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Abstract—This paper deals with existence and robust stability the form of impulsive differential equations, leaving theeg-
of hybrid limit cycles for a class of hybrid systems given by tion of whether it is possible to handle more general models,

the combination of continuous dynamics on a flow set and g,cpy a5 hybrid system models, and guarantee robustness to
discrete dynamics on a jump set. For this purpose, the notiomf . ; .
generic perturbations wide open.

Zhukovskii stability, typically stated for continuous-ti me systems, - . .
is extended to the hybrid systems. Necessary conditions, piau- As a difference to general continuous-time systems, for
larly, a condition using a forward invariance notion, for existence which the Poincaré-Bendixson theorarmses the topology of

of hybrid limit cycles are first presented. In addition, a sufiicient R2 to rule out chaos andffers criteria for existence of
condition, related to Zhukovskii stability, for the existence of (or limit cycles/periodic orbits, the problem of identifyinde

lack of) hybrid limit cycles is established. Furthermore, wnder . o h .
mild assumptions, we show that asymptotic stability of such existence of limit cycles for hybrid systems has been studie

hybrid limit cycles is not only equivalent to asymptotic staility ~ for specific classes of hybrid systems. Specific results for
of a fixed point of the associated Poincd map but also robust to ~ existence of hybrid limit cycles includgl[5]-[23]. In pattilar,
perturbations. Specifically, robustness to generic pertusations, ~Grizzle et al. establish the existence and stability priger
which capture state noise and unmodeled dynamics, and 10 4t 5 neriodic orbit of nonlinear systems with impulsive effe

inflations of the flow and jump sets are established in terms oL . . P . .
bounds. Furthermore, results establishing relationshipsetween via the method of Poincaré sections [5]. Using the trarsver

the properties of a computed Poincaé map, which is necessarily contraction framework, the existence and orbital stabiti

affected by computational error, and the actual asymptoticstabil- nonlinear hybrid limit cycles are analyzed for a class of
ity properties of a hybrid limit cycle are proposed. In particular, autonomous hybrid dynamical systems with impulsein [18].
it is shown that asymptotic stability of the exact Poincaé map is In [19], the existence and stability of limit cycles in reset

preserved when computed with enough precision. Two exampde trol t - tinated via techni that rel
including a congestion control system, are presented to ibtrate control systems are investigated via techniques that raly o

the notions and results throughout the paper. the linearization of the Poincaré map about its fixed pdmt.
[20], we analyze the existence of hybrid limit cycles in hgbr
. INTRODUCTION dynamical systems and establish necessary conditionsidor t
A. Motivation and Related Work existence of hybrid limit cycles. Clark et al. prove a vensaf

Nonli d ical ‘ ith iodi luti the Poincaré-Bendixson theorem for planar hybrid dynamic
onfinear dynamical systems with periodic solutions arseystems with empty intersection between the flow set and the

found in many areas, including _biological dynamids [1]"ump set[[21], and extend the results to the case of an anpitra
neuronal systems][2], and population dynamids [3], to na Simber of state spaces (each of which is a subsaR%f

J#Stt) .3 fevvt. In rﬁcent ygasé the jtu?ty Ct).f limit _cylclej "nd impacts in[[22]. More recently, Goodman and Colombo
yond systems has receivaenewed attention, mainly due ropose necessary conditions for existence of a periodit or

to th_e e_xistence of hybrid_ limit cycles in many engineerin lated to the Poincaré map and sufficient conditions for
Ep:allcatlt_)ns, Suﬁ h as \lNaIkltng robd%_ [5{,tge_net%t19M@5 local conjugacy between two Poincaré maps in systems with
olonomic mechanical systems subject to impddts4rjong respecified jump times evolving on a differentiable madifo

others. Theory for the study of such periodic behavior dat . We believe that conditions for existence of hybriditim

bac.k tq the yvo_rk Andronov et. al. n 1966][4],.wh.ere Self'cycles in general hybrid systems should play a more prontinen
oscillations (limit cycles) and discontinuous oscillatsowere

. - i o . . role in analysis and control of hybrid limit cycles. To the
SFUd'Ed'_L'm't cy(_:Ies has been studied within the Impms'vlc?est of our inowledge, tools for tze analysis gf existeace
Fjlﬁerennal equz?mons_frameyvorIEI[S][l[Q]l:[jLO], for _exaliap nonexistenceof hybrid limit cycles for the class of hybrid
n strongly nonlinear mp_ulswe systel]]ﬂlZ]z in slgw systems in[[16],[[24] are still not available in the literau
impulsive systems_[13], in the Van der Pol equationl [14], in Stability issues of hybrid limit cycles are currently a nrajo

a holonomic mechanical system subject to impdgts [7], and Beus in studying hybrid systems for their practical valae i

a weakly nonlinear two-dimensional impulsive systdml [15, plications. Due to the complicated behavior caused fey-int

These early developments pertain to nominal systems IVENEtion between continuous change and instantaneous change

X. Lou is with the Key Laboratory of Advanced Process ConfoolLight h d f bili £ limi | in hvbrid .
Industry (Ministry of Education), Jiangnan University, Wi214122, China. the study of stability of limit cycles in hybrid systems Is

Email: Louxy@ i angnan. edu. cn Y. Li and R. G. Sanfelice are with the more difficult than the study in continuous systems or discre

Department of Compu_ter Engine_ering_, University of Califiey Santa Cruz, systems, and so becomes a challenging issue. In this respect
CA 95064, USA. Emailyuchunl i, ri cardo@csc. edu. Research by

X. Lou has been supported by Jiangsu Provincial NaturalnSei¢-oundation the Po!nca}re map and its variations or gene_rallzatloﬂ:p!ﬂy
of China Grants no. BK20201340, Postdoctoral Science Fationdof China @ dominating role; see, e.g., [25]-[31]. For instance, Hgos

Grants no. 2018M642160 and the 111 Project Grants no. B2Régearch at g|. generalize the Poincaré method to ana|yze Iimiteg/cl
by R. G. Sanfelice partially supported by NSF Grants no. HZ83621 and

CNS-1544396, by AFOSR Grants no. FA9550-16-1-0015 and 5ags-1- {OF left-continuous hybrid impulsive dynamical systern$]}2
0053, and by CITRIS and the Banatao Institute at the UnigeddiCalifornia.  Goncalves analytically develops the local stability ahili



cycles in a class of switched linear systems when a limiteeyatontributions of this paper include the following:

exists [26]. The authors if_[27] analyze local stability of a ,
predefined limit cycle for switched affine systems and design
switching surfaces by computing eigenvalues of the Jacobia
of the Poincaré map. Motivated by robotics applications,
the authors in[[28]c[31] analyze the stabilization of pdi®
orbits in systems with impulsive effects using the Jacobian,
linearization of the Poincaré return map and the relatigns
between the stability of the return map and the stabilityhef t
hybrid zero dynamics. To the best of our knowledge, all of
the aforementioned results about limit cycles are onlyablet
for hybrid systems that have jumps on switching surfaces and
under nominal/noise-free conditions. In fact, the resthiésein
do not characterize the robustness properties to pertorisat
of stable hybrid limit cycles, which is a very challenging
problem due to the impulsive behavior in such systems.
Besides our preliminary results in [20[, [32[, ]33], result
for the study of existence and robustness of limit cycles in
hybrid systems are currently missing from the literatuegng
perhaps the main reason that a robust stability theory fon su
systems has only been developed[in| [16], [24]. In fact, all of
the aforementioned results about limit cycles are fornealat
for hybrid systems operating in nominal/noise-free cands.
The development of tools that characterize the existence of
hybrid limit cycles and the robustness properties to pertur
bations of stable hybrid limit cycles is very challengingdan
demands a modeling framework that properly handles time and
the complex combination of continuous and discrete dynamic

B. Contributions

Tools for the analysis of existence of limit cycles and
robustness of asymptotic stability of limit cycles in hybri
systems are not yet available in the literature. In this pape
we propose such tools for hybrid systems given as hybrid
inclusions [16], which is a broad modeling framework for
hybrid systems as it subsumes hybrid automata, impulsive®
systems, reset systems, among others;[s€e [16], [24] foe mor
details. We introduce a notion of hybrid limit cycle for hydbr
systems modeled as hybrid equations, which are given by

x f(z) x e C,
& { xt g(x) x €D, (1)
wherex € R™ denotes the state of the systeindenotes its
derivative with respect to time, and" denotes its value after

We introduce a notion of hybrid limit cycle (with one
jump per perioB) for the class of hybrid systems in](1).
Also, we define the notion of flow periodic solution and
asymptotic stability of the hybrid limit cycle for such
hybrid system.

We present necessary conditions for existence of hybrid
limit cycles, including compactness, transversality & th
limit cycle, and a continuity of the so-called time-to-
impact function. Particularly, a condition using a forward
invariance notion for existence of hybrid limit cycles is
first presented.

Motivated by the use of Zhukovskii stability methods
for periodic orbits in continuous-time systems, as done
in [35], [36], [37], we introduce this notion for the
class of hybrid systems introduced [d (1) and provide a
sufficient condition for Zhukovskii stability that involge
the incremental stability notion introduced (n[38].

By assuming that the state space contains no isolated
equilibrium point for the flow dynamics, we establish
a sufficient condition for the existence of hybrid limit
cycles based on Zhukovskii stability. In addition, based
on an incremental graphical stability notion introduced
in [38], an approach to rule out existence of hybrid limit
cycles in some cases is proposed.

We establish sufficient and necessary conditions for guar-
anteeing (local and global) asymptotic stability of hybrid
limit cycles for a class of hybrid systems. In the process
of deriving these results, we construct time-to-impact
functions and Poincaré maps that cope with one jump
per period of a hybrid limit cycle.

Via perturbation analysis for hybrid systems, we propose
a result on robustness to generic perturbations of asymp-
totically stable hybrid limit cycles, which allows for séat
noise and unmodeled dynamics, in termskof bounds.
Due to the wide applicability of the Poincaré section
method, we present results that relate the properties of
a computed Poincaré map, which is necessarily affected
by computational error, to the actual asymptotic stability
properties of hybrid limit cycles.

C. Notation

The sefR™ denotes the.-dimensional Euclidean spade;.o

a jump. The state: may have components that corresponfienOtes the set of nonnegative real numbers, Rg, :=

to physical states, logic variables, timers, memory statts
The map f and the setC define the continuous dynamic
(or flows), and the mapg and the setD define the discrete
dynamics (or jumps). In particular, the functign R* — R"
(respectivelyg : R™ — R™) is a single-valued map describing
the continuous (respectively, discrete) evolution while R™
(respectively,D C R™) is the set on which the flow map is
effective (respectively, from which jumps can occur). :
For this hybrid systems framework, we develop tools fdr
characterizing existence of hybrid limit cycles and rohess
properties to perturbations of stable hybrid limit cycﬂe‘Ehe

Ipreliminary version of the results in this paper appearetioui proof in
the conference articles [20] arld [32].

[0,4+00), andN denotes the set of natural numbers including
Q. e, N = {0,1,2,---}. Given a vectorr € R", |z]
denotes its Euclidean norm. Given a sg&t S™ denotesn
cross products of5, namely S™ = Sx Sx---x 5. Given a
continuously differentiable functioh: R™ — R and a function
f:R™ — R™ the Lie derivative ofh at x in the direction of
f is denoted byL ;h(z) := (Vh(z), f(z)). Given a function
f:R™ — R™, its domain of definition is denoted bjom f,
e.,dom f := {x € R™: f(z) is defined. The range off is
2Here, we mainly focus on hybrid limit cycles with “one jumprpgeeriod.”
The case of multiple jumps per period can be treated sirpjlage [33].

3In this work, a hybrid limit cycle is given by a closed set, lehihe

limit cycle defined in[[5], [28],[34] is given by an open setedto the right
continuity assumption in the definition of solutions.



denoted by rgg, i.e., rgef := {f(z) : « € dom f}. Given a
closed seid C R™ and a pointr € R”, |z| 4 := inf,c 4 |z—y]|.
Given a setd c R", A (respectively,con A) denotes its
closure (respectively, its closed convex hull) adél denotes
its interior. Given an open set C R™ containing a compact
set A, a functionw : X — R is a proper indicatorfor A
on X if w is continuousw(xz) = 0 if and only if z € A,
andw(x) — oo asx approaches the boundary éf or as
|z| — oo. Given a sequence of s&, limsup,_, ., X; denotes
the outer limit of X;. The setB denotes a closed unit ball in

Py

Mr

M,
P

Y (Gmax> B++v/20qmax,
M,

06

Euclidean space (of appropriate dimension) centered at zer

Givené > 0 andx € R"™, x 4+ éB denotes a closed ball
centered atr with radiusd. A function o : R>g — Ry
belongs to clas#: (o € K) if it is continuous, zero at zero,
and strictly increasing; it belongs to claks; (a € Koo) if,
in addition, is unbounded. A functiofi : R>o x R>g — Rxg
belongs to clas&L (5 € KL) if, for eacht > 0, 8(-,t) is
nondecreasing antdm,_,y+ S(s,t) = 0 and, for eachs > 0,
B(s,-) is nonincreasing antm;_, 5(s,t) = 0.

II. MOTIVATIONAL EXAMPLE

Fig. 1. Diagram of the compact séf+ denoted in the region with light
green filled pattern. Parameters used in the plot/are 1,a = 1, gmax =

1, and m = 0.25. The pointsP; and P> correspond to state values in a
limit cycle just before and right after each jump, respetdyiv The points
Py corresponds tdq, ) = (gmax, 2B/(1 +m)), the pointP> corresponds
to (¢,7) = (gmax,2Bm/(1 + m)), the point P3 corresponds tdg, r)
(B?/(2a), 0), the pointPy corresponds tdq,r) = (0, B), and the pointPs
corresponds tdq, ) = (¢max, B + v/2agmax)-

enough, will be part of our analysis in Example]4.6 and be
ruled out to ensure the transversality of the limit cycle. We
are not interested in the regiavl, with gray filled pattern as
it leads toa complex hybrid model whicmight be hard to be
analyzed. The compact séfr is marked by the region with

Consider the hybrid model for a congestion control mechhbght green filled pattern. Hence, the sty \ M; (the region
nism in TCP proposed in [40]. The hybrid model in congestiosurrounded by blue line) is the region of the state spacentbat

avoidance mode can be described as follows:
e Wheng € [0, gmax]

. [maX{O;lr - B}] it g=0
H - (2a)
T r—B i 0>0
a ta
° Whenq = Qmax,7 = B
(q+7 T+) = (Qmaxa mT) (2b)

where ¢ € [0,qmax] denotes the current queue Sizg,a.x
is the maximum queue size, > 0 is the rate of incoming

data packets, an® > 0 is the rate of outgoing packets. The

are interested in. Note that if the valuesoffter a jump from
the pointP5 is larger thanB (for instance, point?; jumps to
point P;), a consecutive jump will happen. Therefore, to avoid
this case, we impose the condition B + /2aqmax) < B.

From points in the sel/r, solutions approach a limit cycle.
On M~ and for parameters satisfying the conditions above,
the resulting system witlig, ) € Mt can be described as a
hybrid system#.c, on M with data

. - B
& = freo(z) == |: " a :| 2 € Chep,
Hrce (4)
at = Grep(T) 1= [ q:ﬂ;ﬂx x € Drcp,

constanta > 1 reflects the rate of growth of incoming dataWQereI = (¢;7); Crer = {2 € R? : ¢ < gmax}, Drer = {2 €
packetsr while m € (0, 1) reflects the factor that makes theR™ : ¢ = ¢max, 7 = B}.
rate of incoming packets decrease; [40] for details. TheA limit cycle of the system in[{4) with parametei3 =

model in (2) reduces the rate of incoming packetby the
factor m if the queue size equals the maximum valug,, ..
with rate larger than or equal tB.

1,a=1,m = 0.25, andqua.x = 1 is depicted in Fig.[11. This
figure shows in red a limit cycle denoted @&and defined
by the solution to the congestion control system with ihitia

We are interested in the hybrid system (2) restricted to tigendition P, = {(1,0.4)}. This solution flows to the point

region
1 B?
57’2—BT+ 7} (3)

for given parameters, m, gmax and B (later, the sef\/t will

MTZ:{(q, T) €R>0XR>O: (J§ Qmax> aq>

be part of our analysis); see Fifl 1. From the first piece in the

definition in (2) witha > 0, for any maximal solution with
initial condition with zeroq andr less thanB, ¢ remains at
zero untilr > B. Fig. [ is shown to analyze how we ge

Py, jumps to the point?,, and then flows back td;. The
interest in this paper is to find conditions under which such
limit cycles may exist.

IIl. DEFINITIONS AND BASIC PROPERTIES

{A‘- Hybrid Systems

a region from which a limit cycle with one jump exists. The We consider hybrid system# as in [16], which can be

points in the curvePs — Py — Ps satisfyaq = 37 — Br +
372. Solutions from the regiofM result in solutions such that
q reaches zero and remains at zero unti= B (point Py).
The open setM; := {(qmax, B)} + €B° with ¢ > 0 small

written as in [[1). The data of a hybrid systel is given

by (C, f, D, g). The restriction ofH on a setM is defined as
Hly = (MNC, f, MND, g). A solution to is parameterized
by ordinary timet and a countey for jumps. It is given by



a hybrid arl ¢ : dom ¢ — R that satisfies the dynamics of IV. NECESSARYCONDITIONS

H; see [16] for more detailsA solution ¢ to 7 is said to be A Necessary Conditions for Existence of Hybrid Limit Cycle
complete ifdom ¢ is unbounded. It is Zeno if it is complete

and the projection oflom ¢ ontoR > is bounded. Itis discrete X e )
if domg C {0} x N. It is said to be maximal if it is not for the existence of hybrid limit cycles for a class of hybrid

a (proper) truncated version of another solution. The set PystemsH r?\s in [1) satisfying .the following properties.
maximal solutions td{ from the setK is denoted as Assumption 4.1: For a hybrid systent = (C, f, D, g) on

. : . . R™ and a compact se/ C R", there exists a continuously
Su(K):={¢:¢ is a maximal solution t@{with $(0,0) € K} differentiable functiomk : R™ — R such that

We definet — ¢/ (t,z() as a solution of the flow dynam- 1) the flow set can be written &8 = {z € R" : h(z) > 0}

In this subsection, we derive several necessary conditions

ics = f(x) = € C fromzy € C. A hybrid systemH is and the jump set a®={z €R": h(z)=0, Lh(z)<0};

said to be well-posed if it satisfies thgbrid basic conditions  2) the flow map f is continuously differentiable on an

namely, open neighborhood oM N C, and the jump mag is

Al) The setsC, D C R™ are closed. continuous oV 1 D;

A2) The flow mapf : C — R"™ and the jump mag : D — 3) Lyh(z)<0forallzeMnD, andg(MND)N(MND)=0.
R™ are continuous. Remark 4.2: Item 1) in AssumptioriZ1L implies that flows

The following notion of.w-limit set of a hybrid arc is used in 9ccur when. is nonnegative while jumps 0”'){ occur at points
SectiorlV-B to formulate sufficient conditions for the egiste in the zero level set ofi. Note that sinceh is continuous
of hybrid limit cycles. and f is continuously differentiable, the flow set and the

- ) _— . jump set are closed. The statemay include logic variables,
Dgflnltlon 3.1: [16, Deanltlon 6.17] The‘f)'“m't set of a counters, timers, etc. The continuity property pfin item
hy.b”d arc¢n: dom¢._> R, denptedQ(¢), is the Sgt o;all 2) of Assumptior 41 is further required for the existence of
pointsz € R _for which there exists a Sequen{)ai’ﬁ)}izl solutions toi = f(x) according to [[16, Proposition 2.10].
of points (fi, i) € dom ¢ With limi oo i + ji = 00 and 5 e5er. item2) also guarantees that solutionsite= f(x)
lim; o0 (t:, ji) = x. Every such point: is ancw-limit point depend continuously on initial conditions1 the upcoming

of ¢. results,item 3) in Assumption[4]L allows us testablish a
For more details about this hybrid systems framework, weansversality property andestrict the analysis of a hybrid
refer the readers td [16]. systemH to a region of a state spadé C R", leading to the

restriction of  given by H|y := (M N C, f,M N D,g).
The conditiong(M N D) N (M ND) = @ is assumed to
B. Hybrid Limit Cycles exclude discrete solution&\s we will show later, the sed/
is appropriately chosen for each specific system such that it
Before revealing their basic properties, we define hybrigljarantees completeness of maximal solutiong/te; and
limit cycles. For this purpose, we consider the followingdion  the existence of flow periodic solutions. This is illustdhia
of flow periodic solutions. SectionT with a setVr.

_ Definition 3.2: (row_pe_riodi_c solu.tion) A comple_te so_Iu- Remark 4.3: By items 1) and2) of Assumption(4lL, the

tion ¢* to # is flow periodic with period/™ and one jump in yata of34|,, satisfies the hybrid basic conditiofis[16, Assump-

each penocﬁf T* € (0, oo? is the sma]lest number such thatjgn, 6.5]. Then, using iter8) of AssumptioriZJL[[46, Lemma

¢r(t+T,j+1) =¢"(t,j) for all (¢,j) € dom ¢~ 2.7] implies that for any bounded and complete solutipn
The definition of a flow periodic solutiop* with period to |y there existsr > 0 such thatt;; —t; > r for all

T* > 0 above implies that if(t,j) € dom¢*, then (t + Jj > 1,t; = minl, t;;; = maxI’; i.e,, the elapsed time

T*,j+1) € dom ¢*. For a notion allowing for multiple jumps between two consecutive jumps is uniformly bounded below

in a period, see[[33]. A flow periodic solution t as in by a positive constant.

Definition[3.2 generates a hybrid limit cycle. It can be shown that a hybrid limit cycle generated by
Definition 3.3: (hybrid limit cycle) A flow periodic solu- periodic solutions as in Definitidn 3.3 is closed and bounded

tion ¢* with period 7% € (0,00) and one jump in each @s established in the following result.

period defines aybrid limit cyclel O := {z € R" : = = Lemma 4.4: Given a hybrid systeri{ = (C, f, D, g) on

o*(t,7), (t,7) € dom ¢*}. R™ and a closed sef\/ C R™ satisfying Assumptioh 4.1,

In [39, Example 3.5], we revisit the example in Secfidn Il t§UPPOSe thakt has arﬂ?ybrid limit cycleD. Then,O is compact
fugkher illustrate the hybrid limit cgcle notion in Defindtn and forward invariari.

hybrid arc is a funcfion¢ defined dn a hybrid time domain an for ;
eachj € N, t — ¢(t, ) is locally absolutely continuous. Bompact hybrid A pI’OOf can be found IHEBQ, Lemma 4'4]'

time domainis a set€ C R x N of the form& = U7 ([t;, t;+1], 5) Remark 4.5: Since a hybrid limit cycle® to H|y is

for some finite sequence of tim&s= ¢ty < ¢t1 < --- <'ty; the set€ is a ; ; : ;
hybrid time domairif for all (T,J) € £, £ ([0,T] x {0,1,---,J}) is a compact, for any solugo@ to H| s, the distanceo(t, j)|o is
compact hybrid time domain. well-defined for all(¢, ) € dom ¢.

SAlternatively, the hybrid limit cycle® can be written agz € R™ : x = SEvery ¢ € Sy(0O) is complete and satisfies rgg C O; see [41,
o*(t,7),t € [ts, ts +T7*],(t,5) € dom ¢*} for somets € R>p. Definition 3.3].



We revisit the previous example to illustrate the propsrtiés presented for a constrained continuous-time systenghwhi
of a hybrid systen#{ satisfying Assumptiof 411. provides the first time that a solution starting from a given

Example 4.6: Consider the congestion control system iinitial condition reaches that set. Following [5], for a figb
Section[D. By definition, the set€y, and Dy, of the SystemH = (C,f,D,g), the time-to-impact function with
model in [@) are closed. Moreovef,e, and g are contin- respect toD is defined byl’; : CUD — R U {oo}, wherd
uously differentiable. Define the functioh : R? — R as Ti(z) :=inf{t > 0:¢(t,j) € D, ¢ € Su(z)}  (5)
h(z) = gmax — q. Then, Crep and Dy, can be written as —

Crr = {z € R? : h(z) > 0} and Dyp = {z € R? ; foreachueCUD. -
h(z) = 0, L yroh(z) < 0}, respectively. Consider the compact 'nspired by [5, Lemma 3], we show that the functibh is
set Myes := (M N Cyep) \ My, where My is defined in [B) continuous on a subset aff N(C'UD), as specified next.
and M7 = {(¢max, B)} + €B° with ¢ > 0 small enough; Lemma 4.8: Suppose a hybrid systet = (C, f, D, g) on
see Fig. [IL. We obtain that/;c, N Dy = {x € R? : ¢ = R"and a closed set/ C R" satisfy Assumptidn4.1. TheF;
Gmax;T € [B+¢, B++/2aqmax|} and for eachr € MM D, IS cONtinuous at points i’ := {z € MNC : 0< T (x) < oo}.
Lyh(z) = B—r < 0. Moreover, due to th_e condit_ion ONA proof can be found if39, Lemma 4.12]
parametersn (B + /2a¢uax) < B (see Sectioi]l), it can eyt we show that the function s Ty(z) is also
be verified thatg:co(Mzce N Drcp) N (Mrce N Drep) = () and continuous on a subset .

Greo(Mrce N Dicp) € Mrep N Crep. Furthermore, for any point . )
% € My N Cier, Since ther component of the flow map nLemma 4.9: Given a hybrui systerii = (C, f, D, g) on
From 1.8 7 = a, is POSItive, T arconcrep() N { frep(z)} = R™ and a closed sef\/ C R™ satisfying Assumptioh 4.1,

{fro(@)} # 0 for eachz € (Mo N Crep) \ D...[] When Suppose t_hatH,|1\4 = (MnC, f,M N D,g) has a uni_que_
2 € My N Dyp, We haveq = gmax andr > B + ¢ hybrlq limit cycle O C M ﬂ_C defined by the flow periodic
with & > 0 small enough, which implies that— B > 0 sollut|on¢*. Then,T; is continuous orO \ {¢*(t*,0)}, where
and solutions fromz cannot be extended via flow. By J16,¢" 1S Such that(t*,0), (¢, 1) € dom¢", namely,(t*,0) is a
Proposition 6.10], every maximal solution #rce|rvirer = Ju*m_p time of¢™ and ¢"(¢", 0) is the pointin} N.D at which
(Micp O Creps from Micp N Dicps gres) iS complete. Therefore, ¢ JUMPS.
Assumptioi 41l holds. Moreover, a solutiohto Hrcp | arer Proof: Consider a hybrid limit cycl& C M NC defined
from ¢*(0,0) = (¢max, 2Bm/(1+m)) € M;csNChep is a flow by the flow periodic solutiow*. For (t*,0), (t*,1) € dom ¢*,
periodic solution with7™ = 2B(1 —m)/(a + ma). we havep*(t*,0) € MND. By Lemmd4.}, sincé® is forward
The following result establishes a transversality propeft nvariant, for allz € O\ {¢*(¢*,0)}, there exists > ¢* such
any hybrid limit cycle for# restricted to)/ that¢*(z,1) has a jump, which implies that < T;(z) < co.
Lemma 4.7: Given a hybrid systeri = (C, f, D, g) on By Lemmd 4817 is continuous at points |ﬂ,’::£:ceMﬁC’:
R™ and a closed sef\/ C R™ satisfying Assumptioﬂ.1,0<TI(I)<oo}' Then, T} is continuous orO\ {¢"(t,0)}. O

suppose that|y, = (M NC,f,M N D,g) has a hybrid
limit cycle O ¢ M N C. Then,Q is transversal toM N D. B. A Necessary Condition via Forward Invariance

~Proof: We proceed by contradiction. Consider the flow Following the spirit of the necessary condition for existen
periodic solutions™ with period7™ that generates the hybridof |imit cycles in nonlinear continuous-time systems [in][44
limit cycle O for #|y,. By definition, there exists* € O e have the following necessary condition for general rg/bri

such thatr™ € O N (M N D) and¢*(t*, %) = z* for some  systems with a hybrid limit cycle given by the zero-level set
(t*,7*) € dom ¢*. Suppose thab intersects\/ N D at another of 3 smooth enough function.

. ’ P / E Y A AN /
point 2’ # 27, i.e., 2’ € ON(MND) and ¢*(t',j') = = Proposition 4.10: Consider a hybrid systerit = (C, f,

for some (¢',j') € dom¢*. Then, by itemsl) and 3) of o ! : ” ;
2 ) N ) D,g) on R" satisfying the hybrid basic conditions with
Assumptior(41L, it follows thab(s’) =0 and L sh(x’) < 0. continuously differentiable. Suppose every solutiorE Sy

Since h is co_ntlnuou_sly differentiable angf IS continuous, is unique and there exists a hybrid limit cyal® for H with
x — Lyh(z) is continuous. Then, there exists> 0 such . N e
period T* > 0 satisfying

that L ;h(z) < 0 for all z € 2’ + §B. Therefore, the solution
¢* to H|y cannot be extended through flow 2t In fact, O C{z eR":p(z) =0},

sincex’ € M N D, ¢* will jump immediately when it reaches \ynere,;, . " —s R is twice continuously differentiable on an
2. This contradicts the fact that" has only one jump in its open neighborhood( of ©. Then, there existsiV : R" —

period 7™. _ , R that is twice continuously differentiable én and

To state our next result, let us introduce timae-to-impact
function for hybrid systems as ifi{. Alternative equivalent W) >0 VzeO, (6)
definitions can be found i [5] and 43, Definition 2]. [n]43], (VW (z), f(z)) =0 VreONnCo, 7)
a minimal-time functionnotion with respect to a closed set

"T(mnc)(z) denotes the tangent cone to the 8étn C at x; see [16, (V(VW (), f(x)), f(x)) =0 Ve e ONC, (8)
Definition 5.12].

8A hybrid limit cycle O to a hybrid systen{ satisfying Assumptiofi 4]1 W(g(z)) —W(x) =0 VeeOND. 9)
is transversal taVf N D if O intersectsM N D at exactly one point := °In particular, when there does not exist= 0 such that¢/ (¢, z) € D,

O N (M n D) with the propertyL h(z) # 0. we have{t > 0: ¢/ (t,z) € D} = @, which givesTy(z) = co.



Furthermore, ifp is such thatp(z) # 0 for somez € C U D, Definition 5.1: Consider a hybrid systeri{ on R™ as in
then TV is such that[{6) holds with strict inequality. (@. A maximal solutiony; to # is said to be

A proof can be found iff39, Proposition 4.14] 1) Zhukovskii stablgZS) if for eache > 0 there exists
Proposition[4.70 provides a necessary condition, that by ¢ > 0 such that for eackby € Sy (41(0,0) + 6B) there
seeking for a functioV with the properties therein, can be existsT € T such that for eacl, j) € dom ¢; we have
used to identify the existence of a hybrid limit cycle with  (7(t),5) € dom¢o and|¢1(t,5) — da(7(t),5)| < &;
period T*. In addition, as exploited in_[44, Theorem 1], it 2) Zhukovskii locally attractivéZLA) if there existsy > 0
can be used to determine the stability of limit cycles for  such that for eaclpy € Sz (¢1(0,0) + uB) there exists

continuous-time systems. 7 € 7T such that for eacls > 0 there existsI” > 0 for
The following example illustrates the result in Proposi-  which we have thatt, j) € dom ¢; andt+j > T imply
tion m (T(t)vj) € dom¢2 and |¢1(ta]) - ¢2(T(t)7j)| S

Example 4.11: Consider the hybrid congestion control sys- 3) Zhukovskii locally asymptotically stab{@LAS) if it is
tem in Exgmplﬂ]& The set defined t2)y poi@sr) such that both ZS and ZLA.
g— CSBD — Rowith R = guax — 21 represents a

hybrid fimit cycle for #.., namely, 2a(m+1)? Remark 5.2: The mapr in Definition[5.] reparameterizes

the flow time of the solutiorp,. In particular, the ZS notion
,7 i (r—B)?* only requires that the solution, stays close to the solution
O'_ (qu)eMTCP'q_ _R ) . . .
2a ¢, for the same value of the jump countgrbut potentially

isa hybnd limit Cycle' In particu'ar, the state vector= (q,T) at different flow timest. Note that7 in the ZS and ZLA
moves clockwise within® as depicted in Fig.[J1. Using thenotions may depend on the initial conditions of and ¢,.
flow and jump maps, it is verified th&? is forward invariant. For simplicity and for the purposes of this work, the ZLA
Note that when® N Dicp, ¢ = gmax andr = 2B/(m + 1). hotion is written as a uniform property, in the sense of hybri
To validate PropositionZ.10, define the continuously differ-time and over the compact set of initial conditiqns defineq by
entiable functionsp(z) := ¢ — (T—fo — R, which satisfies #- Wheng, and eachy, are complete, the nonuniform version

p(0) = —Goma — : 4,,;)2 ]23_2 £0, and W : R? — Ry as of that property would require
max m+ a 1 N =

(7‘ _ B)2 32 lim |¢1(taj) - ¢2(T(t)aj)| = 07

2 j om | — 00
W) = (q- +5-) >0 weo. o) (t)edom drtimee o _
2a 2a which resembles the notion defined in the literature of

This function satisfies[{7]-[9) sincéVp(z), frer(z)) = continuous-time systems; see |[36, Definition 4.1] ahd [37,
[1 E2]fre(x) = 7 — B — (r—B) = 0 for all z € Crp.  Definition 2].
Then, for allx € O N M;cp N Ciep,

(r—B)? B2

The ZLAS notion will be related to existence of hybrid
- _ . limit cycles by analyzing the properties of a Poincaré map i
(VW (@), frer) _2(q T E) (r=B-r+B)=0 SectiorT\-B (within the proof of Theoren 5.9) and thdimit
and (V(VW (z), free(x)), free(x)) = 0. Moreover, for all set of a hybrid arc. Next, the ZLAS notion in Definitibn b.1
z € ON My N Digp, using the fact thay = ¢,,.x andr = is illustrated in an example with a hybrid limit cycle.
2B/(m + 1), we have W (grer(z)) — W(x) = 0. Example 5.3: Consider the academic syster, =

(Ca, fa,Da,ga) with scalar stater and data
V. EXISTENCE OFHYBRID LIMIT CYCLES

In this section, we introduce a stability notion that redate Ha { f_ fa@):=—artb w€Ca, (11)
a solution to nearby solutions, which enables us to provide a" = ga(x) = b € Da,
sufficient conditions for the existence of hybrid limit cgsl where ¢y := [0,b1) and Dp = {z € [0,b1] : = = b1}.
for the class of hybrid systems ifil (1). The parameters, b, by, and b, satisfya > 0 andb >
ab; > abs > 0. Define the compact set/, := [0,b;] and
A. Zhukovskii Stability for Hybrid Systems define a continuously differentiable functign: My — R
Zhukovskii stability for a continuous-time system corsistS i(z) := b1 — z. Then, Cy and D, can be rewritten

of the property that, with a suitable reparametrization @& Ca = {z € Ma : h(z) > 0} and Dy = {z €
perturbed trajectories, Lyapunov stability implies Zhukkii Ca : h(z) = 0,Lyh(z) < 0}, respectively, where we
stability; see, e.g.[[36][[37]. We extend this notion tdohigl Used the property.s, h(z) = —(—ax +b) = aby —b < 0
systems and establish links to the existence of hybrid linfR" &l = € Ma N Da. By design, the set€’y and Dy

cycles. To this end, inspired by [35], [36]. [37], we employ@re closed. Moreover, the functiofs is continuously differ-
the family of maps7 defined by entiable and the functiog, is continuous. Furthermore, it

can be verified thaga (MaNDa)N(ManDy)=0. Therefore,
Assumptior 411 holds. Note that every maximal solutipto

A map 7 in the family 7 is employed to reparametrizeHa|ar, = (Ma N Ca, fa, Ma N Da,ga) is unique via[[15,
ordinary time for the trajectories of the hybrid systei (UProposition 2.11].
and formulate stability and attractivity notions involgirthe To verify the ZS notion, let us consider a maximal solution
reparametrized trajectories, as formulated next. o1 t0 Ha|m, . For agivere, let0 < 6 < min{e, be}. Then, for

T ={r(:): 7: Rs0—R>o is @ homeomorphism(0) = 0}.



eachd; € Sy, |y, (#1(0,0) + 0B), we haveT(¢:1(0,0)) = ¢1,02 10 H, |$1(0,0) — ¢2(0,0)] < o implies that,

L1n 2280920 and 77 (¢2(0,0)) = L1n 222002 without for each(t,j) € dom¢y, there exists(s,j) € dom ¢,
loss of generality, assumé;(0,0) > ¢(0,0). Then, the satisfying|t — s| < ¢ and
solution ¢, jumps before¢, since jumps occur when: lb1(t,5) — da(s, 5)| < & (14)

reachesb;. Denotetn = T7(¢2(0,0)) — Tr(¢1(0,0)) =

17, aga(0,00=b 17 a¢1(0,00=b _ 17 a¢2(0,0)=b 2) incrementally graphically locally attractiveyLA) if there
=1In —— — 21n —— = - In22=— > 0. Let .
s construct as abi—b a " a¢1(0,0)=b exists . > 0 such that for every > 0 and for any two
Ty (62(0.0)) maximal solutionssy, ¢2 to H, |¢1(0,0) — $2(0,0)] < p
() T1(6:(0.0)) t € [0, T1(¢1(0,0))]; (12) implies that there existg > 0 such that for eacl, j) €
T(t) = ; i 1
d such that > T, there existgs, d
t+ta t > Tr(61(0,0)). om 1 + 1s,) € dom ¢z

satisfying|t — s| < e and
Note thatr is a homeomorphism arsatisfiesr(0) = 0, hence , , )
it belongs to7, and, in addition, is continuous. Then, fpe= [01(2,5) — d2(s,)) < &5 (15)
0, for eacht € [0, T7(41(0,0))], we haver(t) = 2220890, = 3) incrementally graphically locally asymptotically stable
. . ’ ’ ’ 1(¢1(0,0)) ™ e
which satisfiegr(¢),0) € dom ¢, and (SLAS) if it is both §S andjLA.
|91(t,0) — ¢2(7(t), 0)|
=|((#1(0,0)—2)e=at + 2) — (($2(0,0) — §>e*w<f>+§)]

)
= [(#1(0,0) = 2)emat — (62(0,0) — L)emem(®)],

a

B. Existence of Hybrid Limit Cycles via Zhukovskii and In-
cremental Graphical Stability

(13) In this section, we present conditions for the existence
- - 0.0)b et _ of a hybrid limit cycle for hybrid systems that are ZLAS.
wheree (") = ¢ at(%) . Sinceb/a > The existence of such a hybrid limit cycle is related to
$1(0,0) > ¢2(0,0) and T;(¢2(0,0)) > Tr(¢1(0,0)), we nonemptyness of aw-limit set and continuity of a Poincaré
have that for each € [0, T;(41(0,0))], 0 < (22190-0) < mapT on a closed set near arw-limit point.
a¢1(0,0)=b\t/T1(¢1(0,0)) 1. Theref .am(o’q) ll) Inspired by [42, Chapter V, Definition 2.13], the following
(“¢2<0a0>—b) < 1. Therefore,[(Z) is equivalent to notion is introduced in a sufficiently “short” tub&z(U) :=
|p1(t,0) — da(7(1),0)] < [01(0,0) — #2(0,0)[e”* <5 <e. {d(t,0) : t — ¢.(t,0) is a solution toi = f(r) z €

Note thatg; (77 (61 (0, 0)), 0) = 6o (7(T1(61(0,0))),0) = by & 10M @2(0,0) € Uit € [0,7],(t,0) € dom,}, where
In fact, for eachj € N\{0} and each > T7(¢:(0,0)) such U CR* and? > 0.
that (¢, j) € dom ¢y, we haver(t) = t + ta, which satisfies ~ Definition 5.5: (forward local sectioh Consider a dynam-
(7(t),5) € domey and |py(t,j) — ¢o(r(t),j)] = 0 < e. ical systemz = f(z) « € R". GivenU C R" andt > 0,
Therefore, the solutiom; is ZS. In fact, any solutiony; € @ closed seb: C ®;(U) is called alocal sectionif for each
YN is ZS. solutiong,, to @ = f(x) x € R™ starting from¢,(0) € U,
To verify the ZLA notion, letu > 0. Let ¢; be a maximal there exists a unique, € [0,?] such thatt, € dom ¢, and
solution to Ha|a,. Then, for eache > 0 and for each ¢=(tv) € il

b2 € Sy, (01(0,0) + puB), we haveT(¢41(0,0)) = ~ To guarantee the existence of farward local section
lln% andT;(¢2(0,0)) = lln% Similar to inspired by [42, Chapter V, Theorem 2.14], we present the
a aby — ) a aby — )

the above proof of the ZS notion, without loss of generadiy, following result, which is different from[[42, Chapter V,
sumeda; (0,0) > ¢2(0,0). Then, the solutions; jumps before Theorem 2.14] as it only allows for forward times.

¢2. Note thatp, (T7(¢1(0,0)),1) = ¢2(7(T1(¢1(0,0))),1) = Lemma 5.6: Consider the dynamical system: =

by. Then, forj = 1 and for eacht > T;(¢1(0,0)), we f(z) « € R™. If f is continuously differentiable and is
haver(t) = t + ta, which satisfies(7(¢),1) € dom¢, and not an equilibrium point of the dynamical system, then, for
lp1(t,1) — da(7(¢),1)] = 0 < €. In fact, for eachj € N\{0} any sufficiently small > 0, there existsr > 0 such that there
and eacht > T7(#1(0,0)), we have that(t) =t +ta and  exists a forward local sectiok C ®;(v + oB).

(t,j) € domepy, t—+j>T="Ti(41(0,0))+1 A proof can l_)e found in[39, Lemma 5.11_]. _
. ) ) ) The following result reveals the behavior of the solutions
imply that (7(t), j) € dom ¢ and|¢: (£, 7) — d2(7(£).J)] = 5 the flow dynamics of the hybrid systefi|y; = (M N

0 <e. Therefore g, € Sy, is ZLA. In fact, any solution £,MOD, g)

¢1 € Suulu, 18 ZLA. Hence, every maximal solution 0 44 ensyres the existence of a forward local secfign the
Halr, is ZLAS. tube @y

Next, we establish a link between the Zhukovskii stability | ornma 5.7: Consider a hybrid systerdl = (C, f, D, g)
notion in Definition5.1 and incremental graphical stapiis ., r» and a compact set/ ¢ R” satisfying Assumptidiia.1.
introduced in[[33]. The later notion is presented next fdf-se Suppose that for the hybrid systeliy; = (M N C, f, M N
containedness. D,g), M N C has a nonempty interior and contains no

Definition 5.4: [38, Definition 3.2] Consider a hybrid sys-equilibrium set for the flow dynamics
temH onRR™ as in [1). The hybrid systeri is said to be = f(x) ceMNC (16)

1) incrementa"y graphically stabl€S) if for gverys > _O O0Here, for the systemt = f(z) = € R”, since it is a continuous-time
there exist® > 0 such that for any two maximal solutionssystem, we havéom ¢, C R>q. Then, we writes,(t) instead ofg (¢, 0).

in some neighborhood of any point i N C



For eachv € (M N C)° and a sufficiently small > 0, there Q(¢) N (M N C)° is nonempty, thef2(¢) is a hybrid limit
existso > 0 such that each solution,, to (I18) starting from cycle forH|,, with period given by som&* > 0 and multiple
#+(0,0) € ®z(v+0B) has the following properties: i;(v+ jumps per period.

oB) C (M N C)°; i) there exists a forward local sectioh C Proof: First, we prove nonemptyness and forward in-
Pi(v + oB). variance ofQ(¢). Since the hybrid systett = (C, f, D, g)

A proof of Lemma&.Jican be found if39, Lemma 5.12]. on R™ and a compact set/ C R" satisfy Assumptioh 411,
The following result is derived via an application of theevery maximal solution t{|,; is unique vial[15, Proposition
tubular flow theorem[45, Chapter 2, Theorem 1.1] to the flo®.11] and#|,,; satisfies the hybrid basic conditions. By [16,
dynamics[(Ib). Theorem 6.8],H|ys is nominally well-posed. Since each

Lemma 5.8: Consider a hybrid systerl = (C, f,D,g) Solution¢ € Sy, (M N C) is unique and complete, the set
onR” and a compact set/ ¢ R satisfying Assumptidn4.1. M NC is forward invariant for¥|,. Note that completeness
Suppose that for the hybrid systeti,; = (M N C, f,M n ©of each solutiony and the compactness 8f imply that each
D, g), MNC has a nonempty intericand containso critical ¢ is bounded. Then, it follows fron [46, Lemma 3.3] that the
pointE of the mapy. For any open set/ ¢ M N C and for w-limit setQ)(¢) is a nonempty, compact, and weakly invariant
each pointy € U, there exists an open neighborhatl c U  subset of.
of v such that solutions td{16) froaV, are diffeomorphicto ~ Next, we prove the existence of farward local section

the solutions to the system ¥.. By assumption, let the solution € Sy, (M N C) be
: . ) ZLAS. SinceQ(¢) N (M N C)° is nonempty, we can choose
=1, &=0 Vie{23, - n} a7 a pointp € Q(¢) N (M N C)°. By Definition[3:1, one can
on(—1,1)". choose a sequendét;, j;)}7°, such thatim,_, t; +j; = 00

Proof: We use the tubular flow theorerh [45, Chapte®nd limioo ¢(ti,ji) = p € Q2(¢) N (M N C)°. Therefore,
2, Theorem 1.1] to prove the result. First, we verify th&€re exist positive constants< o < ¢ such thatp +oB C
conditions of the tubular flow theorem. Sindén C contains ¢(t,1) + 0B and for sufficiently smalt > 0, ®z(p +0B) C
no critical points for the magf in (8), eachz € M N C is  @(t1,51) + 0B for some(t;, ji) € {(t:,7:)}72, with (1, 1) €
a regular point off. Moreover, sincell N C has a nonempty dom ¢. Then, with t_he picked constants and¢ (which can
interior and f is continuously differentiable by item 2) of P& chosen smaller if necessary), by Lenima 5.7, we have the
Assumptior{ Z1.f is a vector field of clasgrr > 1, on following properties: )®;(p + oB) C (M N C)°; i) there
any open sel/ C M N C. Therefore, all conditions in the €Xists aforward local sectior: C ®3(p + oB).
tubular flow theorem are verified. ~ Now, to show the existence of a hybrid limit cycle, let us
Now, by the tubular flow theorem, lettinge U be a regular introduce a Poincaré map for local structure of hybrid esyst.
point of £, there exists an open neighborhadd c U of v Given Fheforward local sectior®: C @g(_p +.o]B%), we denote
such that solutions td(16) froaV, are diffeomorphic to the the Poincaré map &s: X — 3 and define it as
solutions to the systenl {(IL7) dr-1,1)™. O D(z) == {¢(t,j) € X : ¥ € Sy, (x),t >0,
The following result provides sufficient conditions for the (t,j) €domy } VaeX.
existence of a hybrid limit cycle of a hybrid systéhin
addition to technical conditions, ZLAS would serve as )
suf_ﬁment condltlon for the existence of a hybrld_llmlt cg;;l that(t, j) € %, and that ii) the Poincaré map has a fixed
which is .mot|vated by the use of ZLAS for contlnuous—nm%oint g
systems in[[3]. We prove the first assertion. By the definition@f¢) and
Theorem 5.9: Consider a hybrid syste = (C. f, D, g)  from the analysis above, we have the following claim.
onR™ and a compact set/ C R™ satisfying Assumptidn 4.1.  Claim 1: With the solution¢ and o above, there exists
Suppose that for the hybrid systefiy, = (M NC, f,M N (te, i) € {(ti,4:)}22, such that|é(ty, jr) — p| < o/2 and
D, g), MNC has a nonempty interior and contains no critical|¢(tm’jm) — p| < o/2 for eacht,, > t;, and eachj,, > ji.
points for the mapf, and contains no equilibrium set for | et 4,(0,0) := ¢(t:, ) as above and defing, as the
the flow dynamics[(16), and for each € M N C, each transiation ofp by (#, jx), which leads to a complete solution
maximal solution to? |y, is complete with its hybrid time ¢, due to completeness af. By assumption, the solution
domain unbounded in the direction, and each solution to é1 to H|y is ZLAS. Then, we have the following claim by
(@I8) is not complete and ends at a point dd N C. Then, Definition[5.1.
for each solutionp & Sy, (M N C), H|yr has a nonempty  clajm 2: With  above, for eachbs € Sy, (61(0,0)+5B)
w-limit set Q(¢). In addition, if the solution) is ZLAS and there exists a function € 7 such that for: = /2 > 0 there
; zlj'f?f)a_ diffet“f?”ltlia' "I‘(apf ; R™ — RI”v a P_Oit”itgi és)a_Cffiﬁﬁa' PEim off existsT > 0 for which we have(t,j) € dom¢y, t +j > T
It == () IS not Tull rank ana Is a regular poin x) IS Tull rank. - f . . .
?ZICT denotes the differentiability g3:Iasspof ma[:;pings havingontinuous |mplles that(T(t)’j) € dom ¢, and |¢’1 (taj) - ¢2(T(t)vj)| <
derivatives. e=o0/2.
13Here, we establish sufficient conditions for the existerfca loybrid limit SinceX C ®z(p + oB) C ¢1(0,0) + B, each solutionps
cyclewith multiple jumpsn each period. A hybrid limit cycle notion allowing g H|ar from ¢3(0,0) € ¥ also satisfie€Claim 2. In addition,

for multiple jumps in a period can be defined similarly; de&][For specific . . . .
systems with one jump as will be illustrated in next examptae result is by assumption, since each SOIUtmnm(lG) IS not comple(ﬂe an

also applicable. 14A point ¢ is a fixed point of a Poincaré mdp: ¥ — X if ¢ = I'(q).

(18)

We next prove that i) for each solutiah to #|,, starting
om ¢(0,0) € X, there existgt, j) € dom with ¢ > 0 such



ends at a point il NC, we have recurrent jumpsherefore,
from Claim 1 and Claim 2, for each¢s € Sy, (¥), there
exist 7 € T and (¢, Jm) € dom¢; satisfyingt,, > 0,
Jjm = 1, andt,, + j,, = T such that(r(¢,,), jm) € dom ¢3,
|¢1(tmajm) _p| < 0/27 and

|¢1(tmajm) - ¢3(T(tm)vjm)| < 0/27

is continuous. Therefore, by Brouwer’s fixed point theorem,
I'c has a fixed pointy € X, i.e., I'e(¢’) = ¢'. Since
I'e = H 'oI'oH, we haveH ~'oT'oH (¢') = ¢’, which implies
thatT' o H(¢') = H(¢') € X. Let ¢ = H(¢'). Therefore, we
have thatl" has a fixed poing € %, i.e.,I'(q) = q.

From the existence of a fixed point forand the fact that

¢3(0,0) € ¥ and ¢3(7(tm) + tp, jm) € X, there is a flow
periodic solutiong* to H|y with period T = 7(t,,) + tp
and j,,, jumps in each period. Therefor@4|,; has a hybrid
limit cycle O with j,, jumps in each period. Note that for the
solutiong € Sy, (q), every point(* in the hybrid limit cycle

5(0,0) € (p + oB)\ D. By the second property of LemrhEB.?O is in Q(¢) since there exists a sequenfg,, j;)}5°, of

and the definition oforward local sectiorin Definition[5.5, points (£, ji) € dom ¢ such thatlim; o ¢(t;, ji) = ¢* With

o lim; o t; + ji = oo. To prove that every point if2(¢) is
we have that the solutiop to (18) reaches thdorward - o L
local sections ¢ d;(p + o) at a unique time, € (0,1, also in the hybrid limit cycleD, we proceed by contradiction.

. - . AL Suppose thay € Q(¢) andg ¢ O. Since from the analysis
et oo I oY, there i 4 ot < 1) 1 o any chosen
03(7(bm) Ftp, im JEX- 7 . . P o €(0,6) we haveg;(0,0) € X andgs(7(tm) +tp, jm) € 2.

To prove the second assertion, that is, that the Poincapé Mahen,T'(q) = ¢, which leads to a contradiction with ¢ O.
I has a fixed poing € %, first we show continuity of' onX.  Thus, every point iff2(¢) is also in the hybrid limit cycleO.

Sincegs(0,0) € ¥ and s (7(tm) +1p, im) € ¥, we have that Therefore, we have thad(¢) is a hybrid limit cycle. [
[(¢3(0,0)) = ¢p3(T(tm)+tp, jm) € X. SinceX C z(p+oB)

which leads t0¢s(T(tn), jm) € ®:(p + oB)E In addi-
tion, there exists(t,,,jm) € dom¢; as above such it
63(r(tm), jm) € + oB)\D. Let $(0,0)=0(r(t,n), jm) and
define¢ as the translation afs by (7(t..), jm ), which leads
to a complete solutiony due to completeness af;. Then

andf can be sufficiently small, we hawg;(0,0) € p + 0B Remark 5.10: In Theorem 5.B, there are several ways to
guarantee tha¥/ N C contains no equilibrium set for the flow

andI'(¢3(0,0)) € p+ oB. Then, it follows that | ! .
dynamics[(Ib). One way to assure that is to check if for each
|1—‘(¢3(010))_¢3(010)| < |1—‘(¢3(01O))_p|+|p_¢3(070)| < 20 reMnC, fT((E)f(.T) > 0.

Therefore, sincghe chosenr can besmall enoughwe have
that the mag in (I8) is continuous orx.

Next, by applying the Brouwer’s fixed point theorem, we

show that the mag® has a fixed pointy € X. Note that
by assumption, eaclh € M N C is a regular point off

and all conditions in LemmBA_5.8 are satisfied. Therefpre,

is a regular point off, and by using Lemmd_5l]8for any

open setU C M n C containingp, there exists an open

neighborhoodV,, C U of p such thatsolutions to [(16) from
N, are diffeomorphic to the solutions to the systdm] (17)
(=1,1)™. In other words, there exists @ diffeomorphism
H : (-1,1)" — N, such that for any solutior to (17),
¢ = H(¢¢) is asolutionta = f(x) z € N,. Note that given
an initial condition(sq, s, -+ ,s,) € (—1,1)™, a solution to
(I7) is given byge(t,0) = (s1 + ¢, 82, ,sy,) forall ¢ €

[0,1—s1), and that the function — H (¢¢(¢,0)) is a solution
to @ = f(z) x € N,. DenoteX; := H (X)) = {¢¢(t,,0) €

(—1,1)" : t — ¢¢(¢,0) is a solution to(I7) from ¢¢(0,0) €

(=1,1)",t € [0,%,], (t,0) € dom ¢¢ }. Note thatS, is convex
and bounded. In addition, sinégis closed and{ is a diffeo-

morphism.X; is also closed and thus; is a convex compact

set. Define am@d I'e = H'ol o H asT¢ : & — .
Due to H being a diffeomorphism and continuity &f, I,

151f this conclusion holds foy,, = 1, the remaining proofs will show that

H|as has a hybrid limit cycle with one jump in each period.

Sincep € Qo) N (M N C)° and dz(p + oB) C (M N C)°, there
always exists(tm , jm) such thatps(7(tm), jm) € (p+ oB)\D. In fact,
if that were not the case, for ea¢h,, jm) € dom ¢ satisfyingt,, > 0,
Jm = 1 andtm + jm = T, we would haveps (7(tm),jm) € D. Since
[¢1(tm, jm) — p| < 0/2 and|$1(tm, jm) — ¢3(T(tm ), Jm)| < 0/2, and
sinceo is arbitrary,lim,,— oo ¢3(7(tm ), jm) = p € D, which contradicts
with the factp € Q(¢) N (M NC)°.

17The operator defines a function composition, i.64~! o' o H(z) =
H-YT(H(&))) forall € € (—1,1)".

The following example illustrates Theordm15.9.

Example 5.11: Consider the academic systeln |y, in
Example[5.B. We will verify the existence of a hybrid limit
cycle via Theoreni 5]9. First, items 1)-3) of Assumption 4.1
have been illustrated in Example bSnce the Jacobian of the
map fa given byJy, (z) = —a with a > 0 has the maximal
rank 1, M N Cx contains no critical points for the maf.
By the definition ofMy, for all z € MaANCa, z < by < b/a,
owhich implies thatf, (z)fa(z) = (—az+0)*> > (b—ab1)* >

0. Then, by Remark5.10/ANCx contains no equilibrium set
for the flow dynamics: = fa(xz) x € MaNCa, where(Man
Ca)° = (0,b1) is nonempty. By the definitions gfy andga,
the setM is forward invariant and each € Sy, (Ma N
Cy) is unique and complete withom ¢ unbounded in the
direction. Next, from the data ok 4 |y, , €ach solutiony €
SHA|MA(J\/[A N CA) toxz = fA(«T) x € My N Cy is not
complete and ends at a point i, N Cx. Therefore, for
each maximal solutior from & € [bo, b1] given by, for each
(t,j) S R>0 x N,

L f(E=Y)ematy b te0,t1],5 =0
(b(t’j):{(b by —att) o b / .

2—2)e V2 teth, t]4+5T%, 5 € N\{0}
wheret] = (j — 1)T* + t1, ;zi__bb* and T* =
1 Zﬁfii by Theoreni 519H A |y, has a nonempty-limit
setQ(¢) := {z € [0,b1] : © = ¢(t,1),t € [t1,t1 + T*]}.
Finally, the ZLAS property of each € SHalu, has been veri-
fied in Examplé513. In addition, from the constructior(tfp)
and the conditiord; > ba > 0, Q(¢) N (MaNCA)° = [ba,b1)
is nonempty. Therefore, by Theordm15(%¢) is the hybrid
limit cycle for #a |, with period 7% = L1n Zﬁfjg and one
jump per period.

I
a
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In light of Example[5.Ill, one may wonder if incrementatycle O ¢ M N C. Then, the functiorl : M N C — Ry is
graphical asymptotic stability would serve as a necessamy ¢ well-defined and continuous af.

dition for the existence of a hybrid limit cycle. Unfortuedt,
the fact that incremental graphical asymptotic stabilgyai

A proof can be found in[[39, Lemma 6.2].

property for all solutions starting in a neighborhood makes

it difficult to allow for the existence of a hybrid limit cycle
The following result establishes a sufficient condition floe
nonexistence of hybrid limit cycles for systems that &ltéS.

Theorem 5.12: For a hybrid systen = (C, f, D, g) on

R™ and a closed sef\/ C R™ satisfying Assumptioh 4.1,

consider the hybrid syster®|y, = (M N C, f,M N D,g)
and assume that each solutigne Sy, (M NC) is complete
with dom ¢ unbounded in the direction. If the hybrid system
H| s is SLAS, thent |y, has no hybrid limit cycles fof#|ys
with period given by som&* > 0.

A proof can be found if39, Theorem 5.17]

V1. SUFFICIENT CONDITIONS FORASYMPTOTIC
STABILITY OF HYBRID LIMIT CYCLES

A. Notions
Following the stability notion introduced ifi 16, Definitio

B. Asymptotic Stability Properties @?

To establish conditions for asymptotic stability of a hybri
limit cycle, let us introduce a Poincaré map for hybrid syss.
Referred to as théaybrid Poincaé map given a maximal
solution¢ to H|,s, we denote itad® : MND — MND and
define it

P(x) = {o(Tr(9(2)),5) : ¢ € Snyy (9(2)),
(Tr(g(x)),7) € dom ¢ } Vee MND,
whereT; is the time-to-impact function defined inl (5).

The importance of the hybrid Poincaré map [n](19) is
that it allows one to determine the stability of hybrid limit
cycles. Before revealing the stability properties of a Igbr
limit cycle, we introduce the following stability notion®if
the hybrid Poincaré ma@ in (I9). Let P* denotek com-
positions of the hybrid Poincaré map with itself; namely,
PE(z) =PoP---0P(x).

k

(19)

3.6], we employ the following notion for stability of hybrid Definition 6.3: A fixed pointz* of a hybrid Poincaré map

limit cycles.

Definition 6.1: Consider a hybrid systel = (C, f, D, g)
on R™ and a compact hybrid limit cycl®. Then, the hybrid
limit cycle O is said to be

« stablefor H if for every ¢ > 0 there exists) > 0 such
that every solutiony to H with |¢(0,0)|o < 0 satisfies
lp(t, 7)o < e for each(t, j) € dom ¢;

« globally attractivefor # if every maximal solutiorp to H
from CUD is complete and satisfi?sligoow(t, No=0;

« globally asymptotically stabléor # 'ff it is both stable
and globally attractive;

« locally attractivefor # if there existsy > 0 such that
every maximal solutiom to H starting from|¢(0, 0)|o <
w is complete and satisfi%il}gw|¢(t,j)|@:O;

« locally asymptotically stabléor # if it is both stable and
locally attractive.

GivenM C R™ andH = (C, f, D, g), forz € MN(CUD),
define the “distance” functiod : M N (C' U D) — R, as

d(z) = sup lo(t, 5)lo
te[0,T1(z)], (t,j)€Edom ¢, pESH,, (=)
when0 < Ty (z) < oo, and
d(z) = sup lo(t, 5)lo

(t,j)€dom ¢, PESy,, ()

if T7(x) = oo, whereT7 is the time-to-impact function defined

in (B). Note thatd vanishes or©. Then, following [5, Lemma

4], the following property of the functiod can be established.

Lemma 6.2: Consider a hybrid systert = (C, f, D, g)

on R™ and a closed sefl/ C R™ satisfying Assumption 4.1.

Suppose that every maximal solution |, (M N
C,f,M N D,g) is complete andH|,; has a flow periodic
solution ¢* with period 7* > 0 that defines a hybrid limit

P:MnND — Mn D defined in [(I9) is said to be

« stableif for eache > 0 there exists) > 0 such that for
eachz € M N D, |z —z*| < § implies|P*(z) —2*| < e
forall k € N;

« globally attractiveif for eachxz e M N D, klim PF(z)=

—00
x*;
« globally asymptotically stabléf it is both stable and

globally attractive;

« locally attractiveif there existsy, > 0 such that for each
reMND, |z —z*| <p impliesklim Pk(x) = 2%,

« locally asymptotically stabl# it is both stable and locally
attractive.

A relationship between stability of fixed points of hybrid
Poincaré maps and stability of the corresponding hybnrdt li
cycles is established next.

Theorem 6.4: Consider a hybrid systet = (C, f, D, g)
on R™ and a closed sefl/ C R™ satisfying Assumption 4.1.
Suppose that every maximal solution 19|, (M N
C,f,M n D,g) is complete andH|,; has a flow periodic
solution ¢* with period 7* > 0 that defines a hybrid limit
cycle©O ¢ M N C. Then, the following statements hold:

1) z* € MND is a stable fixed point of the hybrid Poinéar
map P in (@3) if and only if the hybrid limit cycle of
‘H| s generated by a flow periodic solutierf with period
T* from ¢*(0,0) = x* is stable forH|x,

2) z* € M N D is a globally asymptotically stable fixed
point of the hybrid Poinca& mapP if and only if |,
has a unique hybrid limit cycl&® generated by a flow
periodic solution¢* with periodT* from ¢*(0,0) = z*

18The hybrid Poincaré map in [9) is different from the Poincaré map
T':¥ — ¥ in @8). The mapP in (I9) mapsM N D to M N D within one

jump, while the mag in (I8) maps a closed s&t C (M N C)° to ¥ and

allows for multiple jumps.



that is globally asymptotically stable f@i|,; with basin
of attraction containing every point@ MnCcC.

Proof: We first prove the sufficiency of item). By
Assumption[411, every maximal solution |y, is unique
via [16, Proposition 2.11]. Consider the hybrid limit cyd®
generated by a flow periodic solution #|,, from z* with
x* € M N D. SinceO is stable forH|y, givene > 0
there existso > 0 such that for any solutiony to H|,
|$(0,0)|o < 0 implies|o(t, j)|o < e for each(t, j) € dom ¢.
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property in item2). Assume that:* € M N D is a globally
attractive fixed point. Then, for any> 0, there exists) > 0
such that, for allk € N, 2 € (z* +0B) N (M N D) implies
klim Pk(%) = z*. Moreover, following from Definitior 6J3,
—00
it is implied that a maximal solutio to H|y, from z* is
complete. Then, by continuity af and g,

lim d o g(P*()) = do g(z*) = 0,

k— o0

from which it follows that

Since¢ is complete andP* (z*) = ¢(Tr(g(z*)), j) for some lim |6t j)lo < dog(z*)=0.
j, in particular, we have thgtP*(z*)|o < e for eachk € N. t+j—o0
Therefore,z* € M N D is a stable fixed point of the hybrid The proof is complete. O

Poincaré mapP. ) ) ) Remark 6.5: In [5], sufficient and necessary conditions for
Next, we prove the necessity of item as in the proof of giapility properties of periodic orbits in impulsive syste
[5, Theorem 1]. Suppose that € M N D is a stable fixed g1 established using properties of the fixed points of the
point of P. Then, P(z*) = 2™ due to the continuity of” in ¢ responding Poincaré maps. Comparedto [5], The@ren 6.4
(I9) and, for any > 0, there exists) > 0 such that enables the use of the Lyapunov stability tool<ir [16] tdifyer
F € (z* +B)N(MnND) asymptotic stability of a fixed point without even computing

implies P¥(%) € (x*+€B)N(MnND) for all k € N. Moreover, the '“(b”d Pomcar-e map.. _

by assumption, every maximal solutignto #|,, from # ¢ At times, one might be interested only on local asymptotic

(z*+6B)N(MND) is complete. Since solutions are guaranteedf@bility of the fixed point of the hybrid Poincaré map. Such

to exist fromM N D, there exists a complete solutignfrom  case is handled by the following result.

every such poing. Furthermore, the distance betweé¢rand Corollary 6.6: Consider a hybrid systet = (C, f, D, g)

the hybrid limit cycle© satisfied] on R"™ and a closed sefl/ c R" satisfying Assumption 4.1.

6(t, )lo < Suppose that every maximal solution 19|, (M N
C,f,M N D,g) is complete andH|,; has a flow periodic

| solution ¢* with period 7™ > 0 that defines a hybrid limit

cycle O ¢ M nC. Then,z* € M N D is a locally

asymptotically stable fixed point of the hybrid Poinganap

P if and only if |y has a unique hybrid limit cycleD

generated by a flow periodic solutieft with period 7™ from

¢*(0,0) = z* that is locally asymptotically stable fok|,;.

2€(a*+5B)N(MND) The proof can be found in_[39, Corollary 6.6].

Therefore, an open neighborhood Gfgiven by V := {z € Remark 6.7: In [5] and [25], the authors extend the
R™ : d(z) € [0,€)} is such that any solution to 7{|,; from Poincaré method to analyze the stability properties ofopér
#(0,0) € V satisfies|¢(t, j)|o < € for each(t, ;) € dom¢. Orbitsin nonl_lnear systems with |mpuI_S|ve effects. In mart
Thus, the necessity of iterh) follows immediately. lar, the solutions to the systems considered therein arg-rig
The stability part of itene) follows similarly. Sufficiency Ccontinuous over (not necessarily closed) intervals of fllow.
of the global attractivity part in iter) is proved as follows. Particular, the models therein (as well as thoseé in [18]hiex
Suppose the hybrid limit cycl® generated by a flow periodic ¢ N D = 0, which prevents the application of the robustness
solution to #|y; from z* is globally attractive for?|y, results in [16] due to the fact that the hybrid basic conditio
with basin of attraction containing every point i/ N C. would not hold. On the other hand, our results allow us to
Then, givene > 0, for any solutiong to 7|y, there exists _establis_h robustness properties of hybrid limit cycleshasv
T > 0 such thatl¢(, j)|o < e for each(t, j) € dom ¢ with in SectionlVIl.
t+j = T. Note that¢ is precompact since is complete  remark 6.8: In [L8], within a contraction framework, con-
and the set\/ is compact by Assumptidn 4.Therefore, via gitions guaranteeing local orbital stability of limit cgsl for
[46, Lemma 2.7].dom ¢ is unbounded in the-direction as 5 cjass of hybrid systems are provided, where, as a differenc
Assumptioi 4]L prevents solutions from being Zeno. It f80 5 the notion used here, orbital stability is solely definad a
that| P*(2*)|o < e for sufficiently largek. Therefore;™ is @ 5 attractivity (or convergence) property. Note that theeca
globally attractive fixed point of’. ~of limit cycles with multiple jumps for hybrid systems is
IE'na”y’ we prove the necessity of the global attractivithor explicitly analyzed in[[18], while the results here are
A “global” property for 74|, implies a “global” property of the original applicable to the situation where a hybrid limit cycle may

system# only when M containsC'. For tools to establish the asymptotic . . . L . -
stability property, see [16]. contain multiple jumps within a period; see our preliminary
results in [33].

20Given two functionsd : M N C — R andg: M ND — M N D,
Example 6.9: Consider the hybrid congestion control sys-

sup sup dog(z).

(t,j)€dom ¢ ze(x*+6B)N(MND)
By Lemmal6.2,d is continuous at:*. Since( is transversa
to MND, ON(MnND)is asingletong(z*) € O, andg is
continuous, we have thato ¢ is continuous at:*. Moreover,
sinced o g(x*) = 0, it follows by continuity that given any
e > 0, we can picke andé such that) < ¢ < ¢ and

sup dog(xz) <e.

the operatoro defines a function composition, i.el,0 g(xz) = d(g(z)) for
allz € MND.
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tem in Examplé4l6. A solution* t0 Hrcop | amrer = (MrepN H|ar with basin of attractio3», thenO is KL asymptotically
Clrepy frery MrceN Drcp, gree) from ¢*(0,0) = (gmax, 2Bm/(1+ stabl&] on the basin of attractioB» of the setO.

m)) € M N Crep is a flow periodic solution with7™ = Proof: First, it is proved in Lemmd_4l4 thaD is a
2B(1 — m)/(a + ma), which defines a hybrid limit cycle compact set. Second, note that for a hybrid systéran R™
O C M N Crep. We verify the sufficient condition 2) in gnd a closed sel/ c R™ satisfying Assumptiofi 4117,
Theoren{ 6.4 as follows. Due to the specific form of the floyg well-posed[[1B, Definition 6.29]. Then, it is also nomiyal
map of Hrep, the Jacobian of the hybrid Poincaré map hagell-posed. Therefore, according o [16, Theorem 7.1},

an explliciF analytic form. The flow solutiop’ to the flow g open and? is KL asymptotically stable of8e. 0

dynamicsi: = fies(2) from ¢ is given by The following result establishes that the stability @ffor
o (1.6) = &+ (& — B)t + 2 (20) H|ar is robust t.o the (?Iass of per.turbanons defined above.

& +oat Theorem 7.2: Consider a hybrid systet = (C, f, D, g)

From the definition of the hybrid Poincaré map and th@" K" and a closed sed/ C R" satisfying Assumption 4.1.

solution of the flow dynamics from: = (gmax,) With If O is a locally asymptotically stable compact set i,
2 € Dy, it follows that with basin of attractionBp, then for every proper indicator
TCPy

. . w of © on By there exists3 € KL such that for every >0
Prol) = l Gmax + (mr —B)T+ - 1 ’ and every compact sek C Bp, there existM; > 0, i €
mr + al {1,2, 3,4}, such that for any admissible perturbatiods i €

{1,2, 3,4}, with Euclidean norm bounded by;, respectively,

whereT' = 2(B — mr)/a, which leads to every solutionp to |y, with $(0,0) € K satisfies

Frer(@) = (qmax, 2B = mr). CL 0(d(t.4) < B@(d(0,0)),t + j) +¢ ¥(t,]) € dom .
Then, the eigenvalues of the Jacobian of the hybrid Poéncar’ , i . .
map Py, are computed a8, — 0 and A, — —m, which, P_roof: Following , Sectlonp6.4]_, we introduce the
sincem € (0,1), are inside the unit circle. According tof@!loWing perturbed hybrid systeri([;, with constaniy > 0:
Theoreni 6.1, the hybrid limit cycl® of the hybrid system HY { & € Fy(x) z e C,, (23)
Hrer|mrer 1S @asymptotically stable with basin of attraction Mzt e Gy(x) r € D,,
containing every point ilV/;cp N Drcp. where

Cp :=={z €R": (x4 pB) N (M NC) # 0},
VII. ROBUSTNESS OFASYMPTOTICALLY STABLE Hyrip  #(5) = S/ BB A (GEOE)) + gl T € 57
LimiIT CYCLES Gp(:cl)) = {UER":UEn—I—pIB,nEg((x+pB)ﬂ(MﬂD))} Ve eR"™.

A. Robustness to General Perturbations Then, every solution td:[|M with admissible perturbations

First, we present results guaranteeing robustness toigené¢ Naving Euclidean norm bounded by;, i € {1737374}
perturbations of asymptotically stable hybrid limit cysle '€SPectively,is a solution to the hybrid systerf[y, with

More precisely, we consider the perturbed continuous dynafh=> Max{M1, Ma, Ms, My}, which corresponds to an outer
ics of the hybrid systerit|,; = (MNC, f, MND, g) given by perturbation of?{|;; and satisfies the convergence property

& = f(z+d))+ds z+ds € MNC, whered; corresponds to [24, Assumption 3.25]. Then, the claim fol~low§ by [24, Theo—
state noise (e.g., measurement noige)captures unmodeled €™M 3.26] and the fgct that every solution#d,, is a solution
dynamics or additive perturbations, ang captures generic ©© @3). In fact, using[[24, Theorem 3.26], for every proper
disturbances on the state when checking if the state beloffglicatorw of O on Bo there existss € KL such that for
to the constraint. Similarly, we consider the perturbedmige €2ch compact sét’ C Bo and eachr > 0, there existp™ > 0
dynamicszt = g(z +dy) +ds «+ds € M N D, whered, such t_hqt for eachp € (0, p*], every solutlon(z?p to (23) from
captures generic disturbances on the state when checkin%(if,sat'Sf'esw(gbﬂ(tvJ)) < B(w(9,(0,0)),t + j) + ¢ for each
the state belongs to the constraiitn D. The hybrid system (:J) € dom¢,. The proof concludes using the relationship
%/, with such perturbations results in the perturbed hybrRREtween the solutions &, and [2B), and picking/;, such

system that max{M;, Ma, Mz, My} € (0, p*]. O
. Remark 7.3: Robustness results of stability of compact
Y = d1)+d ds € MNC i ‘ i
HW{ Iﬁ — g((z::idi;idj iidi g Mmnp  (22) sets for general hybrid systems are available[in [16]. Since

. ) ~ O is an asymptotically stable compact set #of,;, Theorem
The perturbations/; (i = 1,2,3,4) might be state or hybrid 773 is novel in the context of the literature of Poincaré map
time dependent, but are assumed to have Euclld_ea_n NQfMbarticular, if one was to write the systems in [5] and][25]
bounded byM; > 0 (i = 1,2,3,4), and to be admissible, yithin the framework of [16], then one would not be able
namely,domd; (i = 1,2,3,4)is a hybrid time domain and the o apply the results on robustness for hybrid systems in [16]
functiont — d;(t, j) is measurable odomd; N (R>o x {j}) since the hybrid basic conditions would not be satisfied and
for eachj € N. the hybrid limit cycle may not be given by a compact set.
Theorem 7.1: Consider a hybrid systet = (C, f, D,g) Furthermore, through an application ¢f [16, Lemma 7.19],
onR™ and a closed sef/ C R" satisfying Assumption_4.1.it can be shown that the hybrid limit cycle is robusfiy.
If O is a locally asymptotically stable hybrid limit cycle for 2'See|[[16, Definition 7.10] for a definition d€.£ asymptotic stability.



13

asymptotically stable oi8o. Example 7.7: Let us revisit the hybrid congestion control

Remark 7.4: Recently, the authors i _[34][_[47] presen ystem [®) in Sectiofll, where, now, the ﬂ0W2 %8k. and
static or dynamic decentralized (event-based) contsolfer he>1ump S;EDTCi are repﬁl%aglc.ed by fcp = {z € R*: q;nag—
robust stabilization of hybrid periodic orbits against sibe ¢ = —¢}, Digp = {z € R : gmax — q € [~¢,],r > B},
disturbances and established results sy H., optimal de- respectively. To vahdatérheor(_emlzq, multlpjle S|mulagons
centralized event-based control design. In contrast tovouk, are performed to show a relationship betwegthe maximal

they use input-to-state stability for robust stability pecties of value of the perturbatlon_pa_rar_neteranda,_the desired level
: g : : . : . of closeness to the hybrid limit cycl®. Given the compact
hybrid periodic orbits with respect to disturbance inputshie . :

; . . . set K = [0.68,0.72] x [0.58,0.64] and different desired level
discrete dynamics. Note that the results[in| [34],] [47] cdesi 0.01.0.02.0.03.0.04} of closeness o the hvbrid limit
possible disturbances only on the discrete dynamics and cr%Ie{ t 'n’d'(.:at;as. thz’at .the}relat'onsh' et dy c:an Ibel
only suitable for nonlinear impulsive systems that haveg'amay r(;;irkatled 28 ~ 9.8 : P eemnde
on switching surfaces. On the other hand, in this paper, \WeP 5~ 2.0e.
establish conditions for robustness of hybrid limit cyclkat _ ] »
allow disturbances in the continuous/discrete dynamias afy- Robustness to Computation Error of Hybrid Poiredap
are applicable for hybrid dynamical systems with nonempty The hybrid Poincaré map defined ii[19) indicates the
intersection between the flow set and the jump set. evolution of a trajectory of a hybrid system from a point on

Remark 7.5: Very recently, the authors il [48] propose &N jump seft/ND to another pointin the same setnD. As
reachability-based approach to compute regions-ofeiitra stated in Theorerh 6.4 and Corolldry16.6, stability of hybrid

for hybrid limit cycles in a class of hybrid systems witdimit cycles can be verified by checking the eigenvalues of
a switching surface and bounded disturbance. Note that #§§ Jacobian of the hybrid Poincaré map at its fixed point.

approach in[[48] deals with bounded disturbance only on thiPWever, errors in the computation of the hybrid Poincagpm
continuous dynamics and is only suitable for hybrid systenjady influence the statements made about asymptotic syabilit

that have jumps on switching surfaces. Typically, the hybrid Poincaré map is computed numencall
by discretizing the flows, using integration schemes such

B. Robustness to Inflations 6f and D as Euler, Runge-Kutta, and multi-step methads [49], which
navoidably lead to an approximation of Poincaré maps.

. . o . . u
We consider the following specific parametric perturbation . . . . .
g sp P b Following the ideas in[[49] about perturbations introduced

on h, in both the flow and jump sets, with > 0 denoting

the parameter: the perturbed flow set is an inflation of tlf]é/ co;n;;)]utg:\t_l(;)r;)s,.the @screte:ﬂr&eysystem asgi)ﬂp latedthath
original flow set while the condition(z) = 0 in the jump set exact) hybrid Poincaré mag in (19) is given

is replaced by:(z) € [—e, €]. The resulting system is denoted Hp:x" =Plx) z€MnD, (26)

as|y, and is given by which we treat as a hybrid system without flows. As argued

M { z = f(z) xeCenNM, (24) above, due to unavoidable errors in computations and com-
M 2t = g(x) x e D.NM, puter implementations, only approximations of the nfapnd
where the flow set and the jump set are replacedcby= ©f the sets)M and D are available. In particular, given a point
{x € R" : h(z) > —e} and D, = {x € R" : h(z) € « € MND,the value of the step size, denoted- 0, used
[—e, €], Lyh(z) < 0}, respectively, while the flow map andn the computation qIP at a pointz a_ffects the precision of
jump map are the same as faf,;. We have the following the resulting approximation, which, in turn, may preverg th

result, whose proof follows from the proof of Theorgm]7.2. Solution to [26) to remain id/ N D and be complete. Due to
Theorem 7.6: Consider a hybrid systetit = (C, f, D, g) this, we denote byP; the results of computing’, and by M

on R™ and a closed sef/ C R™ satisfying Assumptiolﬂ.l.and D; the approximations OM. and D,_respecuvely. W'th.

. . some abuse of notation, the discrete-time system assdciate
If O is a locally asymptotically stable compact set ff, ith P. M. andD. is defined as
with basin of attraction3p, then there exist$ € KL such Wi ST s ! !
that, for everye > 0 and each compact set’ C Bp, there Hp, :x" = Py(z) x€ M,ND,. (27)
existse > 0 such that for eacte € (0, € every solutionp to

. ) L The approximations ofP,, M,, and Dy are assumed to
H|5, in 2Z4) with $(0,0) € K satisfies PP

5 satisfy the following properties.
|¢(taj)|(9 < 5(|¢(0a0)|(97t+j) +e V(tvj) € dom ¢. (25) Assumption 7.8: Given M C R™ andH = (C’7 vavg),

Theoreni 76 implies that the asymptotic stability propefty tEe flfmctionPS : R = Rnf parallm.ete:lized by >h0 is su_ch
the hybrid limit cycleQ is robust to a parametric perturbatiorF *at, or so?ehconftlnuchl;s unctign: R — R0, there exists
on h. Note that theX£ bound [ZF) is obtained when the® ~ 0 such that, for ale € M N D,
parametrically perturbed systefi|S, in (24) should also Py(z) € Py(x)  Vse (0,s"] (28)
exhibit a hybrid limit cycle.At times, a relationship between

. - ; : whereP,(z) := {v € R" : v € g+0(9)B, g € P(z+o(z)B)}
the maximum value o_f the perturbgtlon and the facteiin t_he d':lnd the sef/,ND, satisfies, for any positive sequenoe} >,
semiglobal and practic&l £ bound in [25) can be establishe , L _

22By some abuse of notation, though it is not hybrid, we labelas the

.numer'ca”}/' Next, TheorenD'G and this relatlonshlp Alfscrete-time system il (26) associated to the Poincang mand we use
illustrated in the TCP congestion control example. § € N as time instead of0, 5) for Hp afterwards.
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such thats; \, 0, Proof: Since the hybrid syster » without flows satisfies
imsup M, N D, © M D. (29) the_hybrld pa5|c conditions Al) an_d (A2) in Sec'FIE_[I]-A and
i—0o ' ! x* is a unique globally asymptotically stable fixed point of

) ) _ P, by [49, Theorem 3.1], there existse KL such that each
Remark 7.9: The property in[(28) is a consistency CONgolutiondp € Sy, (M N D) to Hp satisfies
dition on the integration scheme used to compute the flows

involved in [I9). For instance, when the forward Euler metho  [¢P(J) — [ < B(|op(0) —27[,j) Vj € dom ¢p.

is used to approximate those flows, the numerical values @fvens > 0, let s € (0, 6]. Given a compact sek’ ¢ M,N D,

¢ are generated using the scheme- sf(x), which, under and a simulation horizow € N, by the assumptions| [49,
Lipschitzness off and boundedness of solutions (and itsemma 5.1] implies thafor a state dependent perturbation
derivatives) tor = f(z), is convergent of ordet; in particular, determined by the constadtand a continuous functiop :
the error betwee®; and P is O(s), which implieHatIIZlS) R™ — R, the outer perturbatiof p, of Hp given by

holds for some functiop. Vaguely, the property if_(29) holds

when a distance betweel, N D, and M N D approaches Hp; :w' € Ps(x) z €Dy, (30)
zero as the step size vanishes, which is an expected prasertwhere Ps(z) := {v € R" : v € g + do(9)B, g € P(z+
precision improves with a decreasing step sendition [29) do(z)B)}, Ds := {z € R™ : = + o(z)B N (M N D) #

is satisfied when, for small enough> 0, M,ND, is contained 0}, satisfies the convergence property[ini[49, Definition 3.3].
in an outer perturbation of/ N D. Very often, the jump set Then, usingK above,[[49, Theorem 3.5] implies that for each
M N D can be implemented accurately in the computatian > 0 there existss* > 0 such that for eachh < (0,0%],

of the hybrid Poincaré map, i.e., it may be possible to talery solutionpp, € Sy, (K +dB) to Hp, satisfies for each

Mg =M and Dy = D. J € dom ¢p;
The following closeness result between solution®{te and 6p, (7) — 2| < B(|6p, (0) — a*|, 5) + &
‘Hp, holds.

. By Assumptior 7B, the properties of solutions & p, also
Theorem 7.10: (closeness betweesplutions and approx- hold for solutionsgp,. The result follows by this preservation
imations on compact domains) Consider a hybrid systeamd theiC£ bound of solutions t& p. O
H = (C,f,D,g) on R™ and a closed sef/ C R" satis- .
i P . Note that the property in Theorem 7111 holds for small
gln?oﬁﬁgﬂpt}g%dlir@ Szzgsfth;ngogp:tefoz(i?:xpﬁ enough step size. The step size bound* decreases with
pp 9r . y s app 9 the desired level of closeness:t®, which is given bys. The
and D, respectively, satisfy Assumptibn]7.8. Then, for ever xt result shows that the computed Poincaré miamas a

ﬁgrr?zpoanc} ‘Zeg ;ej\é Qxﬁi;*vir)égwir? ’thaenf((j) I(Ie(;/v(\a/irr): sn’rr(])ulz:![o.n semiglobally asymptotically stable (semi-GAS) compadt se
' g property: As with basin of attraction containing every point M N D

there existsé* > 0 such that for eachd € (0,6*], for each that reduces to a singletdx*} as s approaches zero
s € (0,s*] and any solutionpp, € Sy, (K +JB) there exists g bp '

a solutiongp € Sy, (K) with dom¢p C N such thatép, Theorem 7.12: (continuity of asymptotically stable fixed
and ¢p are (J, e)-close 3 points) Consider a hybrid systel = (C, f,D,g) on R™
A proof can be found in[39, Theorem 7.12]. and a closed sed/ C R™ satisfying Assumption 4.1. Assume

Inspired by [49, Theorem 5.3], the following stability résu that z* is a unique globally asymptotically stable_ fi)fed point
shows that when Assumptidn V.8 holds, asymptotic stabili%! the hybrid Poincae map/” and the computed Poinoaimap

of the fixed point of P (assumed to be unique) is preserveds @PProximating?” and the sets\/; and D, approximating
under the computation aP. M and D, respectively, satisfy Assumptibnl7.8. Then, there

existss* > 0 such that for eachs € (0,s*], the computed

Theorem 7.11: (stability preservation under computationp,incae mapP, has a semi-GAS compact sét with basin
error of ) Consider a hybrid systeft = (C, f, D, g) ONR™ ¢ atraction containing every point in/ N D satisfying
and a closed sed/ C R" satisfying Assumption 4.1. Assume, oA, = a*.

that the computed Poincarmap P, approximating P and
the setsM, and D, approximating) and D, respectively, Proof: Let K be any compact set such that for some
satisfy Assumptiofi_4.8, and that* is a unique globally ¢ > 0, z* +2¢eB C K C R". Using K as above and an
asymptotically stable fixed point ¢?. Then,z* is a unique arbitrary simulation horizon/ € N, consider the perturbed
semiglobally practically asymptotically stable fixed gahP, System#p, in @0) and defingl 5, with

with basin of attraction containing every point M N D, i.e., X

there exists3 € KL such that, for every > 0, each compact Né( ) = { Ps(z) 8 a7} weDs
setK ¢ M,ND,, and every simulation horizo# € N, there {«"} z € R"\D;

existss* > 0 such that, fo_r gacb € (O"?*]’ every solution 5.4 Ds = R™. Using K and< as above,[[49, Theorem 3.5]
¢p, € Sup, (K) to Hp, satisfies for eaclj € dom ¢p, implies that for eacke > 0 there existss* > 0 such that
lpp. (j) — 2| < 3(|¢,PS (0) — z*|,j) +e. for eachd € (0,6*], every solutiong s, € Sﬂﬁé (K) to Hp,

23gee [49, Definition 3.2] for a definition dfr’, .J,)-close to quantify the satisfies for each € dom ¢,
distance between hybrid arcs (and solutions). Here, itdt the hybrid case

but with ¢ = 0. |65, (7) — 27| < B(16p, (0) — 2], 4) + . (31)




For a simulation horizow € N, let Reach ; 5 _ (x*+2B) [2]
! 5

be the reachable set (ﬁ,s& from z* +2¢B up to J, i.e.,

. . . . Y (3]
Reach(]ﬂﬁé(:v +2eB):={¢5,(j):¢p, is a solution toH 3,
¢p,(0) € % +2eB, j € dom¢,j < J}.

Now, following a similar step as in the proof of [49, Theorem[4]
5.4], let

Be := Reach, 5 _ (x* 4 2¢B). 5
! 5

By (1), B. is bounded. Moreover, since. is closed by
definition, it follows that it is compact. Next, we show that g
it is forward invariant. Consider a SOlUtiQﬂpé € S?;[ﬁ (B:)

5

to 7:[155' Assume that there exists € dom¢p for which 7

¢p,(j') ¢ B.. By definition of B, since¢p (0) € B, the
solution ¢, belongs toB. for eachj € domqﬁlsj. This is a
contradiction. Next, we show that solutions #0;, starting
from K converge toB. uniformly. (31) implies that for the
given K ande, there existsV > 0 such that for every solution [
¢p, € &;LP& (K) to Hp, and for eachj € dom¢p, j = [1q
N:|¢p,(j) — | < 2e. Then, sinceB. is compact, forward
invariant, and uniformly attractive fronk’, by |24, Theorem
3.26], B. is a semi-GAS set f07:[156. By the construction of
7—2155 and Assumptioi_718, semiglobal asymptotic stability dt2]
B. for Hp, with basin of attraction containing every point
in M N D follows. Finally, note thatB, = {z*} and that as [13]
e — 0, limeno B = 2*. By (@1), ¢ \, 0 implies § , 0.
Moreover, from the proof of Theoreln 7110, we have, 0 as
0 N\, 0. It follows thats \, 0 ase \, 0. Therefore, the result
follows by A, = B.. O

8
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[15]
VIII. CONCLUSION
Notions and tools for the analysis of existence and stybili&ml
of hybrid limit cycles in hybrid dynamical systems were progi7]
posed. Necessary conditions were established for thecaxist
of hybrid limit cycles. The Zhukovskii stability notion for (18
hybrid systems was introduced and a relationship between
Zhukovskii stability and the incremental graphical sti#il
was presented. A sufficient condition relying on Zhukovskﬂg]
stability of the hybrid system was established for the exise
of hybrid limit cycles. Sufficient and necessary conditidois
the stability of hybrid limit cycles were presented. Moregv
comparing to previous results in the literature, we esshielil
conditions for robustness of hybrid limit cycles with respe
to small perturbations and to computation error of the hybri21l
Poincaré map, which is a very challenging problem in system
with impulsive effects. Examples were included to aid thg2)
reading and illustrate the concepts and the methodology of
applying the new results. Future work includes exercisiq%]
the presented conditions on systems of higher dimension
and more intricate dynamics, and hybrid control design for
asymptotic stabilization of limit cycles as well as theibust [24]
implementation.
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