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Abstract This chapter presents a formulation for Model Predictive Control (MPC)
where system dynamics are represented in terms of sets. This formulation can be
useful when dealing with systems that require optimal solutions subject to con-
straint satisfaction, in the presence of variability or uncertainty. This is the case of
cyber-physical systems (CPS) where there is a need to account for computation or
communication constraints in algorithm design while also considering model un-
certainty. In our setting, the system is represented by a model where the state is
set-valued and dynamics are defined by a set-valued map. Unlike other formulations
for MPC, we consider a set-valued cost function, which associates a real-valued
cost to each set-valued system trajectory. For this framework, we provide a notion
of stability for systems with set-valued states which follows the classic notion of
Lyapunov stability, which is later used to define the necessary conditions for the set-
valued MPC to render a collection of sets stable. Throughout the chapter, examples
illustrate the notions and results introduced.
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1 Introduction
1.1 Motivation

Model predictive control (MPC) has become a popular choice for the control of
cyber-physical systems. This election is based mainly in the ability of MPC to
explicitly incorporate system constraints along with online reasoning, which allows
for a rich set of applications, such as those found in industrial processes, integration
of intermittent energy sources, safety applications, and autonomous systems. An
important challenge associated to the implementation of MPC for CPS is related to
selecting models that may be accurate enough to represent the system dynamics,
at the same time that they provide timely and safe responses. This is particularly
important when dealing with the control of autonomous systems, where often safety
requirements are encoded as constraints which may be obtained in real-time from
perception systems. An example of this can be the control of an autonomous vehicle
where a computer vision system identifies obstacles along a trajectory, which can be
incorporated into the system dynamic constraints, to be avoided in the path selection.
As the vehicle moves and the vision system output may be subject to uncertainty
due, for instance, to sensor and road characteristics, safety requirements may need
to be encoded as time-varying set-valued constraints. Finding accurate models to
represent the interactions between the cyber and physical components, along with
uncertainty can be a difficult task, and often approximations are required to represent
inherent system variability which cannot be captured by one model. To deal with
these challenges, the MPC formulation requires models suitable to capture this
variability so it can be considered in decision-making, thus ensuring the generation
of controls that can lead to feasible, safe, and computationally efficient trajectories.

The approach presented here considers a set-based representation to encode the
system variability and constraints. Sets are a natural tool to encode systems con-
straints, as well as to represent variability, in particular when dealing with regions
of the state space for which only partial information is available, or where the state
space is obtained using data analysis techniques [1]. Additionally, several control
tools are already presented in a set-based context [2, 3], often accompanied of com-
putation and approximation methods that facilitate encoding and dealing with sets
representation [4, 5]. In particular, we consider here a set-based representation that
follows a dynamical systems perspective, namely, set dynamical systems, along with
an MPC formulation which uses the sets framework on its definition.

1.2 Results in this chapter

This chapter introduces a representation for discrete-time systems with set-valued
states. The solutions associated to these systems are given by sequences of sets or
tubes, for which the following results are established:
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1. A definition for stability of a collection of sets C, which follows the classic
Lyapunov stability notion, is presented.

2. The formulation of a set-valued model predictive control framework, with a set-
valued cost function, that allows to consider the cost associated to set-valued
trajectories, which are used to represent system variability.

3. Conditions that yield the constrained optimal control problem associated to the
set-based MPC formulation feasible and stable are presented, thus extending
existing stability results for classic MPC to a set-based approach.

1.3 Related works

The idea of using sets to characterize system properties is not new, as several early
works discussing generalized systems such as [6], [7], [8] present this notion. In
addition, in the literature of control systems and classic MPC, set-based frameworks
are used to study system properties and to encode system constraints as presented,
for instance, in [2, 9, 3, 10] and [11]. In the case of robust model predictive control,
tube-based approaches such as [2, 3, 12, 13] consider also set properties to represent
the tubes along which the system trajectories are contained. In previous works (see
[14], [15], [16], [17]) we study the properties of systems with set-valued states
evolving in discrete time. An emphasis is given on extending notions and tools to
characterize relevant properties defined for classic discrete time dynamical systems
towards a representation based on sets. In this chapter we use the set dynamical
systems framework to present a formulation for MPC which can be used to study
the effects of system variability in predictive control. This approach shares ideas
with tube-based MPC formulations, but unlike other approaches, it considers a set-
valued cost functional which can be use to generalize approaches in tube-based MPC
and Robust MPC formulations. We discuss also, some of the computational aspects
of the proposed approach, particularly when dealing with CPS applications. As an
illustration, we formalize the approach in [18] and provide some basic examples
to help visualize how key properties of MPC can be generalized to a set-valued
representation and thus can aid in the design of stabilizing and safe CPS controllers.

1.4 Chapter Organization

The remainder of this chapter is organized in the following manner. Section 2
presents a framework for the set dynamical systems considered here; Section 3
presents the formulation for the proposed set-valued predictive controller. Basic
assumptions associated to this set-valued MPC are presented in Section 4, which
are later used in Section 5 to establish conditions for feasibility and stability results.
Connections to classic notions for discrete time MPC are also discussed here. Then,
in Section 6 we discuss some implementation options for the proposed controller,
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and provide a numerical example related to the control of autonomous vehicles.
General conclusions and future works associated are presented in Section 7.

Notation

The following notation is used throughout this chapter. The set of natural numbers
including O is denoted as N, i.e., N = {0, 1, ...}. The set of real numbers is referred
as R, R denotes the nonnegative real numbers and the n-dimensional Euclidean
space is represented as R". Given a vector x € R", |x|, denotes the o--norm, with
o € [1,00]. Given a closed set A C R" and x € R", we define the distance
|x|# :=infye# |x — y|. Given a map V its domain of definition is denoted as dom V..
We also use the notation dom(X, U) to refer to the time domain of a solution-pair
in Section 2. A function @ : Ry — Rs( belongs to class-%K if it is continuous,
strictly increasing, and a(0) = 0. If « is also unbounded then it is said to be of
class-K. For a given pair of sets Sy, S», the notation §; C S5 indicates that S
is a subset of S>. We will refer to sets of subsets of R” as collections (of sets).
Given a set S, the notation #(S) denotes the collection all of nonempty subsets of
S, namely P (S) = {S1, S2, . .. }, where for each i, S; is a nonempty subset of S. The
collection of all nonempty compact subsets of S is denoted as P¢(S). For a given
pair of collections of sets C;, C», the notation C; C C, indicates that C; is a subset
of the collection C,, namely, it indicates that every element of C; is an element of
C>. We denote the intersection between C| and C, as C; N C, which corresponds to a
collection, namely, it indicates that all the elements in the collection C; N C; are both
in C; and in C,. Given a set C and a collection of sets C, notation C € C indicates
that the set C is an element in the collection C. In general we refer to collections of
sets simply as collections. For a variable x evolving in discrete-time, we denote by
x* the value of x after a discrete-time step. Discrete time is also denoted by j € N
and for a given function j — x(;j) of discrete time j € N, we use the notation x; to
represent x ().

Basic Definitions

Definition 1 (Hausdorff distance)

Given two closed sets A;, A, C R the Hausdorff distance between them is
given by

du (A, Az) =maX{ sup |x|x,, sup |Z|ﬂ1}
xXeA z€A,

Given sets A, A, and dy as in Definition 1, dg (A, Az) = 0 if and only if
A = Ay

Definition 2 (distance from a set to a collection)
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Given a set X € Pc(R") and a collection A C Pc(R"), the distance from X to
A is given by
d(X,A) = inf dy(X,A)
AeA

The definition of d above extends the notion of distance from a point x to a set A,
to the case when the point x is replaced by a set X and the set A is replaced by a
collection. Note also that the distance between a set X and a collection A is only
equal to zero in the case where the set X coincides with an element of the collection
A, i.e., if X € A. The later is similar to the notion of distance from a point to a set
presented in section 1.4.

Definition 3 (Set-valued maps)

Let G be a set-valued map, mapping sets in P (R”") x P(R™) to sets in P (R"),
and denoted as G : P(R") x P(R™) =3 P(R"). Given sets X € Pc(R"), and
U € Pc(R™), G(X,U) is defined as

QKUﬁztj G(x,u)

xeX,ueU
={(x",u') € G(x,u) : x € X,u e U}

In the remaining of this work we denote sequences of sets with boldface to distinguish
them from the notation used to refer to a single set in the sequence. Hence, the
sequence {7;}: is represented as T, and a set within this sequence is denoted by 7;.

For the next definition, we consider the definition of limit of a sequence of sets
presented in [19].

Definition 4 (continuity of a set-valued map) [19, Definition 5.4] A set-valued
map S : R" =3 R is outer semicontinuous at X if

lim sup S(x) c S(x)
X—X

and inner semicontinuous at x if
lim inf S(x) > S(X)
X—X

It is continuous at x if it is both outer semicontinuous and inner semicontinuous at x.

2 Set dynamical systems

In this work, we propose a set-based predictive control scheme for discrete-time
systems with solutions given by sequences of sets. This framework follows the ideas
in [14] where the evolution of the state of a system is represented by a sequence of
sets

Xo, X1, X0, ... X;, ... C R" (1)
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where j € {0,1,2,...} and Xj is the initial set. The sequence of sets in (1) defines
a state trajectory. Such a trajectory defines the sequence of sets X, indexed by
J €10,J], J € N. These solutions can be generated when incorporating uncertainty
and the effects of several possible inputs in a “classical” dynamical system given by
x* = g(x,u), withx € R" and u € R™. We refer to these systems as set dynamical
systems.

We consider set dynamical systems defined by

X*=G(X,U)

(X,U) ed @

where X is the set-valued state and U is the set-valued input, G : P(R") X P (R™) =3
P(R™) is a set-valued map defining the evolution of the set-valued state, and the
collection d = D X D, with collections D; ¢ P(R") and D, c P(R™), defines
constraints that the state and the inputs must satisfy. The collection d can be useful
for instance to specify safety constraints, which can define regions in the state space
where the system is safe to operate.

Note that the framework presented here follows the one described in [14], [15]
and it seeks to extend the discrete-time representation used in model predictive
control in [20, 11, 21]into a set-valued state space representation. Following this
idea, constraints traditionally expressed in terms of sets, are presented here in terms
of collections of sets, which define the admissible values for the system state and
inputs.

The next definition formalizes the notion of solution pairs, which will be used
when defining sequences of set-valued states generated by a sequence of inputs.

Definition 5 (Solution pair to a set dynamical system)

A solution pair for the set dynamical system in (2) is given by a sequence of
compact nonempty sets X defining the state trajectory, and a sequence of closed
nonempty sets U representing the input. Note that the input U generates the state
trajectory X which define the solution pair. The first entry of the solution, Xp, is the
initial set for the state. The sequence (X, U) is a solution to (2) if

Xjr1 = G(X;,Uj)
(Xj, Uj) ed

for all j € dom(X, U), where the domain of definition of the solution dom(X, U) is
given by the set {0,1,2,...,J} NN with J/ € N U {co}!. A solution pair that has
J = 01is said to be trivial?. If the solution pair has J > 0 is nontrivial, and if it has
J = oo, it is complete. Given an initial set Xy € D € Pc(R™), S(Xo) denotes the
set of all possible solution pairs (X, U) with initial set Xj.

Note that depending on the input sequence U we can have different solutions X
from the same Xj.

! Note that dom(X, U) is equal to dom X = dom U := dom(X, U)
2 Necessarily, in such case, Xy ¢ D;.
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Example 1 Consider a ground vehicle represented by the Dubins model. An exact
discretization for this system with step size T is given in [18] by
g1+ 2 cos(@+uy) sin(uy)

. w_
xt = g(x,u) = | gy + g 250(OH) sinGer) 3

w

0+ 2uy

where the state is given by x := (g1, ¢2, )", with (¢1, ¢2) being the vehicle Cartesian
coordinates, 8 is the heading angle, angular velocity associated to heading given by
w = 0, ¢ is the front wheels angle, and u = (uy,uz)” = (v,Tw/2)7 is the input,
where v represents the speed. A diagram with the associated variables is presented
in Fig. 1. For this system, consider the case where there is uncertainty in the vehicle
position (q1, g2). We capture such uncertainty by defining the initial set X as the set
of all possible vehicle positions for the initial time. We can represent the dynamics
of this system by defining a system with data given by

X*=G(X,U) @
(X,U) ed
where G(X,U) = Uyex uev g(x,u),d = P(R?) x P(R?). For a given input u € U,
the state trajectory for this system is given by a sequence of sets X. The state trajectory
for of this system from X = {(g1,¢2,0) € P(R?) : o™ < g < o™ o <
g2 < 03", 6 = 0}, with an applied singleton input sequence U is depicted in Fig. 2
up to time J = 9.

A

q2

qi

Fig. 1 Variables and parameters in Dubin’s representation in Example 1
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Fig. 2 Set-valued trajectory for the system in Example 1 from Xy = {(g1,¢2,0) € P(R?) :
0<qg <04,0<q <0.2580=0}forJ =9, u =(2,2,2,2,22,222)7, and up =
(-5 -%-%,-%,0,0,0,0)7

2.1 Set dynamical systems under Static State-Feedback

Given the map « : Pc(R") = P(R™), let

X' =G (X) = G(X, k(X)) (5)
(X, k(X)) ed

A solution pair (X, U) = (X, (X)) is said to be generated by the feedback «. For
the system in (5), we define the following notion of invariance

Definition 6 (forward and backward invariance for (5)) A collection M c P (R")
is said to be forward invariant for the set-valued system in (5) if for every set
T € M N Dy, we have G,(T) € M with T such that G,(T) is nonempty and it
satisfies the constraints in (5). A collection M c P(R") is said to be backward
invariant for (5) if for every set 7’ € M N D for which there exists a set 7 with the
property T’ = G (T), wehave T € M for every such set 7. A collection M c P(R")
is said to be invariant if it is both forward and backward invariant.



Set-valued Model Predictive Control 9

3 Set-valued Model Predictive Control

In this section we propose a set-valued model predictive control (MPC) scheme for
discrete-time systems with solutions given by sequences of sets. Given a dynamical
system where variability can be captured by the representation in (2), the predictive
controller is implemented by measuring the set-valued state of the plant in (5) and
finding a solution pair which minimizes a cost functional, subject to constraints.
As with classic moving horizon implementation for MPC, at each measurement
instant, the algorithm computes an optimal control sequence of sets, from which
commands are applied to the plant until the next measurement is available. Unlike
other formulations for robust MPC, such as tube-based approaches [22], where the
optimal control problem is designed to constraint singleton trajectories to sequences
of sets or tubes, but cost is evaluated in terms of a nominal (classic) state trajectory, the
cost function considered here assigns a real-valued cost to each set-valued solution
pair. Considering a set-valued cost function allows to evaluate solution-pairs where
state variability and also potential input variability is captured by the set-valued
representation. This approach results interesting in systems where there is intrinsic
variability in process variables, such as industrial applications [23] and control
applications for intermittent renewable energy sources [24, 25], where targets are
defined as desirable zones or operation regions of the state space.

Next, we describe the formulation of the set-valued MPC, where, as in the case of
classic MPC strategies, the controller considers a prediction horizon N =J > 1, a
control horizon 1 < M < J, a terminal constraint collection of sets Xy C Pc(R"),
a stage cost £, and a terminal cost V.

3.1 Finite Horizon Set-valued Optimal Control

In this section we present the main elements in the formulation of the proposed
set-valued predictive controller. In order to relate the formulation and properties of
the set-valued MPC to the classic ones, the notation considered here resembles the
ones in [11] and [21].

3.1.1 The Cost Functional

Given a solution pair (X, U) of (5) with terminal time J, a stage cost £, and a terminal
cost V¢, we define the cost J associated to the solution pair as

J-1
T (X, U) = Y 6(X;,U) +Vr(X)) (©)
=0
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where £ : Pc(R") x P(R™) — Ryp and V¢ : Pc(R") — Ryo. Note that the maps
¢ and Vy assign a cost to every nonempty closed subset in Pc(R") x P(R™) and
Pc(R™), respectively.

3.1.2 The Constrained Optimal Control Problem

The optimal control problem to be considered is defined next.

Problem 1 Given the prediction horizon J > 1, stage cost £, terminal cost V¢,
terminal constraint collection Xy, constraints defined by the collection of sets d,
dynamics described by the map G as in Definition 5, and initial state X

min 7 (X,U) (N
(X.U)eS (Xo)

subject to Xy € Xy

For this problem the optimization is performed over solution pairs of (2), with
initial condition Xy, and terminal state X; belonging to the terminal constraint
collection Xy . Here, the decision variable associated to the optimization corresponds
to the sequence of inputs U. Note that having a set-valued input allows to capture
actuator variability or a range of control inputs that can lead the system to the
desired performance. State-input constraints associated to (2) along with typical
MPC constraints can be captured by d.

A solution pair is said to be feasible if it satisfies the constraints of (7). We also
refer to a given sequence of inputs U as feasible if along with its associated X, they
correspond to a feasible pair. We define the feasible collection X as the collection of
all sets X, such that there exists a feasible pair (X, U) € S(Xo).

The value function J* : X — Ry is defined as

I (Xo):= inf  J(X,U) VXpeX (®)
(X,U)eS(Xo)
XjeXy

If the infimum is attained by a feasible (X, U) € S(Xp), then the pair (X, U) is said
to be optimal over the prediction interval and it is denoted (X*, U*).

Note that in general, solutions to this problem may not always exist and may not
be simple to compute numerically. We focus first on the properties of the resulting
predictive control algorithm, and we discuss later possible computationally feasible
implementations for this controller.

3.2 Set-valued MPC algorithm

Given a prediction horizon J and a control horizon M, the set-valued MPC algorithm
operates by measuring the initial (set-valued) state, solving the optimal control
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problem described in Problem 1 to find a solution pair (X*, U*). The optimal control
sequence U* = {U;, U7, ..., U;,_,} is then applied to the system in (5) until time
step M at which point the process in repeated for a new initial condition given by the
current state measure. Note that this process defines an implicit control law given
as a function of the initial state Xy, which we will denote with k. (X). This process
is summarized in Algorithm 1. Note that here in the last expression, the state X
corresponds to the state which was used as a starting point of the optimization.

Note that by the execution of Algorithm 1, the resulting trajectories generated
by the set-valued MPC correspond to concatenations of truncated optimal solutions.
This notion is formalized in the next definition.

Definition 7 (solution pair generated by SVMPC)

A solution pair (X, U) is said to be generated by the set-valued MPC algorithm
if it is the concatenation of a sequence of solution pairs (X, U) where for each
j € dom(X,0U), (X,0) in the sequence of sets is the truncation of an optimal
solution pair (X*, U").

An illustration of the solution pair notion provided in the previous definition is
presented in Fig. 3.

4 Basic Assumptions for Set-valued MPC

In this section we present assumptions associated to Problem 1 to ensure feasibility
and stability properties. These assumptions resemble the stabilizing conditions for
constrained problems in classic MPC formulations, such as the ones summarized in

03
0.2

0.1

-0.1

q2-0.2 r
-0.3

-0.4 -

-0.5 | b

-0.6 - b

07} - - ]
Xo , Xy, L
1 1.2 1.4 1.6 1.8

0.8 ! I I L I
-0.2 0 0.2 0.4 0.6 0.8

q1

Fig. 3 Set-valued trajectory for the system in Example 2
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Algorithm 1 Set-valued predictive control
1: Obtain initial state X
2: Set Xp=X,i=0.
3: while True do

4: Solve Problem 1, obtain (X*, U*)
5: Setj=0

6: forj <M -1do

7. Xin =X, = G(X;, U;‘)

8: i=i+l,j=j+1

9: end for

10: Set Xo = X3,
11: end while

[11]. We start by considering a basic assumption associated to the existence of an
optimal solution, which is needed for feasibility.

Assumption 1 For each Xy € X, there exists an optimal solution pair (X*, U*) €
S(Xo). o

Assumption 2 Givenacollection A C Xy C Pc(R"),andastagecostf : Pc(R")x
P(R™) — R, there exists a class-K, function a such that £(X, U) > a(d(X,A))
for every (X,U) € d. O

Assumption 2 considers that a lower bound on the stage cost associated to the set-
valued MPC formulation exists, which generalizes a similar condition for classic
MPC presented in Chapter 2 in [11]. The next assumptions impose an upper bound
on the terminal cost and forward invariance of the terminal collection of sets, thus
representing a generalization of the “so called” basic stabilizing assumptions 2.12
and 2.13 in [11].

Assumption 3 Given a terminal cost Vy, there exists € > 0 such that the following
hold:

(BO) There exist class-K. functions @; and a; such that a1 (d(X, A)) < Vi(X) <
ax(d(X,A)) for all X € Xy N Ae, where the collection A, is defined as
Ae ={X € Pc(R") : d(X,A) < €}.

(B1) The inclusion A N D; C Xy holds. O

Assumption 4 There is a state feedback « such that the terminal constraint collection
of sets Xy is forward invariant for the system (5). Moreover, « satisfies V¢ (G (X)) —
Vi(X) < =6(X, k(X)) forall X € Xy such that (X, (X)) € d. O

S Properties of the Optimal Control Problem

In this section, the basic assumptions defined before are used to characterize prop-
erties of the optimal control problem formulated in Section 3. These properties are
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then used to develop a stability result with conditions for asymptotic stability of the
system resulting from using the proposed set-based MPC.

Proposition 1 Suppose Assumptions 2 and 4 hold. Then

(X, k(X)) =0 ©)
forall (X, k(X)) € d such that X € A.
Proof The property follows directly from Assumptions 2 and 4. O

Proposition 2 Ler (X, U) be a feasible solution pair to the set dynamical system in
(5). Suppose the terminal constraint collection Xy is forward invariant for the system
(5). Then, for any j € dom(X, U), there exists a feasible pair (X',U’) € S'(Xj); ie.,
X; e X forall j € dom(X,U).

Proof We prove this by constructing the feasible solution pair (X’,U’). Since
(X,U) is a feasible solution pair, we can obtain a feasible solution from Xj.
The sequences of states {Xj, X5, X3,...,G (X, (X))} and the control sequence
{U1,U,,Us,...,k(X;)} are feasible as they satisfy all the constraints associated to
Problem 1 as by Assumption 4, the collection Xy is forward invariant for the system
(5). Hence, X belongs to the feasible collection X. By induction, it follows that we
can define a feasible solution pair (X', U’) € (X ;) forall j. O

The next results present properties analogous to the ones used in classic MPC
literature to establish the value function as a candidate Lyapunov function.

Lemma 1 Suppose Assumptions 2, 3 and 4 hold. Then, J*(X) = 0 for all X €
AN Xy.

Proof Given the compact set Xy € A N Xy, let (X', U') € §(X) be a solution pair
generated by the feedback k. By Assumption 4, X ]1 € Xy for all j € dom(X',U"),
as Xo € AN Xy, and Xy is forward invariant for the system (5). By Proposi-
tion 1, £(Xp, k(Xp)) = 0, as Xo € A N Xy. By Assumption 3 and the definition
of @1 and a7, V¢(Xo) = 0, as Xy € A. Combining these properties, by Assump-
tion 4, V(G (X)) — Vy(Xo) < —€(Xo,«(Xp)), and, consequently, we have that
V#(G(Xp)) = 0. Then, by its definition, it follows that (X', U!) = 0 and conse-
quently, J*(Xo) = 0. Therefore, 7*(X) =0 forall X € AN Xy. O

Lemma 2 Suppose Assumption 2 holds. Then, there exists a class-Ke function a
such that the value function satisfies J*(X) > a(d(X, A)) forall X € X.

Proof By Assumption 2 there exists a class-K,, function « such that £(X,U) >
a(d(X,A)) for every solution pair (X,U) € d. By definition J is given by
J (X, U) = 725 €(X;, Uj) + V¢(X;). This leads to J (X, U) > a(d(X;, A)) for
every (X,U) € d,as Vy(X;) > 0. Since this is valid for all (X, U) € d, soitis for opti-
mal solutions X*, which, by definition satisfy X* € X, hence J*(X) > a(d(X,A))
forall X € X. O
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Lemma 3 Suppose Assumption 4 holds and Xy C X. Then, J*(Xo) < V¢(Xo) for
all Xy € Xy.

Proof Consider any feasible, not necessarily optimal solution pair (X, U) generated
by the feedback « with terminal time J. Then,

J-1
TX,U) = 3" 6(X;, k(X)) + V(X))
j=0

Using Assumption 4,

J-1

J(X,U) <= 3" (Vi(GulX)) = V(X)) + Vs (X))
j=0

==(Ve(Xy) = Vi(Xo0)) + Ve(Xy) = Vi (Xo)

Leading to J(X,U) < V;(Xp), which, by definition of the value function shows
that 7 (Xp) < Vf(X()). O

Lemma 4 Suppose Assumptions 2 and 4 hold. Let (X*,U*) € 8(Xo) be an optimal
solution pair to Problem 1. Then, for any j € dom(X*,U*), 7*(X;) < J"(Xo) —

) X Uy,

Proof Let (X, U) be an optimal solution pair with terminal time J and X; € Xy. Let
(X%, U%) be a solution pair such that dom(X°, U%) = {i € N : (i+/) € dom(X*, U*)}.
By Assumption 4, there is a solution pair (X', U') € S§(X°(Jy)), with terminal time
J1 generated by the feedback « that satisfies X Jl € Xy, forall j dom(Xl, Ul), as
Xy is forward invariant. Consider now the solution (X’, U’), with terminal time J’
obtained from concatenating (X, U) and (X', U') and truncating it by removing the
first j — 1 terms. The cost of this solution is given by

j-1
T (X, U) = T (Xo) = ) €(Xi, Up) = Vi (X})
0

i=

J'=Ji-1
Vi(Xg_)+ DL e k(xh)
i=0
Using Assumption 4, we have that
J'=Ji-1
VX)) + V(X)) <= > X x(X)))
i=0

which leads to

j-1
J (X, U) < " (Xo) - ), 0(Xi, Up)
i=0
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Since the truncated solution starts at X; it follows that J*(X;) < J"(Xo) -
I (X Uy o

5.1 Asymptotic Stability of Set-valued Model Predictive Control

In this section we use the properties defined in the previous section for the Optimal
control problem to find conditions which guarantee stability for the set-valued MPC
approach. We start by providing a definition of stability for a collection of sets.

Definition 8 (stability of a collection)

The set-valued MPC algorithm is said to render the collection A C Pc(R"™)
stable for the set dynamical system in 2 if the following hold:

e There exists § > 0 such that for every Xy € D; satisfying d(Xp, A) < 6,
there exists a solution pair (X, U) generated by the set-valued MPC algorithm
originating from Xj.

* Forevery € > 0, there exists § > 0 such that given a solution pair (X, U) generated
by the set-valued MPC algorithm, d(Xp, A) < § implies d(X;, A) < € for all
j € dom(X, U).

o If, additionally, every solution pair (X,U) generated by the set-valued MPC
algorithm satisfies

lim d(X;,A) =0
j—)DO

then the set-valued MPC algorithm renders the collection A asymptotically stable.

The previous definition of stability for a collection of sets generalizes the classical
notions of stability and asymptotic stability employed in classic MPC towards the set-
valued state space representation considered here. Note that if the sets are replaced by
points and the collections are replaced by sets in Definition 8, the classical definition
of stability in [11] is recovered.

Theorem 1 Suppose Assumptions 1, 2, 3, and 4 hold. Then, the set-valued MPC
algorithm renders the collection of sets A asymptotically stable for the system 2.

Proof Consider a solution pair (X, U) € $(Xo) generated by the set valued MPC
described in Section 3, with Xp € X. Xy € X, by definition of the feasible set and
by Assumption 3. By the previous statement and the result in Lemma 3, there is an
€’ > 0 and a class-K infinity function a; such that 7 (Xy) < az(d(Xo, A)), for all
Xop € Xy N A . By Lemma 2, there exists a class-K infinity function @ such that
T (Xo) = a1(d(X,A)) for all Xy € X. Given an initial set Xy € X, suppose that
d(Xp, A) < 6, withd > 0. By Lemma 3, we can have that § < az‘l(aq(min(e’, €))),
such that Xy € A N D1 N Xy. By Lemma 4, optimal solutions pairs satisfy
J*(X;) £ J*(Xo). From this and Lemmas 2 and 3 we have that

a1 (d(X;, A) < T (X;) < T (Xo) < az(d(Xo, A))
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Leading to d(X;, A) < o7 (J*(X;)) < a;'(a2(d(Xo, A))) = €. From this we
have that we can have d(Xp, A) < &, implies that a solution starting from X, will
satisfy d(X;, A) < e, thus showing stability in the sense of definition 8. By Lemma
4 and Assumption 2, we have that

lim sup *(X;) < lim J*(Xo) — Z a(d(X;, A)) (10)

Let ¢ := limsup;_,, J"(X;), and assume ¢ > 0. By Lemma 2, J7(X;)
a(d(X;,A)), for all j € dom(X,U), thus leading to limsup; ., J"(X;)
limj e a(d(X;, A)). As c is strictly positive and « is a class-K, this means
the argument of « in the last expression is nonzero, say d(X;, A) > r, with r > 0.
If we now apply this to the expression (10), the summation term on the right side of
the expression will become negative eventually as 7 (Xp) is finite, thus leading to a
contradiction. Thus ¢ = 0, leading to limsup;_,,, J*(X;) = 0 and consequently to
limj_m d(Xj,ﬂ) =0. O

>
>

6 Implementation

The set-valued predictive control proposed in the previous sections presents several
challenges for its implementation, given the need to properly generate and represent
sets, and to solve online the constrained optimization formulated in Problem 1. These
challenges, as discussed in [18], can be summarized as below.

1. A suitable and computationally efficient representation for the sets characterizing
the dynamics must be found.

2. A solution for Problem 1 must be obtained, which may be difficult given the
presence of state and inputs defined as sets, along with constraints formulated as
collections of sets.

3. The computational burden associated to the numerical solution of Problem 1 may
become intractable, similar to the case of some robust formulations for MPC [21].

4. Presence of delays, perturbations on the set dynamical system or unmodeled
dynamics, can severely affect the performance of the described set-valued MPC
implementation.

The challenges listed above are not uncommon with classic MPC implementations,
such as the need for accurate, fast optimization [26] and the need to propagate and
evaluate set-based trajectories, also found in reachability problems [27]. Approaches
to these issues often consider over- or under-approximation of the dynamics, in order
to provide computationally tractable solutions. These include the use of polytopes,
zonotopes and support functions, among others, as a means to represent sets and to
maintain desirable computation properties [21]. We illustrate next an implementation
approach for the set-valued MPC based on a approximations using polytopes, which
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allows for the proposed controller to be computationally efficient. In general the
implementation of the set-valued model predictive controller described here requires

1. Selection of a proper set-valued map evolving in discrete time to represent the
system dynamics. This map can be described using Definition 3 by using classic
dynamic representation.

2. Constraints selection. The set-valued representation allows to incorporate allow-
able regions defined in terms of physical construction (such as actuator range) or
safety requirements (such as safe regions of the state space).

3. Cost function and terminal constraint selection. The selected cost function must
satisfy conditions identified in Section 5, and the terminal constraint collection
should contain the target set-valued state for the system.

4. Sets representation. The selection of a suitable representation, or approximation if
needed, of the sets to be used in the system characterization requires an approach
consistent with real-time requirements and computation cost. Here approaches
such as the use of polytopes or zonotopes can yield faster computation times, thus
providing timely and safe trajectories for the system to be controlled.

Example 2 (Autonomous vehicle control)

Consider the problem of controlling an autonomous vehicle towards a given
target location described by the collection Xr = P (Xr), while satisfying system
constraints. For instance, X7 may represent a parking space as the terminal state.
Recalling the coordinates in Fig. 1, we assume that there exists bounded uncertainty
in the vehicle coordinates (g1, g2) due to sensor noise, while § may be determined
more exactly due to visual feedback of parking space lines: this motivates the set-
valued framework. With this system, dynamics will be represented using an over
approximation, i.e. the dynamics will be contained in a set, where the map G will be
defined such that G (X, U) is a compact convex polytope. Similar to the approach in
[18] we consider a selection of constraints for the system such that the area of the set
X given by its g| — g projection remains constant. We present next the selection of
a representation and parameters to implement the set-valued MPC for this problem.

1. Dynamics representation. We consider the system dynamics as in (3), where the
state satisfies x € [z1, z2] X [z3,24] X [z5] withz; € R,i =1,...,5. With this, as
the dynamics of g and g, are decoupled, the system can be described in terms
of the new variable z = [z1, z2, 23, 24, z5] by

21 +Tu, 2 cos(zs+uy) sin(uy)

u .
20+ Tuy 2 cos(zs+up) sin(up)
7 =g(zu) = |23+ Tuy

24 +Tuy

. u. .
2 sin(zs+up) sin(uy)

uz

2 sin(zs+uy) sin(uy)
u

5 + 2u2

For consistency with real actuator commands, we will consider the decision
variable (U*) to be chosen from subsets of R? consisting of a single element.
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Table 1 Computation time

Discretization time (s) Min runtime (s) Max runtime (s) Average runtime (s)

0.2 0.0223 0.3035 0.0403
0.1 0.0213 0.1783 0.0451
0.05 0.0232 0.2046 0.0571
0.01 0.0304 0.2296 0.0490

2. Constraint selection. Bounds associated to the state and commanded inputs are
governed by physical parameters of the vehicle and sensors. In particular we
consider here: D; = P(R?> x R) and D, = P(D,), with D,, = {(uj,uz) : 0 <
U1 < Umax, _TT¢car <uy < %g&car}, where Umax, Pcar TEPresent the autonomous
vehicle allowable maximum speed and steering, respectively, and where T is the
sampling time associated to the discrete time representation.

3. Cost Function and terminal constraint selection. We can represent the target
collection as Xr = P (Xr), where X7 can be defined by the physical dimensions
of the target location. In particular here we consider X7 = [d|, d2] X [d3, d4] XR,
where d; € R, withi = 1,...,4. We define the terminal constraint set Xy C
P (R") to be such that Xy N P(Xr) is nonempty.

4. Set representation. In order to steer the system towards the selected target, we
define £(X,U) = Zf’:l |k |x,, where x, with k = 1, ..., p, represent the vertices
of the set-valued state X, which is considered to be a polytope. The terminal cost
is also defined in terms of the target as V¢ (X) = 4 Zle |xk|x,, with 2 € Ryp a
weight factor as in classic MPC.

A numerical simulation result for these settings is presented in Fig. 4 where the
selected parameters for the set-valued MPC are as follows: prediction horizon N = 6,
control horizon M = 1, 1 = 1, target location X7 defined as [-0.75,-0.25] x
[-0.7,-0.3] X R, and system parameters umax = 0.8, ¢car = %, vehicle length and
width of 0.5m and 0.4m respectively, with sampling time 7 = 0.2s. Table 1 presents
a summary of the computation time associated to the solution of the set-valued MPC
for different discretization times.

7 Final Remarks

This chapter introduced a formulation for set-valued model predictive control. Unlike
other approaches in the literature, systems with set-valued states along with a set-
valued cost function for the MPC formulation are considered. Necessary conditions
for the formulated set-valued predictive controllers are presented and illustrated
here. Currently the solution of the proposed set-valued MPC may require high
computational costs, as it is the case of other MPC formulations; however in certain
cases or if the system admits a suitable approximation, efficient routines can be
implemented as it is the case of polytopic sets approximations.
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