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Abstract— A family of hybrid control algorithms is developed a point-mass vehicle, and a nonholonomic vehicle, respec-
that steer a nonholonomic autonomous vehicle to the sourcé @ tively. The results in this paper extend previous work by
scalar signal present in the environment. In an idealized géng, generalizing the hybrid source-seeking framework in [12],

we develop a general hybrid control scheme that globally : .
asymptotically stabilizes the vehicle position about the aurce. [13] to include a wide class of controllers. Moreover, an

Pursuing a practical implementation, a series of perturbatons ~ €xplicit treatment of noise is made in this paper by utiligin
to the family of controllers is introduced, resulting in a semi-  results in robust stability theory for hybrid systems [9].

global practical stability of the vehicle position about the source. This paper is organized as follows. Section Il states the
An example of a recently developed conjugate direction-b@sl ) ohjem introduces some convenient notation, and previde
controller fitting into this family is given. ’ . . .
the necessary hybrid system concepts for this paper. Sectio
IV introduces a family of hybrid controllers that accomplis
the source-seeking task given certain assumptions. InoBect
We investigate the problem of localizing the source of/, we introduce a series of perturbations to the family of
a scalar signal existing in the environment with an auhybrid controllers in Section IV that lift the assumptioms t
tonomous vehicle. In this scenario, we assume that vehicierive a semi-global practical stability result. Finagction
position measurements may not be available. Instead, We outlines a recently developed conjugate-direction Hase
only assume that measurements of the signal at the curreintroller (based upon [12], [13]) that fits into the familfy o
vehicle position are available. To complicate the mattexsé hybrid controllers in Section IV.
measurements may be corrupted by noise and the signal
distribution may be slowly varying. Such disturbances are ||. PROBLEM STATEMENT AND VEHICLE MODEL
common in a real-world scenario, where sensor noise can ) ] ]
corrupt measurements and environmental disturbances cadl this paper, we develop a family of hybrid controllers
re-distribute the signal strength. Such a situation dbesri that steer an autonomous vehicle to the source of a scalar

important problems in science and defense, including cher@ign@l existing in the vehicle’s environment. We assume
ical plume tracing and land mine localization. that t_hls signal is descrlb_ed by a continuously dlfferemna

A broad spectrum of approaches have been applied fynction ¢ :.R2 — R. Letting dom f denote the domain of
this problem in the recent literature, ranging from gradiersome functionf, we assume that for everye p(dom ),
descent with a single vehicle [5], to utilizing a sensof® setL(c) = {v €R%:op(y) < C}_ is bounded. We as-
network of several vehicles to achieve gradient descergr1] SUMe that this function has a unique global minima,
to conduct the simplex optimization algorithm [4]. In [ 2nd thatVang) > O}f and only if z = 2" (where
method ofextremum-seekingas applied to a nonholonomic V¥ (%) = | 52, 9z | )- The goal is to locater™ with
vehicle to achieve an average gradient descent by the gehid" @utonomous vehicle and stabilize it abott
In [3], a method was developed for a point-mass vehicle We consider the following nonholonomic vehicle model,
to lead a group of vehicles to the source by means of ' cos(6)
nonlinear programming methods. Finally, in [2], a PD-type T = me)]
control law based on directional derivatives is used torstee
a nonholonomic vehicle to the source. wherez € R? denotes the vehicle positiof,,c R denotes

In this paper, we develop a family of robust hybrid controthe orientation of the vehicle, andandw are control inputs
algorithms that accomplish this task. The approach in thigr forward velocity and angular velocity, respectivelyhen
paper is similar in character to that of [12], [13], where aonstrained to have a fixed velocity and a minimum turning
specific hybrid source-seeking controller was developed feadius, this unicycle model is sometimes referred to as a

Dubins vehiclg8] in the literature.
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For two vectorsy, z € R?, we define the operatap by A solution to a hybrid system is given as a mapping

1 — 2y dom ¢ — R"™, wheredom ( is a hybrid time domain. To be
Z2QYy = [ P 2} . a solution toH, a ¢ must satisfy((0,0) € C U D, and
22Y1 + Z1Y2
. . 1) for all j € Z>o and almost allt such that(t,j) €
The functionn : R — R? maps values according to dom ¢, C(t j)_e C, ée F(C(H,5))
n(w) — [0 w 7. In this way, (2) hag 0, v, |" = 2) for all (t,j) € dom¢ such that(t,j + 1) € dom,

w[ —¥2 Y1 ]T. This representation of the unicycle model C(t,j) € D, C(t,j +1) € G(C(L, §)).
makes for a convenient description by allowing the vehicle
orientation,, to remain in a compact set (with the expens
of describing it with two states). It is easy to see tHatis
an invariant set for) by noting that(d, 9 ® n(w)) = 0. The
control inputw simply acts to push# around the unit circle.
We also note that thex operator can act as a vector
rotation in the following way. Lettingr € R, [ ¢ s |7 =
[ cos(a) sin(a) |7, andz € R?,

A solution is calledcompleteif dom ¢ is unbounded and
%enoif ¢ is complete, but the projection dbm ¢ ontoR>g

is bounded. LettingSy({p) denote the set of solutions to
H with ¢(0,0) = (o, a solution ismaximalif it is not
a truncation of some other solutigii € S3(¢y) to some
proper subset oflom ¢’. We say that¢ is precompactif
cl¢(dom¢) C R™ is compact.

Now we introduce stability and attractivity concepts for
[21} ® H _ [021 - 822} _ [C —S] |:21:| hybrid systems. A compact sgt C R” is stableif Ve > 0,
22 s $z1 + ¢z s ¢ |z’ 36 > 0 such thatv(y € (A + 0B) N (C U D), each solution

For a given functio’ : X — X, we denotel” as the ¢ € Sn(Co) satisfies|((t,j)la < € V(t,j) € dom(. It
composition of" n times, that isI” = [o---oT, n times. 1S locally attractive if 36 > 0 such thatv(y € (A +
Finally, for some setX, we denotecl X as the closure of 9B) N (C'U D), every( € Sx((o) is complete and satisfies

X. B c R" denotes the closed unit ball. limyj—oo [C(Z, 7)[.4 = 0. The set of points from where
maximal solutions are complete and convergeltés called

lIl. HYBRID SYSTEMS PRELIMINARIES the basin of attractionfor .4, denoted by3.4. The setA is

A hybrid dynamical system is one in which both contin-called locally asymptotically stabléf it is both stable and
uous and discrete state evolution can occur. Working in tratractive, anduniformly attractiveif from each compact
framework of [9], we define the state of a hybrid system\/ C B4 and for everye > 0, there existsI' > 0 such
as ¢ € R"™. The continuous evolution is governed by athatV(y € M, t+j > T = |((t,j)|la < e The
differential inclusion,( € F(¢), and discrete state jumps set.A is globally asymptotically stabléf A is stable and
are governed analogously by a difference inclusioh,e  attractive with3 4 = R™. (Note that by definition, points in
G(¢). Letting = denote a set-valued mapping, we refer tR™\ (C'U D) below to the basin of attraction since there are
F :R" = R" as theflow map and toG : R* = R™ as the no solutions from those points.)
jump map Whether or not flows and/or jumps are allowed
during certain instances of the state evolution is dictémed IV. A GENERAL HYBRID CONTROL ALGORITHM
set inclusion conditions. We define the setsD C R", as In this section, we introduce a general hybrid control
theflow setandjump setrespectively. The state is allowed t0gcheme 1o accomplish the source localization task. In a
flow continuously whert € ¢ and allowed to make discrete gomewhat idealized setting, we, for now, assume that mea-
jumps when( € D. A hybrid system is defined by its data, srements ofV(x), v9) are available for control. We also

H = (F,G,C, D). We write such a hybrid system as assume that the controller can force the vehicle orientatio
ée F(l) c¢cecC to make discrete jumps aC(_:ording th =9, Wh_ere

(tfeGl) ¢eD (9,r) € ST x S! (note that this corresponds to a rotation, so

: St is still invariant for+). These assumptions will be relaxed

In this paper, we will assure that any proposed hybrid systein later sections. Similar to [16], we propose the following
satisfies thedybrid Basic Condition§9, A0-A3], which are a hybrid controller,
set of mild regularity conditions on the datakif These mild

conditions allow us to use available robust stability tlyeor =7
for hybrid systems fitting this framework. Z} c f2(2) (,9,2) € C
Following [9], we now define a solution to a hybrid w fu(2) @)
system. Denotind0, o) asR> and {0,1,2,...} asZso, Z+] c |9:(2) } (2,9,2) € D
we define a hybrid time domain as follows. For some number r 9r(2) T ’

J € Z>o and a sequence of time§=t, <t <--- <ty,
we call a subseD C R>g x Z>o a compact hybrid time
domainif D = Uj;ol([tj,tjﬂ],j). We say thatD is a C = {(x,9,2): (Vp(z),70) < 0,9 € S,z € T} @
hybrid time domainif for all (T,J) € D, Dn ([0,T] x _ ) 1
{0,1,2,...,J}) is a compact hybrid time domain. Such a D={(@9,2): {Ve(a),0) 20,0 €8,z € T},
definition allows the “last” interval to be of the forfn;,7), and the set-valued mappingis: T = R”, f, : T = R, ¢, :
with T finite or T' = co. T=T,g¢ :YT=S! andY C R” satisfy the following:

where0 < 7] < %,



(A1) f. and f, are nonempty, locally bounded, outer
semicontinuousand convex valued off. The set-

Proof: (Sketch) UsingV(§) = ¢(z) — p(z*) as a
Lyapunov-like function, it is easily seen that this functis

valued mappingg. andg, are nonempty and outer- non-increasing along flows and jumps. This follows from the

semicontinuous off'.
(A2) T is compact.

structure of the flow set and the fact that = x during every
jump. SinceV has compact level sets, is positive definite on

(A3) The maximal solutions of the continuous-time sysC'UD with respect ta4, and sinced is compact,A is stable,
temz € f.(z),z € T and the maximal solutions by [15, Theorem 7.6]). Attractivity is shown by computing

to the discrete-time system™ € g.(z2),z € T are
complete.

(Ad) Cy = {(z,9,2) : (Vo(z),79) = 0,9 € Stz €
T}. The only complete solutions to

=30
V€D @n(fu(z)) (z,9,2) € Co
Z € f.(z)
=z ©®)
9T €9 ®g,(2) (z,0,2) € D
2t € g.(2)

begin from the se{(xz,9,z2) : = 2*}.

invariant sets wherd/ is constant along solutions (this
involves using assumptioA4) and invoking an invariance
principle for hybrid systems [15, Theorem 4.7]. ]

V. PRACTICALITY THROUGH PERTURBATION

In this section, we remove the assumptions that
(Vp(x),v0) is available for measurement and thfatan be
updated during jumps. We shall address these issues through
a series of perturbations to the proposed hybrid contsoller
The first issue can be addressed by collecting several values
of ¢ along the vehicle’s trajectory and using this data to
estimate the directional derivative. To obviate the need fo
updating the vehicle orientation at jumps, it is possible to
execute open-loop maneuvers.

The data(f., fu, 92, 9-, T) defines a source-seeking con- The main result of this section is a semi-global practical
troller if it fits into (3) and (4). We say that a source-segkin asymptotic stability theorem which asserts robustnesheo t
controller S = (f., f.,9=,9-, ) has thecontinual search perturbations to the idealized algorithm.

property if it satisfies assumptiori81)-(A4).
Applying (3) to (2) results in the closed-loop system

=79

D eV @n(fu(z)) (z,0,2) € C

ze f.(z)
xt =2z ©
It €9 ® g (2) (z,0,2) € D.
2t € g.(2)

A. Temporal Regularization

The first step in estimatingVe(z),v9) is to introduce
functionality into the controller which allows a minimum
amount of information to be collected about along the
current search direction. We implement this functionality
into the controller through a technique known tasporal
regularization meant to eliminate Zeno solutions in hybrid
systems by enforcing a small amount of flow between
jumps. Temporal regularization has been discussed in the
recent literature, with emphasis on simulation [11], [10jd

Then, (6) on the state spaRé’ x R? xR* satisfies the Hybrid perturbations to hybrid systems [9].

Basic Conditions [9, A0-A3].
For convenience, we group the variablasd, z) into a

We define the temporal regularization parameter, e
R>o, and introduce a new timer state, € R, into our

single variable¢ and denote the right hand sides of (6) agontroller in the following way. Let the new state variable
F:R" = R"andG : R" = R" and define our closed be¢ = (¢,7) € R**! andB = B x [0, K] C R**!, the new
loop asH = (F,G,C, D). Conveniently, we define the setdynamics are given by

B = R? x S! x T so that we can re-writ€’ = {¢ € B :

(Vip(z),79) < 0} and D = {€ € B : (V(x),70) > 0} in E=FO U ¢ hed

terms of B. We define the closed-loop hybrid systéih= T=K—-71 ’ 7

(F,G,C,D). £t eGe) ~ )
Lemma 4.1: Suppose that a hybrid source-seeking con- =0 } (§,7) € Ds,.

troller has the continual search property. Then, solutioos

(6) exist everywhere i’ U D and every maximal solution Where

is complete. Cs. ={(,7)eB:(€Corrtel0,6:]} @

Theorem 4.2: Suppose that the proposed hybrid source- 5& ={(7)eB:£eDandre€[6, K|}
seeking controlle(3), (4) has the continual search property.
Then, the setd = {2*} x S! x T is globally asymptotically

stable forH.

1A set-valued mapping® : R = R” is outer semicontinuous for
all z € R™ and all sequence$x;}°,, {y:}:2,, such thaty; € F(x;),
z; — x, andy; — y asi — oo, we havey € F(z).

and K > 4,. We denote this system by
F_F(@) feC
H;, { Lo el ©)
§TeG() €€ Ds,,

1"

with F(§) = [F(&)T K—7]"

andG(§) = [G(OT 0



This change in dynamics can be seenagiiring flow as  however, we note that it follows from basic set convergence
long as the timerr, has not reached its limit,.. Surely, this arguments in [14, Exercise 4.3].
eliminates any possible Zeno behavior brought on by shorter| emma 5.2: The sequences of sé;, Y2u {Ds )2y
flow times as the vehicle approaches Moreover, as in [9],  converge and their limits are given Iy and D, respectively.
we note that as, — 0, the¢ solutions of (7) approach the The following corollary relates{s to H;.. Defining H
¢ solutions of (6) in a graphical sense and with= 0, the< as the systert{s with 6 = 0, we seée tha‘iiflis identical too
solutions of (7) are exactly the same as those of (6). In th'ﬁ. The foIIowinég corollary ;‘ollows from C%rollary 5.1.

direction, we denote a “nominal” (i.&, = 0) system with ~
temporal regularization, byl = (F, G, C, D), whereC and Corollary 5.3: For the systerfi/,, the setd = Ax [0, K]

D are defined by evaluatings. and Ds_ with §, = 0. In 'S globally asymptotically stable.

preparation for the following section, we make the follogrin Our main result of this section is stated next. We say that
observation, which follows from the arguments presented ia continuous functiors : R>¢ x R>o — R belongs to

[9, Example 6.8]. classK L if, for each fixedt, ((s,t) is zero at zero and

Corollary 5.1: Under the assumptions in Theorem 4.2, th@ondecreasing with respect fpand for each fixed, (s, )

setAd = A x [0, K] is globally asymptotically stable for the 1S non-increasing vyith respect toand converges to zero
systemﬁ. ast — oo. Following [9, Theorem 6.6], we can restate

Corollary 5.3 with ax L function.
B. Directional Derivative Estimation Theorem 5.4: For the systefds, with § = 0, there exists
In this section, we model the estimation error of? € KL such that all solutiong satisfy
(V(z),v9) with perturbations to the set§' and D. Due E(t, §)|a < BUEO0,0)| 4, t + ) V(t,j) € domé. (12)

to length constraints, we do not attempt to elaborate o . .
the details of estimatingVe(z), v9). Instead, we note that oreover, using [9, Theorem 6.6], the following result fwold

temporal regularization and sample-and-hold can be used toTheorem 5.5: (Semi-global practical stability) For the
collect and store information about for estimation of the SystemH;, with § = 0, there existsg € KL such that
derivative along the vehicle trajectory. (12) holds and for every compact séf C B; and each

We assume that the algorithm is equipped with a corrupted™> 0, there existsi” > 0 such that for each € (0, 6],
measurement. We model the measurement by perturbing ¢ solutionsés of H; starting from M satisfy, for all
flow and jump sets;’ and D, to capture the many trajectories (t,j) € dom&s,
that can result f2rom such e_rror-ridden measurements.rigetti |f~5(t,j)|_,4 < 5(%(07 0) st +4) + e (13)
0 = (61,62) € R, we define

D. Open-loop Turning Maneuvers
={€e€ B 3t cr+aB, st. (Vo(2),19) < 0} In this section, we remove the assumption thatan be
={¢ € B:3% €x+ B, st. (Vo(2),y9) > —d2}.  updated during controller jumps by" = ¥ ® g,(2). Since
. measurements dfr, ) may not be available for control, we

Defining 6 = (d-,0) and adding temporal regularizationintegrate a family obpen-loopmaneuvers into our controller.
to the perturbed system as before in (7) and (8), we have Gjvenr € S, the family of open-loop control laws :
R>o x R — R x R must satisfy the following.

Hs { §e F@ £eCs (10) (A5) Vr € S, 3T, (r) > 0 such that the system,
3

Cs
D;

-, .
£r e G() €€ Dy, ) ) =9 @nw)

14
Tm =1 [7 w] = O(Tm, ), (14)

where
Cs ={(&7) Eﬁzﬁe@ or T € [0,6,]}

_ K (11) with
Ds ={(§{,7) € B:§£€ D and 7 € [0, K]}.

[2(0) 9(0) 7m(0)]" =[z0 ¥ 0]", (15)

C. Perturbation and Practical Stability satisfiesz (T (1) = zo and 9(Ton(r)) = 9 @ r
m — <0 m -

Analyzing the errors introduced to our idealized algorithm (and 7, = T,.(r)). Moreover, we assume that
(6) by derivative approximation and temporal regularizati sup,cg T (1) < K and|y| < v*.

requires invoking the existing robustness theory for hybri Lemma 5.6: Suppose th@tsatisfies(AS). Then, for every

systems in [9]. In this section, we will define a family of 1 ) o
perturbed hybrid systems and assert a semi-global practig € S°, z-component of the solution {d4) satisfies|x(t) -

stability property of the perturbed system. xa(o)” < [y[Kr forall ¢ € [0, T (r)).

We define a sequencés;}2, = {(0%,6%,65)}, with Proof: [|z(t) — z(0)|| = Hf(f vﬁdtH <y Kr. ]
§; = max{6, 0%, 03}, such that for ali € Z~q, 6;1 < 0; We integrate this functionality into the controller in the
and§; — 0 asi — oo. We then define a sequence offollowing way. We first introduce two additional states, <
perturbed hybrid systems I%;, = (F, G, Cs,, Ds,). Dueto  {0,1}, a logic state, and,, € [0, K], a timer for the open-
space constraints, we omit the proof of the following lemmapop control law. Let the new state i§g = ({, T, m)RH3,



Letting Be = B x [0,K7] x {0,1}, we write the new is uniformly attractive from any compact skt ¢ Ce U De.

perturbed closed-loop as Moreover, there exists a globally asymptotically stablé se
i 719 .A@ C .A'@.
=9 @ nw) Theorem 5.9: For the systeflg, there exists6 € KL
o ne such that all solutionge satisfy
z € f.(z) toggle(m) . ' '
# = (K — 7) toggle(m) [So(t,5)a < B(I5e(0,0)la,t +j) V(¢ j) € dome.
Ton =M o € G Then, for every compact séff C B4, and everye > 0,
=0 there existsé* > 0 such that for eachh € (0,9*], the
T solutionsée of HY, starting from M satisfy, for all (¢, j) €
m e m=o dom e,
w . .
O(7m, gr(2)) m =1 (16) [€o(t )| < B(€e(0,0)]a,t +j) +e.
o - VI. SOURCELOCALIZATION WITH A CONJUGATE
o — DIRECTION ALGORITHM
We give an algorithm that fits into the framework pre-
Ael” m =0 sented in this paper and satisfies the continual search prop-
g-(z) m=1; &o €D}, erty. This algorithm is based upon tHeecursive Smith-
=0 Powell algorithm reported in [12], [13], which utilizes the
+_0 efficiency of conjugate directionsn the search forr*. We
TT - implement the algorithm as follows.
m" = toggle(m) The state z consists of several elements; :=

()\1,/\2,’0,}), k), Where)\l,)\Q € hB, v € gl, p € {—1,1},
k € {0,1,2}. The valueh is a large positive constant. The
C8 = {(£, T, m) € Bo : £ € C5 andm = 0 or purpose of these variables is similar to that in [12]: theesta
(17) )\ and )\, server to store the vectors traveled by the vehicle,
Tm € [0, T (gr(2))] andm = 1} BN . .
" 5 v stores the current search directignjs a logic variable
D% ={(&,7m,m) € Be : £ € Ds andm = 0 or (18) which coordinates the line minimization, arkdstores the
Tm = Tm(g-(2)) andm = 1}. current algorithm mode.
Then, the stat& evolves in

Here, we haveoggle(s) =1 — s and

For compactness, we write (16) asH{ = _ s

(Fo,Ge,CY,DY). where Fo and Ge are defined as T = (hB)" xS" x {-1,1} x {0,1,2}. (21)
apove in (16). Additionally, we define a nominal systemr, completely define the controller, we must defifie f..,
with open-loop tums aste = (Fe, Ge,Ce, De) Where " anq,  During flows, the vehicle is driven in a straight

_ (/E e _ line, which corresponds to settinfg, (Z) := 0. While driving
Co ={(§mm,m) € B : { € C andm =0 or (19) the vehicle in a straight line, an open-loop integrationhe t

T € [0, T (gr(2))] anNdm =1} vehicle’s movement is stored ik, while keeping the other
Do = {(£,7m,m) € Be : £ € D andm =0 or states constant. To ensure that A, remain inY, we design
T = T (gr(2)) andm = 11. (20) the flow map to stop this integration when .approaches the
boundary ofY. Letting 0 < ¢, < h, we define
The following corollary asserts a stability property foeth — _;, 9 .
perturbed closed-loop systeh,. This result follows exam- ~ Ye = ((h —€n)B)” xS x {-1,1} x {0,1,2}
ining the structure o) and Lemma 5.2D% T = el (hB\ (h — en)B)? x S' x {—1,1} x {0,1,2}.
Corollary 5.7: For a sequencgd}; such that for all o (22)
1 € Zxo, 5i+1 < ¢d;andd; — 0 asi — oo, lim; o ng = Then, we deflnqcz as,
Co andlim;_,, DY = De. . 7 .
We now make a convergence and stability claim for the M lol ze T,

nominal system;He. The proof is omitted due to space . |72 — = ~ _
constraints, but we note that it requires comparing sastio © ~ | V| T f.(2) = m{ [W] 70} zc T': ﬂTSm

of He to those of (9) for proving uniform attractivity,

EnThR

—~=out

then invoking [6, Theorem 1] to prove the existence of an 0 zeX, ,
asymptotically stable set. (23)
Theorem 5.8: ForHe, for everyo > 0, the set whereton denotes taking the closed, convex hull.

During jumps, the controller uses the stored information to
Ap = 2"+ (V' Kr+0)BxS' x Y x [0, K] x [0, K7] x {0,1}  generate new search directions. Lettifg, be some small



number (perhaps, with temporal regularizatidfi, = 76+
€), we define the following sets,

Dy ={ze€Y:p=1and| ]| < dmin} (24)
Dy ={zeY:p=1and|M\| > dmnorp=-1} (25) 1

- - T
C=> Level Sets [

Simulation [

= = Experiment

‘\ -
(note thatD; U Dy = T). We also define op ,, N I “ 1
/( \.4; \’\,
a(z)=[M A Reo —p kT (26) if O o) 1
g2()=[0 A V() 1 (k+Dmod3]"  (27) -2f — 1
where theR,, operator denotes a vector rotationdyadians -3fF———————————— — 1
(so that for some € S!, R,v = —v), " : : : : :

Ry j2v k=0
V(z) € { R0 k=1 (28)
B(A1, Ao, v) k=2
peEswi At + Aa| > v2dmin
(M, dev) € S { RERL T I+ 2l = VI
I(v) A+ Xall < V2

(29)

andIl(v) : St — S!is such that/u® € S!, the set{u € S' :
u=T"(u0), m € Z-o} is dense irS. One could design !
1T to rotate the vector by a rational angle (in radians). The
mod operator denotes the modulus operation. In (27) , the
mod operation simply increments whenk € {0,1} and
setsk back to zero whert = 2.

We then defingy, as the composite function,

(2]

(5]

gl(Z) S Dl \ Dg
9.(2) == { {91(2), 92(2)} 2 € DiNDy (30)  [e]
92(2) z € DQ \ D1

Finally, we define the functiow,, which calculates the 71

rotation needed for the next vehicle orientation. Lettijig
denote thev component ofg,, we define the next search
direction, v™ = g¥(z). The functiong, will calculate the
value ofr = [ 1 72 |7 which satisfies

(8]

El

=07
ol _ |n o 11| = Va1 — vare [10]
vy Vg 9 V9T + V172 (32)
U1 [11]

=5,6) = 1]

_ vz | |or
ro| |:—’U2 vl] [US]

With the algorithm fully specified, we now state that thisl12]
algorithm satisfies assumptior{®1)—(A4). Due to space
constraints, the proof is omitted; however, it is easy t(i3]
see that this is the case, singe(z) generates linearly
independent search directions.

_Theorem 6.1: The hybrid source-seeking controIIerr
(f.s fus 32,0, T) has the continual search property. 15

Figure 1 shows a comparison between a simulation of the
proposed algorithm and experimental results from the set
described in [13]. Open-loop control laws used in Figure 1
are those that generate the optimal Dubins paths [8].

[14]

] R.G. Sanfelice, R. Goebel, and A.R. Teel.

Fig. 1. A comparison between simulation and experiment effftoposed
source-seeking algorithm.
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