≥0 representing
the ordinary time and an auxiliary state k ∈ N repre-
senting the number of jumps associated to collisions are
included. The resulting hybrid system H := (C, f,D, g)
with state x := (x, τ, k) ∈ R2 × R≥0 × N, input u ∈ R2,
and data C :=

{
(x, u) ∈ R2 × R≥0 × N × R : (x, u) ∈ C

}
;

f(x, u) := (f(x, u), 1, 0) for each (x, u) ∈ C; D :={
(x, u) ∈ R2 × R≥0 × N × R : (x, u) ∈ D

}
; g(x, u) :=

(g(x, u), τ, k+1) for each (x, u) ∈ D with the X0, Xf , and
Xu extended as X0 := X0×{0}×{0}, Xf := Xf×R≥0×N,
Xu := Xu × R≥0 × N. Then, with φ = (φ, τ, k) being a
state trajectory of the solution pair to H, the cost functional
c can be defined as c(φ) := τ(T, J) + k(T, J), where
(T, J) = max domφ. The resulting optimal motion planning
problem is defined as P∗ = (X0, Xf , Xu, (C, f,D, g), c).
In the forthcoming Example 6.1, we employ HySST to solve
this motion planning problem.

IV. HYSST: AN ASYMPTOTICALLY NEAR-OPTIMAL
MOTION PLANNING ALGORITHM FOR HYBRID SYSTEMS

A. Overview

HySST searches for the optimal motion plan by incre-
mentally constructing a search tree. The search tree is a
pair T = (V,E), where V is a set whose elements are
called vertices, denoted v, and E is a set of paired vertices
whose elements are called edges, denoted e. A path in T
is a sequence of vertices p = (v1, v2, ..., vk) such that
(vi, vi+1) ∈ E for all i ∈ {1, 2, ..., k − 1}. For details about
the search tree, see [13, Section 4.A].

Each vertex v ∈ V in the search tree T = (V,E)
is associated with a state value of H, denoted xv , and
a cost value that, via addition, compounds the cost from
the root vertex up to the vertex v, denoted cv . Each edge
e ∈ E in the search tree T = (V,E) is associated with a
solution pair to H, denoted ψe. The solution pair that the
path p = (v1, v2, ..., vk) represents is the concatenation of
all those solution pairs associated with the edges therein,
namely, ψ̃p := ψ(v1,v2)|ψ(v2,v3)| ... |ψ(vk−1,vk)

where ψ̃p
denotes the solution pair associated with the path p. For
details on such concatenation, see [13, Definition 2.2].

HySST requires a library of possible inputs. The input
library (UC ,UD) includes the input signals that can be
applied during flows (collected in UC) and the input values
that can be applied at jumps (collected in UD).

HySST selects the vertex associated with the lowest cost
within the vicinity of a randomly selected state. This vicinity
is referred to as random state neighborhood and defined by a
ball of radius δBN ∈ R>0. Then, HySST employs a pruning
process to decrease the number of vertices in the search
tree. This pruning operation is implemented by maintaining a
witness state set, denoted S, such that all the vertices within
the vicinity of the witnesses are deleted except the ones with
lowest cost. This vicinity is referred to as closest witness
neighborhood and defined by a ball of radius δs ∈ R>0,
For every witness s kept in S, a single vertex in the tree
represents that witness. Such a vertex is stored in s.rep for
each witness s ∈ S. Note that a vertex, say, va, may be
associated with a higher cost than other vertices within the
same witness’s neighborhood, but has a child vertex, say, vb,
associated with the lowest cost compared with other vertices
in the same witness’s neighborhood. In this case, va should
not be removed from the search tree because, if it is removed,
then all of its child vertices, including vb with the lowest
cost, are consequently removed. However, even va is not
removed, it will not be selected, and, therefore, will be kept
in a separate set called inactive vertex set, denoted Vinactive.
On the other hand, the vertices that are not pruned are stored
in a set called the active vertex set, denoted Vactive.

Next, we introduce the main steps executed by HySST.
Given the optimal motion planning problem P∗ =
(X0, Xf , Xu, (C, f,D, g), c) and the input library (UC ,UD),
HySST performs the following steps:

Step 1: Initialize a search tree T = (V,E) by sampling
a finite number of points from X0. For each
sampling point x0, add a vertex v0 and assign
xv0 ← x0. Initialize E by E ← ∅. Initialize the
witness state set S ⊂ Rn by S ← ∅. For each
v ∈ V such that |xv−xv′ | > δs for all v′ ∈ V \v,
add the witness state s = xv to S and set the
representative of s as s.rep ← v. Initialize the
active vertices set Vactive by Vactive ← {s.rep ∈
V : s ∈ S}. Initialize the inactive vertices set
Vinactive by Vinactive ← ∅.

Step 2: Randomly select flow regime or jump regime for
the evolution of H.

Step 3: Randomly select a point xrand from C ′ (D′) if
the flow (respectively, jump) regime is selected in
Step 2.

Step 4: Find all the vertices in Vactive associated with
the state values that are within δBN to xrand and
collect them in the set VBN . Then, find vertex
in VBN that has minimal cost, denoted vcur. If
no vertex is collected in VBN , then find vertex in
the search tree that has minimal distance to xrand
and assign it to vcur.

Step 5: Randomly select an input signal (respectively,
value) from UC (respectively, UD) if xvcur ∈



C ′\D′ (respectively, xvcur
∈ D′\C ′). Then,

compute a solution pair denoted ψnew =
(φnew, unew) starting from xvcur with the se-
lected input applied via flow (respectively, jump).
If xvcur

∈ D′∩C ′, a random process is employed
to decide whether to proceed the computation
with flow or jump. Denote the final state of φnew
as xnew. Compute the cost at xnew, denoted cnew,
by cnew ← cvcur + c(φnew). If ψnew intersects
with Xu, then go to Step 2.

Step 6: Find the witness in S that is closest to xnew,
denoted snear, and proceed as follows:
• If xnew is not in the closest witness neighbor-

hood of snear, namely, |snear − xnew| > δs,
then add a vertex vnew associated with xnew
to Vactive and an edge (vcur, vnew) associated
with ψnew to E. Add a new witness to S and
set its representative as vnew. Then, go to Step
2.

• If |snear − xnew| ≤ δs,
– if csnear.rep > cnew, add a vertex vnew

associated with xnew to Vactive and an
edge (vcur, vnew) associated with ψnew
to E. Then, update the representative of
snear with vnew and prune the vertex, say,
vpre near which is previously witnessed by
snear. If vpre near is an active vertex, then
add vpre near to Vinactive. Otherwise, re-
move vpre near and all its child vertices
from the search tree. Then, go to Step 2.

– if csnear.rep ≤ cnew, go to Step 2 directly.

B. HySST Algorithm

Following the overview above, the proposed algorithm
is given in Algorithm 1. The inputs of Algorithm 1 are
the problem P∗ = (X0, Xf , Xu, (C, f,D, g), c), the input
library (UC ,UD), a parameter pn ∈ (0, 1), which tunes
the probability of evolving with the flow regime or the
jump regime, an upper bound K ∈ N>0 for the number
of iterations to execute, and two tunable sets Xc ⊃ C ′

and Xd ⊃ D′, which act as constraints in finding a closest
vertex to xrand. In addition, HySST requires parameters δBN
and δs to tune the radius of random state neighborhood and
closest witness neighborhood, respectively. Each function in
Algorithm 1 is defined next.

1) T .init(X0): The function call T .init is used to
initialize a search tree T = (V,E). It randomly selects a
finite number of points from X0. For each sampling point
x0, a vertex v0 associated with x0 is added to V . At this
step, no edge is added to E.

2) return← is vertex locally the best(x, cost,
S, δs): The function call is vertex locally the
best describes the conditions under which the state x is

considered for addition to the search tree as is shown in
Algorithm 2. First, this function searches for the closest
witness snew to x from the witness set S (line 1). If the
closest witness distance to x is larger than δs, a new witness

is added to S (lines 2 - 6). If snew is just added as a

Algorithm 1 HySST algorithm
Input: X0, Xf , Xu, c,H = (C, f,D, g), (UC ,UD), pn ∈ (0, 1),

K ∈ N, Xc, Xd, δBN and δs
1: T .init(X0);
2: Vactive ← V , Vinactive ← ∅, S ← ∅;
3: for all v0 ∈ V do
4: if is vertex locally the best(xv0 , 0, S, δs) then
5: (S, Vactive, Vinactive, E)← prune dominated

vertices(v0, S, Vactive, Vinactive, E)
6: end if
7: end for
8: for k = 1 to K do
9: randomly select a real number r from [0, 1];

10: if r ≤ pn then
11: xrand ← random state(C′);
12: vcur← best near selection(xrand, Vactive,δBN ,

Xc);
13: else
14: xrand ← random state(D′);
15: vcur ← best near selection(xrand, Vactive, δBN ,

Xd);
16: end if
17: (is a new vertex generated, xnew, ψnew, costnew)
← new state(vcur, (UC ,UD),H, Xu)

18: if is a new vertex generated & is vertex locally
the best(xnew, costnew, S, δs) then

19: vnew ← Vactive.add vertex(xnew, costnew);
20: E.add edge(vcur, vnew, ψnew);
21: (S, Vactive, Vinactive, E)← prune dominated

vertices(vnew, S, Vactive, Vinactive, E);
22: end if
23: end for
24: return T ;

witness or cost is less than the cost of the closest witness’s
representatives (line 7), then the state x with the cost cost
is locally optimal and a true signal is returned (line 8).
Otherwise, a false signal is returned.
Algorithm 2 is vertex locally the best(x, cost, S, δs)

1: snew ← nearest(S, x);
2: if |x− snew| > δs then
3: snew ← x
4: snew.rep← NULL
5: S ← S ∪ {snew};
6: end if
7: if snew.rep == NULL or cost < csnew.rep then
8: return true;
9: end if

10: return false;

3) (S, Vactive, Vinactive, E)← prune dominated
vertices(v, S, Vactive, Vinactive, E): The function call
prune dominated vertices describes the pruning pro-
cess as in Algorithm 3. First, this function searches for the
witnesses snew that are closest to xv and their representatives
vpeer (lines 1 - 2). Then, vpeer is moved from Vactive to
Vinactive (lines 4 - 5) and, consequently, v replaces vpeer as
the representative of snew (line 7). Then, vpeer is removed
from Vinactive, along with all its parent vertices that are in
Vinactive and that have no child vertices after the removal of
vpeer (lines 8 - 13).

4) xrand←random state(S): The function call
random state randomly selects a point from S ⊂ Rn.

5) vcur ← best near selection(xrand, Vactive, δBN ,
X?): The function call best near selection searches



for a vertex vcur in the active vertex set Vactive such that
its associated state value is in the intersection between the
set X? and xrand + δBNB, and has minimal cost, where ?
is either c or d. This function is implemented by solving

Algorithm 3 (S, Vactive, Vinactive, E)← prune dominated
vertices(v, S, Vactive, Vinactive, E)

1: snew ← nearest(S, xv);
2: vpeer ← snew.rep;
3: if vpeer! = NULL then
4: Vactive ← Vactive\{vpeer};
5: Vinactive ← Vinactive ∪ {vpeer};
6: end if
7: snew.rep← v;
8: while isleaf(vpeer) and vpeer ∈ Vinactive do
9: vparent ← parent(vpeer);

10: E ← E\{(vparent, vpeer)};
11: Vinactive ← Vinactive\vpeer ;
12: vpeer ← vparent;
13: end while

the following optimization problem.
Problem 2: Given xrand ∈ Rn, a radius δBN > 0 of the

random state neighborhood, a tunable state constraint set X?,
and an active vertex set Vactive, solve

arg min
v∈Vactive

cv

s.t. |xv − xrand| ≤ δBN
xv ∈ X?.

Data of Problem 2 comes from the arguments of
best near selection function call. This optimization
problem is solved by traversing all the vertices in Vactive.

6) (is a new vertex generated, xnew, ψnew,
costnew) ← new state(vcur, (UC ,UD),H, Xu): If
xvcur

∈ C ′\D′ (respectively, xvcur
∈D′\C ′), the function

call new state generates a new solution pair ψnew to the
hybrid system H starting from xvcur by applying an input
signal ũ (respectively, an input value uD) randomly selected
from UC (respectively, UD). If xvcur

∈ C ′ ∩ D′, then this
function generates ψnew by randomly selecting flow or jump.
The final state of ψnew = (φnew, unew) is denoted as
xnew. The cost costnew at xnew is computed by costnew ←
cvcur + c(φnew).

After ψnew and xnew are generated, the function
new state checks if there exists (t, j) ∈ domψnew
such that ψnew(t, j) ∈ Xu. If so, we have
is a new vertex generated ← false. Otherwise,
we have is a new vertex generated← true.

7) vnew ← Vactive.add vertex(xnew, costnew) and
E.add edge(vcur, vnew, ψnew): The function call
Vactive.add vertex adds a new vertex vnew to Vactive such
that xvnew

← xnew and cvnew
← costnew and, consequently,

returns vnew. The function call E.add edge adds a new
edge enew = (vcur, vnew) associated with ψnew to E.

C. Solution Checking during HySST Construction

At each iteration, when a new vertex and
a new edge are added to the search tree, i.e.,
is a new vertex generated = true, a solution
checking function is employed to check if a path in T

can be used to construct a motion plan to the given
motion planning problem. If this function finds a path
p = ((v0, v1), (v1, v2), ..., (vn−1, vn)) =: (e0, e1, ..., en−1)
in T such that 1) xv0 ∈ X0 and 2) xvn ∈ Xf , then
the solution pair ψ̃p is a motion plan to the given motion
planning problem.

V. ASYMPTOTIC NEAR-OPTIMALITY ANALYSIS

This section analyzes the asymptotic optimality property
of HySST algorithm. The following assumption assumes that
the cost functional is Lipchitz continuous along the purely
continuous solution pairs, locally bounded at jumps, and
satisfies additivity, monotonicity, and non-degeneracy.

Assumption 5.1: The cost functional c : ŜφH → R≥0
satisfies the following:

1) It is Lipschitz continuous for all continuous solution
pairs (φ0, u0) and (φ1, u1) to H such that φ0(0, 0) =
φ1(0, 0); specifically, there exists Kc > 0 such that
|c(φ0)−c(φ1)| ≤ Kc sup(t,0)∈domφ0∩domφ1

{|φ0(t, 0)−
φ1(t, 0)|}.

2) For each pair of purely discrete solution pairs (φ0, u0)
and (φ1, u1) to H such that domφ0 = domφ1 = {0}×
{0, 1} and φ0(0, 0) = φ1(0, 0), there exists Kd > 0
such that |c(φ0)− c(φ1)| ≤ Kd supj∈{0,1}{|φ0(0, j)−
φ1(0, j)|}.

3) Consider two solution pairs ψ0 = (φ0, u0) and ψ1 =
(φ1, u1), and let their concatenation be ψ0|ψ1. The
following hold:

a) c(φ0|φ1) = c(φ0) + c(φ1) (additivity);
b) c(φ1) ≤ c(φ0|φ1) (monotonicity);
c) For each t2 > t1 ≥ 0 such that (t1, j) ∈ domψ0 and

(t2, j) ∈ domψ0 for some j ∈ N, there exists Mc >
0 such that t2 − t1 ≤Mc|c(φ0(t2, j))− c(φ0(t1, j))|
(non-degeneracy during flows).

d) For each j1, j2 ∈ N such that j2 > j1, (t, j1) ∈
domψ0 and (t, j2) ∈ domψ0 for some t ∈
R≥0, there exists Md > 0 such that j2 − j1 ≤
Md|c(φ0(t, j2)) − c(ψ0(t, j1))| (non-degeneracy at
jumps).

Next we define the clearance of the potential motion plans,
which is heavily used in the literature; see, e.g., [16].

Definition 5.2: (Safety clearance of a motion plan) Given
a motion plan ψ = (φ, u) to the motion planning problem
P = (X0, Xf , Xu, (C, f,D, g)), the safety clearance of ψ =
(φ, u), denoted δs, is such that for each δ′ ∈ [0, δs], the
following conditions are satisfied:

1) φ(0, 0) + δ′B ⊂ X0;
2) φ(T, J) + δ′B ⊂ Xf , where (T, J) = max domψ;
3) For all (t, j) ∈ domψ, (φ(t, j) + δ′B, u(t, j) + δ′B) ∩

Xu = ∅.

Assumption 5.3: The optimal motion plan to the optimal
motion planning problem has positive safety clearance.

Assuming that the optimal motion plan is away from the
boundary of the flow set and jump set is restrictive for hybrid
systems [13]. To overcome this issue, the δf -inflation of



hybrid systems, denoted Hδf := (Cδf , fδf , Dδf , gδf ) for
some δf > 0, is employed to create a positive dynamics
clearance in our previous work [13].

The following assumption relating the safety clearance δs
of the optimal motion plan and the inflation parameter δf
with the algorithm parameters δBN and δs guarantees that
the pruning process maintains at least one vertex close to the
optimal motion planning if such vertex has been generated;
see [8, Lemma 27] for details.

Assumption 5.4: The parameters δBN and δs need to
satisfy δBN + 2δs < min{δs, δf}.

The conditions in [13, Assumptions 5.3 - 5.6] regarding
the random process, input library, and the continuous and
discrete dynamics are also assumed in this paper. These
assumptions are expected, based on what is known for the
continuous-time and discrete-time cases. We are ready to
provide our main result, which states that, by feeding the
inflation Hδf , HySST returns a motion plan with cost that
is close to the minimal cost.

Theorem 5.5: Given an optimal motion planning problem
P∗ = (X0, Xf , Xu, (C, f,D, g), c), suppose Assumptions
5.1, 5.4, and assumptions in [13, Assumptions 5.3 - 5.6]
are satisfied and that there exists an optimal motion plan
ψ∗ = (φ∗, u∗) to P∗ satisfying Assumption 5.3 for some
δs > 0. When HySST is used to solve the motion planning
problem P∗δf = (X0, Xf , Xu, (Cδf , fδf , Dδf , gδf ), c) where,
for some δf > 0, (Cδf , fδf , Dδf , gδf ) denotes δf -inflation of
(C, f,D, g), the probability that HySST finds a motion plan
ψ = (φ, u) such that c(φ) ≤ (1 + αδ)c(φ∗) converges to
one as the number of iterations k approaches infinity, where
α ≥ 0 and δ = min{δs, δf}.

VI. HYSST SOFTWARE TOOL FOR OPTIMAL MOTION
PLANNING PROBLEMS FOR HYBRID SYSTEMS

Algorithm 1 has been implemented in a software tool1

to solve the optimal motion planning problems for hybrid
systems. This software only requires the inputs listed in
Algorithm 1. Next, the HySST algorithm and this tool are
illustrated in Example 3.1.

Fig. 1. The motion plan generated by HySST for the collision-resilient
tensegrity multicopter in Example 3.1. The blue rectangles denote the walls
where collisions potentially occur. The green circle denotes the forbidden
zone. The yellow arrows point to the location where collisions occur.

1Code at https://github.com/HybridSystemsLab/hybridSST.

Example 6.1: (Collision-resilient tensegrity multicopter in
Example 3.1, revisited) The simulation result in Figure 1
shows that HySST is able to ultilize the collision with
the wall to decrease the hybrid time of the motion plan
for multicopter. The simulation for this problem takes 54.7
seconds and creates 2094 active vertices on average.

VII. CONCLUSION

In this paper, a HySST algorithm is proposed to solve
optimal motion planning problems for hybrid systems. The
proposed algorithm is illustrated in the multicopter example
and the results show its capacity to solve the problem. In ad-
dition, this paper provides a result showing HySST algorithm
is asymptotically near optimal under mild assumptions.
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