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On the Feasibility and Continuity of Feedback
Controllers Defined by Multiple Control Barrier

Functions
Axton Isaly, Masoumeh Ghanbarpour, Ricardo G. Sanfelice, Warren E. Dixon

Abstract—Control barrier functions are a popular method
for encoding safety specifications for dynamical systems. In this
paper, a notion of control barrier function is defined that permits
vector-valued barrier functions and flow constraints involving
both the state and the control input. Control barrier functions
induce constraints on the control input that, when satisfied,
guarantee the forward invariance of a safe set of states. The
constraints are enforced using a pointwise-optimal feedback
controller. Sufficient conditions for the continuity of the controller
are given. The existence of a control barrier function is defined to
be equivalent to the feasibility of the optimal feedback controller.
Polynomial optimization problems based on sums of squares are
formulated that can be used to certify that a given function is
a control barrier function. An example of the control barrier
function design procedure is presented illustrating the process of
formulation, synthesis, and verification.

I. INTRODUCTION

The use of control barrier functions (CBF) to synthesize
feedback controllers that render sets of states forward in-
variant has recently gained significant interest because of the
tight relationship between forward invariance and safety. The
CBF literature has demonstrated that CBFs are a practical
method for enforcing complex safety specifications defined by
multiple, sometimes conflicting requirements such as obstacle
avoidance, shifting goal locations, dynamic constraints, and
control input limitations [1]–[4]. In practice, these specifica-
tions are often described using multiple CBFs (e.g., [3] and
[1, Sec. V]), whereas the majority of theoretical results are
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developed for scalar barrier functions. While it is possible to
combine multiple barrier functions into a scalar one using max
and min operations, as in works like [3] and [5], the resulting
functions are generally nonsmooth, leading to discontinuous
controllers. A framework for studying forward invariance with
multiple barrier functions was developed in [6] in the context
of uncontrolled systems. For controlled systems, the conditions
therein can be interpreted as constraints on the control input
that can be enforced using optimization-based controllers; see
[7, Ch. 11]. The constraints define a set of safety-ensuring
control inputs. Enforcing multiple input constraints defined
by multiple continuously differentiable CBF candidates is a
promising way to obtain control laws that are continuous
functions of the state. This paper aims to augment the existing
body of practical work for CBFs by developing a framework
for solving problems with multiple CBFs that is cohesive
throughout the process of problem formulation, controller
synthesis, and feasibility verification.

A. Feasibility

Traditionally, a CBF is defined to guarantee that a safety-
ensuring controller exists, meaning that all objectives in the
safety specification can be met simultaneously. However, tools
for verifying that a given function is a CBF are not fully devel-
oped. While analytical conditions exist to determine whether
a scalar-valued function is a CBF (cf. [8], [9, Prop. 1]), the
problem is significantly more challenging in the presence of
multiple CBFs. In general, a CBF candidate defines a set of
constraints in the decision variable (control input) that vary
with an external parameter (the state of the dynamical system),
and it must be verified that control inputs satisfying the
constraints exist for all states in a given set. This verification
should be done during the design phase so that controllers
are certified as feasible before deployment. The authors of
[10] leverage a tool for checking that multiple constraints
have at least one feasible solution at a particular point in
the state space, but it is not clear how to verify this property
on a given (uncountable) set of states. One method to ensure
feasibility is by adding slack variables or similar relaxations to
the optimization problem at the cost of losing safety guarantees
[2], [11]. The authors in [11] use slack variables to ensure
feasibility only on the interior of the safe set, while still
enforcing conditions on the boundary of the safe set that
guarantee forward invariance. However, the slack variable
method does not constrain the control input at points in the
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interior of the safe set, which permits trajectories to approach
the boundary of the safe set with high velocity. Aggressive
control action must then be used to prevent the trajectory
from exiting the safe set. A more gradual transition to an
invariance-ensuring control can be designed by removing slack
variables and adding a user-prescribed performance function
that constrains the control input at points in the interior
of the set, although the feasibility problem becomes more
challenging.

To address the feasibility problem, we use sum of squares
(SoS) programming, which requires the more restrictive as-
sumptions that the constraints defining the feasible set are
polynomials and affine in the control input. SoS programming
can be used to verify that given polynomials are nonnegative
on a subset of their domain [12], [13]. Our technique verifies
feasibility on level-sets of a given function (typically the CBF
candidate), which is useful for safe synthesis and computation-
ally simpler than techniques that search simultaneously for a
controller and CBF (or control Lyapunov function) as in [14]–
[16]. The SoS problems in these works depend on conditions
that are bilinear in the decision variables, leading to complex
iterative procedures. In [15], an iterative procedure was devel-
oped to search for a scalar CBF defining a safe set that was
in the complement of given unsafe regions. The safe set was
rendered forward invariant by a feasible controller. Iterative
techniques are valuable when a CBF candidate is unavailable,
whereas our approach is targeted toward verification that a
given candidate is a CBF. Our approach has broad applications
for verifying that an optimization-based controller is feasible
before deployment.

B. Continuity

Optimization-based control laws are a natural way to im-
plement the control input constraints defined by CBFs. For
many common classes of dynamical systems, the input con-
straints are convex or affine in the control input, leading to
optimization problems that are convex or quadratic programs.
As mentioned in Section I-A, the control laws are parametric
optimization problems that vary with the state of the dynam-
ical system. Continuous control laws simplify analysis and,
in many cases, provide robustness properties to the closed-
loop system. The vast majority of CBF literature restricts
attention to parametric optimization problems with one or
two constraints, for which results certifying local Lipschitz
continuity are available [17], [18]. Other works have arbitrary
numbers of constraints but do not study the continuity of the
control laws [5], [11]. The authors of [19, Thm. 3] provide
a continuity result for a quadratic program with an arbitrary
number of constraints, but the result requires information about
the set of active constraints at the minimizing value. Since the
active set changes with the state, it can be difficult to make
global conclusions about the active set.

Berge’s maximum theorem is an effective method for ana-
lyzing the continuity of parameterized optimization problems
with arbitrary numbers of constraints. Berge’s maximum the-
orem does not require information about the active constraint
set, but it does require the feasible set to be compact. It is

widely accepted in the parametric optimization literature that
compactness of the feasible set can be replaced with uniform
compactness in the parameter space of the level sets of the cost
function [20], [21]. Interestingly, uniform compactness holds
for the majority of convex optimization problems. Using this
observation, we are able to obtain general results certifying
the continuity of optimization-based control laws.

C. Contributions

In Section II, we define a notion of vector-valued CBF
for continuous-time differential inclusions with constraints
on the state and control input. Our construction carefully
considers the case where multiple CBF candidates define
the safe set. Differential inclusions are useful for robust
control applications as they can model uncertainty in the
dynamics, and the constraints capture state-dependent input
constraints as a special case. In Section III, we show that
forward (pre-)invariance of the safe set defined by a CBF
is guaranteed using control inputs from the safety-ensuring
set. We also provide conditions for when the safe set is
asymptotically stable. Our primary notion of CBF allows for
continuous control laws, whereas the majority of literature
imposes the stronger condition of local Lipschitz continuity,
which is more challenging to verify for optimization-based
control laws. In Section IV, we provide sufficient conditions
under which the CBF-induced pointwise optimal control law
is continuous. These conditions generalize available results by
allowing broader classes of cost functions and not requiring
the feasible set of control inputs to be compact. In Section V,
we develop SoS optimization tools that can be used to verify
that a CBF candidate is a CBF. Methods for applying the
SoS technique, even when the actual dynamics of the system
are not polynomial, are discussed. An example is presented
in Section VI illustrating the process of problem formulation,
feasibility verification, and control synthesis for a system with
uncertain, non-polynomial dynamics.

Relative to our preliminary work in [22], we include a
second notion of CBF called a tangent-cone CBF (t-CBF)
that uses alternative conditions for forward invariance which
are comparable to notions of CBF in the literature based
on Nagumo’s theorem. The notion of t-CBF helps solve a
complication in [22] where control inputs are required to be
selected based on the tangent cone to the safe set. However,
the notion of t-CBF requires control laws that are locally
Lipschitz whereas our standard notion of CBF only requires
continuous control laws. We include a simple example to aid
in understanding our results for forward invariance. Our result
for asymptotic stability is an addition over [22], and, to the
best of our knowledge, is the first asymptotic stability result
for multiple CBFs in the literature. We improve our results for
continuity of optimization-based control laws by removing a
redundant assumption from [22, Lem. 2]. This paper includes
proofs that were excluded from [22] due to space limitations.
The detailed example in Section VI is also a new addition.

Forward invariance with multiple CBFs is studied in [11]
using a tangent-cone-based approach. However, the results
require the safe set to be compact, and require the feasible set



3

of control inputs to be compact. Additionally, the definition
of a CBF in [11] is problematic when multiple CBFs are
present as it does not require the existence of control inputs
that simultaneously satisfy all of the CBF-induced constraints.
Notably, [11] allows for control laws that are only Lebesgue
measurable by taking an alternative analytical approach fo-
cusing on the differential inclusion defined by all the possible
safety-ensuring control inputs.

It should be noted that the method for feasibility verification
in Section V is complimentary to works that seek persistent
feasibility such as [23] and [24]. The latter methods add new
CBF candidates to the problem that are designed to modify
the safe set by removing states where the input constraints
are infeasible. The methods in this paper could be used to
determine whether the newly defined CBF candidate is a CBF,
while the methods from [23] and [24] would be useful if it
cannot be verified that a given candidate is a CBF.

D. Preliminaries

For vectors x ∈ Rn, y ∈ Rm, |x| denotes the Euclidean
norm, (x, y) ≜

[
xT , yT

]T
, and |x|A ≜ infz∈A |x− z| denotes

the distance of x from the set A ⊂ Rn. The shorthand
[d] ≜ {1, 2, . . . , d} is used, and Bn denotes the n-dimensional
unit ball. Given a function B : Rn → Rd, the components
are indexed as B (x) ≜ (B1 (x) , B2 (x) , . . . , Bd (x)) and the
inequality B (x) ≤ 0 means that Bi (x) ≤ 0 for all i ∈ [d].
For a set A ⊂ Rn, the notation ∂A denotes its boundary, A
its closure, Int (A) its interior, and U (A) denotes an open
neighborhood around A. A set C ⊂ A is relatively closed in
A if C = A ∩ C.

Given a set X ⊂ Rn, a set-valued mapping M : X ⇒ Rm

associates every point x ∈ X with a set M (x) ⊂ Rm.
The mapping M is locally bounded if, for every x ∈ X ,
there exists a neighborhood UX (x) ≜ U (x) ∩ X such
that M (UX (x)) is bounded, M is outer semicontinuous if
GraphX (M) ≜ {(x, u) ∈ X × Rm : u ∈M (x)} is relatively
closed in X×Rm, and M is lower semicontinuous if, for any
open set G ⊂ Rm, the inverse image M−1 (G) ≜ {x ∈ X :
M (x) ∩ G ̸= ∅} is open.

II. CONTROL BARRIER FUNCTIONS

Consider a constrained control differential inclusion (F,Cu)
with state x ∈ Rn and input u ∈ Rm modeled by

ẋ ∈ F (x, u) (x, u) ∈ Cu (1)

where F : Rn × Rm ⇒ Rn is the set-valued flow map,
and Cu ⊂ Rn × Rm is the flow set. The set-valued nature
of the differential inclusion in (1) can model uncertainty by
allowing trajectories to move in a variety of directions for
a given state and control input (x, u). Differential inclusions
are useful for robust control design because ensuring safety
requires every possible trajectory to remain safe. This work
therefore generalizes work on robust CBFs such as [25]. To
facilitate the subsequent development, let

Π(Cu) ≜ {x ∈ Rn : ∃u ∈ Rm s.t. (x, u) ∈ Cu} (2)

denote the set of all states for which flowing is allowed, and
for each x ∈ Π(Cu) let

Ψ(x) ≜ {u ∈ Rm : (x, u) ∈ Cu} (3)

denote the set of admissible control inputs at each state.
CBFs are defined to guarantee the existence of control

inputs that ensure forward invariance (i.e., safety) of a given
set of states S ⊂ Π(Cu). Compared to works such as [2],
we use a notion of CBF that accommodates safe sets defined
by multiple scalar functions. Defining a CBF in this case
requires special care because there are multiple constraints
on the control input that must be satisfied simultaneously.
For notational convenience, as in [6], we use vector-valued
functions B : Rn → Rd to represent multiple CBFs. Our
development is based on the work for closed-loop hybrid
systems in [6] and for hybrid systems with inputs in [7], which
we adapt for the open-loop continuous-time dynamics in (1).

Definition 1. A vector-valued function B : Rn → Rd is called
a CBF candidate defining the safe set S ⊂ Π(Cu) if

S = {x ∈ Π(Cu) : B (x) ≤ 0} .

Also define Si ≜ {x ∈ Rn : Bi (x) ≤ 0} for every i ∈ [d].

We restrict our attention to continuously differentiable CBF
candidates because of advantages they offer towards synthesiz-
ing continuous controllers. Given a continuously differentiable
CBF candidate, define a function Γ : Cu → Rd such that the
i-th component is

Γi (x, u) ≜ sup
f∈F (x,u)

⟨∇Bi (x) , f⟩ , ∀ (x, u) ∈ Cu. (4)

The value of Γi (x, u) represents the worst-case growth of
Bi (x) for any possible direction of flow in the set-valued map
F (x, u) defining the control system in (1). When F (x, u) is
nonempty and bounded, the supremum in (4) is finite. Thus,
the following mild assumption is imposed to ensure that Γ is
well-defined. Allowing for an unbounded flow map would lead
to solutions that flow arbitrarily fast, which is not physically
meaningful.

Assumption 1. The set F (x, u) is nonempty and bounded for
every (x, u) ∈ Cu.

We also introduce the primary design parameter in the form
of a performance function γ, which is used to define a set of
control inputs that constrain the worst-case growth function
Γ according to conditions derived from [6] that guarantee
forward invariance of the safe set S. We impose the following
assumption. Figure 1 illustrates a safe set defined by multiple
CBFs showing the regions on which γi is constrained.

Assumption 2. The function γ : Π (Cu) → [−∞,∞]d is such
that, for each i ∈ [d], γi (x) ≥ 0 for all x ∈ (U (Mi) \Si) ∩
Π(Cu), where Mi ≜ {x ∈ ∂S : Bi (x) = 0}.

Definition 2. Let (F,Cu) satisfy Assumption 1. A continu-
ously differentiable CBF candidate B : Rn → Rd defining the
set S ⊂ Π(Cu) is a CBF for (F,Cu) and S on a set O ⊂
Π(Cu) with respect to a function γ : Π (Cu) → [−∞,∞]d
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if there exists a neighborhood of the boundary of S such that
U (∂S) ∩Π(Cu) ⊂ O, γ satisfies Assumption 2, and the set

Kc (x) ≜ {u ∈ Ψ(x) : Γ (x, u) ≤ −γ (x)} (5)

is nonempty for every x ∈ O.

The mapping Kc defines, at each state x ∈ O, a set of
safety-ensuring control inputs. We will subsequently show that
control inputs selected from Kc (i.e., mappings κ : Rn → Rm

for which κ (x) ∈ Kc (x) for every x ∈ O) ensure the forward
(pre-)invariance of the safe set S.
Remark 1. The performance function γ is a relaxation of the
conditions in works like [2], which require that γi (x) =
α (Bi (x)) where α is an extended class K function (i.e.,
strictly increasing with α (0) = 0). Removing the dependency
of the performance function on the CBF candidate provides
some additional design flexibility. Additionally, extended class
K functions are required to be strictly positive outside of the
safe set S. Section III shows that being strictly positive outside
the safe set is stronger than required for forward invariance
(Theorem 2) but does lead to asymptotic stability of the safe
set (Theorem 3). Whenever the set D ⊂ Rn in [2, Defn. 5]
contains a neighborhood of the safe set, any function that is
a zeroing CBF according to [2, Defn. 5] is also a CBF on D
for some function γ according to Definition 2.
Remark 2. In Definition 2, the performance function γ is
not required to be continuous. The least conservative se-
lection of γ that satisfies Assumption 2 is γi (x) ≜ 0 for
x ∈ (U (Mi) \Si) ∩ Π(Cu) and γi (x) ≜ −∞ otherwise, in
which case Kc (x) = Ψ (x) outside of (U (Mi) \Si)∩Π(Cu),
where Si is introduced in Definition 1. However, discontinuous
choices of γ will lead to the mapping Kc having poor
regularity. As we find in Section IV, using a continuous γ
facilitates the systematic design of continuous, safety-ensuring
control laws.

A. Tangent-Cone Conditions

Assumption 2 imposes conditions on the function γ that
must hold on a region outside the set S. In contrast to more
common notions of CBF based on Nagumo’s theorem (cf. [2]),
the conditions in Definition 2 apply to a more general class of
systems and are valid even if the gradients of the component
CBF candidates are degenerate (i.e., ∇Bi (x) = 0 for some
x ∈ Mi). It is useful to have conditions that, like Nagumo’s
theorem, restrict γ only on the boundary of S, which we
provide in this section based on [6, Thm. 2]. The following
assumption is known as a transversality condition, and reduces
to the assumption that ∇B (x) ̸= 0 for all x ∈ ∂Se ∩ Π(Cu)
when B is scalar, where Se ≜ {x ∈ Rn : B (x) ≤ 0}.

Assumption 3. For every x ∈ ∂Se ∩ Π(Cu), there exists
v ∈ Rn such that ⟨∇Bi (x) , v⟩ < 0 for every i ∈ [d] such that
Bi (x) = 0.

We also impose stronger assumptions on the regularity of
the flow map F . The assumption below is more restrictive
than the assumption used in [6, Thm. 2], and is used here to
simplify the development.

Figure 1. Illustration of the safe set for Example 1 showing the regions where
the performance function γ is constrained according to Assumptions 2 and 5.
When multiple CBFs are present, the function γi need only be constrained on
the region U (Mi) \Si, which is a region outside the safe set nearby where
Bi defines the boundary of the safe set S. Assumption 5 constrains γi only
on Mi under stricter assumptions.

Assumption 4. The set-valued mapping F : Rn ×Rm ⇒ Rn

is locally Lipschitz on (U (∂S)× Rm)∩Cu ≜ A in the sense
that, for every compact set K ⊂ A, there exists a constant
L > 0 such that, for all z1, z2 ∈ K,

F (z1) ⊂ F (z2) + L |z1 − z2|Bn.

In this case, we relax Assumption 2 as follows, and use it
to define an alternative notion of CBF.

Assumption 5. The function γ : Π (Cu) → [−∞,∞]d is such
that, for each i ∈ [d], γi (x) ≥ 0 for all x ∈Mi.

Definition 3. Let the data (F,Cu) of (1) and the continuously
differentiable CBF candidate B : Rn → Rd defining the set
S satisfy Assumptions 1 and 3. The candidate B is a tangent-
cone CBF (t-CBF) for (F,Cu) and S on a set O ⊂ Π(Cu)
with respect to a function γ : Π (Cu) → [−∞,∞]d if U (∂S)∩
Π(Cu) ⊂ O, γ satisfies Assumption 5, and Kc (x) in (5) is
nonempty for every x ∈ O.

The key property of t-CBFs is that control inputs selected
from Kc ensure that vectors in the closed-loop dynamics lie in
the tangent cone to the safe set [26, Def. 5.12]. The following
straightforward corollary of Lemma 3 in [6] shows this result.
The tangent cone of a set S ⊂ Rn at x ∈ Rn is defined as
TS (x) ≜ {v ∈ Rn : lim infh→0+ |x+ hv|S /h = 0}.

Lemma 1. Suppose B is a t-CBF for (F,Cu) and S = {x ∈
Π(Cu) : B (x) ≤ 0} on a set O ⊂ Π(Cu) with respect to
a function γ : Π (Cu) → [−∞,∞]d. For a given set M ⊂
Rn, suppose that S = {x ∈ M : B (x) ≤ 0} and let x ∈
S ∩ Int (M). If u ∈ Kc (x), then f ∈ TS (x) for every f ∈
F (x, u).

Proof: If x ∈ Int (S), then by the definition of the tangent
cone, TS (x) = Rn. Thus, for u ∈ Ψ(x), F (x, u) is nonempty
so the claim that f ∈ TS (x) for every f ∈ F (x, u) is trivial.
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Assume x ∈ ∂S and u ∈ Kc (x). Using Assumption 3, Lemma
3 in [6] shows that TS (x) = {v ∈ Rn : ⟨∇Bi (x) , v⟩ ≤
0, ∀i ∈ Ix}, where Ix = {i ∈ [d] : Bi (x) = 0} = {i ∈
[d] : x ∈ Mi}. For each i ∈ Ix, Assumption 5 implies that
Γi (x, u) ≤ 0. Using the definition of Γi, it follows that if
f ∈ F (x, u), ⟨∇Bi (x) , f⟩ ≤ 0, which completes the proof.

The following example demonstrates some of the notions
introduced above. It will be used throughout the next section
to illustrate other key points.

Example 1. Consider the dynamical system in (1) defined
by F (x, u) = u and Cu = {(x, u) ∈ R2 × R2 :
max{|x1| , |x2|} ≤ x̄}, where x̄ > 0. The flow set represents
hard constraints on the system that, by the definition of
solutions, cannot be violated. For example, the set Π(Cu) =
{x ∈ R2 : max{|x1| , |x2|} ≤ x̄} may represent the walls
of a square room centered at the origin in R2. In practice, it
is desirable to prevent agents from closely approaching the
boundary of Π(Cu), so that the safe set for this example
may be S ≜ {x ∈ R2 : max{|x1| , |x2|} ≤ x̄s} for
0 < x̄s < x̄. The safe set could be defined by the CBF
candidate B : R2 → R4 with components B1 (x) = −x1− x̄s,
B2 (x) = −x2− x̄s, B3 (x) = x2− x̄s, and B4 (x) = x1− x̄s
(see Figure 1). Note that it is difficult to define S using a
single continuously differentiable function.

We have Γ (x, u) = (−u1,−u2, u2, u1) for every (x, u) ∈
Cu. It is common to choose γi ≜ Bi for each i ∈ [4], which
always satisfies both Assumptions 2 and 5 since Bi (x) > 0
if x /∈ Si, and, clearly, Bi (x) = 0 for x ∈ Mi = {x ∈
∂S : Bi (x) = 0}. With this choice of γ, it can be found
that Kc (x) = {u ∈ R2 : |uj + xj | ≤ x̄s, j ∈ {1, 2}} for
all x ∈ Π(Cu). The set Kc (x) is clearly nonempty for every
x ∈ Π(Cu), so that B is a CBF for (F,Cu) and S on Π(Cu)
with respect to γ. Note that B is also a t-CBF. In particular,
the vector v = −x satisfies Assumption 3 for every x ∈ ∂Se∩
Π(Cu).

III. FORWARD (PRE-)INVARIANCE USING SELECTIONS OF
Kc

A. Forward pre-Invariance

We next relate the notion of CBF in Definition 2 to forward
pre-invariance of the safe set S = {x ∈ Π(Cu) : B (x) ≤ 0}.
Consider a closed-loop system (Fcl, C) defined by (F,Cu) in
(1) and a control law κ : Rn → Rm as

ẋ ∈ Fcl (x) x ∈ C (6)

where C ≜ {x ∈ Rn : (x, κ (x)) ∈ Cu} = {x ∈ Rn : κ (x) ∈
Ψ(x)}, Fcl (x) ≜ F (x, κ (x)) if x ∈ C, and Fcl (x) ≜ ∅
if x /∈ C. A solution to (Fcl, C) starting from ϕ0 ∈ C is a
locally absolutely continuous function ϕ : domϕ → Rn such
that ϕ (0) = ϕ0, ϕ (t) ∈ C for all t ∈ Int(domϕ), and ϕ̇ (t) ∈
Fcl (ϕ (t)) for almost all t ∈ domϕ, where domϕ ⊂ [0,∞) is
an interval containing zero. A solution is said to be complete if
domϕ is unbounded, and it is maximal if there is no solution
ϕ′ such that ϕ (t) = ϕ′ (t) for all t ∈ domϕ with domϕ a
proper subset of domϕ′. The following notions of forward

invariance are adapted from [6] for the case of constrained
differential inclusions.

Definition 4. A set S ⊂ C is forward pre-invariant for
(Fcl, C) if, for each ϕ0 ∈ S and each maximal solution ϕ
starting from ϕ0, ϕ (t) ∈ S for all t ∈ domϕ. The set S is
forward invariant for (Fcl, C) if it is forward pre-invariant and,
for each ϕ0 ∈ S , every maximal solution ϕ starting from ϕ0
is complete.

Note that the flow set C is always forward pre-invariant
for (6) but not necessarily forward invariant. The following
assumption and lemma relate regularity conditions imposed on
the control system (F,Cu) in (1) to common regularity condi-
tions for the closed-loop system that will be used in the next
two theorems. When the dynamics are single-valued, outer
semicontinuity of the dynamics is equivalent to continuity.

Assumption 6. Given the data (F,Cu) of (1), the following
hold:
A) The flow map F : Rn × Rm ⇒ Rn is locally bounded,
outer semicontinuous, and has nonempty and convex values
on Cu.
B) The flow set Cu is a closed subset of Rn × Rm.

Lemma 2. Given the data (F,Cu) defining the control system
in (1), suppose κ : Rn → Rm and C = {x ∈ Rn :
(x, κ (x)) ∈ Cu} are such that κ is continuous on C. If
Assumption 6A) holds, then Fcl : Rn ⇒ Rn is locally bounded,
outer semicontinuous, and has nonempty and convex images
on C. If Assumption 6B) holds, then C is a closed subset of
Rn. Moreover, if F : Rn × Rm ⇒ Rn is locally Lipschitz on
A ⊂ C ×Rm and κ is locally Lipschitz on Π(A), then Fcl is
locally Lipschitz on Π(A).

Proof: See Appendix A.

Remark 3. Relative to our preliminary work in [22], we make
a correction in Lemma 2 by assuming that the controller κ
is continuous on the closure of C. This is to prevent an
issue involving the fact that C may not be closed even if Cu

is closed. The correction is also reflected in the subsequent
Theorems 1 and 2 by the additional assumption that the closed-
loop control law is continuous on a closed set. In practice, the
modification is minor as the tools for verifying feasibility and
continuity of closed-loop controllers in Section V already work
with closed sets.

The following result provides conditions under which con-
tinuous controllers selected from the mapping Kc in (5) render
the set S forward pre-invariant for the closed-loop dynamics
in (6). In Section IV we provide a strategy for designing
continuous safety-ensuring controllers using optimization.

Theorem 1. (Forward pre-Invariance) Let Assumption 6A)
hold for the control system in (1) with data (F,Cu) and
suppose B : Rn → Rd is either a CBF or a t-CBF for
(F,Cu) and S ⊂ Π(Cu) on O ⊂ Π(Cu) with respect to
γ : Π(Cu) → [−∞,∞]d. Let the control law κ : Rn → Rm

be continuous on O with κ (x) ∈ Kc (x) for all x ∈ O and
κ (x) ∈ Ψ(x) for all x ∈ S, where Kc is defined in (5) and
Ψ is defined in (3). When B is exclusively a t-CBF, assume
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additionally that Assumptions 4 and 6B) hold, and κ is locally
Lipschitz on O. If S = {x ∈ Π(Cu) : B (x) ≤ 0} is closed1 in
Rn, then S is forward pre-invariant for the closed-loop system
(Fcl, C) defined in (6) by (F,Cu) and κ.

Proof: Given a neighborhood of ∂S such that U(∂S) ∩
Π(Cu) ⊂ O, which exists by Definition 2, we consider the
restriction of the control system (F,Cu) to flow only on the
set C̃u ≜ (U(∂S)× Rm) ∩ Cu. Using the definition of Π(·),
we have Π(C̃u) = U(∂S)∩Π(Cu). Because B is either a CBF
or t-CBF, Kc (x) ̸= ∅ for all x ∈ Π(C̃u) ⊂ O. The closed-
loop system (Fcl, C̃) is defined by (F, C̃u) and κ according
to (1) with C̃ ≜ {x ∈ Rn : (x, κ (x)) ∈ C̃u}. Since κ (x) ∈
Kc (x) ⊂ Ψ(x) for all x ∈ Π(C̃u), it follows that C̃ = Π(C̃u).
The function B is a barrier function candidate defining S ∩ C̃
[6, Defn. 3]. Using equivalences established above, it follows
that S∩C̃ = S∩U(∂S)∩Π(Cu) = S∩U(∂S), which is closed
by the assumption that S is closed. Since κ is continuous
on2 cl(C̃) ⊂ O, Lemma 2 shows that Fcl meets the basic
assumptions in Section 2.3 of [6].

For each i ∈ [d] and x ∈ C̃, ⟨∇Bi (x) , f⟩ ≤ −γi (x) for
all f ∈ F (x, κ (x)) because κ (x) ∈ Kc (x). First assume
that B is a CBF. Since γ satisfies Assumption 2, we conclude
that ⟨∇Bi (x) , f⟩ ≤ 0 for all x ∈ (U (Mi) \Si) ∩ C̃ and
f ∈ Fcl (x). Since S ∩ C̃ is closed, we apply Theorem 1 in
[6] to conclude that S∩C̃ is forward pre-invariant for (Fcl, C̃).

If B is a t-CBF, we apply Theorem 2 in [6]. Assumption
5 implies that ⟨∇Bi (x) , f⟩ ≤ 0 for all x ∈ Mi ∩ C̃
and f ∈ Fcl (x), where C̃ = U (∂S) ∩ Π(Cu). Since Fcl

is locally Lipschitz on U (∂S) ∩ C̃ via Assumption 4 and
Lemma 2, condition (20) in [6] holds (see [6, Rem. 9]). Under
Assumption 6B), Lemma 2 shows that C̃ is closed. Thus, by
definition of Fcl, Fcl (x) = ∅ for x /∈ C̃, so that condition
(21) in [6] holds vacuously. Using Assumption 3, we apply
[6, Thm. 2] to conclude that S ∩ C̃ is forward pre-invariant
for (Fcl, C̃).

Forward pre-invariance of S for the unrestricted closed-loop
system (Fcl, C) follows from the definition of forward pre-
invariance, since solutions to (Fcl, C) starting from S cannot
exit S without passing through C̃. Such solutions remain in S
by forward pre-invariance of S∩C̃ for the restricted dynamics.

When the performance function γ satisfies stronger condi-
tions than those imposed in Assumption 2, selections of Kc,
designed to enforce all of the barrier function-induced con-
straints, not only render S forward pre-invariant, but also some
larger sets defined by a subset of the barrier functions. This
situation is different from redefining Kc by removing some
of the constraints. The result is motivated by the observation
that a common selection for γ is γi ≜ Bi, where by definition
Bi (x) > 0 for all x ∈ Rn\Si.

Corollary 1. Under the assumptions of Theorem 1, assume
additionally that O = Π(Cu) and γi (x) ≥ 0 for all x ∈
O\Si, for each i ∈ [d]. For any index set I ⊂ {1, 2, . . . , d},

1Since B is assumed to be continuous, a sufficient condition for S to be
closed is that Π(Cu) is closed.

2In some places, we use cl (A) instead of A to denote the closure for
aesthetic reasons.

Figure 2. Modification of Example 1 where the CBF candidate B4 (x) =
x1 − x̄s is removed. The vector field represents the closed-loop dynamics
under a control law that renders the safe set forward pre-invariant. Trajectories
starting in the right half-plane will terminate on the boundary of the flow set.

if the set SI ≜ {x ∈ Π(Cu) : Bi (x) ≤ 0, ∀i ∈ I} is closed
in Rn, then SI is forward pre-invariant for the closed-loop
system (Fcl, C) defined in (6) by (F,Cu) and κ.

The corollary follows by applying Theorem 1 to the CBF
candidate BI : Rn → R|I| defined by only the components
of B in I.

Example 2. For some applications, forward pre-invariance
may not be a strong enough property. In Example 1, consider
a situation where the safe set is defined by only three of the
CBF candidates (see Figure 2). In this case, the set of safety-
ensuring controls is given by Kc (x) = {u ∈ R2 : |u2 + x2| ≤
x̄s, u1 + x1 ≥ −x̄s}. An example of a continuous selection
of Kc is κ (x) ≜ −x if x1 ≤ 0 and κ (x) ≜ (x1,−x2) if
x1 > 0. Theorem 1 shows that S is forward pre-invariant for
the closed-loop dynamics ẋ = κ (x). Figure 2 displays the
closed-loop dynamics.

Forward pre-invariance implies that trajectories do not exit
the safe set, but may terminate on the boundary of the safe set
due to being unable to continue flowing inside the flow set. In
this example, termination of flow may correspond to the agent
crashing into the wall of the room. The issue occurs because
portions of the boundary of S = {x ∈ Π(Cu) : B (x) ≤ 0}
are not defined by the CBF, but rather are defined by Π(Cu).
In this example, we should ensure that the set S is forward
invariant.

B. Forward Invariance

The forward pre-invariance notion in Definition 4 does not
guarantee that maximal solutions to the closed-loop system
are complete. In addition to terminating on the boundary of
the flow set as illustrated in Example 2, solutions may escape
in finite time inside of S. To select control inputs that prevent
solutions from terminating on the boundary of the flow set,
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following from [27, Eqn. 31] we define the map

ΘS (x) ≜


{u ∈ Ψ(x) : F (x, u) ∩ TS (x) ̸= ∅}

if x ∈ ∂Π(Cu) ∩ S,
Ψ(x) otherwise.

(7)
Relative to the assumptions of Theorem 1, it is notable that
in the next result we assume that the controller is continuous
on a set that contains the entire safe set. Doing so provides
regularity of the closed-loop system with which we can
establish completeness of maximal solutions.

Theorem 2. (Forward Invariance) Let Assumption 6A) hold
for the control system in (1) with data (F,Cu) and suppose
B : Rn → Rd is either a CBF or a t-CBF for (F,Cu) and
S ⊂ Π(Cu) on O with respect to γ when Kc (x) in (5) is
replaced with Kc (x)∩ΘS (x), meaning that Kc (x)∩ΘS (x)
is nonempty for every x ∈ O. Suppose κ : Rn → Rm is
continuous on O ∪ S with κ (x) ∈ Kc (x) ∩ ΘS (x) for all
x ∈ O and κ (x) ∈ Ψ(x) for all x ∈ S. When B is exclusively
a t-CBF, assume additionally that Assumptions 4 and 6B) hold,
and κ is locally Lipschitz on O. If S is closed and one of the
following conditions hold:
2.1) S is compact,
2.2) Fcl is bounded on S, or
2.3) Fcl has linear growth on S, namely, there exists c > 0
such that, for all x ∈ S, supv∈Fcl(x)

|v| ≤ c (|x|+ 1),
then S is forward invariant for the closed-loop system (Fcl, C)
defined in (6) by (F,Cu) and κ.

Proof: Forward pre-invariance of S for the closed-loop
dynamics follows from Theorem 1. It remains to show that
maximal solutions to the closed-loop system starting from S
are complete. Using continuity of κ on S and Lemma 2, the
map Fcl is outer semicontinuous and locally bounded on S
with nonempty, convex values. Since κ (x) ∈ Ψ(x) for all
x ∈ S and C = {x ∈ Rn : κ (x) ∈ Ψ(x)}, we have Π(Cu)∩
S = C ∩ S . Because S ⊂ C, we have ∂C ∩ S ⊂ ∂S. From
the definition of a CBF (or t-CBF), the set O contains ∂S,
from which we conclude that κ (x) ∈ ΘS (x) for all x ∈
∂C ∩ S. Thus, Proposition 3 in [6] implies that a nontrivial
flow exists from every point in ∂C ∩S, and thus S is forward
invariant for (Fcl, C) if maximal solutions cannot escape in
finite time inside the set S. Finite-time escape is eliminated by
assuming Condition 1), 2), or 3) (see [28, Thm. 10.1.4] and
the subsequent discussion, treating S as the viability domain).

Due to the tangent cone condition defining the mapping
ΘS , it will generally be difficult to obtain an analytical form
of (7) that can be used to make a selection from the mapping
Kc ∩ ΘS as required by Theorem 2. Note based on (7) that
the complication is only present if the safe set intersects the
boundary of the flow set (∂Π(Cu) ∩ S ≠ ∅). The notion
of t-CBF offers a solution to the problem when a CBF
candidate is available to define the portion of the boundary
of S that intersects ∂Π(Cu). Proposition 1 can be combined
with Theorem 2 to remove the complication of selecting inputs
from Kc ∩ΘS .

Proposition 1. (Forward Invariance with t-CBFs) Suppose
B : Rn → Rd is a t-CBF for (F,Cu) and S ⊂ Π(Cu) on
O with respect to γ. If S = {x ∈ Rn : B (x) ≤ 0}, then
Kc (x) = Kc (x) ∩ΘS (x) for every x ∈ Π(Cu).

Proof: Pick x ∈ Π(Cu). The claim is trivial if x /∈
∂Π(Cu) ∩ S since Kc (x) ⊂ Ψ(x), so assume that x ∈
∂Π(Cu) ∩ S. For u ∈ Kc (x), applying Lemma 1 with
M = Rn, we find that F (x, u) ∩ TS (x) ̸= ∅. Thus,
u ∈ ΘS (x), which completes the proof.

Example 3. The problem in Example 2 can be remedied using
the tools developed in this section. One solution is to add the
additional CBF candidate B4 (x) = x1 − x̄s, in which case
∂Π(Cu) ∩ S = ∅ and Kc ∩ΘS = Kc so that Theorem 2 can
be applied because the original candidate B is both a CBF
and a t-CBF. If one wishes to describe the flow set exactly,
then it is possible to choose B4 (x) = x1 − x̄. In this case,
∂Π(Cu) ∩ S ≠ ∅, but S = {x ∈ R2 : B (x) ≤ 0}. Thus,
Proposition 1 and Theorem 2 imply that any selection of Kc

renders the compact set S forward invariant.

C. Asymptotic Stability

Comparable notions of CBF in the literature, such as the
zeroing CBFs of [2], are defined so that the safe set is not just
forward invariant, but rather asymptotically stable. Asymptotic
stability implies forward invariance and ensures that complete
solutions starting outside the safe set converge (in distance) to
the set. The following result provides conditions for asymp-
totic stability using multiple CBFs. For brevity, we make
the simplifying assumption that the safe set is compact. The
result is stated first for pre-asymptotic stability which, like
forward pre-invariance, enjoys the properties of asymptotic
stability except that maximal solutions need not be complete
[7, Def. 3.1]. To obtain asymptotic stability, we must ensure
that solutions do not terminate on the boundary of the flow
set by selecting vectors according to the mapping ΘΠ(Cu),
which is defined as in (7) with S replaced by Π(Cu). Control
inputs in ΘΠ(Cu) could be included in Kc by using a t-CBF
to represent the flow set.

Theorem 3. (Asymptotic Stability) Let Assumptions 6A) and
6B) hold for the control system in (1) with data (F,Cu) and
suppose B : Rn → Rd is a CBF for (F,Cu) and S ⊂ Π(Cu)
on O ⊂ Π(Cu) with respect to γ. Suppose that S is compact
and, for every i ∈ [d] , γi (x) > 0 for all x ∈ O\Si, where
Si = {x ∈ Rn : Bi (x) ≤ 0}. Suppose κ : Rn → Rm is
continuous on O ∪ S with κ (x) ∈ Kc (x) for all x ∈ O and
κ (x) ∈ Ψ(x) for every x ∈ S . Then S is pre-asymptotically
stable for the closed-loop system (Fcl, C) defined in (6) by
(F,Cu) and κ. If additionally κ (x) ∈ ΘΠ(Cu) (x) for all x ∈
O, then S is asymptotically stable for the closed-loop system.

Proof: Using continuity of κ along with Assumptions 6A)
and 6B), Lemma 2 shows that the closed-loop system meets
the basic conditions in [7, Def. 2.18]. Consider the nonsmooth
Lyapunov function candidate Vmax ≜ max{0, B1, . . . , Bd}
and the function γmax ≜ maxi∈[d] γi. The function Vmax is
locally Lipschitz [29, Prop. 7], nonnegative, and Vmax (x) > 0
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for all x ∈ Π(Cu) \S . To prove that S is pre-asymptotically
stable, we apply case 2a) of Theorem 3.19 in [7], for which
it remains only to show that

V̇max (x) ≜ max
ζ∈∂Vmax(x)

max
f∈F (x,κ(x))

⟨ζ, f⟩ < 0

for all x ∈ O\S , where ∂Vmax denotes the generalized
gradient of Vmax [29, Eqn. 37]. Let Imax (x) ≜ {i ∈
{0, 1, . . . , d} : Bi (x) = Vmax (x)}, where we use the
convention B0 ≜ 0. From Proposition 7 in [29] and using the
fact that each Bi is continuously differentiable, ∂Vmax (x) ⊂
co∪i∈Imax(x){∇Bi (x)}, where co{·} denotes the convex hull.
Note that based on convention, 0 ∈ ∪i∈Imax(x){∇Bi (x)}
when Vmax (x) = 0. Since each ζ ∈ ∂Vmax (x) is a convex
combination of the gradients of each Bi, we have

V̇max (x) ≤ max
λ

max
f∈F (x,κ(x))

∑
i∈Imax(x)

λi ⟨∇Bi (x) , f⟩

= max
λ

∑
i∈Imax(x)

λiΓi (x, κ (x))

where λi ≥ 0 and
∑

i∈Imax(x)
λi = 1. Thus, V̇max (x) ≤

maxi∈Imax(x) Γi (x, κ (x)), where Γ0 = 0. Since κ (x) ∈
Kc (x) = {u : Γ (x, u) ≤ −γ (x)}, V̇max (x) ≤
maxi∈Imax(x) −γi (x). For any x ∈ O\S and i ∈ Imax (x),
Vmax (x) = Bi (x) > 0. Because Bi (x) > 0, we have
that x ∈ O\Si and hence γi (x) > 0. We conclude that
V̇max (x) < 0 for every x ∈ O\S, from which [7, Thm. 3.19]
shows that S is pre-asymptotically stable for the closed-loop
dynamics.

Since S is pre-asymptotically stable, showing that S is
asymptotically stable requires showing that there exists δ > 0
such that every maximal solution to the closed-loop system
starting from Sδ ≜ {x ∈ Π(Cu) : |x|S ≤ δ} is complete.
From pre-asymptotic stability of S and the fact that O contains
U (∂S)∩Π(Cu) (via the definition of a CBF), given any ϵ > 0
such that Sϵ ⊂ O ∪ S, there exists 0 < δ < ϵ for which any
trajectory of the closed-loop dynamics starting in Sδ does not
exit Sϵ. In particular, ϵ can always be selected so there is a
neighborhood of Sϵ for which U (Sϵ)∩Π(Cu) ⊂ O∪S. Since
κ (x) ∈ Ψ(x) for all x ∈ O ∪ S and C = {x ∈ Rn : κ (x) ∈
Ψ(x)}, we have Π(Cu) ∩ (O ∪ S) = C ∩ (O ∪ S). Because
Sϵ ⊂ C, it follows that ∂C ∩ Sϵ ⊂ ∂Sϵ. The set O contains
∂Sϵ, from which it follows that for any x ∈ Sϵ ∩ ∂C, there is
a neighborhood U of x for which κ (x) ∈ ΘΠ(Cu) (x) for all
x ∈ U ∩C. We conclude using [7, Prop 2.34] that a nontrivial
flow exists from every point in Sϵ. Combined with the fact that
Sϵ is compact, this implies that every maximal solution starting
from Sδ is complete, establishing the asymptotic stability of
S for the closed-loop dynamics.

Remark 4. Under the assumptions of Theorem 3, suppose
Kc is nonempty on LB (β) = {x ∈ Π(Cu) : B (x) ≤ β}
for some β > 0. Then LB (β) is forward pre-invariant for
the closed-loop system, and pre-asymptotic stability of S
then implies that any complete solution starting from LB (β)
converges to S. This observation motivates verifying that Kc

is nonempty on level sets of B, which will be explored in
Section V. The asymptotic stability of S follows whenever

LB (β) is forward invariant for the closed-loop dynamics via
Theorem 2.

IV. DESIGN OF OPTIMAL SAFETY-ENSURING FEEDBACK

In this section, we study the continuity (as a function of
the state) of a class of optimization-based control laws that
can be used to make selections from mappings such as the
set of safety ensuring control inputs Kc defined in (5). The
results here allow for a general class of cost functions and
an arbitrary number of constraints. Given a CBF, Theorems
1 and 2 show that continuous selections of the mapping Kc

render the safe set forward (pre-)invariant. When working
with t-CBFs, Theorems 1 and 2 require selections of Kc

that are locally Lipschitz. Unfortunately, as has been noted
in works like [19], studying the local Lipschitz continuity of
the broad class of optimization-based control laws considered
here is more challenging, and is beyond the scope of this
work. A result for the local Lipschitz continuity of a more
restrictive class of quadratic programs with a maximum of
two constraints is available in [2, Thm. 3].

To obtain an implementable form for the controller, we
impose the following condition on the set-valued map Ψ of
admissible controls. We emphasize that the set Ψ represents
arbitrary, state-dependent constraints on the control input.

Assumption 7. There exists a function ψ : Π (Cu) × Rm →
Rk such that Ψ(x) = {u ∈ Rm : ψ (x, u) ≤ 0} for all
x ∈ Π(Cu).

Assumption 7 is commonly used when input constraints are
present [10], [11]. If B is a CBF for (F,Cu) and S on O with
respect to γ, define the controller κ∗ : O → Rm as3

κ∗ (x) ≜ arg min
u∈Rm

Q (x, u) (8)

s.t. Γ (x, u) ≤ −γ (x) ,
ψ (x, u) ≤ 0,

where Q : O × Rm → R is a cost function and Γ is defined
in (4). Because Kc in (5) is the feasible set for (8), it is clear
that κ∗ is a selection of Kc; we write (8) equivalently as
κ∗ (x) = arg minu∈Kc(x)

Q (x, u). When Kc is nonempty on
O as required in the definition of a CBF in Definition 2, the
optimization in (8) is feasible.

Remark 5. The optimization in (8) is generally a nonlinear
program. While solvers for nonlinear programs exist, they can
be computationally expensive leading to practical difficulties.
However, (8) reduces to a quadratic program if the cost
function Q is quadratic and the constraints are affine in the
control input. The functions Γi in (4) are affine when the
dynamics are affine in the control input [2], [30]. In the
setting of differential inclusions, the dynamics should have
the form F (x) + g (x)u, where F is set-valued and g is
single-valued. Results such as [1] and the references therein
have demonstrated that a significant number of relevant control

3For κ∗ to be well-defined, the function Γ should be extended to points
(x, u) ∈ Π(Cu) × Rm where u /∈ Ψ(x). This extension can be done
arbitrarily since such points are infeasible.
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problems feature affine constraints and that quadratic programs
can be viably computed online in real-time applications.

Although κ∗ (x) is feasible at x ∈ O if Kc (x) ̸= ∅, it is
not necessarily continuous. We provide a result for continuity
of κ∗ in Lemma 2 of our preliminary work [22], where it is
assumed that the cost function Q in (8) is level-bounded in u,
locally uniformly in x. This property is equivalent to the local
boundedness of the mapping x 7→ ℓQ (x, λ) ≜ {u ∈ Rm :
Q (x, u) ≤ λ} for every λ ∈ R, where local boundedness is
the same as the notion of local compactness in [31] and is
closely related to the notion of uniform compactness in [32].
Local boundedness holds whenever Q is continuous and, for
each fixed x, the mapping u 7→ Q (x, u) is convex and inf-
compact (cf. [31, Lem. 5.7]). We thus can obtain the following
simplified form of [22, Lem. 2]. In comparison to the more
commonly-used Berge’s maximum theorem, Lemma 3 does
not require the feasible set to be compact.

Lemma 3. Let X be a metric space and U a finite-dimensional
normed space. Suppose K : X ⇒ U is lower and outer
semicontinuous with nonempty, convex values, and the function
Q : X × U → R is continuous and, for each x ∈ X , u 7→
Q (x, u) is strictly convex and inf-compact4 on K (x). Then
κ∗ : X → U defined as κ∗ (x) ≜ arg minu∈K(x) Q (x, u) is
single-valued and continuous.

Proof: Our proof is based on [32], from which we note
that the notion of closed mappings is equivalent to outer
semicontinuity [32, Thm. 2], and a mapping is open if and only
if it is lower semicontinuous [32, Cor. 1.1]. Strict convexity
and inf-compactness of u 7→ Q (x, u) ensure that the set of
minimizers κ∗ (x) contains a single unique element for every
x ∈ O. Thus, Corollary 9.1 in [32] shows that κ∗ (x) is
uniformly compact near x. Corollary 8.1 in [32] then shows
that κ∗ (x) is continuous at every x ∈ O.

Remark 6. Lemma 3 is more general than results that have pre-
viously appeared in the controls literature. The authors in [33]
provide a continuity result that leverages the generalization of
Berge’s maximum theorem in [21, Thm. 1.2]. However, the
assumptions imposed on the cost function are restrictive, and
in fact Lemma 3 shows that condition (O2) in [33, Thm. 3] is
redundant if the cost function is also inf-compact. The authors
in [34] study the continuity of optimization-based control
laws by leveraging [31, Lem. 5.7], which shows uniform
compactness of the level sets of the cost function for convex
optimization problems. Relative to the results in [31], Lemma
3 applies on a more general class of spaces and allows the
convexity of the cost function to be restricted to the feasible
set K (x).

Next, we establish the continuity of the controller in (8). We
impose the following assumptions on the constraints, which
lead to the continuity properties of the mapping Kc required
by Lemma 3.

Assumption 8. For each i ∈ [d] and each j ∈ [k],

4A function f : X → R is inf-compact if for every λ ∈ R, the sublevel
set Lf (λ) ≜ {x ∈ X : f (x) ≤ λ} is compact.

A) For each x ∈ O, the functions u 7→ Γi (x, u) and u 7→
ψj (x, u) are convex on Kc (x).
B) The functions (x, u) 7→ Γi (x, u) + γi (x) and (x, u) 7→
ψj (x, u) are continuous on Cu ∩ (O × Rm) and O × Rm,
respectively.

Theorem 4. (Continuity of κ∗) Let Cu ⊂ Rn × Rm, O ⊂
Π(Cu), Γ : Cu → Rd, and γ : Π (Cu) → Rd be given.
Suppose Assumptions 7 and 8 hold, the cost function Q : O×
Rm → R is continuous and, for each x ∈ O, u 7→ Q (x, u) is
strictly convex and inf-compact on Kc (x), and the set

K◦
c (x) ≜

{
u ∈ Rm : Γ (x, u) < −γ (x)

ψ (x, u) < 0

}
(9)

is nonempty for every x ∈ O. Then κ∗ : O → Rm defined in
(8) is continuous.

Proof: For every x ∈ O, the functions defining Kc are
assumed to be continuous and convex on {x}×Kc (x). Since
K◦

c (x) is nonempty, Theorem 12 in [32] shows that Kc :
O ⇒ Rm is lower semicontinuous. We recall that Kc (x) =
{u ∈ Ψ(x) : Γ (x, u) ≤ −γ (x)}. From the definition of Ψ,
the graph of Kc is equivalent to GraphO (Kc) =

{
(x, u) ∈

Cu∩(O×Rm) : Γ (x, u) ≤ −γ (x)
}

, which is relatively closed
in Cu ∩ (O×Rm) by continuity of Γ+ γ. Using Assumption
7, Cu ∩ (O × Rm) = {(x, u) ∈ O × Rm : ψ (x, u) ≤ 0},
which is relatively closed in O × Rm by continuity of ψ.
Thus, GraphO (Kc) is also relatively closed in O × Rm, i.e.,
the mapping Kc is outer semicontinuous. Moreover, Kc (x) is
convex for every x ∈ O since it is a sublevel set of convex
functions. Thus, the assumptions of Lemma 3 are satisfied and
κ∗ is continuous.
Remark 7. By invoking Proposition 2.9 of [35], the functions
Γi in (4) are continuous when the flow map F : Rn ×
Rm ⇒ Rn is locally bounded, outer semicontinuous, and
lower semicontinuous. When the needed regularity is not
present in the dynamics, one can replace Γ with a continuous
upper bound Γ̄ : Cu → Rd such that Γ̄i (x, u) ≥ Γi (x, u) for
every (x, u) ∈ Cu ∩ (O × Rm) and i ∈ [d]. It follows that
KS

c (x) ≜ {u ∈ Ψ(x) : Γ̄ (x, u) ≤ −γ (x)} ⊂ Kc (x) for all
x ∈ Π(Cu)∩O, so that redefining κ∗ to be a selection of the
subset mapping KS

c still leads to a selection of Kc. Similar
replacements can be made for the functions γ and ψ.
Remark 8. A common practice in the CBF literature is to
use slack variables [11] or adaptive slack parameters [36] to
improve the feasibility of the safety-ensuring control law. For
example, the performance function γ in (8) could be selected
as γi (x, δi) ≜ δi min{Bi (x) , 0}, where δi ≥ 0 is a decision
variable in the optimization problem. The feasible set for this
optimization problem can be modeled in a simpler way by
setting γi (x) = −∞ if Bi (x) < 0 (cf. Remark 2). Moreover,
the continuity of an optimization-based controller featuring
slack variables can be analyzed directly using Theorem 4 by
including δi as a state variable. However, slack variables can
lead to abrupt control action as discussed in Section I-A.

V. FEASIBILITY VERIFICATION WITH SUM OF SQUARES

A challenging aspect of verifying that a given CBF can-
didate is a CBF (or a t-CBF) is determining whether the set
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Kc (x) is nonempty for every x ∈ O. Since Kc is the feasible
set for the control law κ∗ in (8), checking if a function is a
CBF is the same as checking if the optimization defining κ∗

is feasible. Moreover, certifying that K◦
c in (9) has nonempty

values guarantees continuity of κ∗ under the assumptions of
Theorem 4. In this section, we develop sum of squares (SoS)
polynomial optimization tools for certifying that Kc and K◦

c

have nonempty values under more restrictive assumptions on
the constraints defining the mappings. Namely, we assume
that the constraints are polynomials and affine in the control
input. However, the tools can be used in the case of non-
polynomial constraints to obtain conservative estimates of the
feasible region by replacing the constraints with polynomial
upper bounds. This procedure is similar to Remark 7 except
the polynomial upper bounds are used only for verification
and we do not need to redefine κ∗.

There are well-characterized computational limitations of
SoS programming [37]. Although we have made efforts to
develop SoS programs that are less complex than previous
results, such programs scale poorly with the number of state
variables. Yet, there are many examples of control problems
where SoS techniques have proven useful [14]–[16].

Let P [x] be the set of all polynomials in the variables x ∈
Rn. The set of SoS polynomials is Σ [x] ≜ {p ∈ P [x] : p =∑N

i=1 f
2
i , f1, . . . , fN ∈ P [x]}, where p ∈ Σ [x] implies that

p (x) ≥ 0 for all x ∈ Rn. We will also use Pm1×m2 [x] to
denote the set of matrix-valued functions p : Rn → Rm1×m2

with polynomial entries.
SoS programming involves a series of relaxations of origi-

nally NP-hard polynomial optimization problems that lead to
tractable semidefinite programs [12]. The class of problems
that can be solved involve optimizing the coefficients of
polynomials pi ∈ P [x] subject to constraints of the form
a0 +

∑N
i=1 piai ∈ Σ [x], where a0, a1, . . . , aN ∈ P [x] are

given, constant coefficient polynomials (see [13], SoS Program
2). The aforementioned constraint is linear in the coefficients
of the polynomials pi.

To describe how SoS optimization can be used to certify
whether a given function is a CBF, first consider a global
feasibility problem. Let K : Rn ⇒ Rm be a set-valued
mapping defined by a system of inequalities as

K (x) ≜ {u ∈ Rm : A (x)u+ b (x) ≤ 0} , (10)

where A : Rn → Rnc×m and b : Rn → Rnc are polynomial,
i.e., A ∈ Pnc×m [x] and b ∈ Pnc [x]. The assumption that
the constraints are affine is needed to obtain a proper SoS
program, as discussed above. Given constraints of the form in
(10), the following SoS program will certify that K (x) ̸= ∅
for all x ∈ Rn.

Problem 1. (Global Feasibility) Given x ∈ Rn and polyno-
mials A ∈ Pnc×m [x] and b ∈ Pnc [x], find a constant ϵ ≥ 0
and a polynomial u ∈ Pm [x] such that, for all i ∈ [nc],

−Ai∗ (x)u (x)− bi (x)− ϵ ∈ Σ [x] ,

where Ai∗ (x) denotes that i-th row of A (x). The parameter
ϵ could either be a fixed value or a decision variable. If ϵ > 0,
then K◦ (x) ≜ {u ∈ Rm : A (x)u+ b (x) < 0} is nonempty.

Although the polynomial controller u found in Problem
1 is a selection of K (i.e., u (x) ∈ K (x)), it is not an
optimal selection like κ∗ in Section IV. Thus, we use u
only for feasibility verification purposes, while κ∗ is used to
define a closed-loop system for control purposes. To apply the
techniques in this section to Kc in Section II, we will need to
assume the existence of a polynomial and affine upper bound
of the functions defining Kc.

Assumption 9. Given Γ : Cu → Rd, γ : Π (Cu) →
[−∞,∞]d, and ψ : Π (Cu) × Rm → Rk, let nc ≜ d + k
and assume there exists A ∈ Pnc×m [x] and b ∈ Pnc [x]
such that A (x)u + b (x) ≥ (Γ (x, u) + γ (x) , ψ (x, u)) for
all (x, u) ∈ Cu.

For many practical controls problems, especially those in-
volving constraints on the magnitude of the control input,
one will likely not find (or need) a CBF that exists on the
entire state space. More often, feasibility verification can be
restricted to a particular operating region. Thus, a method is
needed to verify that Kc (x) in (5) is nonempty on a subset
of Rn. A natural way to define the operating region is with
sublevel sets of a CBF candidate B defining S ⊂ Π(Cu),
which is especially useful when convergence to the safe set is
desired (see Remark 4). By certifying that Kc (x) is nonempty
on a set LB (β) ≜ {x ∈ Rn : B (x) ≤ β}, with β > 0, we
certify that B is a CBF on LB (β), and that the controller κ∗

in (8) exists on the entire safe set S ⊂ LB (β). Since working
with B in this context requires assuming that B is polynomial,
we subsequently consider a generic polynomial B̃ ∈ Pnb [x].

While being a SoS polynomial is a global property, there
exist hierarchies of relaxations that have close relationships to
the set of polynomials that are nonnegative only on a particular
subset of Rn [12]. The relaxation that will be most useful for
the feasibility verification problem is the following, based on
Putinar’s Positivstellensatz [38].

Lemma 4. Let B̃ ∈ Pnb [x] and define LB̃ (β) ≜ {x ∈
Rn : B̃ (x) ≤ β} for some β ∈ R. A function p ∈ P [x]
is nonnegative on LB̃ (β) if there exist s0, s1, . . . , snb

∈ Σ [x]
such that, for all x ∈ Rn,

p (x) ≥ s0 (x) +

nb∑
j=1

sj (x)
(
β − B̃j (x)

)
. (11)

Proof: The result follows from the facts that sj (x) ≥ 0
for all x ∈ Rn and β − B̃j (x) ≥ 0 for all x ∈ LB̃ (β).

Putinar’s Positivstellensatz shows that every polynomial that
is strictly positive on LB̃ (β) can be decomposed in the form
on the right-hand side of (11) under the assumption that
the functions defining LB̃ (β) have an Archimedean property
[12, Thm 3.20]. While results guaranteeing the existence of
SoS decompositions when the Archimedean property is not
present have been applied to controls problems in, e.g., [14],
these methods scale poorly with the number of components in
B̃. Additionally, the multiplicative monoid in [14] is known
to lead to multiplicative combinations of decision variables
that require developing complex iterative procedures, thereby
adding conservativeness to the problem.
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Recalling the definition of the mapping K in (10), the
following program certifies that the set K (x) is nonempty
for all x ∈ LB̃ (β) = {x ∈ Rn : B̃ (x) ≤ β}.

Problem 2. (Feasibility on Level Sets) Given x ∈ Rn,
A ∈ Pnc×m [x], b ∈ Pnc [x], B̃ ∈ Pnb [x], and β ∈ R,
find polynomials u ∈ Pm [x], s0, s1, . . . , snb

∈ Σ [x], and
a constant ϵ ≥ 0 such that, for all i ∈ [nc],

−Ai∗ (x)u (x)− bi (x)− ϵ

−s0 (x)−
nb∑
j=1

sj (x)
(
β − B̃j (x)

)
∈ Σ [x] . (12)

The main result of this section follows. It states that a CBF
candidate B can be certified as a CBF on a set LB̃ (β) ⊃
U (∂S) ∩ Π(Cu) by finding a feasible solution to Problem
2. An identical result can be given for t-CBFs provided the
additional assumptions in Section II-A hold. Unfortunately,
the inability to find a feasible solution to Problem 2 does not
mean that no such feasible solution exists. One major cause for
conservativeness is that the degree of the involved polynomials
must be restricted in practice, and feasible solutions may exist
for higher degree polynomials.

Theorem 5. (Verification of CBF) Consider the dynamical
system (F,Cu) in (1) and a set S ⊂ Π(Cu). Suppose
Assumption 7 holds for a function ψ, B : Rn → Rd is a
CBF candidate defining S, and γ : Π (Cu) → [−∞,∞]d

satisfies Assumption 2. Given Γ defined in (4), let Assumption
9 hold for some A ∈ Pnc×m [x] and b ∈ Pnc [x]. If
Problem 2 has a solution for some B̃ and β for which
there exists a neighborhood of the boundary of S such that
U (∂S) ∩ Π(Cu) ⊂ LB̃ (β), then Kc (x) in (5) is nonempty
for all x ∈ LB̃ (β) ∩ Π(Cu) and B is a CBF for (F,Cu)
and S on LB̃ (β)∩Π(Cu) with respect to γ. Moreover, if the
solution to Problem 2 is such that ϵ > 0, then K◦

c (x) in (9)
is nonempty for all x ∈ LB̃ (β) ∩Π(Cu).

Proof: Using Definition 2 and the assumptions of the
theorem, we need only show that Kc in (5) is nonempty
on LB̃ (β) ∩ Π(Cu) to prove that B is a CBF. Problem
2 and Lemma 4 tell us that there exists u ∈ Pm [x] such
that A (x)u (x) + b (x) ≤ −ϵ for all x ∈ LB̃ (β). From
Assumption 9, (Γ (x, u (x)) + γ (x) , ψ (x, u (x))) ≤ −ϵ for
all x ∈ LB̃ (β) ∩ Π(Cu). It follows by definition that Kc is
nonempty on LB̃ (β) ∩Π(Cu) and, if ϵ > 0, so is K◦

c .
Remark 9. When LB̃ (β) \Π(Cu) ̸= ∅, the procedure devel-
oped above will be conservative because it is unnecessary to
consider points outside Π(Cu). If we assume that Π(Cu) can
be described by a polynomial π ∈ Pnp [x] as Π(Cu) = {x ∈
Rn : π (x) ≤ 0}, then these constraints can be included in
Problem 2 to reduce conservativeness.

VI. EXAMPLE: NON-POLYNOMIAL DYNAMICS WITH
UNKNOWN PARAMETERS AND INPUT CONSTRAINTS

In this section, we apply the tools developed in this paper
to certify the feasibility of a safety-ensuring control law in
the presence of uncertain dynamics and input constraints. A
particular challenge in this example is that the functions Γi

defined by (4) are not polynomial. Due to this, we develop
polynomial upper bounds of the functions that are used for
feasibility verification purposes, and show that these upper
bounds are not overly conservative. Consider the second-order
system

ẋ =

[
x21 sin (x2) 0 0
0 x2 cos (x1) |x1| x1x2

]
︸ ︷︷ ︸

Y (x)

θ +

[
1 3
1/2 −1

]
︸ ︷︷ ︸

g

u,

(13)
with u ∈ R2, θ ∈ R4 a vector of unknown parameters, and
Cu ≜ {(x, u) ∈ R4 : |ui| ≤ umax, ∀i ∈ {1, 2}} for some
constant umax > 0. We assume that the unknown parameters
are bounded such that θ ∈ Θ ≜ {θ ∈ R4 : |θi| ≤ θ̄i, ∀i ∈ [4]},
with each θ̄i > 0. In [9], an adaptive control scheme was
developed for systems of the class in (13) using a CBF-
based control law. It was shown that safety is guaranteed
if the pointwise optimal controller is feasible for the worst-
case values of the parameters. Given the assumption that θ
is bounded, the needed analysis can be performed by treating
(13) as a differential inclusion with θ taking values in the set
Θ, given as in (1) with F (x, u) ≜ {Y (x) θ + gu : θ ∈ Θ}
and Cu given above.

Consider a CBF candidate

B (x) =

 x1 + x2 − c
−x1 + x2 − c
1
cx

2
1 − x2 − c

 , (14)

defining the set S ≜ {x ∈ Π(Cu) : B (x) ≤ 0}, with c = 5
and Π(Cu) = R2. The feasibility condition used here is a
slight refinement of the one in [9], which was based on the
2-norm. Considering that the set Θ is compact, the function
Γ in (4) has components

Γi (x, u) = max
θ∈Θ

{
∇BT

i (x)Y (x) θ
}
+∇BT

i (x) gu. (15)

Note that Γ is linear in the control input u. Because of the
expression for Y , the functions Γi are not polynomial. Using
the upper bounds |sin (x)| ≤ 1 and |cos (x)| ≤ 1, it can be
shown that for i ∈ {1, 2},

Γi (x, u) ≤ x21θ̄1 + (1 + |x2|) θ̄2 + |x1| θ̄3
+ |x1x2| θ̄4 +∇BT

i (x) gu,

and

Γ3 (x, u) ≤
2

c

∣∣x31∣∣ θ̄1 + (
2

c
|x1|+ |x2|

)
θ̄2 + |x1| θ̄3

+ |x1x2| θ̄4 +∇BT
3 (x) gu.

The upper bounds above take the form A (x)u+ b (x), where
the function b contains monomials composed with the absolute
value function. Although the absolute value function is not
polynomial, constraints of this form can be replaced with a set
of polynomial constraints (see Appendix B for a description
of the procedure). The upper bounds of Γ are used only for
verification with SoS, while the actual value of Γ in (15) can
be used to compute the controller κ∗.

The feasibility verification was implemented in MATLAB
(2019b). The SOS optimization problems were formulated
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using the SPOT toolbox (see [39]). The SoS optimization
was solved on a workstation running Windows 11 with a 2.2
GHz Intel Core i7-1360P processor and 32 GB of RAM. The
program took approximately 0.2 seconds to solve.

The function γ is selected as γi (x) = KbBi (x) with Kb =
13, which satisfies Assumption 2 since Bi (x) > 0 for all x ∈
R2\Si, where Si = {x ∈ Rn : Bi (x) ≤ 0}. The maximum
value of the control input is selected as umax = 40 and the
upper bound of the unknown parameters is θ̄ = (1, 2, 2, 1). As
required by Assumption 7, the set Ψ, in this case not dependent
on x, is the zero-sublevel set of the functions ψi (u) = |ui| −
umax for i ∈ {1, 2}, where the absolute value function can
be replaced by polynomials as described above. With these
choices, the mapping Kc is defined in terms of Γ, γ, and ψ,
and the constraints can be implemented in a SoS program like
Problem 2. Since B is polynomial, we defined B̃ ≜ B and
performed a search on the set LB (β) = {x ∈ R2 : B (x) ≤
β}. The problem is feasible with β = 1.05. Since LB (β)
contains a neighborhood of S, Theorem 5 shows that B is
a CBF for (F,Cu) and S on Lβ (B) with respect to γ. In
fact, the problem is feasible with ϵ = 0.1, which implies that
K◦

c (x) ̸= ∅ for all x ∈ LB (β).
Theorem 4 shows that the controller κ∗ (x) ≜

arg minu∈Kc(x)
|u− unom (x)| is continuous on LB (β)

when unom : R2 → R2 is continuous. In the simulation
in Figure 3, unom (x) ≜ g−1 (Rx− Y (x) θ), where
R = [0.15, 1.3;−1, 0.1] is a 2 × 2 matrix. Without
modification for safety, the controller unom would make
the system unstable. Since ∂Π(Cu) ∩ S = ∅, we have
Kc (x) = Kc (x)∩ΘS (x) for all x ∈ Rn. Since S is compact
and κ∗ (x) ∈ Kc (x) ⊂ Ψ for all x ∈ LB (β), we apply
Theorem 2 to conclude that S is forward invariant for the
closed-loop dynamics. In fact, ∂Π(Cu) = ∂R2 = ∅ and, for
each i ∈ [d], γi (x) > 0 for all x ∈ R2\Si, so that Theorem
3 and Remark 4 show that S is asymptotically stable from
LB (β).

Remark 10. For the feasible set K (x) = {u ∈ Rm : A (x)u+
b (x) ≤ 0}, one can compute the so-called width of the feasible
set w∗ : Rn → R (see [10]) using

w∗ (x) = max
(u,w)∈Rm+1

w (16)

s.t. Ai∗ (x)u+ bi (x) + w ≤ 0 ∀i ∈ [d] .

The problem in (16) is always feasible, and if w∗ (x) ≥ 0, then
K (x) ̸= ∅. Computing w∗ (x) at various points in the state
space provides a useful visual approximation of the feasible
set for problems of low dimension. However, in contrast to
the approach in Section V, the computational approach cannot
verify feasibility on the entire safe set, since this would involve
computing w∗ (x) at an uncountable number of points.

Figure 3 shows an approximation of the feasible region
for Example 1, i.e., the set on which Kc (x) is nonempty.
The feasible region was approximated by solving (16) with
the constraints (Γ (x, u) + γ (x) , ψ (u)). The actual value of
the function Γ was used when solving (16) instead of the
polynomial upper bound. As can be seen, the set LB (β)
with β = 1.05 could not be expanded significantly without

Figure 3. The feasible region for Example 1 was approximated by solving (16)
at various points in the state space. A SoS program like Problem 2 certified
that B in (14) is a CBF on the region inside the dotted line representing the
boundary of LB (β) = {x ∈ Rn : B (x) ≤ β}. Note that the problem would
not be feasible if β were increased slightly. The trajectory x is generated by
a controller that modifies an unstable nominal controller subject to the safety
constraints. The nominal controller without safety constraints produced the
trajectory xnom.

including points outside the feasible region, showing that the
SoS program with polynomial upper bounds was not overly
conservative compared to solving (16) with the actual value
of Γ. The feasible region is larger than the area captured by
LB (β) and could be characterized more fully using the level
sets of an alternative function. However, this characterization
would not provide a significant benefit because forward invari-
ance is only guaranteed on level sets of B. Thus, trajectories
starting at other points in the feasible region may flow out of
the feasible region.

In Figure 3, the trajectory produced by the safe controller
remains within the set S although the nominal trajectory lies
outside the set. The safe trajectory deviates from the nominal
trajectory only when approaching the boundary of the set
S. The trajectory is not allowed to approach closely to the
boundary of S because the controller is compensating for the
worst-case value of the unknown parameters. In this way, the
controller is robust to parameter uncertainty. The interested
reader is referred to the adaptive technique in [9], which was
developed to reduce uncertainty through estimation and allow
trajectories to more closely approach the safe set boundary.

VII. CONCLUSION

This paper defined a notion of vector-valued CBF that is
amenable to problems where the mapping of safety-ensuring
control inputs is defined by multiple constraints. Selections of
the safety-ensuring map render the safe set of states forward
(pre-)invariant under mild conditions. Tools for certifying the
continuity and feasibility of optimal selections from the map
were developed.
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APPENDIX

A. Proof of Lemma 2

Proof: If x ∈ C then (x, κ (x)) ∈ Cu, which,
when Assumption 6A) holds, implies that F (x, κ (x)) =
Fcl (x) is nonempty and convex on C. To show that
Fcl is outer semicontinuous, note that Graph (Fcl) ={
(x, y) ∈ C × Rn : y ∈ F (x, κ (x))

}
. Let (x, y) be a limit

point of Graph (Fcl) and let {xn, yn}n∈N be a se-
quence from Graph (Fcl) converging to (x, y). Each el-
ement of the sequence is such that (xn, κ (xn) , yn) ∈
Graph (F ) = {(x, u, y) ∈ Rn × Rm × Rn : y ∈ F (x, u)}.
Since limn→∞ xn = x ∈ C and κ is continuous on C,
limn→∞ κ (xn) = κ (x). Thus, {xn, κ (xn) , yn}n∈N con-
verges, and since Graph (F ) is closed by outer semicontinuity
of F , it converges in Graph (F ). It follows that (x, y) ∈
Graph (Fcl), which shows that Graph (Fcl) is closed and Fcl

is outer semicontinuous. To show local boundedness of Fcl,
fix x ∈ Rn. If x /∈ C, then there exists U (x) such that
Fcl (U (x)) = ∅. Thus, assume that x ∈ C. Since F is
locally bounded, there exists a neighborhood U ⊂ Rn × Rm

of (x, κ (x)) such that F (U) is bounded. Since κ is con-
tinuous on C, there exists a neighborhood U ′ (x) such that
UC × κ (UC) ⊂ U with UC ≜ U ′ (x) ∩ C. Thus, Fcl (UC) =
F (UC , κ (UC)) is bounded and so is Fcl (U

′ (x)) using the
emptiness of Fcl outside C.

Suppose that Assumption 6B) holds, i.e., Cu is closed. Let
x ∈ Rn be a limit point of C = {x ∈ Rn : (x, κ (x)) ∈ Cu}.
Then there is a sequence {xn}n∈N from C converging to x.
Each element of the sequence (since it lies in C) is such that
(xn, κ (xn)) ∈ Cu. Since limn→∞ xn = x ∈ C and κ is
continuous on C, limn→∞ κ (xn) = κ (x). Since Cu is closed,
(x, κ (x)) ∈ Cu, which shows that x ∈ C. Thus, C is closed.

Let F be locally Lipschitz on A ⊂ C×Rm. Let K ⊂ Π(A)
be compact. Since κ is continuous on Π(A), K×κ (K) is also
compact. Thus, for any z1, z2 ∈ K, the fact that F is locally
Lipschitz on A implies that there exists L > 0 for which

F (z1, κ (z1)) ⊂ F (z2, κ (z2))

+ L |(z1, κ (z1))− (z2, κ (z2))|Bn.

Because Fcl (z) = F (z, κ (z)), to show that Fcl is lo-
cally Lipschitz it suffices to show that the scalar quan-
tity L |(z1, κ (z1))− (z2, κ (z2))| can be upper bounded lin-
early in terms of |z1 − z2| on K. Since κ is locally
Lipschitz on Π(A), there exists Lκ > 0 such that
|κ (z1)− κ (z2)| ≤ Lκ |z1 − z2| for every z1, z2 ∈ K.
Thus, for any z1, z2 ∈ K, L |(z1, κ (z1))− (z2, κ (z2))| ≤
L |z1 − z2| + L |κ (z1)− κ (z2)| ≤ L (1 + Lκ) |z1 − z2|,
which completes the proof.

B. Polynomial Replacement of Absolute Value

As seen in Section VI, constraints in controls applications
often take the form A (x)u+b (x), where b : Rn → R contains
some monomial expressions composed with the absolute value
function. It has been demonstrated in [41] that upper bounds of

this form are useful for practical applications involving Euler-
Lagrange dynamics. Assume that b is defined by monomials
with integer exponents as

b (x) =

nc∑
i=1

ci

∣∣∣xαi
1 x

βi

2 · · ·xγi
n

∣∣∣ ,
where ci > 0. For every i ∈ [nc], let Ii ⊂ N denote
the components of x with odd exponents. For example, the
monomial x31x

4
3x5 has index set Ii = {1, 5}. Let E ≜

{(e1, e2, . . . , en) : ei ∈ {−1, 1}} denote the set of vectors
pointing into each orthant of Rn. Note that the cardinality of
E is 2n. For every ek ∈ E, we define the polynomial

Pk (x) ≜
nc∑
i=1

(cixαi
1 x

βi

2 · · ·xγi
n

)
·
∏
j∈Ii

ekj

 .
In each orthant, one of the polynomials Pk (x) is dominant
and corresponds to b (x). From this observation, we obtain
the following proposition.

Proposition 2. For any x ∈ Rn, b (x) = maxk∈[2n] Pk (x).
Thus, for any u ∈ Rm, A (x)u + b (x) ≤ 0 if and only if
A (x)u+ Pk (x) ≤ 0 for every k ∈ [2n].

The proposition shows that all of the 2n polynomial con-
straints A (x)u + Pk (x) ≤ 0 can be used to replace the
constraint A (x)u + b (x) ≤ 0 in a SOS program. As an
example, consider the polynomial b (x) = |x1x2|+

∣∣x32∣∣. The
set E is E = {(1, 1) , (−1, 1) , (−1,−1) , (1,−1)} and the
index sets for the monomials are I1 = {1, 2} and I2 = {2}.
Then the polynomial replacements are P1 (x) = x1x2 + x32,
P2 (x) = −x1x2 + x32, P3 (x) = x1x2 − x32, and P4 (x) =
−x1x2 − x32.
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