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Summary. We begin with memories of Ivan Kupka. In the body of the paper we use Morse theory to
construct a hybrid feedback law that robustly and globally asymptotically stabilizes the system to any
desired point of any compact connected manifold. The method is a straightforward generalization of an
example of performing this trick on the circle, found in a textbook by the second author. The logic variable
part of “hybrid” is a single bit indicating whether or not to switch, with hysteresis, between two smooth
vector fields on the manifold. One vector field is minus the gradient of a Morse function, to be constructed,
whose global minimum is the desired point. The other vector field represents a steady breeze blowing by
all the unstable equilibria of the gradient flow and pointing roughly parallel to their unstable manifolds. In
order to motivate the use of hybrid control, we discuss how one might formulate the ideas of robustness,
measurement, and measurement error to feedback systems on manifolds.

6.1 Ivan Kupka

6.1.1 Montgomery

Ivan Kupka and I became friends through mathematics. He remained close to my heart ever after
our initial meetings.

We met through subRiemannian geometry and its interactions with control theory. Mike Enos3,
Ivan Kupka had been at a conference together. I had recently uncovered the phenomenon of topo-
logically stable strictly abnormal geodesics in rank 2 subRiemannian geometries (see [14]). Enos
explained my basic example to Ivan in the back row during a boring talk.

Ivan became intrigued and wrote several papers around the phenomenon and a survey of sub-
Riemannian geometry. See [2], [11], and [1].

As a result of that introduction, Ivan and I had several visits. I particularly remember walking
through Île Saint-Louis with Ivan in a downpour in early Spring. We ducked under the eaves of a
cafe. He was grumpy about the prices and poshness of the island. He told me about growing up
there when the central streets of the island were a slum. He grew up poor. I began to get a deep
appreciation for the French education system whose notion of equality allowed a slum kid like Ivan
to rise to the top. Later, Ivan took me on a tour of Versailles, not far from his home outside of Paris
and afterwards we had a simple delicious dinner at his house with his wife.

3 Enos was a retired gymnast who had switched into mathematical control theory, wanting to do “falling
cat” type optimal control problems with the dream of designing new gymnastic moves.
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As a young man, I had dropped out of society and lived in a tree house and made a living on
rivers teaching people to kayak. Ivan had joined some version of the French merchant marine (the
legends are various) and somehow ended up in Brazil where he reconnected with mathematics, and
got his PhD under Peixoto. I felt like we were some type of alter egos - alternative selves. I loved his
mathematical taste. He engaged in all areas of mathematics. I did not always understand him. His
love and skill in genericity arguments and singularity theory as exemplified by the Kupka-Smale
theorem (see [16] and references therein) combined in wonderful surprising ways with his deep
appreciation and skill in hard down-to-earth explicit computations involving special functions. He
had a particular love of elliptic functions which shined through in his work with Bonnard et al. I
feel blessed for our friendship and the time we had together.

6.1.2 Sanfelice

I never met Ivan Kupka in person, however, I gained a deep appreciation for his work on observers,
also known a state estimators, for the purpose of reconstructing the full state of a dynamical system
from measurements of a (likely nonlinear and noninvertible) function on state space. I became aware
of this work during my short stint at the Ecole de Mines de Paris in Fall 2008, working with Laurent
Praly on high gain observers using adaptive gains.

Laurent introduced me to Ivan’s book on observers coauthored with J-P. Gauthier [7]. This book
presents, in a deep and concise manner, a general theory for analysis and design of observers. It
gives a much detailed presentation of their general approach then their seminal 1994 SIAM Journal
on Control and Optimization article “Observability and observers for nonlinear systems,” which,
currently, has more than 600 citations.

Being shortly after I finished my PhD (in 2007), I was really thirsty for knowledge on state
estimation, as my PhD focused mostly on control theory for the solution of state feedback problems.
Infused with Laurent’s courage (and great espresso), I carefully read the formulation, results, and
proofs in Ivan’s book. His work is mathematically deep and rigorous, arguably, among the most
impactful ones on the topic. The generality of the mathematical development is also unique – a
particular feature of it is that, unlike much of the work in the literature, his results do not assume
that (maximal) solutions exist for all time. Many of our recent articles on observers for dynamical
systems propose solutions that are inspired from the constructions in his book. It is evident that
his work has made a long lasting impact on the field.
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6.2 Introduction and Setup

Many control problems are difficult to solve due to topological obstructions intrinsic to the system
being controlled. Such obstructions emerge in most autonomous vehicles problems. We focus here
on the problem of stabilizing a system on a manifold to a single fixed point using feedback. If the
point is stable for a vector field then its basin of attraction is contractible. The flow itself yields
the contraction to the the stable equilibrium point! But compact boundaryless manifolds are not
contractible. It follows that finding a global Lipshitz feedback law for a smooth system on such
a manifold is impossible. See [3] and [12] for more concerning topological obstructions to Lipshitz
feedback stabilization.

q = 1

q = 0

jump
flow

jump

Fig. 6.1: Turning a gradient flow on the circle into a hybrid system with a single global attractor.
The main trick is that the flow set for q = 1, the subset of the circle where you see the arrows,
contains the jump set for q = 0.

Consider the problem of achieving robust global asymptotic stability of a desired point for the
attitude of a planar rigid body. The goal is to render the desired point stable – trajectories starting
nearby the point stay nearby – and globally attractive – every trajectory limits to the desired point
as time approaches positive infinity – and, perhaps most importantly, to achieve these goals with
robustness to perturbations such as noise in the measurements telling us our current attitude. The
state space of the planar rigid body is the group SO(2) of rotations of the plane, a group which is
diffeomorphic to the circle §1 in the standard way:

R(θ) =

Å
cos(θ) − sin(θ)
sin(θ) cos(θ)

ã
∈ SO(2)

being parameterized by the single angle θ. The circle is not contractible so we cannot design a smooth
feedback system driving us to our goal, the identity, which corresponds to θ = 0. Nevertheless, let
us try. Introduce the control system

θ̇ = u. (6.1)
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The feedback law
u = − sin(θ)

yields the negative gradient flow θ̇ = − sin(θ) for the function ϕ(θ) = − cos(θ). It has the origin
θ = 0 as stable equilibrium. The basin of attraction of θ = 0 is all of the circle minus the single
point θ = π antipodal to θ = 0. The point θ = π is an unstable equilibrium so our feedback law
leaves it fixed where it is. We have not achieved global asymptotic stability. Almost - we missed
by a hair: one point, θ = π just sits there forever, all the others limit to θ = 0. We have failed to
achieve global asymptotic stability of θ = 0, in line with the basic fact from topology that the circle
is not contractible. See also [4].

We can regain global asymptotic stability by using a discontinuous feedback control law. Any
feedback law which interpolates in a convex manner between u = −sgn(π − θ) near θ = π and u =
− sin(θ) near θ = 0 will do the trick. (Here sgn(x) is the sign function, so that sgn(x) = +1, x > 0
and sgn(x) = −1, x ≤ 0.)

However, introducing this discontinuity to our feedback law destroys robustness to measurement
error. Suppose that m represents measurement error in the angle θ. Near θ = π, the actual recieved
feedack by the system would then be u = −sgn(π−θ+m). An arbitrarily small oscillatory measure-
ment noise m can render the previously unstable equilbrium point θ = π into a stable equilibrium!
4

The notion of robustness and measurement error are central to this paper. Hermes, in [9] brought
the importance of measurement error its potentially devastating effects when feedback laws are
discontinuous, and its beautiful connections to the Fillipov lemma to the attention of the control
community. In Section 6.3.3 below we touch on his paper and define robustness to measurement
noise so as to make sense on manifolds.

We can achieve global robust asymptotic stability by moving into the world of hybrid systems
where we mix analog and digital. See [5] and [17]. Introduce a logic variable, or simply, a single bit
q ∈ {0, 1} which we carry around with us and monitor as we travel about the circle. The bit acts
as a state-dependent switch to between two vector fields, say5 −dθ for q = 1 and − sin(θ)dθ for
q = 0, switching depending both on where we are on the circle and what the current state of the
bit is. See figure 6.1. This is a basic example in the subject of hybrid feedback controllers. See p.
21, Section 1.2.1 of [17]

The point of this note is to show how we can use Morse theory to generalize the circle example
so as to work on any compact manifold M . We “hybridize” M in the same way as we did the
circle, by introducing a single bit q ∈ {0, 1}. The hybrid feedback law allows us to carry on with
two interpenetrating vector fields which we can switch between depending on where we are and the
value of our bit and in this way achieve a global robust asymptotic feedback stablizer on M . See
theorem 9.27 at the end of the next-to-last section of this article.

6.2.1 Setup, Goal, and Strategy

Let M be a compact connected manifold and m0 ∈M be our target. Our goal is to design a control
system having a robust global feedback law with m0 as its global attractor. As described above, for

4 The basic phenomenon of stabilizing an unstable fixed point by imposing small amplitude high frequency
oscillations earned Paul the Nobel prize in 1989 for the Paul Trap. See [10]. R. M. is grateful to Mark
Levi for pointing out this connection.

5 We use the standard notation of differential topology. The vector field f(θ)dθ implements the differential
equation θ̇ = f(θ).
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topological reasons this is impossible within the standard framework of smooth feedback systems
on M . We can however, using a bit of Morse theory, make m0 into an “almost global attractor” for
the gradient vector field of a function ϕ to be designed below:

ż = −∇ϕ(z) z ∈M. (6.2)

When we say “almost global attractor” we mean that the basin of attraction for m0 is an open
dense subset of M .

We take ϕ :M → R to be a Morse function whose only local minimum is m0. Consequently m0

is the global minimizer of ϕ. 6 The hybrid strategy, following the circle example, is to understand
where and how the gradient flow gets hung up and misses limiting to m0. We then use another
vector field Y – called a “breeze” below– to nudge the system away from these bad sticking points.
The sticking points are exactly the other critical points of ϕ. Finally, we use the idea of hybrid
feedback to switch back and forth between these two vector fields at judicious locations of the
manifold with the help of an auxiliary bit q ∈ {0, 1} which allows the introduction of memory in
the feedback control algorithm.

6.2.2 Morse theory

We recall the relevant definitions and basic properties around Morse functions. A critical point of a
smooth function ϕ :M → R is a point p where the differential dϕ(p) =

∑
dϕxi|pdxi of the function

ϕ vanishes. Here, the xi, i = 1, . . . , n, are coordinates near p and n is the dimension of M . At a
critical point p, we can form the Hessian of ϕ:

Hess(ϕ) =
∑ ∂2ϕ

∂xi∂xj
dxidxj

which is understood as a bilinear symmetric form on the tangent space. The Hessian is independent
of coordinates, but, unlike the Euclidean space setting, the Hessian is undefined if p is not a critical
point. (The associated quadratic form obtained by using the formula at a non-critical point is
coordinate dependent, its value changing as we change coordinates.)

Definition 1. A critical point p of a function ϕ is called non-degenerate if the Hessian of ϕ is
non-degenerate (i.e. the matrix of the Hessian is invertible) at p.

Definition 2. A smooth function is called a Morse function if all its critical points are non-
degenerate.

Lemma 1 (Morse lemma). If p is a non-degenerate critical point of the smooth function ϕ on
the n-dimensional manifold M then there exists a smooth coordinate system x1, . . . , xc, y1, . . . yk on
M centered at p such that, in these coordinates,

ϕ(x1, . . . xc, y1, . . . , yk) = ϕ(p) +

c∑
a=1

x2a −
k∑
b=1

y2b . (6.3)

Here k + c = n and k is the index of the critical point p.

6 In order to define the gradient we need an auxiliary Riemannian metric on M . In tensor notation
−∇ϕ(z) =

∑
gij(z)dϕxidxj where the metric is

∑
gij(z)dx

idxj .
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We have employed two standard definitions:

Definition 3. A coordinate system 7 x :M 99K Rn is centered at p if x(p) = 0.

Definition 4. The index k of a nondegenerate critical point p for ϕ is the index of its Hessian:
the largest possible dimension of a subspace S ⊂ TpM such that the restriction of Hess(ϕ)p to S is
negative definite.

Lemma 2 (Sard-Morse). Every manifold admits Morse functions. Moreover, the space of Morse
functions is open and dense within the space of all smooth functions onM endowed with the Whitney
C2-topology

We refer the reader to Guillemin-Pollack [8], or Milnor [15] for proofs of the Morse lemma and
the Sard-Morse theorem.

We need a special case of the “handle slide procedure” in order to guarantee only one local
minimum for ϕ.

Proposition 1. If ϕ0 is a Morse function on the connected manifold M having m0 ∈M as a local
minimum, then we can deform ϕ0 into another Morse function ϕ1 which has m0 as its only local
minimum and is such that the critical values ci of ϕ1 are all distinct.

This deformation is a homotopy, i.e., a path ϕt, 0 ≤ t ≤ 1 of smooth functions all of which have
m0 as a local minimum. Except for a finite number of times t, each ϕt is Morse. The critical points
of all the ϕt can be taken to be isolated. For a proof see [18, p. 143, Proposition 5.4.1] and the
discussion in the paragraph preceding this proposition.

6.2.3 Hang Ups

For the same reasons that the gradient descent method works in Euclidean space, ϕ decreases
strictly monotonically along any non-equilibrium trajectory to the gradient flow (6.2). It follows
that almost all trajectories converge to m0, it being the only minimum of ϕ. Some trajectories will
get hung up on saddle points, that is to say, limit to an unstable equilibrium of the gradient flow.
The equilibria of our gradient flow are exactly the critical points of ϕ. All trajectories which are
not equilibria converge to one of these critical points.

By the Morse lemma the critical points are isolated, and hence finite in number. We write
N + 1 for this number, with m0 counted amongst the critical points. Consequently, there are N
critical points, which are saddles or local maxima. We write the non-minimal critical points as
pi, i = 1, . . . , N , and their critical values as ci = ϕ(pi).

Recall that the stable manifold of an equilibrium point pi is the set of initial conditions z for
which the trajectory of (6.2) through z converges to pi in the limit as time approaches infinity. We
denote this manifold by W+(pi). It is a smooth embedded 8 manifold passing through pi and whose
dimension is the co-index c = n− k of the critical point pi.

7 The broken arrow notation here is used to simply denote that the domain of x is an open subset of M
and not all of M .

8 Stable manifolds for general smooth vector fields are immersed, not embedded submanifolds. To wit:
heteroclinic tangles and Hamiltonian chaos. However the stable manifolds of gradient flows are embedded
submanifolds. See for example Corollary 7.4.1 in [Jost, Riemannian geometry and geometric analysis].
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By assumption, the only critical point of index 0 is our target point m0. See Proposition 1. Take
the union of all the stable manifolds except for m0’s: That is, consider

Ω =

N⋃
i=1

W+(pi).

We have that W+(m0) =M \Ω: the basin of attraction of m0 equals the complement of Ω. Away
from Ω all trajectories of the gradient flow in (6.2) converge to m0. Note that Ω has measure zero
inM , being the finite union of submanifolds all of which have codimension at least 1. Consequently,
the basin of attraction for m0 is an open dense set of full measure – a non-linear counterpart of the
complement of a finite collection of proper linear subspaces in a Euclidean space.

6.2.4 A Steady Breeze

One strategy for finding a hybrid feedback stabilizer to bring all points to m0 would be to find a
nonzero vector field Y transverse to each stratum W+(pi) of Ω. Think of Y as a “strong wind,
blowing past Ω.” When we get close to Ω turn off the gradient flow and “let this wind blow.” The
flow of Y , being transverse to Ω, will push us back into the basin of attraction of m0.

Finding such a Y is hard. It requires global knowledge of the stable manifolds W+(pi) of our
unstable critical points. We can make due instead with the local knowledge provided by the Morse
lemma and, in essence, construct a collection of local winds or “breezes” Yi , one for each unstable
critical point pi. The flow of Yi will push all points sufficiently near pi into a region collecting points
p′ such that ϕ(p′) < ϕ(pi) − K, where K > 0 is a constant. Once in this region we revert to the
gradient vector field whose flow decreases ϕ, pushing points way from pi and further decreasing
ϕ either all the way down to its global minimum at m0 or, with bad luck, near another unstable
critical point pj , one with ϕ(pj) < ϕ(pi). Once near to this pj , we can repeat the process, invoking
the local breeze Yj . Cycles between neighborhoods of different critical points cannot occur since we
will insist that these neighborhoods do not intersect and between them ϕ strictly decreases since
we use the gradient flow.

Consider a vector field Y :M → TM satisfying the property that

Hess(ϕ)pi(Y (pi), Y (pi)) = −2 (6.4)

The existence of such a Y is straightforward. Since the Hessian has negative directions y1, . . . , yk
at each pi finding a vector vi ∈ TpiM with Hess(ϕ)pi(vi, vi) = −2 is easily done. Indeed, vi = dy1
works, where (x, y) are Morse coordinates. Now all smooth manifolds M share a number of basic
extension properties, one which is as follows. Given a vector v ∈ TpM at a point p, we can always
find a vector field Y :M → TM with Y (p) = v. This extension property holds for any finite number
v1, . . . , vN of vectors attached at distinct points of M . Consequently we have the existence of our
Y .

Lemma 3 (steady breeze lemma). [See Figure 6.2.] Associated to our vector field Y there are
neighborhoods Vi of each non-minimal critical point pi of our Morse function ϕ, and positive con-
stants k1, k2 with the following property. Any trajectory for Y crossing into or starting in Vi leaves
Vi within a time k1, exiting at a point p of ∂Vi with ϕ(p) < ϕ(pi)− k2.



142 Richard Montgomery and Ricardo Sanfelice

φ = ci + ε2

φ = ci − ε2

φ = ci

φ = ci + ε2
φ = ci

−∇φ

−∇φ

pi

Fig. 6.2: The level sets of the Morse function ϕ near the critical point pi are dashed. The vector
field ∇ϕ for gradient flow is indicated by its solid trajectories. The vector field Y for the breeze
that blows past pi is indicated by the short solid (brown) horizontal arrows.

Proof.
To begin with, take Y to be the constant vector fields dy1 in the coordinates of the Morse

Lemma, (Lemma 1 above). The flow Ψt of Y in our Morse coordinates is the translational flow
(x, y) 7→ (x, y + te1) = Ψt(x, y), where e1 denotes the vector in Rk (of Rn = Rc × Rk) whose only
1 corresponds to the choice of index a = 1, i.e., e1 is the coordinate representation of dy1. Rewrite
the Morse normal form as

ϕ(x, y)− ci = |x|2 − |y|2, where ϕ(pi) = ci

where the norms are the standard coordinate norms on the corresponding x and y coordinate spaces.
Then

ϕ(Ψt(x, y))− ci = (ϕ(x, y)− ci)− 2ty1 − t2.
View this as a quadratic expression in t. Imposing the conditions that |x|2 + |y|2 and hence y1 are
very small, the constant term (ϕ(x, y) − ci) and the coefficient of the linear term −2ty1 can be
made arbitrarily small, so that the quadratic term eventually beats them. We view the conditions
on |x|2 + |y|2 and y1 as initial conditions for solving for the flow of Y . For Vi we can take a flow
box of the form |y1| < A, |x|2 +∑a>1 y

2
a < δ. The lemma follows immediately for this case.

There are at least two routes in to the general case. For one of these routes, use the symmetry
group SO(n − k, k) of the quadratic form |x|2 − |y|2 to “rotate” coordinates so that Y (pi) = dy1.
Then, argue that Y (p) does not deviate far from Y (pi) as long as we stay in a small enough
neighborhood of pi. For the other route, use the 2nd order Taylor series with error estimates for
the trajectory γ∗(t) of Y passing through pi to get that ϕ(γ∗(t)) < ci− 3

4 t
2 for all sufficiently small

t, and then argue by uniform convergence of the flow Ψt(p) of Y that the “far side” of the Taylor
estimates, k2/2 < t < k2, hold for k2 small and p close to pi. We leave the details up to the reader.

QED
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Remark. There are points p′ arbitrarily close to pi for which ϕ(p
′) > ci. Since Ψ0(p

′) = p′ the
inequality ϕ(Ψt(p

′)) − ci < − 1
2 t

2 must fail for t in an interval about 0 for these p′. For such p′ we
need to flow a non-zero amount of time before ϕ− ci begins to become negative and then for a bit
longer until our inequality holds.

φ− ci > 0
φ− ci = 0

φ− ci = −k2

y = 0

the gust of wind Y

Fig. 6.3: A flowtube for the breeze flow of Y and its relation to the level sets of ϕ.

6.2.5 Topology

Morse theory relates critical points and their indices to the topology of the manifold. A basic topo-
logical invariant of a manifold is its “Betti numbers” bk = bk(M), k = 0, 1, . . ., which are popularly
described as the “number of k-dimensional holes” in M . We have bj = 0, j > n. Stated more care-
fully, for each choice of field F there are integers bk(M,F ) that are equal to dimFHk(M,F ), where
Hk(M,F ) is the k-th homology group of M with coefficients in the field F . The Betti number we
are talking about is the maximum over all fields of the bk(M,F ).

Write mk for the number of index k critical points of our Morse function ϕ. Then

mk ≥ bk.

In particular

N + 1 ≥
∑

bk.
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since
∑
mk = N + 1 where N + 1 is the number of critical points m0, p1, . . . , pN .

Example 1. Take M = SO(3). It is well-known that SO(3) = RP3. Its Betti numbers are b0 =
b1 = b2 = b3 = 1. If we work over the field F of rational or real numbers we will find that
b1(M,F ) = b2(M,F ) = 0. However, over the field F = Z2 of two elements we have that b1(M,Z2) =
b2(M,Z2) = 1. For all fields b0(M,F ) = b3(M,F ) = 1. From the Morse inequalities it follows that
any Morse function on SO(3) has at least 4 critical points.

6.3 Errors, Robustness, Hybridization

In this section, we propose a simple way to switch between Y and −∇ϕ so as to arrive to a feedback
law that globally asymptotically stabilizes m0. Then, we shoot down this law on grounds of
robustness. Measurement errors can make discontinuous feedback laws induce undesired behavior,
for example, it can “stabilize” the system to one of the unstable fixed points pi of the gradient
flow. Through the study of robustness (or lack of) to measurement noise of such a feedback law, a
hybrid control feedback law is discovered. The intuition is that if we carry a bit q ∈ {0, 1} in our
pocket (it does not have to be a qubit!) as we travel around M , taking measurements of ϕ and
∥∇ϕ∥ as we travel, and switching bits appropriately, we can build a robustly globally stabilizing
hybrid feedback law.

6.3.1 A Discontinuous Stabilizer

Let us return to the circle example in Section 6.2. Modify our feedback law near θ = π using a
discontinuous control law having a discontinuity at θ = π. One way to achieve this is to add to
u = sin(θ) any function of the form g(θ) := β(θ)sgn(θ − π), where sgn(x) is the sign function
sgn(x) = −1 if x < 0, sgn(x) = +1 if x > 0, and where β(θ) is a bump function supported in
a small neighborhood of θ = π and such that β(π) = 1. Choose either −1 or +1 for the value
of β(θ)sgn(π − θ) at θ = π. Thus, we are investigating the flow of the discontinuous vector field
θ̇ = sin(θ) + g(θ). Declare a solution to be an absolutely continuous curve t 7→ θ(t) that satisfies
θ̇ = g(θ) almost everywhere. Then, for every initial condition θ0 ∈M passes a unique solution and
this solution converges to m0, which we recall is the point θ = 0.

We can copy this example onto our manifold. Recall the neighborhoods Vi of the steady breeze
lemma (Lemma 3). They can be taken to be balls or tubes with smooth boundaries, and so that
−∇ϕ and Y are transverse to ∂Vi at all but a finite number of points. Set

V =

N⋃
i=1

Vi (6.5)

Define the discontinuous vector field

F (z) :=

®
−∇ϕ(z) if z /∈ V
Y (z) if z ∈ V

Under this discontinuous vector field, every (maximally defined) trajectory of ż = F (z) converges
to m0.
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6.3.2 ...Gets Ruined in the Presence of Measurement Noise

Hermes [9] made a basic observation linking noise and uncertainty to the Fillipov lemma. As a
consequence we can establish (or design) arbitrarily small noise or measurement uncertainties,
applied near the discontionuities, which stabilize the system there!

Imagine we are working in a single Morse chart and that Y is straightened out so as to be the
constant vector field e1 = dy1. Suppose that we are near the discontinuity of F at ∂V as defined
above. Rewrite our system as a control system

ż = −u∇ϕ(z) + (1− u)Y (z) (6.6)

where u is only allowed to be 0 or 1. We have been choosing the possibility of 0 or 1 depending on
whether or not we are in V or outside of V . We suppose that the measurements of z are not exact,
namely, we do not know the value of z with infinite precision. Imagine, for example, imposing one
possibility or another depending on some very noisy and highly oscillatory imprecision as to where
the boundary of Vi lies.

Now recall the Fillipov lemma. 9 The lemma asserts that the accessible set for a control system
with only binary off-on (“bang-bang”) controls as above, agrees with the accessible set for the convex
hull of the two vector fields. In particular, at points z∗ where Y and ∇ϕ are linearly dependent and
pointing in the same direction, we can choose a system of controls which turns this z∗ into a fixed
point. Now model this control with uncertainty on the measurements of z. A bit more work turns
the new fixed point z∗ into a stable fixed point under the effect of such uncertainty.

Are there really points z∗ so that we can write 0 = −u∇ϕ(z∗) + (1 − u)Y (z∗) for some u,
0 ≤ u ≤ 1? The degree of −∇ϕ at pi is (−1)ki and, in particular, is nonzero. It follows that
∇ϕ/∥∇ϕ∥ sweeps out all possible points e ∈ §n−1 of the unit sphere as z varies over a small sphere
surrounding pi. By elementary topology (∂Vi is homologous to the boundary of this small sphere)
the same is true as z varies over ∂Vi. In particular, there will be points z ∈ ∂Vi where Y = e1 and
∇ϕ point in the same direction 10 and we can then use u to scale accordingly. We have our u and
our point z∗.

We have indicated how arbitrarily small uncertainty, such as measurement noise, can render
our previously unstable fixed point pi for the gradient flow into a stable fixed point if we try to
implement our above discontinuous alteration of gradient flow. This is not a good solution if we
want to achieve our goal.

6.3.3 Robustness and Measurement

Measurements come with uncertainties. So do control forces or torques. The environment in which
our controlled object moves has noise, wind, uneven terrain, etc. And our physical analog model of
our system, the way we encode it as an ODE, will be imprecise. It turns out that measurement noise
can wreak havoc with discontinuous vector fields, rendering previously unstable locations stable and
inadvertently hanging us up indefinitely near one of the unstable equilibria pi. The goal of robust

9 We do not mean to trivialize the result or Hermes discussion of it. There is a deep and non-trivial
discussion of what is meant by a “Fillipov solution” and the consequent measure theory around it in [9]
and in the subsequent literature.

10 If, as in the figure, our ∂Vi has corners, use the usual subdifferential style tangent space at the corners
a la Clarke and this argument still works.
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control is to guarantee that we arrive within a pre-specified window of our desired goal m0 in the
presence of appropriately bounded uncertainty.

Suppose our state space is a real vector space, say Rn, and on it we have an expected or
“nominal” 11 vector field z 7→ F (z). We imagine this vector field arriving to us after implementing
some feedback control loop. So we expect that the system evolves according to

ż = F (z) z ∈ Rd. (6.7)

Measurement uncertainty corresponds to not knowing exactly where we are. So replace the state
variable z at which we evaluate the vector field F by z+ ηm(z, t) where (z, t) 7→ ηm(z, t) represents
measurement noise. We allow ηm to depend on time since measurement noise could be time depen-
dent. We want to compare the end results of our nominal ODE in (6.7) with that of its “nearby
cousins”

ż = F (z + ηm(z, t)). (6.8)

Suppose that the nominal system has the origin as a global attractor. Do the cousins continue to
have the origin as global attractor? This is too much to hope for, since it would require that the
noise vanish at the origin.

Definition 5 (Robustness to measurement error). Suppose the nominal vector field (6.7) –
imagined to arise from a feedback stabilization control scheme – has the origin as a global attractor.
Then, we say this control scheme (or its vector field) is “robust” to measurement errors if, given
any δ > 0 sufficiently small we can find ϵ > 0 such that all trajectories to all the noisy cousins (6.8)
to the nominal control with ∥ηm∥ < ϵ converge to a δ-ball of the origin as time tends to infinity.

Remark 1. Of course the norm used to measure ∥ηm∥ will matter! We use the sup norm.

Measurement Noise on Manifolds

We are in a decidedly vector space setting in this formulation of robustness since we cannot add
points on manifolds! If F :M → TM is a vector field on a manifold the expression F (z + ηm(z, t))
does not make sense! We cannot add points on a manifold. Even if we could, F (z + η) would be
a vector in the tangent space to M at z + η, not to the tangent space of M at z, so it would not
represent a vector field. Rather than follow these lines to try to make sense of measurement noise
and robustness on a manifold, we return to the control theory drawing board and look into where
F comes from. Notably, we introduce the control-theoretic idea of a “measurement” in addition to
“control” and “feedback” Rewrite our original system in the traditional form

ż = f(z, u) z ∈M,u ∈ Rm

where the controls u take values in a convex subset of Rm. Naturally,

f :M × Rm → TM

with

11 Dictionaries give multiple definitions of “nominal.” Here, by “nominal” we mean that the system is
operating without perturbations, namely, the system under study has state z that is precisely governed
by (6.7).
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f(z, u) ∈ TzM ∀z ∈M
uniformly on u. See also Brockett [6] who takes the u’s to vary within an auxiliary vector bundle
over M . We want to implement a feedback law u = κ(z) in a way which allows the modeling of
measurement noise. To do this we introduce the intermediary of a measurement.

Definition 6. A measurement on M is a vector valued map

h :M → Rℓ, z 7→ y = h(z)

meant to model the sampling and recording of partial information regarding the state z ∈M .

We insist that our feedback laws depend only on what we measure, that is,

u = κ(h(z)),

where, now
κ : Rℓ → Rm

represents our feedback law. Since h takes values in a vector space, we can simply add time-
dependent measurement uncertainty ηm :M × R→ Rℓ to our measurements by

h 7→ h+ ηm; ηm :M × R→ Rℓ

thus replacing the feedback law z 7→ κ(h(z)) by its nearby noisy cousins given by

κ(h(z) + ηm(z, t)).

We have set things up now so that we can define “robustness to measurement error” in essentially
a way identical to our earlier definition. We merely replace the feedback law in F (z, κ(h(z))) by its
perturbation F (z, κ(h(z) + ηm(z, t)).

Remark 2. Modeling environmental noise, control noise, and uncertainty in the model are all
straightforward on a manifold. They correspond to the perturbations F (z, u) + ηenv, F (z, u) →
F (z, u+ δu), and F (z, u)→ F (z, u) + (δF )(z, u), respectively.

We can summarize what we have done using a commutative diagram where the dotted arrow of
“feedback” closes the loop. In the case of our example of stabilizing to m0 ∈ M , we will see next
that we need two feedback control laws and two measurements, so k = ℓ = 2.

M

measurement

  
R2

control

>>

feedback
oo R2
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6.3.4 Our New Setup

To put our “gradient flow / breeze system” into this framework introduce two controls u1, u2 so as
to encode our system as the control system:

ż = −u1∇ϕ(z) + u2Y (z). (6.9)

If u1 = 1 and u2 = 0 we have pure gradient flow. If u1 = 0 and u2 = 1 we have pure steady breeze.
Introduce measurements y :M → R2 where y = (y1, y2) is the function

y1 = ∥∇ϕ(z)∥, y2 = ϕ(z) (6.10)

We will be continuously monitoring y1. Whenever y1 is sufficiently small, we are in a Morse neigh-
borhood Ui of one of the pi or perhaps of m0. We can decide which point pi or m0 z is closest to
(and closed to which neighborhood Ui), by measuring y2 and comparing it to the possible (known)
critical values of ϕ.

Preparing the Morse Function for Hybridization

Recall that our goal point m0 is the globaly minimum of ϕ and its only local minimum. Translating
ϕ 7→ ϕ − ϕ(m0) insures that ϕ(m0) = 0 so that ϕ(z) > 0 for each z ̸= m0. We have also assumed
(by a wiggling of ϕ) that the critical values ϕ(pi) of ϕ are all distinct. (See Proposition 1 above.)
Scaling ϕ by a (possibly large) scalar K > 0, we can separate the critical values so they are all at
least a unit apart

pi ̸= pi =⇒ ϕ(pi)− ϕ(pj) ≥ 1

and
ϕ(pi) ≥ 1.

This scaling of ϕ can be used to ensure that the rescaled ϕ also enjoys the property that {z :
∥∇ϕ(z)∥ < 1} consists of N+1 topological (open) balls W1,W2, . . . ,WN , one for each critical point
pi, and one, say W0 for m0, and that each of these balls is contained in a Morse neighborhood Ui
of the critical point. This scaling and translating of ϕ does not change the location of the critical
points pi or their index.

Note that scaling ϕ by K rescales both the Morse coordinates y, x and the breeze Y by 1/
√
K.

For each i = 1, . . . , N , we may take the breeze neighborhoods Vi on which the flow of Y is well
controlled and brings us to ϕ < ci − k2 so that Vi ⊂ Wi. Note that the intersections of Wi with
{z : ∥∇ϕ(z)∥ < r} form a family of nested balls converging to pi as r → 0. Now choose k3 small
enough so that

Bi := {z : ∥∇ϕ(z)∥ < k3} ∩Wi ⊂ Vi.
and that the boundary of Bi and of Vi are disjoint. See Figure 6.4. Since ∥∇ϕ∥ acts as a measure
of distance from pi, we have that k(i) > k3 for each i, where

k(i) = min
p∈∂Vi

∥∇ϕ(p)∥.

Set
kV = min

i
k(i).

Our “margin of robustness” – the measurement tolerance we need to guarantee for y1 := ∥∇ϕ∥ to
ensure that our control scheme will stabilize z to m0 – is some fraction of the minimum of kV − k3
and k3. With such a measurement area we can be sure to distinguish between being inside Bi and
leaving Vi,
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q = 1

φ = ci − k2

q = 0

flow

jump

jump

jump

−∇φ

−∇φ

pi

pi

flow

Y

Y

φ = ci − k2

a)

b)

Fig. 6.4: The disc Bi centered about the unstable equilibrium pi of the gradient flow forms a
connected component of the jump set for q = 0. The set Bi is contained in the parabolic Vi which
is a component of the flow set for q = 1, whose flow is that of Y . The complement of the union of
the Vi forms the jump set for q = 1. The exterior of the union of the Bi is the flow set for q = 0 for
the gradient flow. The q = 1 flow lines in Vi terminate when ϕ ≤ ci − k2. Sample jumps from q = 0
to q = 1, and vice versa, are marked with dashed arrows.

6.3.5 Hybridizing

Let us introduce the discrete variable
q ∈ {0, 1}

which will toggled on or off to define a hybrid feedback control law depending on the measurements.
The role of q is select whether −∇ϕ or Y should update z during flows when the state is in the
so-called flow set, which we denote by C. The toggles of q occur when the state is in the so-called
jump set, which we denote as D. Specifically, we define the state of the closed-loop system with the
hybrid feedback controller as (z, q), whose goal is to globally and robustly asymptotically stabilize
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M × {0}.

The flow set C is defined as the union of the sets C0×{0} and C1×{1}, and the jump set D as the
union of the sets D0 × {0} and D1 × {1}, where the sets C0, C1, D0, and D1 are defined next. Set

D0 :=

N⋃
i=1

Bi, C1 :=

N⋃
i=1

Vi,

the index of the disjoint union running from 1 to N , the labels of the nonminimal critical points
pi. Since Bi ⊂ Vi, we have that D0 ⊂ C1 – in fact, C1 contains a neighborhood of D0. Use these
sets to define two partitions of M , namely

C0 :=M \D0, D1 :=M \ C1.

To properly selects the among the two feedback laws, we define the jump map as the map that
keeps z constant and toggles q from 0 to 1 or from 1 to 0 when the state z is in the jump set. More
precisely, we denote the jump map as

G :M × {0, 1} →M × {0, 1}

and define it as
G(z, 1) := (z, 0), G(z, 0) := (z, 1).

The state z is updated continuously according to the flow map obtained from (9.31), which is

F (z, u) := (−u1∇ϕ(z) + u2Y (z), 0)

where u = (u1, u2) and, conveniently, we apply the feedback law

κ(z, 0) := (1, 0), κ(z, 1) := (0, 1).

Then, during flow – that is, when (z, q) ∈ C, the state (z, q) is governed by

(ż, q̇) = F (z, q) = (−κ(z, q)∇ϕ(z) + κ(z, q)Y (z), 0)

while at jumps, which occur when (z, q) ∈ D, the state (z, q) is updated by

(z+, q+) = G(z, q) = (z, 1− q)

The flow and jump dynamics described above lead to the hybrid closed-loop system given as

H :

ß
(ż, q̇) = F (z, q) (z, q) ∈ C

(z+, q+) = G(z, q) (z, q) ∈ D (6.11)

Our hybrid stabilization scheme operates as follows:

� If q = 0 and z ∈ C0, z flows according to the first component of F (z, 0), namely, −∇ϕ(z).
As we do so, the controller measures y1 = ∥∇ϕ(z)∥ and y2 = ϕ. If y1 ever crosses below the
threshold value k3 while y2 = ϕ is greater than c1, the smallest nonzero critical value of ϕ, then
z entered D0 =

⋃
iBi. If z ∈ D0, then the jump map is applied to reset q to 1 – note that z

remains at the same point in Bi. Since Bi ⊂ Vi, z can flow with q = 1.
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� If q = 1 and z ∈ C1, z flows according to the first component of F (z, 1), namely, Y (z) while
measuring y2 = ϕ(z). The value of y2 will be close to some critical value ci. Eventually, y2
crosses below ci − k2, which means that z leaves C1 and enters D1. If z ∈ D1 with q = 1, then
the jump map is applied to reset q to zero, and z remains unchanged. Since Bi ⊂ Vi, z is outside
Bi and so in the flow regime for q = 0.

Since C0 ∪D0 =M and C1 ∪D1 =M , the above rules cover all possibilities for points (z, q) ∈
M×{0, 1}. Teaders can convince themselves that this scheme provides a global feedback stabilization
law to m0.

Robustness of the scheme follows from the strict containment C0 ⊂ D1. Specifically, the scheme
we just described is robust to measurement errors in y1 provided these errors are small enough
to allow us to distinguish between being inside a Bi and leaving a Vi. We can quantify the error
bounds by recalling that y1 := ∥∇ϕ(z)∥, y1 = k3 on ∂Bi and k(i) = minp∈∂Vi ∥∇ϕ(p)∥ > k3. Set
kV = mini k(i) and k∗ = 1

2 min{k3, kV −k3}. If our error bars on measuring y1 are less than k∗ then
by evaluating y1 we can guarantee whether or not we are in Bi or have left Vi with sufficient accuracy
as to know whether we should be flowing or jumping. We call k∗ the “margin of robustness” for
this scheme.

Theorem 1 (Theorem). On any compact connected n-dimensional manifold M , and for any cho-
sen point m0 of that manifold, we can design a hybrid control system whose logic part consists of a
single bit q ∈ {0, 1} as in (6.11) and which has {m0} × {0}, as a global attracting and stable set,
this property being robust with respect to measurement and all other errors in the system.

Why the parabolic-shaped Vi?
In Figure 6.4, we have made Vi so as to have a parabolic boundary capped by a level set of

ϕ. We did this to guarantee that the vector field Y is transverse to the boundary ∂Vi everywhere
except at the points where the cap joins the parabola. Being transverse is “robust” (unchanged by
perturbations) whereas tangency is easily destroyed by perturbations. This is why we prefer the
parabolic profile for the boundary.

Here is how to make such a parabolic neighborhood. Begin with a standard flox-box for Y .
In flow-box coordinates, the flow-box is a cylinder of the form tube has the form I × B, where
I = [−T, T ] ⊂ R is in the Y = dy1 direction and B is a solid unit ball in Rn−1. For simplicity of
notation, label the coordinates of Rn−1 as xa instead of the old (xa, yb), b > 1. Then, the flow tube
can be expresses as ρ ≤ 1,−T ≤ y1 ≤ T , where

ρ =

 ∑
a

x2a.

Now take any smooth strictly monotonic increasing function g : [−T, T ] → [0, 1], g = g(y1), which
starts out either with g(−T ) = 0 and increases strictly monotonically to g(T ) = 1. (For a standard
parabola take g(y) = 1

4T 2 (y + T )2.) Our neighborhood is given by {(y1, ρ) : ρ ≤ g(y1)}. This
parabolic neighborhood has the property that all trajectories of Y enter into it through the parabolic
bottom and leave it along the cap with ϕ = ci−k2. Since transversality cannot be changed by small
perturbations, a perturbed Ỹ = Y +w will continue to have these nice entrance and exit properties.
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6.3.6 Solutions to Hybrid systems

Some words are in order regarding what we mean by a “solution” to this system which is a com-
bination of continuous flow and discrete jump. The instantaneous state of our hybrid system is a
(z, q) ∈M × {0, 1}, where the index q indicates that we should think of z ∈Mq.

Hybrid time In the hybrid literature one keeps track of jumps by introducing a discrete integer
time j ∈ N as well as the continuous time. Solutions are parameterized by “stair steps” E ⊂ R×N.
These stair steps are graphs of piecewise constant monotone functions taking integer values with
jumps of 1. In other words, E =

⋃
j=1,N Ij × {j}, where, for the particular construction in (6.11)

Ij ⊂ R are the intervals whose endpoints are where the jumps in q → q̄ occur. So, in this case, the
right endpoint of Ij equals the left endpoint of Ij+1. In the open part of each interval, (z, q) flows
according to F . The continuous variable z flows on the flat part of each step, i.e., on the interior of
the Ij ’s. At jumps, j → j+1 from one step to the next, (z, q) is reset by the jump map, which keeps
z constant and flips q. Using this language, one expresses solutions as maps x : S →M × {0, 1} by
writing x(t, j) = (z(t, j), q(t, j)). For (6.11), the discrete variable is constant on each open interval
int(Ij)×{j}. It makes a jump at the transition from one interval (step) to the next. (In the general
case, solutions may be such that z exhibits jumps: z(t, j)→ z(t, j+1) = G(z(t, j), q(t, j)) according
to some pre-specified collection of maps G(·, q) whose domains and ranges may depend on q.)

How many Jumps? If a solution to (6.11) starts with q = 0 then typically we expect that there
will be no jump at all. The initial z would lie in the basin of attraction of m0 and its trajectory
would avoid all of the Bi, so the gradient flow would take it all the way down to m0. Similarly, if
a solution starts with q = 1 and in C1, we expect that there will be a single jump, followed by a
gradient flow all the way to m0.

In the worst case, if the solution starts with q = 0 with z sitting at the global maximum for ϕ,
there could be as many as 2N jumps, with two jumps per critical point until z enters a ball about
m0. There are two jumps per close encounter with a critical point pj , one upon entering Bj from 0
to 1 to turn on the breeze, and then one upon leaving Vj from 1 to 0 to turn back on the gradient
flow. We can insure fewer jumps if the gradient flow is Morse-Smale. Let β ≤ n+ 1 be the number
of indices k such that the kth Betti number bk(M) is nonzero. (Here n is the dimension of M .)
To be Morse-Smale 12 means that the stable and unstable manifolds of all critical points intersect
transversally and implies that whenever a trajectory connects one critical point pi to another one
pj then the index of pi is larger than that of pj . If the balls Bj are sufficiently small and −∇ϕ is
Morse-Smale, then trajectories of the gradient flow will only enter at most β balls as they travel
down to m0. We do not need to count the final ball about m0 since solutions do not jump upon
entering it. In this way, we get the worst-case scenario count of 2(β − 1) ≤ 2n jumps total.
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