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Abstract— For a broad class of hybrid dynamical systems
with inputs, termed open hybrid inclusions, a general inter-
connection model and solution concept are introduced. This
model is employed to certify forward invariance of a set for
the interconnection. The forward invariance notion allows for
Zeno solutions and solutions that end prematurely – namely,
maximal solutions that are not complete. Sufficient conditions
for forward invariance of a set that are compositional and
involve a properly defined scalar-valued barrier function are
proposed. An example illustrates the ideas.

I. INTRODUCTION

Compositions of dynamical systems are prevalent and

emerge in a broad range of problems in science and engi-

neering. Systems interconnected in series (or cascades) are of

particular relevance to synchronization, cooperative control,

and networked control, which have received significant at-

tention in the literature, see, e.g., [1], [2], [3], to just list

a few. A particularly important property to guarantee for

networked dynamical systems is invariance of the resulting

interconnection. By defining a set of points K where the

evolution of the state of the interconnection should remain,

the problem to solve is as follows:

Given a set K , determine if it is forward invariant for the

interconnection, regardless of the value of the input.

Unfortunately, analyzing forward invariance for the full inter-

connection leads to conditions that depend on the entire state

and input of the interconnection. The conditions involved

from using such an approach are not local to each system.

Very importantly, the approach does not scale with the

number of systems in the interconnection.

Compositional approaches that certify forward invariance

of an interconnection from properties of the individual sys-

tems are more effective than those that study the intercon-

nection as a whole. A compositional approach to determine

safety via barrier certificates for a class of continuous-

time systems is presented in [4]; see also [5]. In [6], [7],

a compositional approach based on passivity is presented

to study and verify stability and safety of continuous-time

systems. Also exploiting dissipativity properties, the work in

[8] proposes abstractions of models of the systems involved

in the interconnection to certify and verify, in a compositional

manner, safety. In [9], and in the context of differential

inclusions, the authors employ assume-guarantee contracts
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to certify specifications for interconnections by exploiting

the properties of the subsystems. The work in [9] considers

assume-guarantee contracts for forward invariance and, using

tools from viability theory [10] – specifically, tangent cone-

based conditions – shows that invariance of an interconnec-

tion can be established using assume-guarantee contracts for

invariance. Also recently, in [11], the authors borrow ideas

from the small-gain theorem for continuous-time systems and

introduce the notion of compositional barrier certificates to

assure safety of an interconnection.

In this paper, we propose conditions for forward invariance

for interconnections that, as a difference to the work in the

literature, allow for the subsystems to have hybrid dynamics.

We consider hybrid dynamical systems within the framework

in [12], [13], which can model hybrid automata, impulsive

systems, differential inclusions, and difference inclusions

with constraints. In this framework, a hybrid system has a

state that can evolve continuously within a set called the flow

set according to a differential inclusion and, at times, the state

can jump instantaneously from a set called the jump set to a

value determined by a difference inclusion. Specifically, we

aim at the following:

i) Formulate conditions requiring local information of the

state and input, and

ii) Exploit (over) approximations of the range of output

values provided by the output of the systems connected

to inputs of other systems.

The conditions provided in this paper do not require checking

for solutions to the systems involved in the interconnection

– in fact, the conditions are infinitesimal. By extending

the notion of barrier certificate in [14] to the case of

interconnections, we formulate conditions that individual

barrier certificates need to satisfy at points where evolution

of solutions is allowed, relative to the flow and jump set, and

relative to the values that the outputs assigning inputs can

take when interconnected. Due to the generality of the model

considered, our results handle the more classical situation

when continuous-time systems and discrete-time systems are

interconnected, even under constraints.
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Fig. 1. Interconnections of hybrid systems: series (left) and parallel (right).

The remainder of the paper is organized as follows.

An overview of interconnecting hybrid systems, along with



a general interconnection model and the formal problem

statement, are provided in Section II. The notion of barrier

function and sufficient conditions for forward invariance are

in Section III. An example is presented in Section IV.

Notation: The set of real numbers is denoted by R, its subset

of nonnegative real numbers by R≥0, the natural numbers

including 0 by N, the n-dimensional Euclidean space by

R
n, and the closed unit ball in Euclidean space centered at

the origin by B. Given a set S, S denotes its closure, ∂S
denotes its boundary, and U(S) a neighborhood (open or

closed). Given x and y, 〈x, y〉 denotes their inner product.

Given a set S ⊂ R
n×R

m, Π(S) denotes the projection of S
on its first component, i.e., {x ∈ R

n : ∃u s.t. (x, u) ∈ S },

Λ(S) the projection on the second component, i.e.,

Λ(S) := {u : ∃x ∈ R
n s.t. (x, u) ∈ S }, and, given

x ∈ R
n, Ψ(x, S) denotes the set of values u such that

(x, u) ∈ S, i.e., Ψ(x, S) := {u : (x, u) ∈ S }. Given a

set S ⊂ R
n × R

m, a set K ⊂ R
n, and a neighborhood

of ∂K , denoted U(∂K), define Φ(S,K,U(∂K)) :=
{(x, u) : x ∈ (U(∂K) \K) ∩ Π(S), u ∈ Ψ(x, S) }. The

operator Φ collects all points x nearby K that are in the

projection of S to the space of x but not in K , along

with all the associated values for u. Given a function f ,

f◦(x, v) denotes the Clarke generalized derivative of f at

x in the direction v and rge f denotes the range of f , i.e.,

rge f = f(dom f), where dom f is the domain of definition

of the function f .

II. INVARIANTS FOR COMPOSITIONS OF OPEN HYBRID

SYSTEMS WITH LOCAL INFORMATION

A. Preliminaries

In this paper, we study interconnections of hybrid dynam-

ical systems. We employ the framework in [13] to model

hybrid systems with inputs. Following [13], the i-th hybrid

system in the interconnection is denoted by Hi, has state

vector xi, input ui, and output yi, where i ∈ {1, 2, . . . , N}.

A model for Hi is given by

Hi :




(xi, ui) ∈ Ci ẋi ∈ Fi(xi, ui)
(xi, ui) ∈ Di x+

i ∈ Gi(xi, ui)
yi = hi(xi, ui)

(1)

The state xi can evolve as follows:

• Flow: xi is allowed to evolve continuously – namely,

to flow – when, for given input ui, the condition

(xi, ui) ∈ Ci

is satisfied. The set Ci is a subset of the state and input

space. This set can include constraints that the state and

the input have to satisfy during flows. During flows,

xi changes continuously according to the differential

inclusion

ẋi ∈ Fi(xi, ui)

In simple words, given an input ui, the state xi evolves

continuously, with a velocity defined by Fi when

(xi, ui) is in the set Ci.

• Jump: The state xi might also experience instantaneous

changes – namely, jumps. Jumps are allowed when the

condition

(xi, ui) ∈ Di

is satisfied. The set Di is a subset of the state and input

space. Similar to Ci, the set Di can include constraints

that the state and the input have to satisfy for jumps

to occur. When a jump occurs, the new value of the

state, which is denoted x+
i , is assigned via the difference

inclusion

x+
i ∈ Gi(xi, ui)

In other words, the state xi is instantaneously reset to

a value given by Gi when (xi, ui) belongs to Di.

The output of Hi is defined by the function hi as

yi = hi(xi, ui)

The hybrid system model Hi is defined by the data

(Ci, Fi, Di, Gi, hi), where

• Ci ⊂ R
ni × R

mi is the flow set,

• Fi : R
ni × R

mi ⇒ R
ni is the flow map,

• Di ⊂ R
ni × R

mi is the jump set,

• Gi :⊂ R
ni × R

mi ⇒ R
n is the jump map, and

• hi : R
ni × R

mi ⇒ R
ri is the output map.

Since Fi and Gi may give rise to a differential inclusion

and a difference inclusion with inputs, respectively, we refer

to Hi as an open hybrid inclusion. The data of Hi is

(Ci, Fi, Di, Gi, hi). When it is important to denote the data

of Hi explicitly, we write Hi = (Ci, Fi, Di, Gi, hi).
In this paper, solutions to Hi are given in terms of pairs

of hybrid arcs and hybrid inputs on hybrid time domains;

see [12], [13]. In Section III, a notion of solution for the

interconnection of hybrid dynamical systems is presented.

B. General Interconnections and Problem Formulation

We consider an interconnection of N hybrid dynamical

systems, in which each system is modeled as an open hybrid

inclusion. Specifically, for each i ∈ V := {1, 2, . . . , N},

the i-th hybrid dynamical system in the interconnection is

given by Hi as in (1), with data (Ci, Fi, Di, Gi, hi). The

interconnection between the N hybrid dynamical systems in

the family

{Hi = (Ci, Fi, Di, Gi)}i∈V

is determined by the interconnectivity graph

Γ = (V , E ,G, {ϕi, si}i∈V)

The set E collects the edges given by pairs (ℓ, k) indicating

that the output of Hk is connected to the input of Hℓ. The

matrix G is the adjacency matrix. Its (ℓ, k)-th entry gℓk is

equal to one if (ℓ, k) ∈ E . (Note that (V , E ,G) defines a

directed graph.) Without loss of generality, the function ϕi

assigns the first si components of the input of Hi using the

output of the systems that connect to it, namely,

ui =
(
ϕi

(
{yk}k∈N (i)

)
, wi

)
(2)

where N (i) is the set of indices corresponding to the neigh-

bors that are connected to Hi and wi are the components



of the input ui that are not assigned via ϕi. The pair

({Hi}i∈V ,Γ) defines the interconnection, which is denoted

Hint.

A hybrid model of the interconnection Hint is given by

Hint :




(x,w) ∈ C ẋ ∈ F (x,w)
(x,w) ∈ D x+ ∈ G(x,w)

y = h(x,w)
(3)

where x = (x1, x2, . . . , xN ) ∈ R
n is the state with n =∑N

i=1 ni, w = {wi}i∈V: si<mi
∈ R

mw collects the compo-

nents of the inputs of each system that are not connected to

outputs of other systems – namely, wi ∈ R
mwi is the vector

of inputs of Hi that are unassigned, in which case si < mi

– and y ∈ R
p is defined by the function h which collects the

desired outputs of the individual systems.

To define the data C, F , D, and G of Hint, a rule (or

semantics) for flows and jumps of the individual systems

needs to be formulated. In this paper, we employ the follow-

ing interconnection rules:

1) For a solution to the interconnection to flow, all sys-

tems in the family {Hi}i∈V should be able to flow,

i.e., for each i ∈ V , the flow conditions imposed by

Hi need to be satisfied;

2) A solution to the interconnection jumps when at least

one system in the family {Hi}i∈V is able to jump,

i.e., these exists i ∈ V such that the jump conditions

imposed by Hi are satisfied.

Following these interconnection rules, the flow map of Hint

is given by

F (x,w) := (F̃1(x,w), F̃2(x,w), . . . , F̃N (x,w)) (4)

where F̃1(x,w) := Fi(xi, ϕi

(
{yk}k∈N (i)

)
, wi) with yk

being the output of Hk, which depends on the state xk and

the input uk (which, in addition, depends on the assignment

(2)). The flow set C is given by

{(x,w) : (xi, ui) ∈ Ci ∀i ∈ V , ui as in (2), (5)

w = {wi}i∈V: si<mi
}

The jump set D is defined as

{(x,w) :∃i ∈ V : (xi, ui) ∈ Di, ui as in (2), (6)

w = {wi}i∈V: si<mi
}

and, at each (x,w) ∈ D, the jump map is given by

G(x,w) :=
⋃

i∈V

G̃i(xi, wi) (7)

where G̃i : R
n × R

mwi ⇒ R
n is nonempty on

{(xi, wi) : (xi, ui) ∈ Di, (ui, wi) satisfying (2) }

and empty elsewhere. To properly reset the component of x
associated to the state of system that jumps, the i-th entry

of G̃i is equal to Gi(xi, ϕi

(
{yk}k∈N (i)

)
, wi), and, for each

k ∈ V \ {i}, its k-th entry is equal to xk.

To define the notion of solution for Hint in (3), we

introduce the following objects.

Definition 2.1 (hybrid time and domain): A compact hy-

brid time domain is a set of the form

E :=

J−1⋃

i=0

(
[ti, ti+1]× {i}

)
(8)

where J ∈ N, and 0 = t0 ≤ t1 ≤ · · · ≤ tJ . A hybrid time

domain is the union of a nondecreasing sequence of compact

hybrid time domains E1 ⊂ E2 ⊂ E3 ⊂ . . . . Each element

(t, j) ∈ E denotes the elapsed hybrid time, which indicates

that t seconds of flow time and j jumps have occurred.

Definition 2.2 (hybrid input): A function w : domw →
R

mw is a hybrid input if domw is a hybrid time domain

and if, for each j ∈ N, the function t 7→ w(t, j) is Lebesgue

measurable and locally essentially bounded on the interval

Ijw := {t : (t, j) ∈ domw }.

Definition 2.3 (hybrid arc): A function x : domx → R
n

is a hybrid arc if domx is a hybrid time domain and if, for

each j ∈ N, the function t 7→ x(t, j) is locally absolutely

continuous on the interval Ijx.

We are ready to introduce a notion of solution for Hint.

Definition 2.4 (solution to Hint): A hybrid input w and a

hybrid arc x define a solution (x,w) to the hybrid system

Hint in (3) if

(S0) (x(0, 0), w(0, 0)) ∈ C or (x(0, 0), w(0, 0)) ∈ D, and

domx = domw (= dom(x,w));
(S1) For each j ∈ N such that I

j

(x,w) has a nonempty

interior int(Ij(x,u)), t 7→ (x(t, j), w(t, j)) satisfies

(x(t, j), w(t, j)) ∈ C for all t ∈ int(Ij(x,w))

and

d

dt
x(t, j) ∈ F (x(t, j), w(t, j)) for almost all t ∈ I

j

(x,u)

(S2) For each (t, j) ∈ dom(x,w) such that (t, j + 1) ∈
dom(x,w), (t, j) 7→ (x(t, j), w(t, j)) satisfies

(x(t, j), w(t, j)) ∈ D

and
x(t, j + 1) ∈ G(x(t, j), w(t, j))

A solution pair (x,w) to Hint is said to be complete if

dom(x,w) is unbounded. It is said to be maximal if there

does not exist another pair (x,w)′ such that (x,w) is a

truncation of (x,w)′ to some proper subset of dom(x,w)′. A

solution (x,w) is Zeno if it is complete and the projection

of dom(x,w) to R≥0 is bounded. For more details about

solutions to hybrid systems with inputs, see [15], [13].

To formally state the problem to solve, we introduce

the following forward invariance notion of a set for the

interconnection Hint in (3).

Definition 2.5 (uniform forward pre-invariance): Given a

hybrid system Hint as in (3), a set K ⊂ R
n is said to be

forward pre-invariant for Hint uniformly in w if for every

solution pair (x,w) with x(0, 0) ∈ K , the state component

x satisfies x(t, j) ∈ K for all (t, j) ∈ dom(x,w).

Remark 2.6: The term “pre” in uniform forward pre-

invariance is included to capture the situation when maximal



solutions from K are not complete. When maximal solutions

to Hint from K are complete, then forward pre-invariance

becomes forward invariance.

Following the problem outlined in Section I, we are ready

to state the problem to solve.

Problem (⋆): Given an interconnectivity graph Γ, a family

of dynamical systems

{Hi = (Ci, Fi, Di, Gi)}i∈V

and a collection of sets {Ki}i∈V with

Ki ⊂ R
ni ∀i ∈ V

defining sets to render invariant for Hi, determine local

conditions at each agent guaranteeing that the set

K := K1 ×K2 × . . .×KN (9)

is forward pre-invariant for the interconnection Hint in (3)

uniformly in w.

III. SUFFICIENT CONDITIONS FOR INVARIANCE OF

INTERCONNECTIONS USING LOCAL INFORMATION

To formulate sufficient conditions that solve Problem (⋆),

given information about the possible input values for each

system, we define an over approximation of the output sets

Yi for each system in Section III-A. Using these sets, and

in that same section, we characterize the range of solution

pairs to Hi and Hint. The proposed sufficient conditions are

given in Section III-B.

A. Definitions and Properties of Solutions

For each i ∈ V , and with ϕi defining (via (2)) the assign-

ment of the input ui of Hi using the output of its neighbors

{Hk}k∈N (i), we denote by Ŷk an over approximation1 of

the set of output values that the solutions to Hk can attain,

which is denoted Y k. With this information, we define C̃i

and D̃i as the effective flow and jump sets for Hi as follows:

• We define the set Ic
i collecting the values of ui that,

through the assignment in (2), are possible during flows

in light of the effect of the outputs of the systems that

are connected to Hi, namely, {Hk}k∈N (i). This set is

defined as

Ic
i ={
ui = (ũi, wi) ∈ Λ(Ci) : ũi ∈ ϕi

(
{Ŷk}k∈N (i)

) }

where ũi represents the input components of ui that are

assigned through ϕi. Then, the effective flow set for Hi

resulting from the interconnection is

C̃i = Ci ∩ (Rni × Ic
i ) (10)

1Note that the inputs of Hk may depend on the values of the output
of other systems, which may include Hi if the interconnection assignment
includes feedback.

• The set Id
i collects the values of ui that are possible

at jumps of Hi under the effect of the outputs of

{Hk}k∈N (i). We define this set as

Id
i ={
ui = (ũi, wi) ∈ Λ(Di) : ũi ∈ ϕi

(
{Ŷk}k∈N (i)

) }

Then, the effective jump set for Hi resulting from the

interconnection is

D̃i = Di ∩ (Rni × Ic
i ) (11)

For series interconnections, the definition of the effective

flow set C̃i and jump set D̃i is explicit and these sets can be

constructed sequentially, starting from the first system that

is in series, and continuing down the interconnection. For

interconnections with feedback, the definition is unavoidably

implicit and typically requires to solve for these sets simul-

taneously.

Remark 3.1: When the possible values of the output of the

k-th neighbor to Hi are known, then Ŷk can be chosen to be

equal to Yk . Without any such information, the set Ŷk can

simply be chosen as R
rk . A smaller choice for Ŷk might be

possible if one is able to identify a set including all possible

values attained by the output of Hk. Such a potentially

smaller choice than R
rk may lead to smaller effective flow

and jump sets, C̃i and D̃i, respectively. Reducing the size

of these sets is beneficial for the forthcoming sufficient

conditions for forward invariance. Such information can be

obtained from knowing the data of each system and the inter-

connection assignment. In applications, logging the evolution

of the output of the systems and employing reachability tools

can aid in obtaining such information.

The following result characterizes the range of the solu-

tions pairs to Hint in (3) in terms of the sets C̃i, D̃i, and

Gi(D̃i). It follows directly from the construction of the sets

C̃i and D̃i, the data of Hint, and the definition of solution in

Definition 2.4.

Lemma 3.2: Every solution (x,w) to Hint satisfies

rge(x,w) ⊂

(
⋂

i∈V

C̃i

)
∪

(
⋃

i∈V

D̃i

)
(12)

∪

(
⋃

i∈V

(
Gi(D̃i)× Λ

(
C̃i ∪ D̃i

)))

where the sets {C̃i}i∈V and {D̃i}i∈V are defined via (10)

and (11), respectively.

B. Sufficient Conditions using Local Barrier Certificates

This section presents sufficient conditions guaranteeing

forward pre-invariance of the set K in (9). The conditions

provided are in terms of barrier certificates, namely, state-

dependent scalar functions that are nonincreasing at points in

an outer neighborhood of the set K guarantee that solutions

cannot leave K . Inspired by [14], [13], we define the follow-

ing notion of barrier function candidate for interconnections.

Definition 3.3: (barrier function candidate for

interconnections) Given the family of hybrid systems



{Hi = (Ci, Fi, Di, Gi)}i∈V , the interconnection graph

Γ = (V , E ,G, {ϕi, si}i∈V), and the collections of closed

sets {Ki}i∈V , the collection of functions {Bi}i∈V define

a barrier function candidate for the interconnection

Hint = ({Hi}i∈V ,Γ) with respect to K in (9) if the

following properties hold: for each i ∈ V ,

1) Ki =
{
xi ∈ Π(Ci) ∪ Π(Di) : Bi(xi) ≤ 0

}
;

2) For some open neighborhood Ui of ∂Ki, Bi is locally

Lipschitz on (Ui(∂Ki) \Ki) ∩ Π(Ci).

Remark 3.4: The condition in item 1 requires the exis-

tence of Bi such that every point in the given set Ki is in

the zero sub-level set of Bi, restricted to Π(Ci∪Di). In turn,

for points in Π(Ci ∪Di) but not in Ki, the value of Bi is

positive. Item 2 assumes basic regularity properties to be able

to take derivatives of Bi in terms of the Clarke generalized

derivative, which is required to impose conditions that render

Bi nonincreasing along solutions. Note that the conditions

in Definition 3.3 only depend on information available at

each agent; in particular, they do not depend on the effective

flow and jump sets C̃i and D̃i. However, to assure that a

barrier certificate guarantees forward pre-invariance of K ,

information about the input to each system provided by the

neighbors can be exploited, as the following result states.

Theorem 3.5: (invariance of interconnections using bar-

rier functions) Given the family of hybrid systems

{Hi = (Ci, Fi, Di, Gi)}i∈V , the interconnection graph Γ =
(V , E ,G, {ϕi, si}i∈V), the collection of closed sets {Ki}i∈V ,

and the collection of functions {Bi}i∈V defining a bar-

rier function candidate for the interconnection Hint =
({Hi}i∈V ,Γ) with respect to K in (9), the set K is forward

pre-invariant for Hint in (3) uniformly in w if the following

properties hold:2 for each i ∈ V ,

B◦
i (xi, fi) ≤ 0 ∀fi ∈ Fi(xi, ui), (13)

∀(xi, ui) ∈ C̃i ∩Φ(Ci,Ki,Ui),

Bi(gi) ≤ 0 ∀gi ∈ Gi(xi, ui), (14)

∀(xi, ui) ∈ D̃i ∩ (Ki × R
mi),

Gi(xi, ui) ⊂ Π(Ci) ∪Π(Di) (15)

∀(xi, ui) ∈ D̃i ∩ (Ki × R
mi)

where Ui := U(∂Ki) and Φ(Ci,Ki,Ui) collects all points

xi nearby Ki that are in the projection of Ci to R
ni but

not in K , along with all the associated values for ui; see

Notation in Section I.

Remark 3.6: The effective flow set C̃i and jump set D̃i

enter (13)-(15) in a modular manner, as intersections to the

set of points at which the infinitesimal conditions therein

are to be checked. Due to the construction of the map Φ,

condition (13) has to be checked on an outer neighborhood

(of any size) around the set Ki; see the interconnection in

Section IV. When Bi is continuously differentiable, we can

replace the generalize Clarke derivative B◦
i (xi, fi) by the

2Conditions (13)-(15) are written in terms of ui, but note that the
interconnection assignment in (2) is encoded in those conditions through

C̃i and D̃i, which, in turn, lead to wi’s collecting the unassigned inputs to
Hi.

inner product 〈∇Bi(xi), fi〉. On the other hand, to prevent

solutions from jumping outside of Ki, condition (14) is

checked at all points in Di with state component that is in

Ki, as long as is allowed by the interconnection assignment –

which is encoded by D̃i. Note that the intersection by C̃i and

D̃i reduce the set of points at which these conditions are to

be checked. As pointed out in Remark 3.1, these sets can be

reduced when information about the output of its neighbors

is available.

C. Establishing Uniform Forward Invariance

With forward pre-invariance of a set K (uniformly in w)

established for Hint using Theorem 3.5, one may want to

show that maximal solutions form K are complete, so that

K is forward invariance (uniformly in w); see Remark 2.6.

Showing that maximal solutions to Hint are complete can

established using results in [16], [17], which, in particular,

exploit the ideas in [12, Proposition 2.10 and Proposition

6.10] along with linear growth or boundedness of the flow

map. Note that the class of inputs w would need to be

restricted, due the difficulty of assuring viability of flows

in the presence of state constraints.

IV. EXAMPLE:

INTERCONNECTIONS OF TWO THERMOSTATS

We consider interconnections defined by coupling between

models of temperature of two rooms. The temperature of

each room is controlled by an independent thermostat sys-

tem. The temperature of the first room is denoted z1 and

the temperature of the second room is denoted z2. The

thermostat systems control the heater present in each room

with capacity z1,∆ > 0 and z2,∆ > 0, respectively. The

external temperature to each room is denoted by z1,out and

z2,out, respectively.

The hybrid systems H1 and H2 are identical and defined as

follows. For each i ∈ {1, 2}, the state of Hi is xi = (zi, qi),
where zi ∈ R is temperature and qi ∈ Q := {0, 1} is a logic

state that when equal to zero indicates that the i-th heater is

off and when equal to one indicates that it is on. The data

(Ci, Di, Fi, Gi, hi) of Hi is given by3

Ci = ({xi ∈ R×Q : zi ≥ zi,min, qi = 0 }

∪ {xi ∈ R×Q : zi ≤ zi,max, qi = 1 })× Ui

Fi(xi, ui) =


−zi +

[
zi,∆ 1

] [qi
ui

]

0


 ∀(xi, ui) ∈ Ci,

Di = {xi ∈ R×Q : zi ≤ zi,min, qi = 0 }

∪ {xi ∈ R×Q : zi ≥ zi,max, qi = 1 }

Gi(xi) =

[
zi

δ(qi)

]
∀xi ∈ Di

hi(xi) = zi

where Ui ⊂ R defines the possible values for ui, δ(qi) =
1 − qi toggles qi from zero to one when zi is smaller than

or equal the threshold zi,min, and from one to zero when zi
is larger than or equal to the threshold zi,max.

3Since the input of Hi affects the flows only, for simplicity, it is omitted
from Di and Gi.



Consider the series interconnection depicted in Figure 1

(left) defined by the interconnection assignment

u1 = z2, u2 = z2,out (16)

This assignment represents the situation when the outside

temperature for the first room is equal to the temperature of

the second room (e.g., the first room is physically contained

in the second room). Following the model in Section II-B,

w = u2 for the resulting interconnection Hint, whose model

is given in (3) with N = 2. For given parameters z1,min <
z1,max and z2,min < z2,max determining the desired range

of temperatures for each room, the objective is to deter-

mine conditions on U1, U2, z1,∆, and z2,∆ to keep z1 in

[z1,min, z1,max] and z2 in [z2,min, z2,max] for all hybrid time

if the temperatures start within those ranges. This objective

consists of rendering the set K in (9) with N = 2 forward

invariant uniformly in w for the resulting interconnection,

where, for each i ∈ {1, 2},

Ki = [zi,min, zi,max]×Q ⊂ R×Q (17)

and, to assure that every maximal solution to Hint from K is

complete.

To certify this property, consider the barrier function Bi :
R ×Q → R defined for each xi = (zi, qi) ∈ R × Q as the

locally Lipschitz function

Bi(xi) := max{zi − zi,max, zi,min − zi}

To have Bi(xi) ≤ 0 on Ki and Bi(xi) > 0 outside Ki, note

that

max{zi − zi,max, zi,min − zi} ≤ 0

if and only if zi − zi,max ≤ 0 and zi,min − zi ≤ 0. This

condition implies that zi should satisfy zi,min ≤ zi and zi ≤
zi,max for zi to belong to Ki, which, since qi is unrestricted,

leads to the set Ki defined in (17). Hence, since Ci ∪Di =
R × Q, {Bi}i∈{1,2} is a barrier function candidate for the

interconnection.

Using the definition of Ci and Ki, pick Ui = U(∂Ki)
with U(∂Ki) an open neighborhood of ∂Ki. When qi = 1,

this open neighborhood leads to points in the zi component

that are in the set (zi,max, zi,max + ǫi) for some ǫi > 0,

and, at such points, Bi(xi) = zi − zi,max. Similarly, when

qi = 0, and for the same value of ǫi, this open neighborhood

collects zi points in the set (zi,min− ǫi, zi,min), and, at such

points, Bi(xi) = zi,min − zi. It can be shown by analyzing

the variation of Bi along flows that Bi is nonincreasing along

flows if

w < z2,max < z1,max

w + z2,∆ > z2,min > z1,min − z1,∆

}
∀w ∈ U2 (18)

which require U2 to be a compact subset of R. Hence, since

C̃i ⊂ Ci, (13) holds. Since the jump map Gi is such that

zi remains constant at jumps, then Bi(Gi(xi)) = Bi(xi) for

each xi ∈ Di ∩ Ki. Then, for each point xi ∈ Di ∩ Ki,

Bi(Gi(xi)) ≤ 0; hence, since D̃i ⊂ Di, (14) holds. Using

the same argument, it is straightforward to show that (15)

holds. By Theorem 3.5, K as in (9), with Ki in (17), is

pre-forward invariant for Hint, uniformly in w = z2,out taking

values on a compact set U2 on which the conditions in (18)

hold – note that U1 can be taken to be equal to R. To assure

that every maximal solution is complete, we assume that w
belongs to the class of piecewise-continuous functions taking

values from U2. The conditions mentioned in Section III-C

hold due to fact that, for each i ∈ {1, 2}, Ci\Di is open, Fi is

smooth, and the jump map takes points in the jump set back

to the flow set. Moreover, Hint does not have Zeno solutions

since the distance between G(D) and D is uniformly lower

bounded by a positive constant and Fi has linear growth

(hence, no finite escape times are possible).

V. CONCLUSION

The proposed compositional sufficient conditions for for-

ward invariance of K in (9) employ a scalar-valued barrier

function for each system. In light of the constructions in

[14], they can be replaced by vector-valued barrier func-

tions to allow for Ki to be given by the intersection of

finitely many sublevel sets of barrier functions. Future work

includes developing algorithms to approximate the output

sets Ŷi using over approximations of reachable sets given by

multiple Lyapunov functions. The work in [9] also provides

motivation to extend assume-guarantee contracts to encode

and reason about invariance properties of Hint.
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