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Abstract

We propose a hybrid control algorithm that guarantees fast convergence and uniform global asymptotic stability of the unique
minimizer of a C1, convex objective function. The algorithm, developed using hybrid system tools, employs a uniting control
strategy, in which Nesterov’s accelerated gradient descent is used “globally” and the heavy ball method is used “locally,” relative
to the minimizer. Without knowledge of its location, the proposed hybrid control strategy switches between these accelerated
methods to ensure convergence to the minimizer without oscillations, with a (hybrid) convergence rate that preserves the
convergence rates of the individual optimization algorithms. We analyze key properties of the resulting closed-loop system
including existence of solutions, uniform global asymptotic stability, and convergence rate. Additionally, stability properties of
Nesterov’s method are analyzed, and extensions on convergence rate results in the existing literature are presented. Numerical
results validate the findings.
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1 Introduction

1.1 Background and Motivation

We propose an algorithm that solves optimization prob-
lems of the form minξ∈Rn L(ξ) with accelerated gradient
methods. The heavy ball method is an accelerated gra-
dient method that guarantees convergence to the min-
imizer ξ∗ of a convex function L [1], and that achieves
a faster convergence rate than classical gradient descent
by adding a “velocity” term to ∇L. The dynamical sys-
tem characterization for this method is

ξ̈ + λξ̇ + γ∇L(ξ) = 0 (1)
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where λ and γ are positive tunable parameters that rep-
resent friction and gravity, respectively; see [2], [3]. In
[4] and [5] it is shown that the discrete-time version of
the heavy ball method converges exponentially when L
is strongly convex with a Lipschitz continuous gradient,
and [4] shows convergence with rate 1

k when L is convex.
It is shown in [6] that for strongly convex L with Lips-
chitz continuous ∇L global convergence of the discrete-
time heavy ball method can only be guaranteed for con-
dition numbers of about 18 or less, and it is found in [7]
that the exact condition number of 9+5

√
14 ≈ 17.94 de-

notes such a boundary between global convergence and
non-convergence, for such objective functions. When L
is strongly convex, and inspired by the heavy ball al-
gorithm, two algorithms with a resettable velocity term
are proposed in [8] and shown to guarantee exponen-
tial convergence. In [9], however, it was shown that the
heavy ball algorithm converges exponentially for con-
vex L when L also has the property of quadratic growth
away from ξ∗. Global asymptotic stability of ξ∗, which is
the property that all solutions that start close to ξ∗ stay
close, and solutions from all initial conditions converge
to ξ∗, is demonstrated in [10], for convex and smooth
L.

Another powerful accelerated method is Nesterov’s ac-
celerated gradient descent. One characterization of the
dynamical system for Nesterov’s method, for convex L,
proposed in [11], is
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ξ̈ + 2d̄(t)ξ̇ +
1

Mζ2
∇L(ξ + β̄(t)ξ̇) = 0, (2)

where M > 0 is the Lipschitz constant of ∇L and where
the constant ζ > 0 rescales time in solutions to (2).
The dynamical system in (2) resembles the model of a
mass-spring-damper, with a curvature-dependent damp-
ing term where the total damping is a linear combina-
tion of d̄(t) and β̄(t). In [11], the convergence rate of
Nesterov’s method is characterized as 1

(t+2)2 for (2) (for
t ≥ 1), when ζ = 1, ξ∗ = 0, and L(ξ∗) = 0. The stability
properties of (2) are not revealed in [11], however.
While the results in [5], [6], and [11] characterize the
convergence properties of Nesterov’s method (or a vari-
ation of) the stability properties of the method are not
revealed. A particularly useful property for optimiza-
tion algorithms, called uniform global asymptotic sta-
bility (UGAS), requires that solutions reach a neigbor-
hood of ξ∗ in time that is uniform on the set of initial
conditions [12], [13], [14]. After finite time, the error of
such solutions becomes smaller than a given threshold
[15]. Due to such a guarantee, UGAS is typically use-
ful for certifying robustness to small perturbations in
time-varying dynamical and hybrid systems [16], [15].
Remarkably, the algorithm with resets in the velocity
term proposed in [8] can be shown to induce UGAS of
ξ∗ (with zero velocity term) and reduced oscillations, for
the particular case when L is strongly convex. The algo-
rithm with resets in [14] can be shown to induce UGAS of
ξ∗ when L is invex, has an exponential convergence rate
when L satisfies the Polyak-Łojasiewicz inequality, and
uniform global exponential stability (UGES) when L is
strongly convex. Unfortunately, as shown in [12], via a
counterexample, Nesterov-like algorithms do not neces-
sarily assure UGAS of ξ∗ when L is convex. In response
to this, [12] proposes the HAND-1 and HAND-2 reset
algorithms, and prove UGAS of ξ∗ for both algorithms.
The exponential convergence rate of HAND-2, however,
only applies to strongly convex L, and the convergence
rate of 1

t2 for HAND-1, for convex L, only holds up until
the first reset.

The work in this paper is motivated by the lack of an
accelerated gradient algorithm assuring UGAS, with a
convergence rate that holds for all time and that resem-
bles that of Nesterov’s method (at least far from ξ∗),
when L is convex. However, attaining such a rate is ex-
pected to lead to oscillations, which are typically seen in
accelerated gradient methods. The performance of the
heavy ball method depends highly on the choice of λ. For
rather simple choices of L, large values of λ give rise to
slowly converging solutions [2]. The top plot 1 in Fig. 1
demonstrates such behavior. In contrast, smaller values
of λ give rise to fast solutions with oscillations getting
wilder as λ decreases [2]. Nesterov’s method converges

1 Code at
gitHub.com/HybridSystemsLab/UnitingMotivation
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Fig. 1. Comparison of the performance of heavy ball, with
large λ, Nesterov’s method, and the proposed logic-based
algorithm. The objective function is L(ξ) = ξ2. Top: the
heavy ball algorithm, with large λ, converges very slowly.
Top inset: zoomed out view of heavy ball. Second from top:
Nesterov’s method converges quickly, but with oscillations.
Third from top: our proposed logic-based algorithm yields
fast convergence, with no oscillations.

quickly but also suffers from oscillations [11], as the co-
efficient of the velocity term starts small and tends to-
ward zero (but being always positive) as t tends to in-
finity. Such behavior of Nesterov’s method, with ζ = 2,
is shown in the second plot from the top in Fig. 1.

Due to its implications on robustness, we are particu-
larly interested in an algorithm that assures UGAS of ξ∗
with a rate of convergence that holds for all time, and
without oscillations. As pointed out in Section 1.1, these
properties are not guaranteed by Nesterov’s method.
The behavior shown in the first and second plots in Fig.
1 motivates the logic-based algorithm proposed in this
paper. The proposed algorithm exploits the main fea-
tures of heavy ball and Nesterov’s method to achieve
fast convergence and UGAS of ξ∗. More precisely, with-
out knowledge of the location of ξ∗, it selects Nesterov’s
method to converge quickly to nearby ξ∗ and, once solu-
tions reach a neighborhood of ξ∗, switches to the heavy
ball method with large λ to avoid oscillations. Such logic-
based algorithms, or uniting algorithms, were first pro-
posed in [17] and [18]. General uniting algorithms, with
examples, are discussed in [16] and [15]. We use the hy-
brid systems framework for our proposed algorithm, as
hybrid systems utilize hysteresis to avoid chattering at
the switching boundary; see [8], [15], [16], [14]. An ex-
ample solution to our proposed algorithm, shown in the
third plot from the top in Fig. 1, demonstrates the im-
provement obtained, under relatively mild assumptions
on L. The proposed algorithm guarantees UGAS and a
(hybrid) convergence rate that holds for all t ≥ 0.

1.2 Contributions

The main contributions of this paper are as follows.
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1) A uniting algorithm for fast convergence and UGAS
of ξ∗.

2) Well-posedness, existence of solutions, and robustness
to small perturbations in measurements of ∇L. Nes-
terov’s method can suffer from error accumulation,
due to its velocity term [19]. To overcome this issue,
in Section 2 we prove well-posedness and existence
of solutions for the proposed hybrid closed-loop al-
gorithm. Due to such well-posedness, the established
UGAS property is robust to small perturbations in
measurements of ∇L [16, Theorem 7.21].
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Fig. 2. A comparison of the evolution of L over time for
Nesterov’s method in (3), heavy ball, HAND-1 from [12], and
our proposed uniting algorithm, for a function L(ξ) := ξ2,
with a single minimizer at ξ∗ = 0. As opposed to Fig. 1,
which uses ζ = 2 for H1, this example uses ζ = 1, which
results in slower convergence of solutions to H and H1.

3) A (hybrid) convergence rate preserving the rates of
Nesterov’s method and heavy ball. Numerical simula-
tions 2 in Fig. 2 and Section 3 show improved perfor-
mance of our uniting algorithm over HAND-1.

4) Extension of the results on Nesterov’s method in [11].
We achieve such an extension by moving ζ into the
numerator of the coefficient of ∇L, effectively decou-
pling ζ and M , namely,

ξ̈ + 2d̄(t)ξ̇ +
ζ2

M
∇L(ξ + β̄(t)ξ̇) = 0. (3)

While preliminary work in [20] proposed an algorithm
uniting Nesterov’s method globally and heavy ball lo-
cally for C2, strongly convex L, with different results and
examples, the uniting algorithm proposed in this paper
relaxes the conditions in [20] to C1, convex L with a
unique minimizer. A technical report version of this pa-
per, with more details [21], is available online.

2 Code at gitHub.com/HybridSystemsLab/UnitingTradeoff

1.3 Notation

The sets of real, positive real, and natural numbers are
denoted by R, R>0, and N, respectively. The closed unit
ball, of appropriate dimension, in the Euclidean norm
is denoted as B. The set Cn represents the family of
n-th continuously differentiable functions. For a vector
v ∈ Rn, |v| =

√
v⊤v denotes the Euclidean vector norm

of v. For any x ∈ Rn and y ∈ Rm, (x, y) := [x⊤, y⊤]⊤.
The closure of a set S is denoted S. Given a set S ⊂ Rn×
Rm, the projection of S onto Rn is defined as Π(S) :=
{x ∈ Rn : ∃y such that (x, y) ∈ S }. Given a set-valued
mapping M : Rm ⇒ Rn, the domain of M is the set
domM = {x ∈ Rm :M(x) ̸= ∅}.

2 Uniting Optimization Algorithm

2.1 Problem Statement

As illustrated in Fig. 1, the performance of Nesterov’s
accelerated gradient descent commonly suffers from os-
cillations near the minimizer. This is also the case for the
heavy ball method when λ > 0 is small. However, when
λ is large, the heavy ball method converges slowly, albeit
without oscillations. In Section 1 we discussed how Nes-
terov’s algorithm guarantees a rate of 1

(t+2)2 for convex
L. We also discussed how the heavy ball algorithm guar-
antees a rate of 1

t for convex L, although it was demon-
strated in [9] that the heavy ball algorithm converges
exponentially for convex L when such an objective func-
tion also has the property of quadratic growth away from
its minimizer. We desire to attain the rate 1

(t+2)2 glob-
ally and an exponential rate locally, while avoiding os-
cillations via the heavy ball algorithm with large λ. We
state the problem to solve as follows:

Problem 1 Given a scalar, real-valued, continuously
differentiable, and convex objective function L with a
unique minimizer, design an optimization algorithm
that, without knowing the function L or the location of
its minimizer, has the minimizer UGAS, with a con-
vergence rate of 1

(t+2)2 globally and an exponential con-
vergence rate locally, and with robustness to arbitrarily
small noise in measurements of ∇L.

2.2 Modeling

In this section, we present an algorithm that solves Prob-
lem 1. We interpret the ODEs in (1) and (3) as control
systems consisting of a plant and a control algorithm [22]
[15]. Defining z1 as ξ and z2 as ξ̇, the plant associated to
these ODEs is given by the double integrator[
ż1

ż2

]
=

[
z2

u

]
=: FP (z, u) (z, u) ∈ R2n×Rn =: CP (4)
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With this model, the optimization algorithms that we
consider assign u to a function of the state that involves
the cost function, and such a function of the state may
be time dependent. The control algorithm leading to (1)
assigns u to −λz2 − γ∇L(z1) where γ > 0 and λ > 0,
and the control algorithm leading to (3) assigns u to
−2d̄(t)z2 − ζ2

M∇L(z1 + β̄(t)z2) where ζ > 0, M > 0 is
the Lipschitz constant for ∇L, and where d̄(t) and β̄(t)
are defined, for all t ≥ 0, as

d̄(t) :=
3

2(t+ 2)
, β̄(t) :=

t− 1

t+ 2
. (5)

The functions d̄ and β̄ are defined expressly as in (5) for
ease of analysis in the forthcoming Propositions 13-15.
Such a time-varying definition satisfies the linear combi-
nation of the damping terms mentioned below (2). While
constant terms can be used for (2), when L is strongly
convex, constant damping terms are not adequate for
convex L; see [11]. The proposed logic-based algorithm
“unites” the two optimization algorithms modeled by κq,
where the logic variable q ∈ Q := {0, 1} indicates which
algorithm is currently being used. The local and global
algorithms, respectively, are defined as

κ0(h0(z)) = −λz2 − γ∇L(z1) (6a)

κ1(h1(z, t), t) = −2d̄(t)z2 −
ζ2

M
∇L(z1 + β̄(t)z2) (6b)

where the algorithm defined by κ1 plays the role of the
global algorithm in uniting control (see, e.g., [15, Chap-
ter 4]), while the algorithm defined by κ0 plays the role
of the local algorithm. The outputs h0 corresponding to
the output for the heavy ball algorithm and h1 corre-
sponding to the output for Nesterov’s algorithm are de-
fined as

h0(z) :=

[
z2

∇L(z1)

]
, h1(z, t) :=

[
z2

∇L(z1 + β̄(t)z2)

]
. (7)

Namely, the algorithm exploits measurements of ∇L,
which in practice are typically approximated using mea-
surements of L. The parameters λ > 0 and γ > 0 should
be designed to achieve convergence without oscillations
nearby the minimizer.

We use the hybrid systems framework to design our al-
gorithm. A hybrid system H has data (C,F,D,G) and
is defined as [16, Definition 2.2]

H =

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(8)

where x ∈ Rn is the system state, F : Rn ⇒ Rn is
the flow map, C ⊂ Rn is the flow set, G : Rn ⇒ Rn

is the jump map, and D ⊂ Rn is the jump set. Since
the ODE in (3) is time varying, and since solutions to

hybrid systems are parameterized by 3 (t, j) ∈ R≥0×N,
we employ the state τ to capture ordinary time as a
state variable, in this way, leading to a time-invariant
hybrid system. To encapsulate the plant, static state-
feedback laws, and the time-varying nature of the ODE
in (3), we define a hybrid closed-loop system H with
state x := (z, q, τ) ∈ R2n ×Q× R≥0 as

ż =

[
z2

κq(hq(z, τ), τ)

]
q̇ = 0

τ̇ = q

 =: F (x) x ∈ C := C0 ∪ C1

(9a)

z+ =

[
z1

z2

]
q+ = 1− q

τ+ = 0

 =: G(x) x ∈ D := D0 ∪D1 (9b)

The sets C0, C1, D0, and D1 are defined as

C0 := U0 × {0} × {0}, C1 := R2n \ T1,0 × {1} × R≥0

(10a)
D0 := T0,1 × {0} × {0}, D1 := T1,0 × {1} × R≥0.

(10b)

The sets U0, T1,0, and T0,1 are precisely defined in Section
2.3, using Lyapunov functions defined therein, but the
idea behind their construction is as follows. The switch
between κ0 and κ1 is governed by a supervisory algo-
rithm implementing switching logic. The supervisor se-
lects between these two optimization algorithms, based
on the output of the plant in (7) and the optimization
algorithm currently applied. When z ∈ U0, q = 0, and
τ = 0 (i.e., x ∈ C0), due to the design of U0 in Section
2.3.1, then the state z is near the minimizer, which is
denoted z∗1 , and the supervisor allows flows of (9) using
κ0 and τ̇ = q = 0 to avoid oscillations. Conversely, when
z ∈ R2n \ T1,0 and q = 1 (i.e., x ∈ C1), due to the design
of T1,0 in Section 2.3.2, then the state z is far from the
minimizer and the supervisor allows flows of (9) using
κ1 and τ̇ = q = 1 to converge quickly to the neighbor-
hood of the minimizer. When z ∈ T1,0 and q = 1 (i.e.,
x ∈ D1), then this indicates that the state z is near the
minimizer, and the supervisor assigns u to κ0, resets q
to 0, and resets τ to 0. Conversely, when z ∈ T0,1, q = 0,
and τ = 0 (i.e., x ∈ D0), due to the design of T0,1 in
Section 2.3.3, then this indicates that the state z is far
from the minimizer and the supervisor assigns u to κ1
and resets q to 1.

The reason that the state τ in (9) changes at the rate q
during flows and is reset to 0 at jumps is that when the

3 The variable t is the amount of time that has passed and
j is the number of jumps that have occurred.
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state x is in C1, then τ̇ = q = 1, which implies that τ
behaves as ordinary time, so it is used to represent time
in the time-varying algorithm κ1. On the other hand,
when the state x is in C0, then τ̇ = q = 0 causes the
state τ to stay at zero, which is an appropriate value for
τ as it is not required by the time-invariant algorithm κ0.
Such an evolution ensures that the set to asymptotically
stabilize is compact.

We denote the closed-loop system resulting from κ0 as
H0, which is given by

ż =

[
z2

κ0(h0(z))

]
z ∈ R2n (11)

and we denote the closed-loop system resulting from κ1
as H1, which is given by

ż =

[
z2

κ1(h1(z, τ), τ)

]
, τ̇ = 1 (z, τ) ∈ R2n × R≥0.

(12)

2.3 Design of the Hybrid Algorithm

In order for the supervisor to determine when the state
component z1 is close to the minimizer of L, denoted z∗1 ,
without knowledge of z∗1 or L∗ := L(z1), we impose the
following assumptions on L.

Assumption 2 The function L is C1, convex 4 , and has
a single minimizer z∗1 .

Assumption 3 (Quadratic growth of L) The func-
tion L has quadratic growth away from its minimizer z∗1 ;
i.e., there existsα > 0 such thatL(z1)−L∗ ≥ α |z1 − z∗1 |

2

for all z1 ∈ Rn.

To make the switch back to κ1, we impose the following
assumption on L.

Assumption 4 (Lipschitz Continuity of ∇L) The
function ∇L is Lipschitz continuous with constant
M > 0, namely, |∇L(w1)−∇L(u1)| ≤ M |w1 − u1| for
all w1, u1 ∈ Rn.

Under Assumptions 2 and 3, the following lemma, used
in some of the results to follow, relates the size of the
gradient at a point to the distance from the point to z∗1 .
Its proof is in [21].

Lemma 5 (Suboptimality) Let L satisfy Assump-
tions 2 and 3, and let α > 0 come from Assumption 3.
For some ε > 0, if z1 ∈ Rn is such that |∇L(z1)| ≤ εα,
then |z1 − z∗1 | ≤ ε.

4 A function L : Rn → R is convex if, for all u1, w1 ∈ Rn,
L(u1) ≥ L(w1) + ⟨∇L(w1), u1 − w1⟩ [23].

The suboptimality condition from Lemma 5 is typically
used as a stopping condition for optimization, as it indi-
cates that the argument of L is close enough to the min-
imizer z∗1 [23]. We exploit Lemma 5 to determine when
the state component z1 of the hybrid closed-loop system
H is close enough to the minimizer z∗1 so as to switch
to the local optimization algorithm, κ0, in this way ac-
tivating H0.

2.3.1 Design of the Set U0

The objective is to design U0 such that when z ∈ U0,
q = 0, and τ = 0, the state component z1 is near z∗1 and
the uniting algorithm allows flows of (9) with κ0 and
q = 0. For such a design, we use Assumptions 2 and 3
and the Lyapunov function

V0(z) := γ (L(z1)− L∗) +
1

2
|z2|2 (13)

defined for each z ∈ R2n, where γ > 0. The choice of V0
in (13) is used in the proof of the forthcoming Propo-
sition 10 to establish UGAS of the minimizer for H0 in
(11). Given ε0 > 0, c0 > 0, and γ > 0 from κ0 in (6a),
let α > 0 come from Assumption 3 such that

c̃0 := ε0α > 0, d0 := c0 − γ

(
c̃20
α

)
> 0. (14)

Then, V0 in (13) can be upper bounded as follows: due
to L being C1, convex, and having a single minimizer z∗1
by Assumption 2, and due to L having quadratic growth
away from z∗1 by Assumption 3, when |∇L(z1)| ≤ c̃0, the
suboptimality condition in Lemma 5 implies |z1 − z∗1 | ≤
c̃0
α , from where we get

V0(z) ≤ γ

(
c̃20
α

)
+

1

2
|z2|2 (15)

Then, by defining the set U0 as

U0 :=

{
z ∈ R2n : |∇L(z1)| ≤ c̃0,

1

2
|z2|2 ≤ d0

}
, (16)

every z ∈ U0 belongs to the c0-sublevel set of V0. In fact,
using the conditions in (14) and (15), we have that for
each z ∈ U0, V0(z) ≤ γ

(
c̃20
α

)
+ 1

2 |z2|
2 ≤ c0. Since κ0 in

(6a) is such that the set {z∗1} × {0} is globally asymp-
totically stable for the closed-loop system resulting from
controlling (4) by κ0, as we show in the forthcoming
Proposition 10, the set U0 is contained in the basin of
attraction induced by κ0.

2.3.2 Design of the Set T1,0

The objective is to design T1,0 such that when z ∈ T1,0
and q = 1, the state component z1 is near z∗1 and the
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supervisor resets q to 0, resets τ to 0, and assigns u to
κ0(h0(z)). For such a design, we use Assumptions 2 and
3 and the Lyapunov function

V1(z, τ) :=
1

2
|ā(τ) (z1 − z∗1)+z2|

2
+
ζ2

M
(L(z1)−L∗) (17)

defined for each z ∈ R2n and each τ ≥ 0, where ζ > 0,
M > 0 is the Lipschitz constant of ∇L, and the function
ā is defined as

ā(τ) :=
2

τ + 2
. (18)

The choice of V1 in (17) comes from [11], and is used to
establish UGAS of the minimizer for H1 in (12) and the
convergence rate 1

(t+2)2
. In this same proof, the specific

choice of ā in (18), which comes from [11], is also used to
show decrease of V1. More details on how (17) and (18)
are used in our analysis can be found in Proposition 13.
Given c1,0 ∈ (0, c0) and ε1,0 ∈ (0, ε0), where c0 > 0 and
ε0 > 0 come from Section 2.3.1, let c̃0 and d0 be given in
(14), and let α > 0 come from Assumption 3 such that

c̃1,0 := ε1,0α ∈ (0, c̃0) (19a)

d1,0 := c1,0 −
(
c̃1,0
α

)2

− ζ2

M

(
c̃21,0
α

)
∈ (0, d0) (19b)

where ζ > 0 comes from (3). Note that ā, defined via
(18), which is in V1, equals 1 when τ = 0 and monoton-
ically decreases toward zero (but being always positive)
as τ tends to ∞. Namely, ā is upper bounded by 1. Then,
with V1 given in (17), due toL being C1, convex, and hav-
ing a single minimizer z∗1 by Assumption 2, and due to L
having quadratic growth away from z∗1 by Assumption
3, when |∇L(z1)| ≤ c̃1,0, the suboptimality condition in
Lemma 5 implies |z1 − z∗1 | ≤

c̃1,0
α , from where we get

V1(z, τ) ≤
(
c̃1,0
α

)2

+ |z2|2 +
ζ2

M

(
c̃21,0
α

)
. (20)

Then, by defining T1,0 as

T1,0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃1,0, |z2|2 ≤ d1,0

}
(21)

which, by construction, is contained in the interior of U0

defined in (16), every z ∈ T1,0 belongs to the c1,0-sublevel
set of V1. In fact, using the conditions in (19) and (20),

we have for each z ∈ T1,0, V1(z, τ) ≤
(

c̃1,0
α

)2
+ |z2|2 +

ζ2

M

(
c̃21,0
α

)
≤ c1,0. The constants c̃0, c̃1,0, d0, and d1,0 in

(14) and (19) comprise the hysteresis necessary to avoid
chattering at the switching boundary. The idea behind
these hysteresis boundaries is as follows. When z ∈ U0

and q = 1, we have that z ∈ R2n \ T1,0, and it is not yet
time to switch to κ0 but to continue to flow using κ1. But
once z ∈ T1,0 then z is close enough to {z∗1} × {0}, and

the supervisor switches to κ0. Note that T0,1 ∩ T1,0 = ∅.
Fig. 3 illustrates the hysteresis mechanism in the design
of U0 and T1,0.

q = 0 q = 1

γ
(

α
M2

)
|∇L(z1)|2 + 1

2
|z2|2 = c0

|∇L(z1)| = c̃1,0,
1
2
|z2|2 = d1,0

U0

T0,1

T1,0

R2n \ T1,0

{z∗1} × {0}

{z∗1} × {0}

Fig. 3. An illustration of hysteresis in the design of the sets
U0, T1,0, and T0,1 on R2n, via the constants c̃1,0 ∈ (0, c̃0),
d1,0 ∈ (0, d0), and c0 > 0. Left: due to the design of U0

in (16), every z ∈ U0 belongs to the c0-sublevel set of the
Lyapunov function V0, where V0 is defined via (13). Hence,
the same value of c0 > 0 is also used to define T0,1 as the
closed complement of a sublevel set of V0 with level equal
to c0. Right: the constants c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0),
defined via (19), are chosen such that the set T1,0 in (21) is
contained in the interior of U0.

2.3.3 Design of the Set T0,1

The objective is to design T0,1 such that when z ∈ T0,1,
q = 0, and τ = 0, the state component z1 is far from
z∗1 and the supervisor resets q to 1 and assigns u to
κ1(h1(z, τ), τ) so that κ1 steers z1 back to nearby z∗1 .
Given c0 > 0, let α > 0 come from Assumption 3, and
let M > 0 come from Assumption 4. Then, using As-
sumption 4 with u1 = z∗1 and w1 = z1 yields |∇L(z1)| ≤
M |z1 − z∗1 | for all z1 ∈ Rn. SinceL has quadratic growth
away from z∗1 by Assumption 3, then dividing both sides
of |∇L(z1)| ≤ M |z1 − z∗1 | by M and substituting into
Assumption 3 leads toL(z1)−L∗ ≥ α

M2 |∇L(z1)|2, where
α > 0 comes from Assumption 3. Then, V0 in (13) is
lower bounded as follows: for each z ∈ R2n, V0(z) =

γ (L(z1)− L∗) + 1
2 |z2|

2 ≥ γ
(

α
M2

)
|∇L(z1)|2 + 1

2 |z2|
2.

Using such a lower bound and the same c0 > 0 as in
Section 2.3.1, we define the set

T0,1 :=

{
z ∈ R2n :γ

( α

M2

)
|∇L(z1)|2 +

1

2
|z2|2 ≥ c0

}
.

(22)
The set in (22) defines the (closed) complement of a
sublevel set of the Lyapunov function V0 in (13) with
level equal to c0. The constant c0 is also a part of the
hysteresis mechanism, as shown in Fig. 3. When z ∈ U0,
q = 0, and τ = 0, then the supervisor does not need to
switch to κ1, as the state component z is close enough
to the minimizer to keep using κ0. But if z ∈ T0,1 while
q = 0 and τ = 0, then z is far enough from the minimizer,
and the supervisor then switches to κ1.

While the constants c̃0, c̃1,0, d0, d1,0, and the set T0,1 in
(22) depend on the constants M > 0 and α > 0 which
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characterize the objective function L, as long as M and
α are positive, the uniform asymptotic stability property
established in the forthcoming Theorem 8 still holds.
As long as M > 0 and α > 0 belong to a known set,
the parameters c̃0, c̃1,0, d0, and d1,0 can still be tuned,
treating such tuning as a worst-case tuning problem.

2.4 Design of the Parameter λ

The heavy ball parameter λ > 0 should be made large
enough to avoid oscillations near the minimizer, as stated
in Sections 1.1, 1.2, and 2.1. To gain some intuition on
how to tune λ, consider the quadratic objective function
L(z1) = 1

2a1z
2
1 , a1 > 0, which was analyzed in detail

in [2]. For such a case, solutions to the heavy ball algo-
rithm are overdamped (i.e., converge slowly with no os-
cillations) when λ > 2

√
a1, critically damped (i.e., the

fastest convergence possible with no oscillations) when
λ = 2

√
a1, and underdamped (fast convergence with os-

cillations) when λ < 2
√
a1. Therefore, setting λ ≥ 2

√
a1

gives the desired behavior of solutions to H0, for such an
objective function. More generally, setting λ sufficiently
large to avoid oscillations suffices, in practice. Numeri-
cally, λ can be tuned as follows. Choose an arbitrarily
large value of λ. If there is still oscillations or overshoot
locally, despite the switch from κ1 to κ0 being made near
the minimizer, then gradually increase λ until the oscil-
lations and overshoot disappear. See Example 9 where
λ was tuned in such a way.

2.5 Well-posedness of the hybrid closed-loop system H

When L satisfies Assumptions 2, 3, and 4, the hybrid
closed-loop system H in (9) satisfies the hybrid basic
conditions in [16, Assumption 6.5]. The satisfaction of
such conditions is demonstrated in the following lemma.
Its proof is in [21].

Lemma 6 (Well-posedness of H) Let the function L
satisfy Assumptions 2, 3, and 4. Let the sets U0, T1,0,
and T0,1 be defined via (21), and (22), respectively. Let
the functions d̄ and β̄ be defined as in (5). Let κ0 and κ1
be defined via (6). Then, the hybrid closed-loop system H
in (9) satisfies the hybrid basic conditions.

In Theorem 8 we show that H has a compact pre-
asymptotically stable set. In light of this property,
Lemma 6 is key as it leads to pre-asymptotic stability
that is robust to small perturbations [16, Theorem 7.21].
In the case of gradient-based algorithms, for instance,
such perturbations can take the form of small noise in
measurements of the gradient.

Under Assumptions 2, 3, and 4, every maximal solution
to H is complete; see [21, Section 2.6] for such a result.

2.6 Main Result

The result in this section depends on the notion of
UGAS, which is defined in [15] and [16] as follows.

Definition 7 (UGAS) Given a hybrid closed-loop
system H as in (8), a nonempty set A ⊂ Rn is said
to be uniformly globally stable for H if there exists a
class-K∞ function α such that any solution x to H sat-
isfies |x(t, j)|A ≤ α (|x(0, 0)|A) for all (t, j) ∈ domx;
uniformly globally pre-attractive (UGpA) for H if for
each ε > 0 and δ > 0 there exists T > 0 such
that, for any solution x to H with |x(0, 0)|A ≤ δ,
(t, j) ∈ domx and t + j ≤ T imply |x(t, j)|A ≤ ε; and
uniformly globally pre-asymptotically stable (UGpAS)
for H if it is both uniformly globally stable and uniformly
globally pre-attractive.

When every maximal solution is complete, then the pre-
fix “pre” is dropped to obtain UGA and UGAS. In this
section, we present a result that establishes UGAS of the
set

A :=
{
z ∈ R2n : ∇L(z1) = z2 = 0

}
× {0} × {0}

={z∗1} × {0} × {0} × {0} (23)

and a hybrid convergence rate that, globally, is equal to
1

(t+2)2 while locally, is exponential, for the hybrid closed
loop algorithm H in (9) and (10). Recall that the state
x := (z, q, τ) ∈ R2n ×Q×R≥0. In light of this, the first
component of A, namely, {z∗1}, is the minimizer of L.
The second component of A, namely, {0}, reflects the
fact that we need the velocity state z2 to equal zero in
A so that solutions are not pushed out of such a set.
The third component in A, namely, {0}, is due to the
logic state ending with the value q = 0, namely using
κ0 as the state z reaches the set of minimizers of L. The
last component in A is due to τ being set to, and then
staying at, zero when the supervisor switches to κ0.

Theorem 8 (UGAS of A for H) Let the function L
satisfy Assumptions 2, 3, and 4. Let ζ > 0, λ > 0, γ > 0,
c1,0 ∈ (0, c0), and ε1,0 ∈ (0, ε0) be given. Let α > 0 be
generated by Assumption 3, and let M > 0 be generated
by Assumption 4. Let c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0)
be defined via (14) and (19). Let the sets U0, T1,0, and
T0,1 be defined via (21), and (22), respectively. Let the
functions d̄ and β̄ be defined as in (5), and let κ0 and κ1
be defined via (6). Then, the set A, defined via (23), is
UGAS for H given in (9)-(10). Furthermore, each max-
imal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) of
the hybrid closed-loop algorithm H starting from C1 with
τ(0, 0) = 0 satisfies the following:

1) The domain domx of the solution x is of the form 5

∪1
j=0(I

j×{j}), with I0 of the form [t0, t1] and with I1

5 We define the interval Ij := {t : (t, j) ∈ domx}.
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of the form [t1,∞) for some t1 ≥ 0 defining the time of
the first jump. In other words, the system experiences
at most one jump;

2) For each t ∈ I0 such that 6 t ≥ 0

L(z1(t, 0))− L∗

≤ 4cM

ζ2(t+ 2)2

(
|z1(0, 0)− z∗1 |

2
+ |z2(0, 0)|2

)
(24)

whereL∗ = L(z∗) and c :=
(
1 + ζ2

)
exp

(√
13
4 + ζ4

M

)
.

Namely, L(z1(t, 0))− L∗ is O
(

4cM
ζ2(t+2)2

)
;

3) For each t ∈ I1, L(z1(t, 1))− L∗ is
O (exp (−(1−m)ψt)), where m ∈ (0, 1) is such that
ψ := mαγ

λ > 0 and ν := ψ(ψ − λ) < 0.

As will be shown in the forthcoming proof of Theorem
8 in Section 4, solutions starting from C1 jump no more
than once. The UGAS of the hybrid closed-loop algo-
rithm H in Theorem 8 is proved as follows. First, in the
forthcoming Proposition 10, we establish UGAS of the
set {z∗1} × {0} for the closed-loop algorithm H0 in (11)
via Lyapunov theory and the application of an invariance
principle. Then, in the forthcoming Proposition 15, we
prove UGAS of the set {z∗1}× {0}×R≥0 for the closed-
loop algorithm H1 in (12) via Lyapunov theory and a
comparison principle. Then, UGAS of A for H and item
1) in Theorem 8 follow from a proof-by-contradiction
employing the UGAS of H0, the UGAS of H1, and the
construction of the sets U0, T1,0, and T0,1. The hybrid
convergence rate of the closed-loop algorithm H in items
2) and 3) of Theorem 8 is proved in the forthcoming
Propositions 12, 13, and 14.

3 Numerical Example

Example 9 In this example, to show the effective-
ness of the uniting algorithm, we compare the hybrid
closed-loop algorithm H, defined via (9) and (10),
with the individual closed-loop optimization algorithms
H0 and H1 and with the HAND-1 algorithm from
[12] which, in [12], is designed and analyzed for con-
vex functions L satisfying Assumptions 2 and 4. The
bound for HAND-1 is L(z1(t, 0)) − L∗ ≤ B

t2 for all
(t, j) ∈ dom(z, τ) such that j = 0, z1(0, 0) = z2(0, 0),
τ(0, 0) = Tmin, z1(0, 0) ∈ K0 := {z∗1} + rB, where
B := r2

2c1
+T 2

min (L(z1(0, 0))− L∗) > 0, r ∈ R>0, c1 > 0.
Such a rate is only guaranteed until the first jump.

Next, we compare H0, H1, H, and HAND-1 in simula-
tion. To compare these algorithms, the choice of objective
function, parameter values, and initial conditions are as
follows. We use the objective function L(z1) := z21 , the

6 Note that at each t ∈ I0, q(t, 0) = 1, and at each t ∈ I1,
q(t, 1) = 0.

gradient of which is Lipschitz continuous with M = 2,
and which has a single minimizer at z∗1 = 0. This choice
of objective function is made so that we can easily tune
λ, as described in Section 2.4. We arbitrarily 7 chose the
heavy ball parameter value γ = 2

3 and we tuned λ to 200
by choosing a value arbitrarily larger than 2

√
a1, where

a1 comes from Section 2.4, and gradually increasing it
until there is no overshoot in the hybrid algorithm. In
Figure 2, we stated that choosing ζ = 2 leads to faster
convergence, for Nesterov’s method in (3) and H, than
choosing ζ = 1. In general, convergence for such algo-
rithms is faster as ζ increases, and slower as ζ tends to
zero. Given ζ = 2 for Nesterov’s algorithm and H, the
HAND-1 parameters c1 = 0.5 and Tmin = 1+

√
7

2 are cho-
sen such that the resulting gain coefficients for z1 and z2
are the same for both H and HAND-1, so that these algo-
rithms are compared on equal footing 8 . The remaining
HAND-1 parameters, r and δmed, have different values
depending on the initial conditions z1(0, 0) = z2(0, 0),
listed in [21, Table 2], which leads to different values of
Tmed and Tmax, for each solution. Such values are chosen
such that Tmed ≥

√
B

δmed
+ Tmin > 0. Additionally, we

choose Tmax = Tmed + 1. The parameter values for the
uniting algorithm are ε0 = 10, ε1,0 = 5, and α = 1. The
remaining parameter values c0 and c1,0 are different de-
pending on the initial condition z1(0, 0) and are listed in
[21, Table 2], which leads to different values of d0, calcu-
lated via (14), and d1,0 calculated via (19). These values
are chosen for proper tuning of the algorithm, in order
to get nice performance, and for exploiting the properties
of Nesterov’s method as long as we want. Initial condi-
tions for all solutions to H are z2(0, 0) = 0, q(0, 0) = 1,
and τ(0, 0) = 0, with values of z1(0, 0) listed in [21, Ta-
ble 2]. Initial conditions for all solutions to HAND-1 are
τ(0, 0) = Tmin, with values of z1(0, 0) = z2(0, 0) listed in
[21, Table 2].

The time that it takes for each algorithm to settle within
1% of z∗1 , averaged over solutions starting from ten dif-
ferent values 9 of z1(0, 0), are as follows: 0.811 seconds
for H, 690.759 seconds for H0, 4.409 seconds for H1, and
8.649 seconds for HAND-1. Using the formula(
(Time of H0,H1, or HAND-1)− Time of H

Time of H0,H1, or HAND-1

)
×100%.

(25)
the average percent improvement of H over each of the
other algorithms is 99.9% over H0, 81.6% over H1, and
90.6% over HAND-1.

7 Although the choice of γ is arbitrary, we have found in
general that choosing γ ∈ (0, 1) works well, in practice.
8 Although there exist parameter values for which HAND-
1 has faster, oscillation-free performance, due to the way H
and HAND-1 relate to each other, they are compared fairly
for a particular set of parameters.
9 Code at
gitHub.com/HybridSystemsLab/UnitingDifferentICs
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Fig. 4. The evolution of L over time, from different initial
conditions, for H (left) and HAND-1 (right). All solutions are
for the objective function L(z1) := z21 , and the parameters
used for HAND-1 and H are listed in [21, Table 2], with
different values of c0 and c1,0 for each solution ofH, leading to
different values of d0 calculated via (14) and d1,0 calculated
via (19), and different values of r and δmed for each solution
of HAND-1, leading to different values of Tmed and Tmax.
Jumps are marked with asterisks.

Fig. 4 compares different solutions for H and HAND-1,
from different values of z1(0, 0), for the objective function
L(z1) := z21 . [21, Table 2] lists the times for which each
solution settles to within 1% of z∗1 for both H and HAND-
1, and shows the percent improvement of H over HAND-
1. As can be seen in Fig. 4 and in [21, Table 2], the
percent improvement of H over HAND-1 for all solutions
is 90.6%, which shows consistency in the performance of
H versus HAND-1.

For an illustration of the robustness of the UGAS
property in Theorem 8 to perturbations, see [21, Ex-
ample 4.1]. For a comparison between H, HAND-1, and
the hybrid Hamiltonian algorithm (HHA) in [14], see
[21, Example 4.3]. For an illustration of the trade-off
between speed of convergence and the resulting values
of parameters for the uniting algorithm H, for different
values of ζ > 0, see [21, Example 4.3].

4 Proof of Theorem 8

This section provides a proof of Theorem 8 from Section
2.6. Section 4.1 establishes UGAS of {z∗1} × {0} and an
exponential convergence rate for H0. Section 4.2 estab-
lishes UGAS of {z∗1}×{0}×R≥0 and a convergence rate

1
(t+2)2 for H1. Section 4.3 uses the properties in Sections
4.1 and 4.2 to establish UGAS of A, defined via (23), for
H. Finally, Section 4.4 proves the convergence rate of H
using the convergence rates of the individual closed-loop
algorithms H0 and H1 established in Sections 4.1 and
4.2, respectively.

4.1 Properties of H0

The following result establishes that the closed-loop al-
gorithm H0 has the set {z∗1} × {0} UGAS. To prove it,
we use an invariance principle. Its proof is in [21].

Proposition 10 (UGAS of {z∗1} × {0} for H0) Let
L satisfy Assumptions 2, 3, and 4. For each λ > 0 and
γ > 0, the set {z∗1} × {0} is UGAS for the closed-loop
algorithm H0 in (11).
Next, we establish the convergence rate of the closed-
loop algorithm H0. To do so, we use the following Lya-
punov function, proposed in [9, Lemma 4.2]:

V (z) :=γ (L(z1)− L∗) +
1

2
|ψ(z1 − z∗1) + z2|2

+
ν

2
|z1 − z∗1 |

2 (26)

where, given λ > 0, ψ > 0 is chosen such that ν :=
ψ (ψ − λ) < 0. When L satisfies Assumption 2, the fol-
lowing lemma, which is a version of [9, Lemma 4.2] tai-
lored for the unperturbed heavy ball algorithm in (11),
gives an upper bound on the change of V in (26). Its
proof is in [21].

Lemma 11 Let L satisfy Assumption 2, and let λ > 0
and γ > 0, which come from H0 in (11), be given.
For each ψ > 0 such that ν := ψ(ψ − λ) < 0,
the following bound is satisfied for each z ∈ R2n:
V̇ (z) ≤ −ψ (a(z1) + 2νc(z1)) + 2(ψ − λ)b(z), where
V is defined in (26), a(z1) := γ (L(z1)− L∗), b(z) :=
1
2 |ψ(z1 − z∗1) + z2|2, and c(z1) := 1

2 |z1 − z∗1 |
2.

We employ Lemma 5.2 to show that when L satisfies As-
sumptions 2 and 3, the convergence rate of the closed-
loop algorithm H0 in (11) is exponential. This is sup-
ported by the following proposition, which is a version
of [9, Theorem 3.2] tailored for the unperturbed heavy
ball algorithm H0 in (11). Its proof is in [21].

Proposition 12 (Convergence rate for H0) Let L
satisfy Assumptions 2 and 3, let α > 0 come from As-
sumption 3, and let λ > 0 and γ > 0 come from H0 in
(11). For each m ∈ (0, 1) such that ψ := mαγ

λ > 0 and
ν := ψ(ψ − λ) < 0, each maximal solution t 7→ z(t) to
the closed-loop algorithm H0 satisfies

L(z1(t))− L∗ = O (exp (−(1−m)ψt)) (27)

for all t ∈ dom z (= R≥0).

4.2 Properties of H1

When L satisfies Assumptions 2 and 4, then we can de-
rive an upper bound, for all t ≥ 0, on V1 in (17) along
solutions to H1. To derive such a bound, we extend [11,
Proposition 3.2] to functions L with generic L∗, z∗1 , and
ζ > 0, in the following proposition. Its proof is in [21].

Proposition 13 Let L satisfy Assumptions 2 and 4.
Then, each maximal solution t 7→ (z(t), τ(t)) to the
closed-loop algorithm H1 in (12) with τ(0) = 0 satisfies
V1(z(t), t) ≤ 4

(t+2)2V1(z(0), 0) for all t ≥ 0, where V1 is
defined via (17).
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The following proposition establishes that the closed-
loop algorithm H1 has a convergence rate 1

(t+2)2 for all
t ≥ 0. To prove it, we use Proposition 13. Its proof is in
[21].

Proposition 14 (Convergence rate for H1) Let L
satisfy Assumptions 2 and 4. Let ζ > 0 and M > 0 come
from Assumption 4. Then, for each maximal solution
t 7→ (z(t), τ(t)) to the closed-loop algorithm H1 in (12)
with τ(0) = 0, the following holds:

ζ2

M
(L(z1(t))− L∗) (28)

≤ V1(z(t), t) ≤
4c

(t+ 2)2

(
|z1(0)− z∗1 |

2
+ |z2(0)|2

)

for all t ≥ 0, where c :=
(
1 + ζ2

)
exp

(√
13
4 + ζ4

M

)
.

The following proposition establishes that the closed-
loop system H1 in (12) has the set

A1 := {z∗1} × {0} × R≥0 (29)

UGAS. To prove it, we use Proposition 14 and [16, The-
orem 3.18]. Its proof is in [21].

Proposition 15 (UGAS of A1 in (29) for H1) Let L
satisfy Assumptions 2 and 4. Let ζ > 0 and let M > 0
come from Assumption 4. Then, the set A1 in (29) is
UGAS for H1.

4.3 Uniform Global Asymptotic Stability of A for H

The hybrid closed-loop algorithm H satisfies the hybrid
basic conditions by Lemma 6, satisfying the first as-
sumption of [21, Theorem A.3]. Furthermore, Π(C0) ∪
Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maxi-
mal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to
H in (9)-(10) is complete and bounded by [21, Proposi-
tion 2.9]. Since by Assumption 2, L has a unique min-
imizer z∗1 , then A, defined via (23), is compact by con-
struction, and U = R2n × Q × R≥0 contains a nonzero
open neighborhood of A, satisfying the second assump-
tion of [21, Theorem A.3].

To prove attractivity 10 of A, we proceed by contra-
diction. Suppose there exists a complete solution x to
H such that lim

t+j→∞
|x(t, j)|A ̸= 0. Since [21, Proposi-

tion 2.9] guarantees completeness of maximal solutions,
we have the following cases:

a) There exists (t′, j′) ∈ domx such that x(t, j) ∈ C1 \
D1 for all (t, j) ∈ domx, t+ j ≥ t′ + j′;

b) There exists (t′, j′) ∈ domx such that x(t, j) ∈ C0 \
(A ∪D0) for all (t, j) ∈ domx, t+ j ≥ t′ + j′;

10 For a definition of attractivity, see [15, Definition 3.1].

c) There exists (t′, j′) ∈ domx such that x(t, j) ∈ D
for all (t, j) ∈ domx, t+ j ≥ t′ + j′.

Case a) contradicts the fact that, by Proposition 15,
the set A1, defined via (29), is UGAS for H1. Such
UGAS of A1 implies there exist c̃1 ∈ (0, c̃1,0) and d1 ∈
(0, d1,0) such that the state z reaches ({z∗1}+ c̃1B) ×
({0}+ d1B) ⊂ T1,0 at some finite flow time t ≥ 0 or as
t → ∞. In turn, due to the construction of C1 and D1

in (10), with T1,0 defined via (21), the solution x must
reach D1 at some (t, j) ∈ domx, t + j ≥ t′ + j′. There-
fore, case a) does not happen.

Case b) contradicts the fact that, by Proposition 10,
{z∗1}×{0} is UGAS for H0. In fact, lim

t+j→∞
|x(t, j)|A = 0,

and since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to the construction
of T1,0 in (21) and T0,1 in (22), we have G(D) ∩ D :=
((T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}))
∩ ((T0,1 × {0} × {0}) ∪ (T1,0 × {1} × R≥0)) = ∅ where
D is defined in (10). Such an equality holds since T1,0 ∩
T0,1 = ∅; see the end of Section 2.3.2. Therefore, case c)
does not happen.

Therefore, cases a)-c) do not happen, and each maximal
and complete solution x = (z, q, τ) to H with τ(0, 0) = 0
converges to A. Consequently, by the construction of C
andD in (10), the UGAS of A1 (defined via (29)) for H1

established in Proposition 15, the UGAS of {z∗1} × {0}
forH0 established in Proposition 10, and since each max-
imal solution to H is complete by [21, Proposition 2.9],
the set A is UGAS for H.

To show that each maximal and complete solution x to
H jumps no more than twice, we proceed by contradic-
tion. Without loss of generality, suppose there exists a
maximal and complete solution that jumps three times.
We have the following possible cases: i) The solution
first jumps at a point in D0, then jumps at a point in
D1, and then jumps at a point in D0; or ii) The solution
first jumps at a point in D1, then jumps at a point in
D0, and then jumps at a point in D1. Case i) does not
hold since, once the jump in D1 occurs, the solution x
is in (T1,0 × {0} × {0}) ⊂ C0. Due to the construction
of T1,0 in (21) and T0,1 in (22) such that T1,0 ∩ T0,1 = ∅,
as described in the contradiction of case c) above, and
due to the UGAS of z∗1 × {0} for H0 by Proposition 10,
the solution x will never return to D0. Therefore, case i)
does not happen. Case ii) leads to a contradiction for the
same reason, and in this case, once the first jump in D1

occurs, no more jumps happen. Therefore, since cases i)-
ii) do not happen, each maximal and complete solution
x to H with τ(0, 0) = 0 has no more than two jumps.

4.4 Convergence Rate of H

Finally, we prove the hybrid convergence rate of H. Let-
ting ζ > 0 and letting M > 0 come from Assumption
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4, then by Proposition 14, since L satisfies Assumptions
2 and 4, each maximal solution t 7→ (z(t), τ(t)) to the
closed-loop algorithm H1 with τ(0, 0) = 0 satisfies (28),
for all t ≥ 0, where c is defined below (28). By Propo-
sition 12, since L satisfies Assumptions 2 and 3, then,
given γ > 0 and λ > 0, for each m ∈ (0, 1) such that
ψ := mαγ

λ > 0 and ν := ψ(ψ − λ) < 0, each maxi-
mal solution t 7→ z(t) to the closed-loop algorithm H0

satisfies (27) for all t ∈ dom z (= R≥0). Since maxi-
mal solutions (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j))
to H starting from C1 are guaranteed to jump no more
than once, as implied by the contradiction in cases i)-ii)
above, then the domain of each maximal solution x to
H starting from C1 is ∪1

j=0(I
j , j), with I0 of the form

[t0, t1] and with I1 of the form [t1,∞). Therefore, given
ζ > 0, λ > 0, γ > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0),
α > 0 from Assumption 3, and M > 0 from Assump-
tion 4, due to the construction of U0, T1,0, and T0,1 in
(16), (21), and (22), with c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0)
defined via (14) and (19), and due to the individual con-
vergence rates of H1 and H0, each maximal solution
(t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to the hybrid
closed-loop algorithm H that starts in C1, such that
τ(0, 0) = 0, satisfies (24) for each t ∈ I0 at which q(t, 0)
is equal to 1 and t ≥ 0, and satisfies item 3) of Theorem 8
for each t ∈ I1 at which q(t, 1) is equal to 0.

Remark 16 Although it is outside the scope of this pa-
per, a potential approach to discretizing the hybrid closed-
loop algorithm H in (9)-(10) can be found in [24]. Such
a discretization approach, which is designed for hybrid
systems and which has assumptions that are satisfied by
forward Euler and p-stage Runge-Kutta consistent meth-
ods, for example, would yield results similar to Theorem
8, Proposition 10, Lemma 11, and Propositions 12, 13,
14, and 15.

5 Conclusion
We presented an algorithm, designed using hybrid sys-
tem tools, that unites Nesterov’s accelerated algorithm
and the heavy ball algorithm to ensure fast conver-
gence and UGAS of the unique minimizer for C1, convex
objective functions L. The hybrid convergence rate is

1
(t+2)2 globally and exponential locally. In simulation,
we showed performance improvement not only over the
individual heavy ball and Nesterov algorithms, but also
over the HAND-1 algorithm in [12]. In the process,
we proved the existence of solutions for the individual
heavy ball and Nesterov algorithms, and we extended
the convergence rate results for Nesterov’s algorithm
in [11] to functions L with generic z∗1 , L∗, and ζ > 0.
Additionally, we established UGAS of the minimizer for
Nesterov’s algorithm, when L is C1, convex, and has a
unique minimizer. Future work will extend the uniting
algorithm to a general framework, allowing the local
and global algorithms to be any accelerated gradient
algorithm. We will also extend the uniting algorithm to
learning applications.
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