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Convergence of Nonlinear Observers on Rn with
a Riemannian Metric (Part III)

Ricardo G. Sanfelice and Laurent Praly

Abstract—This paper is the third and final component of a
three-part effort on observers contracting a Riemannian distance
between the state of the system and its estimate. In Part I, we
showed that such a contraction property holds if the system
dynamics and the Riemannian metric satisfy two key conditions:
a differential detectability property and a geodesic monotonicity
property. With the former condition being the focus of Part II,
in this Part III, we study the latter condition in relationship
to the nullity of the second fundamental form of the output
function. We formulate sufficient and necessary conditions for it
to hold. We establish a link between it and the infinite gain margin
property, and we provide a systematic way for constructing a
metric satisfying this condition. Finally, we illustrate cases where
both conditions hold.

I. INTRODUCTION

A. Background
We consider nonlinear systems on RRRRn of the form

.
x = f(x) , y = h(x), (1)

where x represents the state living in RRRRn, y : RRRRn → RRRRn
represents the measured output living in RRRRp and f : RRRRn → RRRRn
and h : RRRRn → RRRRp are functions.

For this class of systems, we continue the study, started in
[1] and [2], of designing

1) a state observer, namely, a dynamical system
.
x̂ = F (x̂,h(x)) , (2)

with a state x̂ living in the same manifold as the system
state x to be estimated, such that the zero estimation
error set

A = {(x, x̂) ∈ RRRRn × RRRRn : x = x̂} (3)

2) is forward invariant,
3) solutions to (1)-(2) converge to it – a property that is

guaranteed when a Riemannian distance between true
and estimated state strictly decreases,

4) and has an infinite gain margin (see Definition 3.1).
There is a large corpus of contributions dedicated to this

problem in the literature. The case when the distance is
Euclidean, in appropriate coordinates, has been deeply investi-
gated, giving rise to the well-known Luenberger observer [3],
Kalman filter [4], and high-gain observer [5]. The case where
the distance is derived from a Riemannian metric given by the
dynamics or by the manifold the state belongs to was studied
in [6], [7], [8]. The design procedure proposed there exploits
properties of the given metric to establish local convergence of
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the distance to zero, specifically, via an appropriate choice of
coordinates or modification of the metric. In this paper, which
continues from [1] and [2], the Riemannian metric is not given
but properly chosen as part of the design of the observer.

B. Motivation
The choice of the Riemannian metric mentioned above

is dictated by the following result reported in Theorem 3.3
and Lemma 3.6 in [1] (see also [9]). We state it slightly
differently but keep the original numbering of the conditions.
The symbols and notions – e.g., complete, Riemannian metric,
d2

1℘, geodesic, and Riemannian distance – are defined in
Appendix A1.

Theorem 1.1: Given C3 functions f and h, suppose there
exists a complete C3 Riemannian metric P and an open subset
Ω of RRRRn such that
A2 : There exist a continuous function ρ : Ω→ [0,+∞) and

a strictly positive real number q satisfying1

Lf P(x)≤ ρ(x)dh(x)⊗ dh(x)− q P(x) ∀x ∈ Ω . (4)

A3 : There exists a C3 function ℘ : (y1,y2) ∈ RRRRp × RRRRp 7→
℘(y1,y2) ∈ [0,+∞) satisfying

℘(y,y) = 0 , d2
1℘(y,y) > 0 ∀y ∈ h(Ω) (5)

and, for any geodesic γ∗, taking values in Ω and
minimizing on the maximal interval (s1, s2), we have

d

ds
{℘(h(γ∗(s)),h(γ∗(s3)))} > 0 ∀s ∈ (s3, s4),

∀s3, s4 ∈ (s1, s2) : (6)

s3 < s4 & h(γ∗(s3)) 6= h(γ∗(s4)) .

Under these conditions, for any strictly positive real number
E and any closed subset C of Ω with a nonempty interior,
there exists a continuous function k∗E : C → R>0 such that
– for any continuous function kE : C → R satisfying

kE(x̂) ≥ k∗E(x̂) ∀x̂ ∈ C ,

– for the observer given by
.
x̂ = F (x̂, y) := f(x̂) − kE(x̂) gP[℘ ◦ h](x̂,y) , (7)

1Component-wise the inequality (4) is∑
c

[
∂Pab

∂xc
(x)fc(x) + Pac(x)

∂fc

∂xb
(x) + Pbc(x)

∂fc

∂xa
(x)

]
≤ ρ(x)

∑
i

∂hi

∂xa
(x)

∂hi

∂xb
(x)− qPab(x) ,

and the observer equation (7) is
.
x̂a = fa(x̂)− kE(x̂)

∑
b

[P (x̂)−1]ab
∑
i

∂hi

∂xb
(x̂)

∂℘

∂y1i
(h(x̂), y) .
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where, for each y, x̂ 7→ gP[℘ ◦ h](x̂,y) is the Rieman-
nian gradient (with respect to x̂) of the function x̂ 7→
℘(h(x̂),y),

– and, for all x and x̂ in C satisfying

d(x̂,x) < E , (8)

where d denotes the Riemannian distance induced by P, and
linked by a minimizing normalized geodesic γ∗ satisfying

x = γ∗(0) , x̂ = γ∗(ŝ) , γ∗(s) ∈ C ∀s ∈ [0, ŝ] ,

we have2

D+d(x̂,x) ≤ −q
4
d(x̂,x) . (9)

The consequence of (9) in Theorem 1.1 is that, as long as
the assumptions are satisfied, the distance between the true
state x and the estimated state x̂ is exponentially decreasing.
Among the assumptions is the fact that the Riemannian metric
P must satisfy two key conditions that are of complete different
nature.

The first condition, referred to as Condition A2, named
strong differential detectability with respect to the metric P, is
related to detectability of (1), and, as such pertains to control
theory. It involves the right-hand side f , the output map h, and
the Riemannian metric P to be chosen. Geometrically, it says
that the flow generated by (1) contracts along directions that
are tangent to the level sets of h. In [1], we show that a weak
form of this differential detectability property is necessary for
the existence of an observer with state x̂ in the same space
as the system state x and making the set A in (3) invariant
and a Riemannian distance between true state and its estimate
to decrease exponentially when evaluated along solutions. We
show also that uniform detectability of the linearization of
(1) along each of its solutions is necessary for Condition A2
to hold. In [2], we present techniques for the design of the
Riemannian metric P for given functions f and h so that
Condition A2 holds. We show that such a design is possible
when (1) satisfies any of the following properties:

i) Strongly infinitesimally reconstructible (see [2, Definition
3.1]) in the sense that each time-varying linear system
resulting from the linearization along a solution to the
system (1) satisfies a uniform reconstructibility property;

ii) Strongly differentially observable, in the sense that the
state to output derivatives mapping is an injective im-
mersion (see [2, Proposition 4.4]);

The second condition, referred to as Condition A3, says
roughly that, if, along a geodesic, the distance between the true
state x and its estimate x̂ reduces then the same holds between
the corresponding true (measured) output y and its estimate
h(x̂). Following [10, Definition 6.2.3], a function h satisfying
Condition A3 is known as being geodesically monotone. This
property involves the output map h and the Riemannian metric
P, but not f . In [1, Proposition A3], we established that this
property implies that the level sets of h are strongly convex,
which is a property that is typically exploited in optimization
theory; see, e.g., [11]. Actually it is needed only to allow E in
(8) to be arbitrary – in this way, making the result semiglobal.
Indeed, in [2] we show that, without it, Condition A2 alone
guarantees the existence of a locally (i.e., E is imposed and

2 D+d(x̂,x) = lim sup
t↘0

d(X̂((x̂,x), t),X(x, t))− d(x̂,x)

t

small enough) convergent observer and a locally convergent
reduced order observer. See [2, Propositions 2.4 and 2.8].

C. Contributions

Parallel to [1], dedicated to the study and design of a metric
satisfying the strong differential detectability property of Con-
dition A2, we devote this paper to the geodesic monotonicity
property in Condition A3. Our contributions are as follows:

1) In Section III-A, we show that Condition A3 is equiva-
lent to the infinite gain margin property (see Definition
3.1) when the correction (or innovation) term in the
observer is of gradient type as in (7).

2) In Section III-B and Proposition 3.4, we show that Con-
dition A3 holds if h is a (geodesically) affine function.

3) In Section III-C, we give necessary conditions for Con-
dition A3 to hold. In particular, we reveal the key
role played by the second fundamental form of the
function h (see Definition 3.7), and the fact that h is
a Riemannian submersion (see Definition 3.17), with
totally geodesic (see Definition 3.13) level sets and an
integrable orthogonal distribution (see Definition 3.10).

4) In Corollary 3.9, we propose a test to check if Condition
A3 holds. The conditions to check depend on symbolic
computations involving h, P, and their differentials.

5) In Theorem 3.24, we present a systematic way to con-
struct a metric P satisfying Condition A3.

6) In Section IV, we illustrate, via examples, situations in
which both Conditions A2 and A3 hold.

Because of space limitations, details behind routine (but
sometimes lengthy) computations involved in the proofs are
omitted. They can be found in [12], along with additional
material not referred to in this paper.

The reading of this paper requires the knowledge of well
established concepts and results from Riemannian geometry,
in particular, on Riemannian submersions and on optimization
on Riemannian manifolds. [13], [14], [15], [11] are relevant
references on such topics.

As a difference to our previous work, coordinates play a
significant role in the solution we have found to design a
Riemannian metric P satisfying Condition A3. Our first step
is to introduce our notation involving coordinates and related
basic assumptions.

II. PRELIMINARIES AND NOTATION

Symbols in bold style represent coordinate-free objects. In
particular, x and y are points in a manifold, f is a vector field
on a tangent bundle, h is a function between manifolds, P is
a symmetric 2-covariant tensor, etc.

Once coordinates, defined below, x and y, with letters in
normal style type, have been chosen for x and y, we can
express the corresponding objects: f(x) for the value of f at
the point x, h(x) for h(x), P (x) for P(x), etc.

The writing of the system in (1) and of the observer in
(7) with the state, the output, and the functions in bold style
means that the coordinates used therein play no role, namely,
the expression of both the plant and the observer dynamics
are coordinate free. However, the use of normal style type for
kE and ℘ in the observer (7), and for d in (8) and in (9)
is to indicate that a change of coordinates in [0,+∞) is not



3

allowed, i.e., these are scalar invariant functions taking values
in [0,+∞).

As a general rule, when not used as indices, the symbols x,
P , d, γ, φ, C . . . are used for the x-manifold RRRRn, while the
symbols y, Q, e, δ, χ, D, . . ., following in the alphabetical
order, are used for the y-manifold RRRRp. For example, the
expression of the Riemannian norm of the velocity of a
path and of the distance between two points are denoted
dγ
ds (s)>P (γ(s))dγds (s) and d(xa, xb) in the x-manifold, while,
in the y-manifold, they are denoted dδ

ds (s)>Q(δ(s))dδds (s) and
e(ya, yb), respectively.

As usual (see [16, p. 40]) we call coordinate chart a triple,
respectively, (x,M, φ) for the x-manifold RRRRn and (y,N , χ)
for the y-manifold RRRRp, such thatM and N , called coordinate
domains, are open subsets of, respectively, RRRRn and RRRRp and
φ :M→ Rn and χ : N → Rn are homeomorphisms, called
coordinate maps, satisfying

x = φ(x) ∀x ∈M , y = χ(y) ∀y ∈ N .

where x = (xa, xb, . . . ) in Rn and y = (yi, yj , . . .) in Rp are
called local coordinates. Roman letters a, b, . . . , are used as
indices for x and run over the range {1, 2, . . . , n} and roman
letters i, j, . . . , are used as indices for y and run over the
range {1, 2, . . . , p}.

Denoting the family of (as many times as necessary) con-
tinuously differentiable functions Cs, the coordinate charts
(x,M, φ) and (y,N , χ) are assumed to assure a Cs structure,
in the sense that, for any two coordinate charts (x1,M1, φ1)
and (x2,M2, φ2), φ1 ◦ φ−1

2 is a Cs diffeomorphism. A
coordinate chart (x,M, φ) is said to be a coordinate chart
around x0 if x0 belongs to M.

As an illustration of these definitions, given coordinate
charts (x,M, φ) around x0 and (y,N , χ) around h(x0), with
h(M) contained in N , the expression h of the function h is

h(x) = χ(h(φ−1(x))) ∀x ∈ φ(M).

Given coordinate charts (x,M, φ) and (y,N , χ), and Cs

diffeomorphisms C : φ(M) → Rn and D : χ(N ) → Rp, we
obtain new coordinates charts (x̄,M̄, φ̄) and (ȳ, N̄ , χ̄), where

x̄ = C(x) , M̄ = M , φ̄ = C ◦ φ ,
ȳ = D(y) , N̄ = N , χ̄ = D ◦ χ .

Then we have, for example, the following relationships be-
tween the expressions of the vector field f , the function h,
and the symmetric 2-covariant tensor P:

f̄(C(x)) = ∂C
∂x (x) f(x) ,

h̄(C(x)) = D(h(x)) ,
∂C
∂x (x)>P̄ (C(x)) ∂C∂x (x) = P (x) ,

(10)

where (f, h, P ) and (f̄ , h̄, P̄ ) are the expressions of (f ,h,P) in
the corresponding coordinates (x, y) and (x̄, ȳ), respectively.

More insight can be gained in the context of observers when
y, coordinates for h(x), can be used as part of coordinates for
x. This motivates the following assumption.

Assumption I: The function h : RRRRn → RRRRp is a submersion3

on a set Ω.

3This means, the set Ω = {x ∈ RRRRn : Rank (dh(x)) = p}, is open,
where dh is the differential of h.

When this assumption holds, we have the following result.
See [17, Theorem I.2.1(2)].

Theorem 2.1 (Local Submersion Theorem): If h : RRRRn → RRRRp
is a submersion on a set Ω then h(Ω) is an open set and, for
any point x0 of Ω, there exist a coordinate chart (x,M, φ)
around x0, a coordinate chart (y,N , χ) around h(x0), with N
containing h(M), and a submersion hcom : φ(M)→ Rn−p on
φ(M) such that C = (h, hcom) : φ(M) → h(φ(M)) × Rn−p
is a Cs diffeomorphism. Consequently, ((y, z),M, φN ), with
φN = C ◦ φ, is a coordinate chart4 around x0.

In this statement, z = (zα, zβ , . . .) is in the open set
hcom(φ(M)). The greek letters α, β, . . . , used as indices,
run over the range {1, 2, . . . , n − p}. A coordinate chart
((y, z),M, φN ) is, by nature, paired with the coordinate chart
(y,N , χ), with the same y and, without loss of generality,

h(M) = N , y = χ(h(φ−1
N (y, z))) ∀(y, z) ∈ φN (M) .

When (y, z) are used as coordinates for x, we decompose the
expression P of P as

P (y, z) =

(
Pyy(y, z) Pyz(y, z)
Pzy(y, z) Pzz(y, z)

)
. (11)

In such a case, changes of coordinates take the particular form

(ȳ, z̄) = (D(y), E(y, z))

where D : Rp → Rp is a Cs diffeomorphism and E : Rp ×
Rn−p → Rn−p is such that (D, E) is a Cs diffeomorphism.

Throughout the paper, we use objects from differential
geometry. Some of these objects are explained in the glossary
in Appendix A1.

III. ON CONDITION A3
A. Is Condition A3 necessary?

To answer this question, we invoke the infinite gain margin
property, which, in the context of our proposed observer, is
defined as follows.

Definition 3.1 (Infinite gain margin [1, Definition 2.8]): Let
P be a Riemannian metric on RRRRn and Ω an open subset of
RRRRn. An observer

.
x̂ = f(x̂)− C(x̂,y) , (12)

where C is a correction term, is said to have an infinite gain
margin on Ω with respect to P if, for any geodesic γ∗ taking
values in Ω and minimizing on the maximal interval (s1, s2),
we have

either
dγ∗

ds
(s4)>P(γ∗(s4))C(γ∗(s4),h(γ∗(s3))) > 0

or C(γ∗(s4),h(γ∗(s3))) = 0
(13)

∀s3, s4 ∈ (s1, s2) : s3 < s4 ,

From the first order variation formula (see, for instance,
[18, Theorem 6.14] or [19, Theorem 5.7]), and properties of
Riemannian distances and geodesics, the upper right-hand
Dini derivative of the distance between x = γ∗(s3) and
x̂ = γ∗(s4) satisfies

4The subscript N in φN is introduced to emphasize that this particular
coordinate chart involves, in its construction, a coordinate chart for the y-
manifold RRRRp.
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D+d(x̂,x) ≤ −dγ
∗

ds
(s4)>P(γ∗(s4))C(γ∗(s4),h(γ∗(s3))))

+

[
dγ∗

ds
(s4)>P(γ∗(s4)) f(γ∗(s4)) (14)

−dγ
∗

ds
(s3)>P(γ∗(s3)) f(γ∗(s3))

]
.

Hence, when (13) holds, the correction term C always
contributes to the decrease of the distance between x̂ and x.
If the contribution of C were to be negative, then the desired
decrease of the distance would have to be provided by the
dynamics of the system dictated by f – namely, by the term
around brackets in (14).

Remark 3.2: Although observers without infinite gain mar-
gin do exist, those with infinite gain margin are quite common.
They are guaranteed to exist for any system as in (1) belonging
to the following family:
“Euclidean family”: There exists a coordinate chart

(x,M, φ) for which the expression h of the output is

h(x) = Hx

and the expression P of a Riemannian metric P satisfying
Condition A2 is a constant matrix.

Indeed, when h satisfies this property, (13) simplifies to5

(x̂− x)>P C(x̂, Hx) > 0 ∀(x̂, x) ∈ φ(M)2 : x̂ 6= x

and it suffices to pick

C(x̂, Hx) = kE(x̂)P−1H>(Hx̂−Hx) ,

where kE : RRRRn → R is a continuous function.
In the particular case where the correction term in the

observer is of gradient type as in (7), the infinite gain margin
property is equivalent to Condition A3. This equivalence
results from the following consequence of (7):

d

ds
℘(h(γ∗(s)), h(γ∗(s3)))

=
∂℘

∂y1
(h(γ∗(s)), h(γ∗(s3)))

∂h

∂x
(γ∗(s))

dγ∗

ds
(s) ,

= 1
kE(x)

dγ∗

ds
(s)>P (γ∗(s))C(γ∗(s), h(γ∗(s3)))> ,

written with the coordinate chart (x,M, φ) where

x = γ∗(s3) , x̂ = γ∗(s) .

We conclude that, if we want an observer of gradient type with
a correction term contributing to the decrease of the distance
between the state and its estimate, Condition A3 must hold.

B. A Sufficient Condition for the Satisfaction of Condition A3
When the output function h is given, the function ℘ and

the metric P are the only objects remaining at our disposal to
satisfy Condition A3.

1) Choice of the Function ℘: We need the function ℘ to
quantify the “gap” between h(x̂) and h(x). This motivates us
to equip the y-manifold RRRRp with a Cs complete Riemannian
metric Q and obtain a distance, which we denote e. Then,
we choose the function ℘ as

℘(y1,y2) = e(y1,y2)2 . (15)

5The fact that P is constant allows to express any minimal geodesic γ∗
between x and x̂ as a straight line connecting x = γ∗(s3) to x̂ = γ∗(s4).

To have the required smoothness property on ℘, we need an
extra property for Q, as the following lemma states.

Lemma 3.3: Assume the complete metric Q is such that
any piece of geodesic δ is minimizing. Then the function ℘
defined in (15) is Cs and, for any y1, any coordinate chart
(y,N , χ) around y1, and any y2 in N that is linked to y1 by
a (minimizing) geodesic δ∗ with values in N on (s1, s2), i.e.
we have

δ∗(s1) = y1 , δ∗(s2) = y2 , δ∗(s) ∈ χ(N ) ∀s ∈ (s1, s2) ,

we obtain

∂2℘

∂y2
1

(y1, y2)

∣∣∣∣
y2=y1

= 2Q(y1) ,

∂e2

∂y1
(y1, y2)> = 2

Q(y1)dδ
∗

ds (s1)e(y1, y2)√
dδ∗

ds (s1)>Q(δ∗(s1))dδ
∗

ds (s1)
.

(16)

Proof: The claim follows from [17, Proposition III.4.8]
since, whatever y1 is in the y-manifold RRRRp, no geodesic
emanating from this point has a cut point.
With what precedes, we consider the following assumption.

Assumption II: The y-manifold RRRRp is equipped with a
complete metric Q such that any corresponding geodesic δ
is minimizing on RRRR and the function ℘ is the square of the
corresponding distance.

The simplest way to satisfy the condition in Lemma 3.3 is
to choose the metric Q flat. Precisely, with

– RRRRp equipped with a global coordinate chart (ȳ,RRRRp, id)
with the identity matrix Ip as expression of a metric;

– DDDD an homeomorphism from RRRRp onto RRRRp ,
for any y0 in RRRRp and any coordinate chart (y,N , χ) around
y0, the expressions D and Q of DDDD and Q satisfy (see (10)):

ȳ = D(y) , Q(y) =
∂D

∂y
(y)>Ip

∂D

∂y
(y) ∀y ∈ χ(N ) .

This implies that the distance e is Euclidean when y is
expressed with the specific coordinates ȳ which may not
necessarily be the physical quantities provided by the sensors.

2) Choice of the Metric P: With the function ℘ being the
square of the distance e in the y-manifold RRRRp as in (15), in
view of the interpretation of Condition A3 in terms of geodesic
monotonicity, the simplest case for this condition to hold is
when the image under h of a geodesic in the x-manifold is a
geodesic in the y-manifold.

Proposition 3.4: Suppose Assumptions I and II hold. Then,
Condition A3 is satisfied if any geodesic γ∗, in the x-manifold
RRRRn, that takes values in the open set Ω ⊂ RRRRn on a maximal
interval (s1, s2), is such that s ∈ (s1, s2) 7→ h (γ∗(s)) is
either constant or a geodesic in the y-manifold RRRRp.

Remark 3.5: The “Euclidean family” introduced in Remark
3.2 gives the simplest case we can think of for this property
to hold. Indeed with choosing a constant matrix for the
expression of Q, we take advantage of the property that the
image by a linear function of a straight line is a straight line.

Proof: By assumption, for any geodesic γ∗ taking values
in Ω and minimizing on the maximal interval (s1, s2), the
function s ∈ (s1, s2) 7→ h (γ∗(s)) is either constant or a
geodesic s ∈ (s1, s2) 7→ δ∗(s) in the y-manifold RRRRp. In the
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former case, we have

h(γ∗(s3)) = h(γ∗(s4)) ∀s3, s4 ∈ (s1, s2) : s3 < s4 .

In the latter case, we have

dh ◦ γ∗

ds
(s) =

dδ∗

ds
(s) 6= 0 ∀s ∈ (s3, s4)

and
h(γ∗(s3)) 6= h(γ∗(s4))

∀s3, s4 ∈ (s1, s2) : s3 < s4 .

On another hand, with Assumption II, any geodesic in the y-
manifold is minimizing, so (16) gives,

d

ds
{℘(h(γ∗(s),h(γ∗(s3))} = 2 e(h(γ∗(s),h(γ∗(s3)) ×

×
√
dh ◦ γ∗
ds

(s)>Q(γ∗(s))
dh ◦ γ∗
ds

(s)

∀s ∈ (s3, s2) , ∀s3 ∈ (s1, s2) .

where, e being a distance for RRRRp, the right-hand side is strictly
positive. Hence, (6) holds.

To make the condition in Proposition 3.4 more explicit, we
note that h(γ) is a geodesic in the y-manifold RRRRp if and only
if h(γ) satisfies the geodesic equation and therefore, thanks to
[16, Theorem 9.12] for example, if and only if, the following
holds:
– for any x0 in Ω and any pair of coordinate charts (x,M, φ)

around x0 and (y,N , χ) around h(x0), with “objects”
expressed in these coordinates and with Γa and ∆i denoting
the respective Christoffel symbol matrices, namely

Γa = (Γabc) , ∆i
= (∆i

jk) ,

– for any geodesic γ∗, with values in φ(M) and their image
by h in χ(N ), and minimizing on the maximal interval
(s1, s2),

the geodesic equation in χ(N ) and in φ(M) are, respectively,
for all s in (s1, s2),

0 =
d2hi ◦ γ∗

ds2
(s)

+
dγ∗

ds
(s)>

∂h

∂x
(γ∗(s))>∆i

(h(γ∗(s)))
∂h

∂x
(γ∗(s))

dγ∗

ds
(s)

∀i ∈ {1, 2, . . . , p} ,

0 =
d2γ∗c
ds2

(s) +
dγ∗

ds
(s)>Γc(γ∗(s))

dγ∗

ds
(s)

∀c ∈ {1, 2, . . . , n} .

Then, with the uniqueness of the solution to the geodesic
equation, we have the following result. Its proof can be found
in [13] or [11].

Lemma 3.6 ([13, Proposition 1.5] or [11, Theorem 6.4.1]):
Let Ω be an open subset of RRRRn. Suppose Assumption I holds.
The following two properties are equivalent6

1) Any geodesic γ∗, in the x-manifold RRRRn that takes values
in Ω on a maximal interval (s1, s2), is such that s ∈

6According to [20] (but not [13]) a function h satisfying the property in
item 1 is said to be affine on Ω. In the case where p = 1 and the metric
Q is flat, h is said linear affine in [11, p. 88 and following pages] where its
necessary and sufficient conditions are presented.

(s1, s2) 7→ h (γ∗(s)) is either constant or a geodesic in
the y-manifold RRRRp.

2) For any point x0 in Ω, any coordinate chart (x,M, φ)
around x0 and any coordinate chart (y,N , χ) around
h(x0), with h(M) contained in N , we have, for all x
in φ(M∩ Ω),

0 =
∂2hi
∂xa∂xb

(x) (17)

−
∑
c

Γcab(x)
∂hi
∂xc

(x) +
∑
j,k

∆i
jk(h(x))

∂hj
∂xa

(x)
∂hk
∂xb

(x)

Lemma 3.6 motivates the following definition.
Definition 3.7 ([21, p. 123]): We call second fundamental

form IIPh of h the object defined as follows: For any point x0,
any coordinate chart (x,M, φ) around x0 and any coordinate
chart (y,N , χ) around h(x0), with h(M) contained in N ,
the expression of IIPh is

IIPh
i
ab(x) =

∂2hi
∂xa∂xb

(x) (18)

−
∑
c

Γcab(x)
∂hi
∂xc

(x) +
∑
j,k

∆i
jk(h(x))

∂hj
∂xa

(x)
∂hk
∂xb

(x) .

A coordinate-free version of this definition can be found in
[14, Definition I.1.4.1] or [15, Definition 3.1.1]. See also [22,
Definition 8.1].

Lemma 3.8: The second fundamental form IIPh is a bilinear
map of a pair of vector fields on the x-manifold RRRRn into a
vector field on the y-manifold RRRRp. It is a 2-covariant to 1-
contravariant tensor, i.e. by changing to coordinates

x̄ = C(x) , ȳ = D(y) ,

where C and D are Cs diffeomorphisms, the expression IIPh of
the second fundamental form in the new coordinates satisfies∑
c,d

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)IIPh
k

cd(x̄) =
∑
i

∂Dk
∂yi

(h(x))IIPh
i
ab(x) .

(19)
A proof of Lemma 3.8 can be found in Appendix A2.
We can rephrase the way to guarantee Condition A3 stated

in Proposition 3.4 as follows.
Corollary 3.9: Suppose Assumptions I and II hold. Then,

Condition A3 is satisfied if the second fundamental form of
h is zero on the open subset Ω.

Consequently, (17) provides a test for Condition A3 that
involves h, P , and their first derivatives.

C. Necessity of the nullity of IIPh
With Corollary 3.9, it is tempting to forget about Condition

A3 and base our design of the Riemannian metric P on
guaranteeing that the second fundamental form of h is zero.

Next, we investigate such an approach. Namely, given
h : RRRRn → RRRRp, a submersion on a set Ω, as in Assumption I
and Q, a metric equipping the y-manifold Rp and satisfying
Assumption II, let the function ℘ be the square of the distance
e in the y-manifold Rp, as written in (15). We are interested
in the following question:
(Q1) Is the second fundamental form of h being null, i.e. the

property in (17), a necessary for Condition A3 to hold?
We address this question, by grouping, as in [13, §3], the

equations in (17) into three blocks. We employ the following
definition; see [21, & C p.127], [13, p. 77], or [23, p. 205].
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Definition 3.10: The tangent space of the level sets of h,
denoted D

tan, is called the tangent distribution. It satisfies

D
tan

(x) =
{
vtan : dh(x)vtan = 0

}
,

and does not depend on P. Its elements vtan are called tangent
vectors.

The P-orthogonal complement to the tangent distribution,
denoted D

ort
P , is called the orthogonal distribution. It satisfies

D
ort
P (x) =

{
vort : vtan>P(x)vort = 0 ∀vtan ∈ Dtan

(x)
}

and does depend on P. Its elements vort are called orthogonal
vectors.

What we refer to as orthogonal distribution is usually called
horizontal distribution, and variations of the letter h are used
to denote it. But since we use the letter h to denote the output
function in this paper, we employ the term orthogonal and
use the symbol ort. For consistency, we use the symbol tan
and call tangent distribution what is usually called vertical
distribution.

Ignoring the x-dependence, basic linear algebra leads to the
following result.

Lemma 3.11: For any pair of coordinate charts (x,M, φ)

and (y,N , χ), by letting h, P and Dort
P (x) be the corresponding

expressions of h, P and D
ort
P (x), the orthogonal distribution

D
ort
P (x) is spanned by the columns of the gradient of h, i.e. by

the columns of P (x)−1 ∂h
∂x (x)>.

Given a pair of coordinate charts (x,M, φ) and (y,N , χ),
D

ort
P (x) and Dtan

(x) are complementary linear subspaces of the
tangent space at x of the x-manifold RRRRn. As a consequence,
any vector v in this tangent space can be decomposed as

v = vort + vtan

with vort in Dort
P (x) and vtan in Dtan

(x). This property allows us
to decompose (17) in the following three blocks of equations,
for each i in {1, 2, . . . , p} and each x in φ(M∩ Ω):

vtan>IIPh
i(x)vtan = 0 ∀vtan ∈ Dtan

(x) , (20)

vort>IIPh
i(x)vort = 0 ∀vort ∈ Dort

P (x) , (21)

vort>IIPh
i(x)vtan = 0 ∀(vtan, vort) ∈ Dtan

(x)× D
ort
P (x) .(22)

With the above, we can rephrase question (Q1) as follows:

(Q1’) Does Condition A3 imply that equations (20), (21), and
(22) are satisfied?

Our answer builds from the study in [13], [14], [15]. For the
sake of completeness, we rewrite in our setting some of the
results therein.

1) About Necessity of (20):
Definition 3.12: Given y0 in the y-manifold RRRRp, the set

H(y0) = {x ∈ RRRRn : h(x) = y0} .

is called the y0-level set of h.
Definition 3.13: Given an open subset Ω of RRRRn and a point

x0 in Ω, the h(x0)-level set H(h(x0)) of h is said to be
totally geodesic on Ω if any geodesic γ taking values in Ω on
the maximal interval (s1, s2) and satisfying

dh(γ(s3))
dγ

ds
(s3) = 0 ,

for some s3 in (s1, s2), satisfies

h(γ(s)) = h(γ(s3)) ∀s ∈ (s1, s2) .

An equivalent definition is that, for any x0 in Ω, there exists
a coordinate chart (x,M, φ) around x0 such that we have

vtan>HPh(x) vtan = 0 ∀vtan∈ Dtan
(x) , ∀x ∈ φ(M∩Ω) ,

(23)
with HPh the expression of the Riemannian Hessian of h.

We have the following result. Its proof can be found in [13,
Lemma 3.2(i)] or [1, Proposition A.2.2 and A.3.1.a].

Lemma 3.14: Let Ω be an open set coming from Assump-
tion I and suppose Condition A3 holds with such choice of
Ω. Then, for any x0 in Ω and any coordinate chart (x,M, φ)
around x0, we have (20) or, equivalently, for any x0 in Ω, the
h(x0)-level set H(h(x0)) is totally geodesic on Ω.

Hence, the answer to Question (Q1’) is “yes” as far as (20)
is concerned.

Example 3.15: Consider the harmonic oscillator with un-
known frequency. Its dynamics are given as

.
y = zα ,

.
zα = −yzβ ,

.
zβ = 0 (24)

Given ε > 0, we consider the invariant open set7

Ωε = (25){
(y, zα, zβ) ∈ R3 : ε < zβy

2 + z2
α <

1

ε
, ε < zβ <

1

ε

}
.

In [2, Example 4.5], we have obtained the following metric
satisfying Condition A2:

P (y, zα, zβ) = (26) 1 0 −zβ 0
0 1 0 −zβ
0 0 −y −zα

P

 1 0 0
0 1 0
−zβ 0 −y

0 −zβ −zα

 ,

where P is a positive definite symmetric (4, 4) matrix.
Symbolic computations give Γyαα = Γyαβ = 0 and, up to
some nonzero factor k,

kΓyββ =

−y
[
z2
β det

(
E>2 PE2

)
+ 2zβ det

(
E>4 PE2

)
+ det

(
E>4 PE4

)]
−zα

[
z2
β det

(
E>1 PE2

)
+ zβ

[
det
(
E>2 PE3

)
+ det

(
E>1 PE4

)]
+ det

(
E>3 PE4

)]
where Ei is the 4 × 3 matrix made of the 3 × 3 identity
matrix with an additional raw of zeros inserted as its i-th
row. Hence (20) and therefore Condition A3 do not hold.

Similarly, it can be shown that Condition A3 does not hold
for the other metric, satisfying Condition A2, obtained in [2,
Example 3.7].

Fortunately, with the techniques presented below, we shall
be able to obtain, in Example 4.5, a metric satisfying Condi-
tions A2 and A3.

2) About (21): We shall not try to establish that (21) is
necessary for Condition A3 to hold. Instead, we show below
that, maybe after modifying appropriately P, we can always

7The system is not observable if y = zα = 0 or zβ = 0.



7

guarantee that (21) holds. To do so, we start by providing an
expression of (21).

Let (x,M, φ) be an arbitrary coordinate chart around some
x0 in Ω. With Lemma 3.11, an expression, in these coordi-
nates, of the restriction, denoted IIPhort,ort, to the orthogonal
distribution D

ort
P of the second fundamental form of h is, for

each i in {1, 2, . . . , p} and each x in φ(M∩ Ω),

[IIPh
ort,ort]i(x) =

∂h

∂x
(x)P (x)−1IIPh

i(x)P (x)−1 ∂h

∂x
(x)> .

(27)

By definition, equation (21) is equivalent to the nullity
of [IIPh

ort,ort]i(x), for each i in {1, 2, . . . , p} and each x in
φ(M ∩ Ω). Via computations using the components of the
second fundamental form above, and by expansion using the
identity

[P−1]iα = −
∑
l

[P−1]il
∑
η

Plη[P−1
zz ]ηα ,

we can establish the following result.
Lemma 3.16: For any x0 in Ω and any pair of coordi-

nate charts ((y, z),M, φN ) around x0 and (y,N , χ) around
h(x0), the expression of IIPhort,ort in (27) is

2[IIPh
ort,ort]ijk =∑
l

Q−1
il

(
∂Qlk
∂yj

+
∂Qlj
∂yk

− ∂Qjk
∂yl

)
−
∑
l

[P−1
y ]il

(
∂[Py]lk
∂yj

+
∂[Py]lj
∂yk

− ∂[Py]jk
∂yl

)
+
∑
l

[P−1
y ]il

∑
α,β

[P−1
zz ]αβ×

×
(
∂[Py]lk
∂zα

Pβj +
∂[Py]lj
∂zα

Pβk −
∂[Py]jk
∂zα

Pβl

)
,

where we have denoted

Py(y, z) = Pyy(y, z)−Pyz(y, z)Pzz(y, z)−1Pzy(y, z) . (28)

A proof of Lemma 3.16 can be found in [12].
It follows from this expression that, if Py in (28) does not

depend on z and is chosen such that it has the same Christoffel
symbols as those of Q, then condition (21) holds. These two
conditions are trivially satisfied if we simply have for all (y, z)
in φN (M),

Q(y) = Py(y) = Pyy(y, z)− Pyz(y, z)Pzz(y, z)−1Pzy(y, z) .

If, instead of the coordinates (y, z), we use coordinates x,
this equation is(

∂h

∂x
(x)P (x)−1 ∂h

∂x
(x)>

)−1

= Q(h(x)) ∀x ∈ φ(M)

(29)
where h and Q are expressed with the same coordinates.

Definition 3.17 ([24, axiom S2]): A submersion h satisfying
(29) is called a Riemannian submersion. An equivalent defini-
tion is that h is a submersion preserving length of orthogonal
vectors, i.e., we have for all vort in D

ort
P (x),

vort> ∂h

∂x
(x)>Q(h(x))

∂h

∂x
(x)vort = vort>P (x)vort .

Now, as indicated above, instead of showing the necessity
of (21) for Condition A3 to hold, we answer the following
question:

(Q2) If we are given a metric P satisfying (20) and (22) but
neither (21) nor (29), can we modify it to satisfy the three
conditions?

To answer this question, we propose the modification Pmod
of the metric P, the expression of which is, for the coordinate
chart (x,M, φ), given by

Pmod(x) = P (x)+ (30)

∂h

∂x
(x)>

[
Q(h(x))−

(
∂h

∂x
(x)P (x)−1 ∂h

∂x
(x)>

)−1
]
∂h

∂x
(x) ,

for all x in φ(M). This is a positive definite matrix8.
This definition of Pmod via its expression with coordinates
gives a covariant 2-tensor that is invariant under a change of
coordinates for y (and h). Namely, with P̄mod defined as

P̄mod(x̄) = P̄ (x̄)+

∂h̄

∂x̄
(x̄)>

[
Q̄(h̄(x̄))−

(
∂h̄

∂x̄
(x̄)P̄ (x̄)−1 ∂h̄

∂x̄
(x̄)>

)−1
]
∂h̄

∂x̄
(x̄) ,

where we have (see (10))

x̄ = C(x) , h̄(C(x)) = D(h(x)) ,
∂C

∂x
(x)>P̄ (C(x))

∂C

∂x
(x) = P (x) ,

∂D

∂y
(y)>Q̄(D(y))

∂D

∂y
(y) = Q(y) ,

we obtain
∂C

∂x
(x)>P̄mod(x̄)

∂C

∂x
(x) = Pmod(x) . (31)

The metric Pmod has the following properties.
Lemma 3.18: Given the metric P, let Pmod be a metric,

the expression of which, with the coordinate chart (x,M, φ),
is as in (30). The following holds:

1) Pmod satisfies condition (29); i.e., h is a Riemannian
submersion with Pmod.

2) Condition (20) holds for P if and only if it holds for
Pmod.

3) D
ort
P (x) = D

ort
Pmod(x) ∀x ∈ Ω . (32)

Proof: Item 1 follows from the expression of Pmod with
coordinates (y, z) which is

Pmod(y, z) = (33)(
Q(y) + Pyz(y, z)Pzz(y, z)

−1Pzy(y, z) Pyz(y, z)
Pzy(y, z) Pzz(y, z)

)
.

For item 2, we note that condition (20) is equivalent to (23)
where the Hessian of h is related to its gradient by (see (56))

HPh(x) =
1

2
LgPhP (x) ∀x ∈ φ(M) .

So the claim follows from the fact that the product rule for
Lie differentiation is formally identical with the product rule
of ordinary differentiation. Indeed the Lie differentiation of

8For any full row rank matrix H and symmetric positive definite matrices
P and Q, the matrix P +H>(Q− (HP−1H>)−1)H is positive definite.
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(30) gives a matrix M(x) satisfying

LgPmodhPmod(x) = LgPhP (x) (34)

+ M(x)
∂h

∂x
(x) +

∂h

∂x
(x)>M(x)> ∀x ∈ φ(M) .

For item 3, from (30) we obtain that, for any coordinate
chart (x,M, φ),

Pmod(x)P (x)−1 ∂h

∂x
(x)>

=
∂h

∂x
(x)>Q(h(x))

(
∂h

∂x
(x)P (x)−1 ∂h

∂x
(x)>

)
.

Since Q(h(x)) and
(
∂h
∂x (x)P (x)−1 ∂h

∂x (x)>
)

are invertible
matrices, this establishes that the columns of P (x)−1 ∂h

∂x (x)>

span the same vector space as the columns of
Pmod(x)−1 ∂h

∂x (x)>. With Lemma 3.11, this establishes
that the orthogonal distributions D

ort
P (x) and D

ort
Pmod

(x) are
identical. Since the coordinate chart (x,M, φ) is arbitrary,
we have (32).

With Lemma 3.18 we have answered positively Question
(Q2) but only partially. Indeed, we have not established that
(22) holds for Pmod, when (22) holds for P. As we show next,
working directly with Pmod allows to establish this property.

3) About (22): Postponing the study of the necessity of
(22) to the next paragraph, here we study what it implies.

Lemma 3.19 ([13, Lemma 3.2(ii)], [14, Proposition I.5.4]):
Assume h is a Riemannian submersion on Ω. If, for any point
x0 in Ω, there exists a coordinate chart (x,M, φ) around x0

such that (22) holds then the distribution D
ort
P is integrable

everywhere locally on Ω, i.e., for any x0 in Ω, and for any
pair of coordinate charts (x,M, φ) around x0 and (y,N , χ)
around h(x0) there exists a Cs function hort : φ(M)→ Rn−p
satisfying

∂hort

∂x
(x)P (x)−1 ∂h

∂x
(x)> = 0 ∀x ∈ φ(M) , (35)

with h being the expression of h with the coordinates y, and
such that the function

x 7→ θ(x) = (h(x), hort(x))

is a diffeomorphism.
A proof of Lemma 3.19 can also be found in [12].

In this statement, thanks to Lemma 3.18, we can omit the
assumption that h is a Riemannian submersion if we replace
P by Pmod and (22) holds for Pmod.

Compared with the claim in the Local Submersion Theorem
2.1, the novelty here is in the fact that the function hort satisfies
(35). This is very useful. Indeed we have the following result.

Lemma 3.20: Assume h is a Riemannian submersion on Ω
and, for any x0 in Ω, and for any pair of coordinate charts
(x,M, φ) around x0 and (y,N , χ) around h(x0), there exists
a Cs function hort : φ(M) → Rn−p satisfying the properties
listed in Lemma 3.19. Under these conditions, the expression
P of P with the coordinates

(y, z) = (h(x), hort(x)) (36)

is in the following block diagonal form:

P (y, z) =

(
P y(y, z) 0

0 P z(y, z)

)
(37)

Proof: Let P be the expression of P in the coordinates x.
From (10), its expression P in the coordinates (y, z) satisfies
for all x in φ(M),

P (x) =(
∂h

∂x
(x)>

∂hort

∂x
(x)>

)
P (h(x), hort(x))


∂h

∂x
(x)

∂hort

∂x
(x)

 .

Post-multiplying by P (x)−1

(
∂h

∂x
(x)>

∂hort

∂x
(x)>

)
and ex-

ploiting the invertibility of
(
∂h

∂x
(x)>

∂hort

∂x
(x)>

)
, this gives

In = P (h(x), hort(x))×

×


∂h

∂x
(x)

∂hort

∂x
(x)

P (x)−1

(
∂h

∂x
(x)>

∂hort

∂x
(x)>

)
,

= P (h(x), hort(x))× (38)

×


∂h

∂x
(x)P (x)−1 ∂h

∂x
(x)>

∂h

∂x
(x)P (x)−1 ∂h

ort

∂x
(x)>

∂hort

∂x
(x)P (x)−1 ∂h

∂x
(x)>

∂hort

∂x
(x)P (x)−1 ∂h

ort

∂x
(x)>

 .

But, when (35) holds, the last matrix on the right-hand side
is block diagonal. Since this matrix is the inverse of P , P is
also block diagonal.

4) About Question (Q1’): Up to now, we have established
that, if Condition A3 holds, then (20) and (21) hold, perhaps
after changing P into Pmod. On the other hand, we know with
Lemmas 3.18 and 3.19 that, if (22) holds for Pmod then the
orthogonal distributions Dort

P and Dort
Pmod are integrable. It turns

out that, conversely, if, in addition to Condition A3 we have
this integrability property, then (22) holds.

Proposition 3.21: If Condition A3 holds with a metric P
such that the orthogonal distribution D

ort
P is integrable, then

the second fundamental form of h for the metric Pmod is zero
on Ω.

Proof: It follows from Lemmas 3.19 and 3.20 that, for
any x0 in Ω, there exists a coordinate chart ((y, z),M, φN )
(see (36)) such that the expressions P and Pmod of P and
Pmod, respectively, are (see (33) and (37))

P (y, z) =

(
P y(y, z) 0

0 P z(y, z)

)
,

Pmod(y, z) =

(
Q(y) 0

0 P z(y, z)

)
.

On the other hand, in these specific coordinates, (20), implied
by Condition A3 (see Lemma 3.14), is equivalent to∑

j

[P
−1

y ]ij
∂[P z]αβ
∂yj

= Γ
i

αβ = 0 .

This implies ∂[P z ]αβ
∂yk

is zero. Hence P z does not depend on
y and its associated Christoffel symbols are

[Γmod]
i
jk(y, z)
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=
1

2

∑
l

[Q(y)−1]il

(
∂Qlj
∂yk

(y) +
∂Qlk
∂yj

(y)− ∂Qjk
∂yl

(y)

)
,

= ∆i
jk(y) ,

[Γmod]
i
jα(y, z) = 0 , [Γmod]

i
αβ(y, z) = 0 .

The result follows from the fact that the nullity of the second
fundamental form does not depend on the coordinates and that
we have

IIPmodh
i
jk(y, z) = −[Γmod]

i
jk(y, z) + ∆i

jk(y) ,

IIPmodh
i
jα(y, z) = −[Γmod]

i
jα(y, z) , (39)

IIPmodh
i
αβ(y, z) = −[Γmod]

i
αβ(y, z) .

This statement is not satisfactory because it requires the
extra condition of integrability of the orthogonal distribution
D

ort
P . Whether this integrability is implied by Condition A3

is, for us, an open problem. Fortunately, as shown below,
when the dimension p of the y-manifold is 1, the integrability
condition is not needed in the statement of Proposition 3.21.
So, in this case, if Condition A3 holds, the second fundamental
form of h is zero for the metric Pmod. Namely, our sufficient
condition is necessary but, perhaps after modifying P into
Pmod. Here we recover in some way [1, Proposition A.3.2.b].

What we wrote above about the peculiarity of the case p = 1
is a consequence of the fact that the assumption of Lemma
3.20 is always satisfied. Indeed, we have the following result.

Lemma 3.22: Suppose Assumption I is satisfied. If the
dimension p of the y-manifold RRRRp is 1, and (29) and Condition
A3 hold, then h is a Riemannian submersion, the second
fundamental form of which is zero on Ω.

Proof: Let x0 be any point in Ω and (x,M, φ) around
x0 and (y,N , χ) around h(x0) be any coordinate charts. With
all “objects” expressed with these coordinates, let also X(x, t)
denote the solution at time t of

.
x = P (x)−1 ∂h

∂x
(x)> ,

passing through x in M at time 0. Because the function
t 7→ h(X(x, t)) is strictly increasing, there exists an open
neighborhood M of φ(x0) such that, for any x in M , there
exists a (unique) τ(x) satisfying h(X(x, τ(x))) = h(φ(x0))
Let hcom be the submersion given by the Local Submersion
Theorem 2.1 in Section II. We define a function hort : M →
Rn−p as

hort(x) = hcom(X(x, τ(x))) . (40)
It satisfies

∂hort

∂x
(x)P (x)−1 ∂h

∂x
(x)> = 0 ∀x ∈M .

Then, with Lemma 3.20, the coordinates

(y, z) = (h(x), hort(x))

defined on M , are such that the expression P̄ of P has the
following block diagonal form (see [25, p. 57 §19] or [2,
Theorem 2.6])

P (y, z) =

(
Py(y, z) 0

0 Pz(y, z)

)
.

From here we proceed as in the proof of Proposition 3.21.
Because Condition A3 and the nullity of the second fun-

damental form of h for Pmod are equivalent when p = 1, it
would be interesting to know if we can always “massage” the

measurements to go to this case. In other words, if we have a
p-dimensional output function for which the observer problem
can be solved, does there exists a 1-dimensional function of
this output function with which we can still solve the observer
problem. In the linear case, this result is known as Heymann’s
Lemma9 [26], [27].

D. Construction of the metric P
A design of an appropriate metric P will be provided by

another necessary condition for having the second fundamental
form zero when h is a Riemannian submersion.

Lemma 3.23: If P and Q are complete and h is a Rie-
mannian submersion on RRRRn, the second fundamental form of
which is zero on RRRRn, then h is surjective and there exist an
n − p dimensional Cs manifold Zh, a surjective submersion
hort : RRRRn → Zh and a complete metric R on Zh such that
θ = (h,hort) : RRRRn → RRRRp × Zh is a Cs diffeomorphism.
Moreover, if (x,Rn, φ) and (y,Rp, χ) are globally defined
coordinate charts, then, for any coordinate chart (z,O, ψ) for
Zh used to express hort andR, we have for all x in [hort]−1(O),

P (x) =
∂h

∂x
(x)>Q(h(x))

∂h

∂x
(x) (41)

+
∂hort

∂x
(x)>R(hort(x))

∂hort

∂x
(x) ,

where P , h, hort, θ, Q, and R denote expressions in the above
mentioned coordinates.

Lemma 3.23 is a specific version of the more general [13,
Corollary 3.7]. A proof can be found in [12] under more
restrictive assumptions of boundedness of the function y 7→
Q(y) and, instead of involutivity, commutation of particular
vector fields spanning D

ort
P .

Actually (41) provides a procedure to construct a metric
P making the second fundamental form of h zero and,
consequently, satisfying Condition A3. The following theorem
presents this construction and the forthcoming Example 3.26
illustrates it.

Theorem 3.24: Suppose Assumption I holds. Assume there
exist

i) a metric Q for RRRRp satisfying Assumption II;
ii) with q ≥ 0, an n − p + q-dimensional Cs manifold Ξ

equipped with a metric R;
iii) a Cs function hort : Ω → Ξ is , with rank n − p on Ω

such that θ = (h,hort) has rank n on Ω.
Then, the metric P defined on Ω as the pull back via θ of the
product metric Q⊕R (see its expression with coordinates in
(41)) is such that h is a Riemannian submersion with a second
fundamental form that is zero on Ω. Furthermore, Condition
A3 holds when ℘ is the square of the distance given by Q.

Proof: It follows from our assumptions and the Rank
Theorem that the restriction of hort to Ω is a subimmersion,
i.e., for each x0 in Ω, there exist an open neighborhood M 0

of x0, a Cs manifold Z0 of dimension n − p, a submersion
sssss0 : M 0 → Z0 and an immersion iiiii0 : Z0 → Ξ satisfying

hort(x) = iiiii0 (sssss0(x)) ∀x ∈M 0

The index 0 is used here to insist on the fact that all the
corresponding objects are x0 dependent.

9We are very grateful to Alessandro Astolfi, from Imperial College in
London, for pointing out this lemma.
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Let (ξ,P, ω) be a coordinate chart around hort(x0) in Ξ,
(z,O, ψ) be a coordinate chart around sssss0(x0) in Z0 and
(x,M, φ) be a coordinate chart around x0 in Ω with

M⊂M 0 , sssss0(M) ⊂ O , iiiii0(O) ⊂ P .

We have

ξ = hort(x) = i0(z) , z = s0(x) ∀x ∈ φ(M) .

With the function (h,hort) having rank n, we get

n = Rank

 Ip 0

0
∂ i0
∂z

(s0(x))


 ∂h

∂x
(x)

∂s0
∂x

(x)


where ∂ i0

∂z (s0(x)) is an ((n− p+ q), (n− p)) matrix of rank
n− p. This implies the square matrix(

∂h

∂x
(x)>

∂s0
∂x

(x)>
)

is invertible. It follows that x 7→ (y, z) = (h(x), s0(x)) is a
diffeomorphism and (y, z) can be used as coordinates for x
in a neighborhood of x0. According to (41), the expression P
in these coordinates of the metric P is

P (y, z) =(
Ip 0

0
∂ i0
∂z

(z)>

)(
Q(y) 0

0 R(i0(z))

)( Ip 0

0
∂ i0
∂z

(z)

)

=

(
Q(y) 0

0 Pz(z)

)
where

Pz(z) =
∂ i0
∂z

(z)>R(i0(z))
∂ i0
∂z

(z) .

From here, the proof can be concluded as in the proof of
Proposition 3.21.

Remark 3.25:
1) The restriction that hort has rank n − p is crucial. A

counterexample is given by the metric (26), which does
not make the level sets of the output function totally
geodesic. Indeed, in (26) we have that n = 3 and p = 1,
but hort has (generic) rank 3.

2) Formula (41) is remarkable because of the decomposition
of P as a sum. In the upcoming Section IV-B, we observe
that it simplifies the verification of Condition A2.

3) The family of metrics given by (41) would exactly corre-
spond to the one of those making the second fundamental
form h zero if we were not imposing the extra condition
that h is a Riemannian submersion.

4) The metric P given by Theorem 3.24 is defined only on
Ω and we do not claim it is complete.

5) Once the manifold Ξ is chosen, the existence of the
function hort satisfying the conditions is not guaranteed.
Indeed, as a consequence of Lemma 3.23, h and Ξ
cannot be arbitrary. For example h must be surjective
and its level sets must be diffeomorphic to each other.
Also, Ξ may not be minimal in terms of dimension and
there should exist an immersion between Zh and Ξ. We
illustrate this point in the following example.

Example 3.26: Let the x-manifold be RRRR2 equipped with
globally defined coordinates (x1, x2). Let RRRR be the y-manifold
equipped with a globally defined coordinate y. This yields

n = 2 and p = 1. The output function h we consider is, when
expressed in these coordinates,

y = h(x) := x2
1 + x2

2 .

It is a submersion on Ω := RRRR2 \ {0}. The level sets of this
output function are diffeomorphic with the unit circle S1.

To design a metric P satisfying Condition A3, we follow
the lines of Theorem 3.24. We could select Ξ as a connected
1-dimensional manifold, this implying q = 0 in Theorem 3.24.
Instead, we select Ξ as RRRR2 \ {0}, in which S1 is embedded.
Then, q in Theorem 3.24, is equal to 1 and hort : Ω→ RRRR2\{0}
is to be chosen with rank 1. Then, we choose coordinates for x
and y. For x, we keep those defined above, namely, (x1, x2).
To get an extra degree of freedom, for y we change, via a Cs
function D : R→ R with nonvanishing derivative, the original
coordinate y in

ȳ = D(y) .

Let also hort = (hort
α , h

ort
β ) be the expression of the function hort

we are interested in. For the needs of Theorem 3.24, by letting

h̄(x) = D(h(x)) ,

since n = 2 and p = 1, we want, for each x ∈ R2 \ {0},

Rank

 ∂h̄
∂x (x)

∂hort

∂x (x)

 = 2 , Rank
(
∂hort

∂x
(x)

)
= 1

A solution to these equations is

hort
α (x1, x2) =

kα(x1, x2)√
kα(x1, x2)2 + kβ(x1, x2)2

,

hort
β (x1, x2) =

kβ(x1, x2)√
kα(x1, x2)2 + kβ(x1, x2)2

where (k1, k2) : R2 \ {0} → R2 \ {0} are Cs. The rank 1
condition is satisfied because of the normalization. To meet
the rank 2 condition, we require, for all (x1, x2) in R2 \ {0},

x1

(
kβ
∂kα
∂x2
− kα

∂kβ
∂x2

)
− x2

(
kβ
∂kα
∂x1
− kα

∂kβ
∂x1

)
6= 0

(42)
In this way the image of hort is indeed the unit circle, not as
an “abstract” manifold, but as an immersed submanifold of
R2. Then, following Theorem 3.24 and according to (41), a
metric satisfying Condition A3 on R2 \ {0} is, with Q a Cs

function with strictly positive values and
(
Rαα Rαβ
Rαβ Rββ

)
a

Cs function with positive definite values,

P (x1, x2) = D
′(x2

1 + x2
2)2

(
x1

x2

)
Q(D(x2

1 + x2
2))
(
x1 x2

)
+
∂hort

∂x
(x)>R(hort(x))

∂hort

∂x
(x)

= D
′(x2

1 + x2
2)2

(
x1

x2

)
Q(D(x2

1 + x2
2))
(
x1 x2

)
+K(x)R̃(kα(x), kβ(x))K(x)>

where D′ is the derivative of D and
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K(x) =

 kβ(x)
∂kα
∂x1

(x)− kα(x)
∂kβ
∂x1

(x)

kβ(x)
∂kα
∂x2

(x)− kα(x)
∂kβ
∂x2

(x)


R̃(kα, kβ) =

k2
αRββ(kα, kβ)− 2kαkβRαβ(kα, kβ)

(k2
α + k2

β)3

+
k2
βRαα(kα, kβ)

(k2
α + k2

β)3
.

For example, the particular choice

D(s) = s , Q = 1 , kα = x1 , kβ = x2 , R = I

gives

P (x1, x2) =

 x2
1 +

x2
2

(x2
1+x2

2)2
x1x2 − x1x2

(x2
1+x2

2)2

x1x2 − x1x2

(x2
1+x2

2)2
x2

2 +
x2
1

(x2
1+x2

2)2


IV. ON SIMULTANEOUS SATISFACTION OF CONDITIONS

A2 AND A3
We have observed that Conditions A2 and A3 are of

completely different nature.
The next example shows both of these conditions may not

always hold simultaneously.
In this section, we investigate ways, from a design stand-

point, to guarantee that Condition A3 holds when Condition
A2 is already satisfied, and vice versa.

Example 4.1: Consider the system
.
x1 = 2x2 ,

.
x2 = 1− x1 , y = x2

1 + x2
2 (43)

It is differentially observable of order five. Furthermore, there
exists a globally convergent observer with linear dynamics
estimating the output and its four derivatives. We have seen in
Example 3.26 how to construct a metric satisfying Condition
A3. Also there exists an expression P of the metric P, which
is polynomial of degree 2 in (x1, x2), satisfying Condition A2.

For this system (43), the observer (7) takes the form( .
x̂1
.
x̂2

)
=

(
2x̂2

1− x̂1

)
+ kP (x̂1, x̂2)−1

(
x̂1

x̂2

)
(y − ŷ) . (44)

With the first order variation formula, this observer leads to a
strict decrease of the Riemannian distance induced by P , if,
for any normalized geodesic γ∗, minimizing on [s, ŝ],

dγ∗

ds
(ŝ)>P (γ∗(ŝ))× (45)

×
[(

2γ∗2(ŝ)
1− γ∗1(ŝ)

)
− kP (γ∗(ŝ))−1γ∗(ŝ)(|γ∗(ŝ)|2 − |γ∗(s)|2)

]
− dγ∗

ds
(s)>P (γ∗(s))

(
2γ∗2 (s)

1− γ∗1(s)

)
< 0

The correction term contributes strictly to this decrease if
Condition A3 holds, i.e.

|γ∗(ŝ)| 6= |γ∗(s)| ⇒ dγ∗

ds
(ŝ)>γ∗(ŝ)(|γ∗(ŝ)|2−|γ∗(s)|2) > 0 .

(46)
Unfortunately, there is no complete metric P such that the

observer (44) satisfies (45) and (46) together. Indeed we know
with [1, A.3.1.a] that (46) implies that, for any x different from
the origin and any unit vector v tangent at x to the circle with
radius |x| and centered at the origin, the geodesic γ∗ satisfying

γ∗(0) = x ,
dγ∗

ds
(0) = v ,

remains in that circle. Actually, there are two normalized
geodesics issued from x, say γ∗+ and γ∗−, satisfying

dγ∗+
ds

(0) = +v ,
dγ∗−
ds

(0) = −v

which remain in the circle. The metric being complete by
assumption, the orbits of these geodesics are the complete
circle and there exist s+ and s− such that10

γ∗+(s+) = γ∗−(s−) ,
dγ∗+
ds

(s+) = −
dγ∗−
ds

(s−) (47)

and γ∗+, respectively γ∗−, is minimizing on [0, s+], respectively
[0, s−]. But if (45) holds, we obtain

dγ∗+
ds

(s+)>P (γ∗+(s+))

(
2γ∗+2(s+)

1− γ∗+1(s+)

)
< v>P (x)

(
2x2

1− x1

)
and
dγ∗−
ds

(s−)>P (γ∗−(s−))

(
2γ∗−2(s−)

1− γ∗−1(s−)

)
< −v>P (x)

(
2x2

1− x1

)
With (47), these inequalities cannot hold simultaneously. On
the other hand, it is possible to satisfy either Condition A2 or
Condition A3 by properly choosing the metric.

A. Satisfying Condition A2 first

We know with [2, Proposition 2.4] that a Riemannian metric
satisfying Condition A2 gives a locally convergent observer.
This motivates starting with Condition A2.

In [2, (47) and Propositions 3.2 and 3.5] we have given
procedures for obtaining metrics satisfying Condition A2.
Then, with a metric constructed via such procedures, it remains
to check if Condition A3 holds. Such a check consists of
testing whether or not the second fundamental form of h is
zero. For this test to be positive, we must have (21) which
is satisfied if (29) holds. We know the latter condition can
always be satisfied by modifying the given metric P into Pmod
as given in (30). Fortunately, the satisfaction of Condition A2
is not affected by this modification, as the following result
shows.

Proposition 4.2: Condition A2 holds for P if and only if
Condition A2 holds for Pmod.

Proof: The claim is a direct consequence of the identity

∂

∂x

{[
∂h

∂x
(x)vtan

]>[
Q(h(x))−

(
∂h

∂x
(x)P (x)−1 ∂h

∂x
(x)>

)−1
]

×
[
∂h

∂x
(x)vtan

]}
= 0 ∀vtan ∈ Dtan

(x) , ∀x ∈ φ(M) (48)

being valid for any coordinate chart (x,M, φ).
Example 4.3: (Systems that are strongly differentially ob-

servable of order n) In [2, §IV], we have seen that, when

10γ∗+(s+) = γ∗−(s−) is a cut point of x. See [28, Cut Points ch. 10].
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p = 1 and

iiiiin(x) =


h(x)
Lfh(x)

...
Ln−1

f h(x)


is a diffeomorphism from some open set Ω to Rn, the
expression in some coordinate chart (x,M, φ) of a metric
satisfying Condition A2 on Ω is

P (x) =
∂ in
∂x

(x)>P̄
∂ in
∂x

(x) ,

where P̄ is a symmetric positive definite matrix to be chosen
(see [2, Lemma 4.2]). Actually, x̄ = in(x) are other
coordinates for x in which the expression of the metric P
is simply the constant matrix P̄ . Moreover, the expression of
h in the same particular coordinates is linear, i.e.

y = Cx̄ ,

with the notation

C =
(

1 0 . . . 0
)
.

Hence, the system belongs to the “Euclidean family” and the
observer (7) takes the form (see [29])

.
x̂ = f(x̂)− kE(x̂)

∂ in
∂x

(x̂)−1P̄−1CT (Cx̂− y) .

B. Satisfying Condition A3 First

For Condition A2 to hold, the Riemannian metric P must
satisfy the inequality (4). Instead, for A3 to hold, according
to Lemma 3.14, we must have at least the equalities (20).
It may be easier to satisfy first the equalities and then the
inequalities. Namely, instead of starting with a metric that
satisfies Condition A2, we start with a metric given by
Theorem 3.24, which is guaranteed to satisfy Condition A3.
Then, it remains to define the degrees of freedom hort and R
involved in its construction so as to satisfy Condition A2.

In this context, the fact that the formula (41) for P is a sum
implies that Condition A2 takes a particular form. Indeed, for
any x0 in RRRRn, for any coordinate charts (x,Rn, φ) around x0

and (y,Rp, χ) around h(x0) in RRRRp, for any (ξ,P, ω) around
hort(x0) in Ξ, for all vectors v satisfying∑

a

∂hi
∂xa

(x)va = 0 , (49)

and with the definitions

gγ(x)=
∑
c

∂hort
γ

∂xc
(x)fc(x) , wα(x)=

∑
a

∂hort
α

∂xa
(x)va , (50)

the expression in (41) of the metric P gives

v>LfP (x)v =
∑
α,β,γ

wα
∂Rαβ
∂ξγ

(hort(x)) gγ(x)wβ

+2
∑
a,β,γ

va
∂gγ
∂xa

(x)Rγβ(hort(x))wβ .

By invoking the S-Lemma (see [30]), we obtain that Condition
A2 is satisfied if, when (49) holds, we have

∑
α,β

(
wα(x)

[∑
γ

∂Rαβ
∂ξγ

(hort(x))gγ(x)

]
wβ(x)

+2

[∑
a

va
∂gα
∂xa

(x)

]
Rαβ(hort(x))wβ(x)

)
(51)

≤ −q
∑
α,β

wα(x)Rαβ(hort(x))wβ(x)

for some strictly positive q.
With the above, we have reduced the design of the observer

(7) to the problem of finding functions hort, of rank n − p
and such that (h, hort) has rank n, and R with positive definite
values, satisfying the inequality above.

Example 4.4 (Systems of dimension two): We consider a
general system written as

.
y = fy(y, z) ,

.
z = fz(y, z) (52)

with n = 2 and p = 1. It follows from Theorem 3.24, that
Condition A3 is satisfied if P is in the form (see (41))

P (y, z) =

 1 + ∂hort

∂y (y, z)2 ∂hort

∂y (y, z)∂h
ort

∂z (y, z)

∂hort

∂y (y, z)∂h
ort

∂z (y, z) ∂hort

∂z (y, z)2

 ,

where hort is any C3 function with ∂hort

∂z (y, z) strictly positive
for all (y, z). In this case, we choose

℘(y1, y2) = |y1 − y2|2

and Condition A2 holds if we have
∂

∂z

{
∂hort

∂y
(y, z)fy(y, z) +

∂hort

∂z
(y, z)fz(y, z)

}
≤−∂h

ort

∂z
(y, z)2

In this case, the observer (7) is
.
ŷ = fy(ŷ, ẑ)− kE(ŷ, ẑ)(ŷ − y) ,

.
ẑ = fz(ŷ, ẑ) + kE(ŷ, ẑ)

∂hort

∂y (y, z)

∂hort

∂z (y, z)
(ŷ − y) .

Example 4.5: We consider again the harmonic oscillator
with unknown frequency in (24), the state of which evolves
in the invariant set Ωε defined in (25). We have seen in
Example 3.15 that the metrics considered thus far satisfying
Condition A2 do not satisfy Condition A3. Following the
observations at the beginning of this section, we proceed by
constructing P so that Condition A3 holds, and then assess
the satisfaction of Condition A2.

Following Theorem 3.24, the level sets of the output func-
tion being diffeomorphic to RRRR2, we choose Ξ as RRRR2. Then,
following Theorem 3.24, a metric satisfying Condition A3 is,
with the notation ∂

∂x =
(
∂
∂y

∂
∂zα

∂
∂zβ

)
,

P (y, zα, zβ) = D
′(y)2

 1
0
0

Q(D(y))
(
1 0 0

)
(53)

+

∂

(
hort
α

hort
β

)
∂x

(y, zα, zβ)>R(hort(y, zα, zβ))

∂

(
hort
α

hort
β

)
∂x

(y, zα, zβ)

where it remains to choose
– Q as a Cs function with strictly positive values,
– D and hort such that (y, z) 7→ (D(y), hort(y, z)) is a Cs

diffeomorphism on Ωε,
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– and R as a Cs function with positive definite values

to satisfy Condition A2 or its sufficient condition (51). To
help in this task, we remind the reader of the findings in [2,
Example 2.2]. In that example we show that, with (ξ,P, ω) as
a global coordinate chart for Ξ = RRRR2, the arrival set of hort,
and the choices

D(y) = y , Q(y) = c , hort
α (y, z) = zα − y ,

hort
β (y, z) = zβ + 1

2y
2 , R(ξ) = I2 ,

where c is a strictly positive real number, the expression P of
the metric obtained in (53), namely,

P (y, zα, zβ) =

1
0
0

 c
(
1 0 0

)
+

−1 y
1 0
0 1

(−1 1 0
y 0 1

)
is such that Condition A2 is satisfied but not strictly – namely,
it only certifies weak differential detectability.

From this point we proceed with a “deformation” of the
metric above to meet both conditions. We choose

hort
α (y, z)=ξα=zα−y , hort

β (y, z)=ξβ = zβ+ 1
2y

2 +abyzα ,

R(ξ)=

(
1 0
0 1 + aξ2

α

)
,

where a and b are strictly positive real numbers to be chosen,
with, a priori, a being small. We express the inequality (51)
with the coordinates (y, z), restricted to the set Ωε. Since
(50) reads

gα(y, zα, zβ) = −yzβ − zα = −yzβ − ξα − y ,
gβ(y, zα, zβ) = yzα + abz2

α − aby2zβ ,

wα = vα − vy , wβ = vβ + yvy + abzαvy + abyvα ,(
vα vβ

)
=
(
wα wβ

)(1 −aby
0 1

)
,

inequality (51) is

w2
β2aξαgα+2

(
wα wβ

)(1 −aby
0 1

)(
−1 y + 2abzα
−y −aby2

)
×

×
(

1 0
0 1 + aξ2

α

)(
wα
wβ

)
≤ −q

(
wα wβ

)( 1 0
0 1 + aξ2

α

)(
wα
wβ

)
for some strictly positive q. This inequality can be rewritten

−w2
β

[
2aξα(yzβ + ξα + y) + 2aby2(1 + aξ2

α)− q(1 + aξ2
α)
]

+ 2wαwβa
[
2b(ξα + y)(1 + aξ2

α) + yξ2
α + ab2y3(1 + aξ2

α)
]

− w2
α

[
2(1− aby2)− q

]
≤ 0

It is satisfied if we have 2(1− aby2)− q > 0, and

4a2
[
2b(ξα + y)(1 + aξ2

α) + yξ2
α + ab2y3(1 + aξ2

α)
]2

<

4
[
2aξα(yzβ + ξα + y) + 2aby2(1 + aξ2

α)− q(1 + aξ2
α)
]
×

×
[
2(1− aby2)− q

]
,

for all (y, z) in Ωε, and therefore satisfying

4

ε2
> y2 + ξ2

α >
ε2

4
, ε < zβ <

1

ε
. (54)

We have

2aξα(yzβ + ξα + y) + 2aby2(1 + aξ2
α)− q(1 + aξ2

α)

= a
[
2ξαy (zβ + 1) + (2− q)ξ2

α + 2by2
]

+ 2a2by2ξ2
α − q .

So, by choosing b large enough to satisfy 2
(

1
ε + 1

)2 ≤ (2−
q)b, we obtain successively

2ξαy (zβ + 1) + (2− q)ξ2
α + 2by2 ≥ 1

2

[
(2− q)ξ2

α + 2by2
]

2aξα(yzβ + ξα + y) + 2aby2(1 + aξ2
α)− q(1 + aξ2

α)

≥ a
2 min{(2− q), 2b} ε

2

4 + 2a2by2ξ2
α − q .

Also, using (54), we have 2(1− aby2)− q ≥ 2− ab 8
ε2 − q,

and
2b(ξα + y)(1 + aξ2

α) + yξ2
α + ab2y3(1 + aξ2

α)

≤ 2b
4

ε

(
1 + a

4

ε2

)
+

8

ε3
+ ab2

8

ε3

(
1 + a

4

ε2

)
≤ 8

ε3

(
b+ 1 + ab2

) (
1 + a 4

ε2

)
.

Then, a sufficient condition for Condition A2 to hold is

2

(
1

ε
+ 1

)2

≤ (2− q)b , 2− ab 8

ε2
− q > 0

64a2

ε6

(
b+ 1 + ab2

)2(
1 + a

4

ε2

)2

<(
a

2
min{(2− q), b}ε

2

4
− q
)(

2− ab 8

ε2
− q
)


(55)

With b fixed as b = 4
(

1
ε + 1

)2
, since the following inequality

is satisfied when a = 0, there exists a strictly positive real
number ā such that, for all a in [0, ā), we have

64a

ε6

(
b+ 1 + ab2

)2(
1 + a

4

ε2

)2

<
ε2

8

(
2− ab 8

ε2

)
We fix a in (0, ā). By continuity, there exists q satisfying

(55).

We have established the existence of a triplet (a, b, q) such
that Conditions A2 and A3 are satisfied on Ωε by the metric
P, the expression of which, with the coordinate (y, z), is

P (y, zα, zβ) =

 1
0
0

 c
(
1 0 0

)
+

−1 y + abzα
1 aby
0 1

(1 0
0 1 + a(zα − y)2

)(
−1 1 0

y + abzα aby 1

)
,

The observer (7) for the harmonic oscillator with unknown
frequency is

.︷ ︷ ŷ
ẑα
ẑβ

 =

 ẑα
−ŷẑβ

0


−kE(ŷ, ẑα, ẑβ)

c

 1
1

−ŷ − ab(ẑα + ŷ)

 (ŷ − y) .

As a final remark, we note that the expression of the metric
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with the coordinates (y, ξ) is (by definition)

P̄ (y, ξα, ξβ) =

c 0 0
0 1 0
0 0 1 + aξ2

α

 .

All the corresponding Christoffel symbols are zero, except
Γ̄αββ = − ξα2 , Γ̄βαβ = − ξα

2(aξ2α+1) . It follows that the component

Rα
αββ =

∂Γ̄αββ
∂ξα
− Γ̄αββΓ̄βαβ = −2a− ξ2α

4(aξ2α+1) of the Riemann
curvature tensor is not zero. So there is no coordinates for
which the expression of the metric is Euclidean.

V. CONCLUSIONS

A. Conclusions of this paper

In [1], we have established that an observer, the correction
term of which is based on a gradient of a “gap” function
between measured output and estimated output, converges
when a strong differential detectability condition (Condition
A2) holds and when the output function is geodesic monotone
(Condition A3) holds.

In [2], we have shown how, for a given system for which
all the variational systems are reconstructible, we can design
a metric satisfying Condition A2.

In this paper, we have shown that Condition A3 is strongly
linked to the nullity of the second fundamental form of the
output function. Actually these two properties are equivalent
when the dimension p of the y-manifold Rp is 1. When p
is larger than 1, the latter implies always the former but,
for the converse, we need the extra assumption that the
orthogonal distribution is involutive. With this study we have
been able to propose a design tool for obtaining a metric
satisfying Condition A3. This tool, described in Theorem 3.24,
is systematic in the sense that it does not rely on some equation
or inequality to solve. It is a formula (see (41)) giving the
expression of the metric in any given coordinate chart.

In our study, we have left open many problems. We point
out only two of them:

1) Is the involutivity of the orthogonal distribution neces-
sary for Condition A3 to hold?
In case of a positive answer, the nullity of the sec-
ond fundamental form of the output function would
be equivalent to Condition A3 and, more interestingly,
our design procedure would construct all the metrics
satisfying Condition A3.

2) Under which conditions does a nonlinear counterpart of
Heymann’s Lemma [26], [27] holds?
More precisely, the problem to solve is the following:
Assume system (1) satisfies Condition A2 and the level
sets of the given output function h are totally geodesic.
Do there exist functions f : Rn × Rp × Rp → Rn and
h : Rp → R satisfying f(x,h(x),h(x)) = f(x) and
such that Conditions A2 and A3 hold for the modified
system

.
x = f(x,h(x), y(t)), ymod = h(h(x)) where

t 7→ y(t) is considered as an (known) input function.
This modified system is obtained with output injection
in the function f and the reduction to 1 of the number of
outputs via the function h. In case of a positive answer,
the extra conditions of involutivity of the orthogonal
distribution would be unnecessary.

B. Conclusions on our study of convergence of observers with
a Riemannian Metric

As written in the introduction, the three papers ([1], [2], and
this one) formulate sufficient conditions that are as close as
possible to necessary conditions for the design of

1) an observer; namely, a dynamical system with a state
evolving in the same space as the (true) state of the
given system,

2) with convergence established by the decrease of a Rie-
mannian distance between the estimated and the true
state,

3) with the set (3) of points where the estimated state is
equal to the true state being forward invariant,

4) and with an infinite gain margin.
A key motivation for this effort is assessing if contraction the-
ory is a fundamental tool for analyzing observer convergence.
We have put this into practice by studying the effect of the flow
of the system-observer pair on a Riemannian distance between
the estimate generated by the observer and the system state,
knowing that the Euclidean case, with therefore appropriately
chosen coordinates, had been dealt with already (see, e.g., [31],
[32]).

From our study, we conclude that the expected condition
of differential detectability (Condition A2), related to a con-
traction property in the tangent space to the level sets of the
output function, is not by itself sufficient to obtain a (at most
local) convergent observer. It is also required for these level
sets to be at least totally geodesic. Our results indicate that this
latter condition, related to convexity, is likely a consequence
of the fact that an observer is, to some extent, searching for the
global minimum of a cost function that depends on the output
error. To the best of our knowledge, this condition has not
been proposed before, the reason being perhaps that, when the
coordinates are such that the output function is linear and the
metric is Euclidean; i.e., when the system is in the “Euclidean
family” of Remark 3.2, the said condition is automatically
satisfied.

Our study remained at a theoretical level and has not
addressed real-world applications, mainly due to the difficulty
of satisfying Conditions A2 and A3 simultaneously. These
conditions are of completely different nature and, for the
time being, we do not know of a systematic way for having
both satisfied for general systems. In one way or the other,
other methods assume the knowledge of a family of metrics
satisfying the two properties, e.g., there are coordinates for
which the output function is linear and the pair (f, h) is
differentially detectable with respect to a constant metric.
Nevertheless, we have reduced the problem of simultaneously
satisfying Conditions A2 and A3 to finding functions hort, of
rank n − p and such that (h, hort) has rank n, and R with
positive definite values, satisfying (51) for some q > 0. Also,
fortunately, as shown in [2], Condition A2 only is already
sufficient to obtain a locally convergent observer.

Ultimately, rather than advocating for a new observer design
technique, our work presents substantiated arguments about
the advantages and disadvantages/limitations of designing ob-
servers based on contracting a Riemannian distance. In these
regards we appropriate the words of D.C. Lewis who, after
proposing in [33] contraction by flows of a Finsler distance
(which includes as a special case a Riemannian distance) to
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study the dependence of solutions of dynamical systems on
the initial conditions, wrote in [34]

It thus was felt that the method [= contraction]
as so far developed [in [33]] was intrinsically too
crude to yield the desired results in applications.
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APPENDIX

A1. GLOSSARY

We give here a complement to the glossary in [2]. Also, we
recommend reading [35, Section 1].

1) A Riemannian metric P is a symmetric covariant 2-
tensor with positive definite values.

2) The length of a C1 path γ between points xa and xb is
defined as

L(γ)
∣∣∣sb
sa

=

∫ sb

sa

√
dγ

ds
(s)>P(γ(s))

dγ

ds
(s) ds,

where γ(sa) = xa and γ(sb) = xb.
3) The Riemannian distance d(xa,xb) is the minimum

of L(γ)
∣∣∣sb
sa

among all possible piecewise C1 paths γ
between xa and xb. A minimizer giving the distance is
called a minimizing geodesic and is denoted γ∗.

4) A Riemannian metric P is said complete when every
geodesic can be maximally extended to R.

5) d2h denotes the second differential the expression of
which, with the coordinates x, is ∂2hi

∂xa∂xb
(x).

6) The second differential with respect to the first argument
of the function (y1,y2) 7→ ℘(y1,y2) is denoted d2

1℘.
7) HPh denotes the (Riemannian) Hessian of h. It is a

2-covariant to 1-contravariant tensor defined as

HPh(x) =
1

2
LgPh

P(x) . (56)

Its expression with coordinates x is

(HPh(x))ab =
∂2h

∂xa∂xb
(x)−

∑
c

Γcab(x)
∂h

∂xc
(x) .

Given a geodesic γ, we have (see [23, Exercise 3.16])

d2

ds2

{
h(γ(s))

}
=

dγ

ds
(s)>HPh(γ(s))

dγ

ds
(s) (57)

A2. PROOF OF LEMMA 3.8
Let Γ̄ and ∆̄ be the expressions of the Christoffel symbols

in the new coordinates. From [36, (3.5.22)], we get∑
d,e

∂Cd
∂xa

Γ̄cde
∂Ce
∂xb

=
∑
d

∂Cc
∂xd

Γdab −
∂2Cc

∂xa∂xb
(58)

∑
l,m

∂Dl
∂yi

∆̄k
lm

∂Dm
∂yj

=
∑
l

∂Dk
∂yl

∆l
ij −

∂2Dk

∂yi∂yj

We also have h̄(C(x)) = D(h(x)),∑
c

∂h̄

∂x̄c
(C(x))

∂Cc
∂xa

(x) =
∑
m

∂D

∂ym
(h(x))

∂hm
∂xa

(x) ,

∂h̄

∂x̄c
(C(x)) =

∑
e,m

∂D

∂ym
(h(x))

∂hm
∂xe

(x)

[
∂C

∂x
(x)−1

]
ec

,

and

http://arxiv.org/abs/1412.6730
http://arxiv.org/abs/1412.6730
https://arxiv.org/abs/2102.08340
https://arxiv.org/abs/2102.08340
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∑
c,d

∂2h̄

∂x̄c∂x̄d
(C(x))

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)

+
∑
c

∂h̄

∂x̄c
(C(x))

∂2Cc

∂xa∂xb
(x)

=
∑
i,j

∂2D

∂yi∂yj
(h(x))

∂hi
∂xa

(x)
∂hj
∂xb

(x)

+
∑
i

∂D

∂yi
(h(x))

∂2hi
∂xa∂xb

(x) .

Using these expressions, we obtain

IIPh
k

cd(x̄) =
∂2h̄k
∂x̄c∂x̄d

(x̄)−
∑
e

Γ̄ecd(x)
∂h̄k
∂x̄e

(x̄)

+
∑
l,m

∆̄k
lm(h̄(x̄))

∂h̄l
∂x̄c

(x̄)
∂h̄m
∂x̄d

(x̄) ,

Substituting it in (58), we obtain∑
c,d

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)IIPh
k

cd(x̄)

=
∑
c,d

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)
∂2h̄k
∂x̄c∂x̄d

(x̄)

−
∑
c,d

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)
∑
e

Γ̄ecd(x)
∂h̄k
∂x̄e

(x̄)

+
∑
c,d

∂Cc
∂xa

(x)
∂Cd
∂xb

(x)
∑
l,m

∆̄k
lm(h̄(x̄))

∂h̄l
∂x̄c

(x̄)
∂h̄m
∂x̄d

(x̄)

=
∑
i,j

∂2Dk

∂yi∂yj
(h(x))

∂hi
∂xa

(x)
∂hj
∂xb

(x)

+
∑
i

∂Dk
∂yi

(h(x))
∂2hi
∂xa∂xb

(x)

−
∑
c,e,i

∂Dk
∂yi

(h(x))
∂hi
∂xe

(x)

[
∂C

∂x
(x)−1

]
ec

∂2Cc

∂xa∂xb
(x)

−
∑
c

[∑
d

∂Cc
∂xd

Γdab −
∂2Cc

∂xa∂xb

]∑
e,i

∂Dk
∂yi

(h(x))
∂hi
∂xe

(x)

×
[
∂C

∂x
(x)−1

]
ec

+
∑
l,m

∆̄k
lm(h̄(x̄))

[∑
i

∂Dl
∂yi

(h(x))
∂hi
∂xa

(x)

]

×

∑
j

∂Dm
∂yj

(h(x))
∂hj
∂xb

(x)


=
∑
i,j

∂2Dk

∂yi∂yj
(h(x))

∂hi
∂xa

(x)
∂hj
∂xb

(x)

+
∑
i

∂Dk
∂yi

(h(x))

[
∂2hi
∂xa∂xb

(x)−
∑
d

Γdab
∂hi
∂xd

(x)

]

+
∑
i,j

∂hi
∂xa

(x)
∂hj
∂xb

(x)

[∑
l

∂Dk
∂yl

∆l
ij −

∂2Dk

∂yi∂yj

]
which reduces to∑
i

∂Dk
∂yi

(h(x))

×

 ∂2hi
∂xa∂xb

(x)−
∑
d

Γdab
∂hi
∂xd

(x) +
∑
l,m

∂hl
∂xa

(x)
∂hm
∂xb

(x)∆i
lm


and establishes (19).
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