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Abstract— Multi-channel hybrid time domains and clustering
protocols are introduced. These concepts are shown to be well-
suited for the modeling and description of interconnections of
hybrid dynamical systems. Compared to a hybrid time domain,
a multi-channel hybrid time domain incorporates multiple
jump counters, one for each subsystem in an interconnection.
The interconnection’s clustering protocol then determines how
the different counters are coordinated. A distributed, hybrid
average consensus algorithm is used to illustrate these concepts.

I. INTRODUCTION

Hybrid dynamical systems combine continuous-time dy-
namics, resulting in flows, with discrete-time dynamics,
resulting in jumps. For example, see [1], [2]. Here, we
are interested in the interconnection of hybrid systems.
The literature contains several results on hybrid systems
interconnections, many of them related to stability analysis.
See, for example, [3]- [15]. Results that use category theory
to address open hybrid systems and their compositions have
appeared recently; see [16], [17] and the references therein.

When interconnecting open hybrid systems, special at-
tention should be given to how jumps of the different
subsystems interact [18]. There are many possibilities in this
regard. On one extreme, the subsystems could be required to
jump in unison; on another extreme, the interconnection may
insist on only one subsystem jumping at a time. Various other
intermediate “protocols” can be considered that prescribe this
interaction. In this paper, we introduce clustering protocols
that are used to impose structure on the interaction of jumps
in interconnected hybrid systems. The utility of the clustering
protocol is that it captures, in a single vector, the structure
of the jump set and jump map of the interconnection.

A solution of a hybrid system is usually defined on a
“hybrid time domain” that keeps track of the duration of
flows as well as the number of jumps that have occurred in
leading the state to its current value; see [1], with precursors
in [19], [20], [21], [22].

To promote modularity in the design of complex, in-
terconnected hybrid systems, we introduce multi-channel
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hybrid time domains for open hybrid systems, where each
system in the interconnection is assigned its own channel
and each channel corresponds to a standard hybrid time
domain. Using multi-channel domains permits describing the
behaviors of the subsystems independent of the clustering
protocol that will be imposed eventually. Subsequently, the
interconnection is formulated by specifying interconnection
constraints that prescribe data flow as well as a clustering
protocol that prescribes jump interactions.

Since a multi-channel hybrid time domain is one for which
each channel corresponds to a standard hybrid time domain,
a multi-channel hybrid time domain involves multiple jump
counters. Time domains with multiple jump counters have
been used before in other hybrid systems contexts, mostly
when attempting to address the passage of ordinary time
in systems, including interconnections of subsystems, that
exhibit Zeno solutions, i.e., solutions with an infinite number
of jumps in a finite amount of ordinary time. See [23] and
[24, Chapter 4], and [25, Section 5.2] for example.

The paper is organized as follows: we discuss hybrid
systems with inputs and solutions defined on single-channel
hybrid time domains in Section II. Then multi-channel hybrid
time domains, arcs, and solutions are introduced in Section
III. Section IV presents the concept of clustering protocols,
including examples. The link between interconnected models
and clustering protocols is established in Section V. Section
VI contains a discussion of interconnection constraints to
specify data flow. Lastly, in Section VII, we illustrate the
paper’s main ideas using a distributed, hybrid algorithm for
average consensus.

While not discussed here, extensions that allow for apply-
ing multiple clustering protocols to a given interconnection,
e.g., time-varying clustering protocols, are straightforward.

Notation: Rn denotes the n-dimensional Euclidean space,
R≥0 the nonnegative real numbers, N is the natural numbers,
and N0 := N ∪ {0}. Given N ∈ N, N≤N := {1, 2, . . . , N}
and N≥N := {N,N + 1, . . . }. ei denotes the standard i-th
basis vector in Rn and 1n is the vector in Rn with every
coordinate equal to one.

II. HYBRID DYNAMICAL SYSTEMS AND
(SINGLE CHANNEL) SOLUTIONS

This paper addresses hybrid dynamical systems with in-
puts of the form

(x, u) ∈ C ẋ ∈ F (x, u) (1a)

(x, u) ∈ D x+ ∈ G(x, u, u+) (1b)



where x ∈ Rn is the state, u ∈ Rm is the input, C ⊂ Rn+m

is the flow set, D ⊂ Rn+m is the jump set, F : Rn+m ⇒ Rn

is the flow map, and G : Rn+2m ⇒ Rn is the jump map.
The symbol ẋ represents the velocity of the state x and x+

represents the value of the state after a jump. The value of
the input after a jump is denoted u+.

In the existing literature, solutions of (1) are often defined
on hybrid time domains defined as follows. A compact hybrid
time domain is a set of the form

E :=

J−1⋃
i=0

(
[ti, ti+1]× {i}

)
(2)

where J ∈ N, and 0 = t0 ≤ t1 ≤ · · · ≤ tJ . A hybrid time
domain is the union of a nondecreasing sequence of compact
hybrid time domains E1 ⊂ E2 ⊂ E3 ⊂ . . . .

A mapping x : domx → Rn is called a hybrid arc if domx
is a hybrid time domain and, for each ℓ ∈ N0, t 7→ x(t, ℓ)
is locally absolutely continuous; it is called a generalized
hybrid arc if domx is a hybrid time domain and, for each
ℓ ∈ N0, t 7→ x(t, ℓ) is continuous.

A pair of mappings x : domx → Rn, u : domu → Rm

constitute a solution of (1) if

1) x is a hybrid arc,
2) u is a generalized hybrid arc,
3) domx = domu,
4) if (t1, ℓ), (t2, ℓ) ∈ domx and t1 < t2 then

(x(t, ℓ), u(t, ℓ)) ∈ C ∀t ∈ (t1, t2) ,

ẋ(t, ℓ) ∈ F (x(t, ℓ), u(t, ℓ)) for a.a. t ∈ [t1, t2] ,

5) if (t, ℓ1), (t, ℓ2) ∈ domx and ℓ2 − ℓ1 = 1 then

(x(t, ℓ1), u(t, ℓ1)) ∈ D &

x(t, ℓ2) ∈ G(x(t, ℓ1), u(t, ℓ1), u(t, ℓ2)).

III. MULTI-CHANNEL HYBRID TIME DOMAINS, ARCS,
AND SOLUTIONS

A. Multi-channel domains

For hybrid systems with inputs, like in (1), that are
to be modular and available for insertion into complex,
large-scale interconnections, it is important to develop a
solution notion that anticipates the existence of jumps due
to other components in the system. We pursue an approach
that defines solutions on time domains with multiple jump
counters. We consider doing so in a manner such that, when
using any one of these counters, we obtain a hybrid time
domain. In particular, allowing for N ∈ N≥2 jump sources,
we consider a time domain E that is a subset of R≥0×NN

≥0

having the property that, for each i ∈ N≤N , the set

Ei :=
⋃

(t,ℓ)∈E

(t, eTi ℓ) (3)

is a hybrid time domain. We call E an N -channel time
domain. Let Πc be the projection in Rn, with n determined

by the context, onto the first coordinate. In particular, given
an N -channel time domain E,

Πc(E) =
{
t ∈ R≥0 : (t, j) ∈ E for some j ∈ NN

0

}
. (4)

An N -channel time domain can be constructed from N
(single-channel) hybrid time domains as follows:

Proposition 1: Let N ∈ N≥2 and, for each i ∈ N≤N ,
suppose that Ei is a hybrid time domain. If

Πc(Ei) = Πc(Ej) ∀i, j ∈ N≤N (5)

then the set

E :=
{
(t, ℓ) ∈ R≥0×NN

≥0 : (t, ℓi) ∈ Ei ∀i ∈ N≤N

}
(6)

is an N -channel time domain and Πc(E) = Πc(Ei) for all
i ∈ N≤N .

B. Arcs

We call a mapping x : domx → Rn an ith (out of N )
channel hybrid arc if

1) domx is an N -channel time domain,
2) for each ℓ ∈ NN

0 , t 7→ x(t, ℓ) is locally absolutely
continuous, and

3) if (t, ℓ1) and (t, ℓ2) belong to domx and satisfy
eTi (ℓ2 − ℓ1) = 0 then x(t, ℓ1) = x(t, ℓ2).

We call the mapping an ith (out of N ) channel generalized
hybrid arc when the local absolute continuity in the second
condition above is relaxed to continuity. By virtue of the
third condition above, an ith channel hybrid arc can make a
jump only when the ith counter changes; that is, it ignores
changes in every counter except the ith one.

C. Solutions

Having defined multi-channel time domains, and single-
channel hybrid arcs on such domains, we turn to defining
systems whose solutions are defined on multi-channel time
domains. Given N ∈ N and i ∈ N≤N , we will say that a pair
of mappings x : domx → Rn, u : dom(u) → Rm constitute
an ith (out of N ) channel solution to (1) if

1) x is an ith (out of N ) channel hybrid arc,
2) u is an ith (out of N ) channel generalized hybrid arc,
3) domx = domu
4) if (t1, ℓ), (t2, ℓ) ∈ domx and t1 < t2 then

(x(t, ℓ), u(t, ℓ)) ∈ C ∀t ∈ (t1, t2) ,

ẋ(t, ℓ) ∈ F (x(t, ℓ), u(t, ℓ)) for a.a. t ∈ [t1, t2] ,

5) if (t, ℓ1), (t, ℓ2) ∈ domx and eTi (ℓ2 − ℓ1) = 1 then

(x(t, ℓ1), u(t, ℓ1)) ∈ D &

x(t, ℓ2) ∈ G(x(t, ℓ1), u(t, ℓ1), u(t, ℓ2)).

This solution concept is very similar to the single-channel
solution concept given in Section II with the feature that
changes in ℓ that do not change eTi ℓ are ignored.



IV. CLUSTERING PROTOCOLS FOR MULTI-CHANNEL
HYBRID TIME DOMAINS

There are many ways in which the jump sets and jump
maps of a network of hybrid systems can be coordinated to
end up with a composite jump set and jump map for the
interconnection. For example, one protocol may insist that
jumps happen sequentially, i.e., at different hybrid times;
another protocol may insist that all subsystems jump simul-
taneously, i.e., at the same hybrid time. Other protocols may
be in between, insisting that some subsystems jump together
while others do not.

One way to anticipate and capture this variety math-
ematically is through a protocol parameter that can be
applied to a multi-channel time domain. The intention of
the protocol parameter is to cluster together some of the
channels, corresponding to a group of hybrid systems, while
not affecting the rest of the channels. The result is a new
multi-channel time domain with fewer channels. Suppose we
want to reduce the number of channels in a time domain
from N ∈ N≥2 to M ∈ N≤N−1 by collapsing N − (M − 1)
channels into a single channel. We associate this operation
with interconnecting N − (M −1) hybrid systems according
to the desired protocol while leaving the remaining channels
open for other systems. Let the index set I ⊂ N≤N denote
the set of channels to be combined. Let λ ∈ [0, 1]N be such
that λi > 0 if and only if i ∈ I. We say that λ is a valid
clustering protocol for the indices I and the N -channel time
domain E if

Eλ :=
⋃

(t,ℓ)∈E

(t, λT ℓ) (7)

is a hybrid time domain.
Example 1: We consider some possible protocol param-

eters for clustering N channels into a single channel, i.e.,
I = N≤N .

1) λ = 1N . This clustering protocol requires the various
jump counters in E to increment one at a time. In
particular, if (t, ℓa), (t, ℓb) ∈ E and 1T

N (ℓb − ℓa) = n
with n ∈ N then there exist n distinct values (t, ℓi) ∈
E, i ∈ N≤n such that ℓ1 = ℓa, ℓn = ℓb, and 1T

N (ℓi+1−
ℓi) = 1 for all i ∈ N≤n−1.

2) λ = 1
N 1N . This clustering protocol requires all N

jump counters in E to increment simultaneously. In
particular, if (t, ℓa), (t, ℓb) ∈ E and 1T

N (ℓb−ℓa) = nN
with n ∈ N then (t, ℓa + i1N ) ∈ E for all i ∈ N≤n−1

and ℓb = ℓa + n1N .
3) λ = 1

M 1N , M ∈ {2, . . . , N − 1}. This clustering pro-
tocol requires any M jump counters in E to increment
simultaneously. At different jump times, the set of
M jump counters that increment can be different. In
particular, (t, ℓa), (t, ℓb) ∈ E and 1T

N (ℓb − ℓa) =
nM with n ∈ N then there exist n distinct values
(t, ℓi) ∈ E, i ∈ N≤n such that ℓ1 = ℓa, ℓn = ℓb, and
1T
N (ℓi+1 − ℓi) = M for all i ∈ N≤n−1.

4) λ =
(

1
L1

1T
M , 1

L2
1T
N−M

)T

with L1 ∈ N≤M , L2 ∈
N≤N−M , L1 ̸= L2. This clustering protocol requires

any L1 jump counters in E, among the first M , to
increment simultaneously but separately from the final
N −M jump counters, among which L2 are required
to increment together.

5) N1, N2 ∈ N, N := N1 + N2 and λ ∈ (0, 1)N

is such that its first N1 elements form a set with
distinct subset sums (as in [26]) that are all less
than 0.5 and then each of the remaining elements
of λ, λi with i ∈ {N1 + 1, . . . , N1 +N2}, satisfy
λi = 1 − si where si denotes the sum of the indices
in N≤N1

of λ with which the i component of the
interconnection must jump. We denote this set as Ii ⊂
N≤N1

. This protocol requires the ith jump counter, i ∈
{N1 + 1, . . . , N1 +N2} to increment simultaneously
with all of the jump counters with indices in Ii. ■

The next assumption will be used in upcoming results.
Assumption 1: The following conditions hold:
1) N ∈ N≥2,
2) M ∈ N≤N−1 and L := N −M + 1,
3) the indices {i1, i2, . . . , iL} are distinct and

I := {i1, i2, . . . , iL} ⊂ N≤N ,
4) E is an N -channel time domain,
5) λ is a valid clustering protocol for I and E, and
6) Λ ∈ RN×M is a full column-rank matrix with one

column equal to λ and the remaining columns being
the basis vectors in RN corresponding to the indices
not in I. Let jλ represent the column of Λ that equals
λ.

Under Assumption 1, an M -channel domain that clusters the
indices in I can be constructed from the N -channel domain
E by using the matrix Λ.

Proposition 2: If Assumption 1 holds then

EN→M,Λ :=
⋃

(t,ℓ)∈E

(t,ΛT ℓ) (8)

is an M -channel time domain.

V. MODELS FROM PROTOCOLS

In this section, we indicate how the model of a large-
scale interconnection of hybrid systems is determined by
a given valid clustering protocol. Throughout the section,
(Ci, Fi, Di, Gi) are hybrid systems with state/input pairs
(xi, ui) ∈ Rni ×Rmi , i ∈ N , and we impose Assumption 1.
The systems to be interconnected are (Ci, Fi, Di, Gi), i ∈ I,
and, presumably, they have appropriately understood channel
solutions on the N -channel domain E.

For the interconnection (C,F,D,G), the state/input pair
is (x, u) ∈ Rn ×Rm where n :=

∑
i∈I ni, m :=

∑
i∈I mi,

and

x := (xi1 , . . . , xiL), u := (ui1 , . . . , uiL). (9)

The construction of the flow set C and the flow map F is
straightforward:

C := {(x, u) ∈ Rn × Rm : (xik , uik) ∈ Cik} (10a)
F (x, u) := {f = (fi1 , . . . , fiL) : fik ∈ Fik(xik , uik)} .

(10b)



This way, the flow conditions on (xi, ui) for (Ci, Fi, Di, Gi),
i ∈ I, are equivalent to the flow condition on (x, u) for
(C,F, ·, ·).

The construction of the jump set D and jump map G is
more intricate and explicitly involves the protocol parameter.
Let p be the number of distinct index sets J ⊂ I such that∑

j∈J λj = 1. Denote these sets {Jj}pj=1. By construction,
the increase by 1 of the jλ-th counter in EN→M,Λ corre-
sponds to increases by 1 of all counters in E indexed by
one of the sets Jj . Accordingly, to each Jj associate a set

D̃j :=
{
(x, u) ∈ Rn+m : (xi, ui) ∈ Di ∀i ∈ Jj

}
(11)

and define

D :=

p⋃
j=1

D̃j . (12)

This way, the protocol enables a jump each time the
state/input pair is in at least one of the sets D̃j . Further,
to each set D̃j , we associate a jump map G̃j(x, u, w). This
mapping is empty outside of D̃j . Inside of D̃j , it resets
the state components whose indices belong to Jj while
leaving the other state components unchanged. That is, for
all w ∈ Rm,

G̃j(x, u, w) := ∅ ∀(x, u) /∈ D̃j (13a)

G̃j(x, u, w) :=

{
g =

(
gi1 , . . . , giN−(M−1)

)
: (13b){

gik ∈ Gik(xik , uik , wik) ik ∈ Jj

gik = xik otherwise

}}
∀(x, u) ∈ D̃j .

The overall jump map allows any of these transitions when
the state/input pair belongs to the jump set D. Hence

G(x, u, w) :=

p⋃
j=1

G̃j(x, u, w). (14)

This way, the jump conditions on (x, u) are equivalent to
the jump conditions on (xi, ui) with i in one of the sets Jj .
Consequently, a jump of a presumed jλ-th (out of N ) multi-
channel solution to (C,F,D,G) on EN→M,Λ corresponds to
jumps in presumed i-th (out of N ) multi-channel solutions
(xi, ui) to (Ci, Fi, Di, Gi). This, and the construction of
EN→M,Λ, ensure that:

Proposition 3: The following are equivalent:
(a) The pair (xi, ui) is an i-th (out of N ) multi-channel

solution to (Ci, Fi, Di, Gi) on E for every i ∈ I.
(b) (xi1 , . . . , xiL , ui1 , . . . , uiL) is a jλth (out of M ) multi-

channel solution to (C,F,D,G) defined in (10)-(14) on
EN→M,Λ.

We are often interested in models that satisfy the following
conditions.

Definition 1: The data (C,F,D,G) is said to satisfy the
hybrid basic conditions if

1) C and D are closed;
2) F and G are outer semicontinuous and locally

bounded;

3a) F (x, u) is nonempty and convex for all (x, u) ∈ C,
3b) G(x, u, w) is nonempty for all (x, u, w) ∈ D × Rm.

■
We can add that, also by construction:
Lemma 1: If (Ci, Fi, Di, Gi) satisfy the hybrid basic con-

ditions for each i ∈ I then (C,F,D,G) defined in (10)-(14)
satisfies the hybrid basic conditions.

VI. INTERCONNECTION CONSTRAINTS AND DATA FLOW

In addition to specifying a clustering protocol to describe
how the jumps of an interconnection of hybrid systems
interact, we also specify interconnection constraints that
specify how data flows in the interconnection. We may be
interested in data flow on a subset of the channels, perhaps
because systems have not been been assigned to all of
the channels. Suppose we are interested in specifying data
flow on L ∈ N≥2 different channels, corresponding to the
indices {i1, . . . , iL} with state and input pairs (xij , uij ) ∈
Rnij × Rmij for j ∈ N≤L. Define

n :=

L∑
j=1

nij , m :=

L∑
j=1

mij (15)

and

x := (xi1 , . . . , xiL) ∈ Rn, u := (ui1 , . . . , uiL) ∈ Rm. (16)

We then choose to specify data flow through a closed
constraint

(x, u) ∈ H ⊂ Rn+m, (17)

i.e., H is a closed set.
Example 2: Suppose each system is given an output yij

that is a continuous function of (xij , uij ) and the inputs u of
the various systems are related to outputs y := (yi1 , . . . , yiL)
via a linear equation y = Γu, where Γ is a matrix of
appropriate dimension. This equation can be written as
y(x, u) = Γu and then H is the relation

H := {(x, u) : y(x, u)− Γu = 0} (18)

which is closed since y(·, ·) is assumed to be continuous.
Under the conditions of the global implicit function theorem,
e.g., y depends only on x and Γ is invertible, the constraint
H resolves to a continuous equation for u in terms of x. ■

The interconnection constraint H adds an additional con-
straint to the flow and jump sets of the hybrid system.
In the previous section, the construction of (C,F,D,G)
corresponding to a given protocol can be extended to a
construction that includes an interconnection constraint by
restricting (x, u) to the set H . The following observation is
straightforward.

Proposition 4: The hybrid system obtained by including
an interconnection constraint H and then specifying a clus-
tering protocol λ is the same as the hybrid system obtained
by specifying the clustering protocol λ and then including the
interconnection constraint H , i.e., the operations commute.
If each hybrid system in the interconnection satisfies the



hybrid basic conditions and H is a closed relation then
the hybrid system resulting from the interconnection and
clustering satisfies the hybrid basic conditions.

VII. A DISTRIBUTED HYBRID AVERAGE CONSENSUS
ALGORITHM WITH LOCALLY COORDINATED JUMPS

In this section, we augment a continuous-time average
consensus algorithm with locally coordinated jumps that do
not alter convergence to average consensus while adding
some flexibility to the algorithm.

A. Incidence matrix background

We consider a hybrid average consensus algorithm with
locally coordinated jumps using the framework developed
in this paper. We consider the setting of N̂ ∈ N≥2 agents
communicating over a connected, undirected graph. Let
L ∈ N denote the number of edges in the graph. For
i ∈ N≤N̂ , let Li denote the number of nodes connected
to agent i and let Ni denote the set of Li agents connected
to agent i, i.e., the “neighbors” of agent i. Since the graph
is undirected, we have that

∑N̂
i=1 Li = 2L. To define the

graph’s incidence matrix B ∈ RN̂×2L, let Σ0 := 0 and
Σi :=

∑i
j=1 Lj for i ∈ N≤N̂ . Then, for each i ∈ N≤N̂

and each j ∈ {Σi−1 + 1, . . . ,Σi}, associate a unique agent
κj ∈ Ni and let BT (j, i) = 1 and BT (j, κj) = −1; all other
entries of B are equal to zero. The connectedness assumption
guarantees that BBT +1N̂1T

N̂
is positive definite. In addition,

BT1N̂ = 0.

B. Problem formulation and algorithm basics

The goal of the hybrid average consensus algorithm is for
each agent to asymptotically determine the average of the
components of a constant vector ξ∗ ∈ RN̂ , denoted avg(ξ∗),
using communication compatible with the incidence matrix.

Each agent is given a state zi ∈ RLi with dynamics of the
form

ui,C ∈ [0, 1] żi = ui,F (19a)

ui,D ∈ {1} z+i = gi(ui,G, u
+
i,G) (19b)

and the composite state for this part of the system is z :=
(zT1 , . . . , z

T
N̂
)T ∈ R2L.

Let K ∈ R2L×2L be a diagonal, positive definite matrix.
Following [27], the interconnection constraints for the net-
work of agents will be chosen to induce the flow dynamics

ż = −KBT ζ, ζ = Bz + ξ∗ (20)

where ζi is node i’s estimate of avg(ξ∗). A Lyapunov
function that establishes average consensus for (20) is

V (z, ξ∗) :=
∣∣ζ − avg(ξ∗) · 1N̂

∣∣2
2
. (21)

In particular, it can be shown (see [27]) that

⟨∇V (z, ξ∗),−KBT (Bz + ξ∗)⟩ (22)

≤ −λmin(K)λmin

(
BBT + 1N̂1T

N̂

)
V (z, ξ∗).

Therefore, average consensus is achieved without introducing
any jumps, as long as the graph is connected. However, there

may be interest in introducing jumps to further influence
the progress toward average consensus or to provide a
discrete-time communication patch to a network that loses
its connectivity property due to a loss of continuous-time
communication over a link or set of links.

In this direction, in addition to the dynamics of the agents,
the network has an array of ρ ∈ N processing modules,
where each module collects data locally from a relatively
small group of connected agents. For the jth processing
module, j ∈ N≤ρ, we let Ij ⊂ N≤N̂ denote the indices of the
agents influenced by the jth processing agent. Without loss
of generality, we assume that each such set has cardinality
rj ≥ 2, that the number of edges that connect agents in
Ij , denoted pj , is positive, and that each agent in Ij is
connected to some other agent in Ij . For each j ∈ N≤ρ ,
the jth processing unit has hybrid dynamics of the form

(αj , τj) ∈ R2pj × [0, 1]

[
α̇j

τ̇j

]
∈
[

0[
ωj , ωj

] ]
(23a)

(αj , τj) ∈ R2pj × {1}
[

α+
j

τ+j

]
=

[
uj

0

]
(23b)

where 0 ≤ ωj < ωj .
The jumps of αj , which will determine jumps of zi for all

i ∈ Ij , due to the clustering protocol described later, will be
designed to not increase (and often decrease) the Lyapunov
function candidate, i.e.,

V (z+, ξ∗) =
∣∣ζ+ − avg(ξ∗) · 1N̂

∣∣2
2

(24)

≤
∣∣ζ − avg(ξ∗) · 1N̂

∣∣2
2
= V (z, ξ∗).

The processing modules need to be able to make such a
choice for ζ+ without knowing avg(ξ∗).

The jth processing module will update the sub-
components of zi, i ∈ Ij , that correspond to the edges that
connect agents in the set Ij . Given the definition of ζ in
(20), we see that, among all of the entries of ζ, these sub-
components appear only in the entries ζi that satisfy i ∈ Ij .
We use ζ̂j ∈ Rrj for the components of ζ whose indices
belong to Ij , ẑj ∈ R2pj for the z variables that correspond
to edges that connect agents in Ij , B̂j to be the rows and
columns of B that relate ẑj to ζ̂j , and v̂j to be such that

ζ̂j = B̂j ẑj + v̂j . (25)

We then pick uj in (23b) to satisfy

uj = −B̂†
j v̂j (26)

where B̂†
j denotes the Moore-Penrose pseudo-inverse of B̂j .

We now explain why this choice has the desired effect when
α+
j = uj = ẑ+j .
Since 1T

N̂
B = 0, any change to z cannot change the

average of ζ. Then, since changes to ẑj change only ζ̂j and
not the other components of ζ, any changes to ẑj cannot
change the average of ζ̂j . Next, we note that∣∣ζ+ − avg(ξ∗) · 1N̂

∣∣2
2
−

∣∣ζ − avg(ξ∗) · 1N̂

∣∣2
2

(27)

=
∣∣∣ζ̂+j − avg(ξ∗) · 1rj

∣∣∣2
2
−

∣∣∣ζ̂j − avg(ξ∗) · 1rj

∣∣∣2
2
.



Now suppose that the processing module achieves∣∣∣ζ̂+j − avg(ζ̂j) · 1rj

∣∣∣2
2
≤

∣∣∣ζ̂j − avg(ζ̂j) · 1rj

∣∣∣2
2
. (28)

Then note that∣∣∣ζ̂+j − avg(ξ∗) · 1rj

∣∣∣2
2

=
∣∣∣ζ̂+j − avg(ζ̂j) · 1rj + avg(ζ̂j) · 1rj − avg(ξ∗) · 1r

∣∣∣2
2

=
∣∣∣ζ̂+j − avg(ζ̂j) · 1rj

∣∣∣2 + rj

(
avg(ζ̂j)− avg(ξ∗)

)2

≤
∣∣∣ζ̂j − avg(ζ̂j) · 1rj

∣∣∣2 + rj

(
avg(ζ̂j)− avg(ξ∗)

)2

=
∣∣∣ζ̂j − avg(ξ∗) · 1rj

∣∣∣2
2

thereby making the quantity in (27) not positive, thereby
achieving (24).

Motivated by the desire to satisfy (28) and using (25), we
pick uj = ẑ+j = α+

j to be the minimum norm solution from
the set of values uj that minimize∣∣∣B̂juj + v̂j − avg(ζ̂j) · 1rj

∣∣∣2
2

which is (26) since it can be verified that B̂T
j 1rj = 0 and

since, in general, A† = (ATA)†AT ; see [28, Theorem 3.8.1].

C. Clustering protocol

The overall system involves the interconnection of N̂ + ρ
hybrid systems where ρ is the number of processing modules
that are used. The clustering protocol imposed is that given
in Example 1 item 5) with N1 := N̂ , N2 := ρ and, for
i ∈

{
N̂ + 1, . . . , N̂ + ρ

}
, Ii ⊂ N≤N̂ is the set of agents

that the ith processing module influences.

D. Interconnection constraints and data flow

The interconnection constraints are such that, in the model
(23), uj is given as in (26) and, in the models (19):

1) the inputs ui,F in (19a) are such that the flow dynamics
for the partial composite state z are given by (20);

2) ui,C = ui,D = max{j:i∈Ij} τj or, if there is no such j
then ui,C = ui,D = 0.

3) the inputs ui,G in (19b) are such that zi updates
via the update z+ij , the latter being the update for
zi that corresponds to the update α+

j in the state
of the processing module j described above (when
i ∈ Ij). The appropriate module can be determined
by recognizing which (if any) module with index j
such that i ∈ Ij satisfies τ+j − τj ≤ −0.5. There will
be, at most, just one such index j, due to the clustering
protocol specification of the previous subsection. We
note that z+i depends on both α+ and τ+, thereby
motivating our use of u+ in the model (1b) and u+

i,G

in the model (19b).
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