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Abstract—Ensuring the safety (formally, forward invariance) of
control systems using control barrier functions typically requires
being overly conservative when the dynamics of the control
system are uncertain. In this work, we develop a disturbance
observer based on the robust integral of the sign of the error
(RISE) control paradigm that exponentially identifies the un-
known dynamics when certain gain conditions are satisfied. The
estimate of the dynamics is used in an optimization-based control
law that ensures safety while expanding the operating region
of the dynamical system as the dynamic model is identified.
We provide conditions for when the control law is locally
Lipschitz continuous. The RISE-based disturbance observer can
provide safety guarantees to a secondary model of the dynamics
of unknown accuracy. A simulation example is provided to
demonstrate the performance of the disturbance observer and to
illustrate the benefits of combining the observer with a secondary
model given by a pretrained deep neural network.

I. INTRODUCTION

Control barrier functions (CBF) have emerged as a popular
tool for ensuring the safety of controlled dynamical systems,
where safety is typically defined as restricting the system to
operate in some subset of the state space which is determined
to be safe [1], [2]. Given that model uncertainty exists in
many practical applications, ensuring safety in the presence of
uncertainty is of significant interest. One approach to address
the challenges introduced by uncertain dynamics is to use a
worst-case upper bound of the uncertainty [3], [4]. However,
such methods are conservative because they restrict the system
to operate in a subset of the true safe set. Motivated to reduce
such conservativeness, we use an implicit learning method [5]
in this paper to exponentially learn the uncertain dynamics.

Two categories that describe adaptive safety results include
gradient-based methods and data-driven techniques. Gradient-
based methods, refashioned from Lyapunov-based adaptive
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control, only apply to dynamical systems with linearly parame-
terized uncertainty and are difficult to generalize when the safe
set is defined by multiple CBF candidates due to dependencies
of the parameter update law on the CBF candidate [6]–
[8]. Moreover, the gradient-based approach introduced in [6]
uses a worst-case upper bound of the uncertainty to ensure
safety, which is conservative unless coupled with a data-driven
method to reduce uncertainty. Other authors have developed
solely data-driven methods that reduce conservativeness by
identifying the unknown dynamics [9]–[12]. Estimators such
as integral concurrent learning [11], set-membership identifi-
cation [6], and the finite-time estimator in [12] are well-suited
for adaptive safety because they provide a computable upper
bound of the estimation error that shrinks based on the quality
of data. However, these methods have only been applied
to systems with linearly parameterized uncertainty. Gaussian
processes (GP) and deep neural networks (DNN) have been
empirically found to effectively approximate a more general
class of dynamics [13]. These approaches generally do not
guarantee identification of the dynamics, and therefore cannot
provide theoretical guarantees of safety without additional
conservativeness. For example, the authors of [14] and [15]
leverage GPs to obtain probabilistic safety guarantees, but use
the standard deviation of the GP in a worst-case fashion.

Disturbance observers are a class of data-driven estimators
that can identify a general class of uncertainty, including time-
varying disturbances [16]. Disturbance observers provide real-
time compensation for uncertainty based on state or output
feedback. To merge disturbance observers and CBF methods,
an effective strategy is to employ an observer providing an
estimation error bound that is computable in real-time. For
nonlinear systems, observers capable of furnishing such a
bound have been developed in special cases, such as for dis-
turbances governed by linear dynamics in [17], for robotic ma-
nipulators with constant disturbances in [18], and for partially
feedback linearizable systems in [19]. Of the aforementioned
designs, only the result for linear disturbance dynamics in
[17] can guarantee exponential convergence of the estimation
error for a non-constant disturbance, whereas in this paper
we develop an exponential disturbance observer for more
general nonlinear disturbances. One notable disadvantage of
disturbance observers is that they provide an estimate of the
disturbance only along the current trajectory of the control
system, whereas GPs and DNNs produce state-dependent mod-
els that can be used in subsequent initializations. Such state
dependent approximations motivate the use of a disturbance
observer in conjunction with a learned model.

Results that combine disturbance observers with CBFs ap-
pear in [20], where the authors use an observer that guarantees
the estimation error converges to a quantifiable envelope,
although the disturbance cannot be identified exactly. The set



of safety-ensuring control inputs in [20] includes a robustness
parameter that introduces conservativeness to compensate for
the residual estimation error. Performance can be improved by
replacing the constant parameter with a time-varying term that
represents the shrinking uncertainty envelope. Similar work is
presented in [21], where an observer is used to estimate the
state of an unknown dynamic model. The state estimate is
restricted to a conservative set that guarantees the true state
remains in the safe set. An advantage of the approach in [21]
is that full state feedback is not required.

The primary contribution of this work is to develop a
nonlinear disturbance observer based on the robust sign of
the error (RISE) paradigm (see [22], [23]) that exponen-
tially identifies, with a computable error envelope, a general
class of unstructured uncertainty. The RISE-based observer is
combined with an adaptive safety controller to yield reduced
conservativeness while providing deterministic guarantees of
safety throughout the identification process. The observer can
also provide safety guarantees to a secondary estimator such
as a GP or DNN, where the secondary estimator can reduce
the gain conditions in the observer by reducing modeling error.

An outline of the paper and a summary of additional
contributions is as follows. In Section II, inspired by our
preliminary work in [11], we describe a framework for safe
control with multiple CBFs using an upper bound of the uncer-
tain dynamics, and describe how reducing uncertainty leads to
improved performance. In Section III, we define and analyze
our RISE-based observer. We show how the upper bound of
the estimation error obtained from the observer analysis can
be integrated as a time-varying term in an implementable
optimization-based control law that guarantees safety while
eventually eliminating conservativeness from the set of safety-
ensuring inputs. In Section IV, we provide sufficient conditions
for the optimization-based control law to be locally Lipschitz.
The result we provide for local Lipschitz continuity uses
weaker assumptions than results that have previously appeared
in the control literature such as [24, Thm. 1] and is more
general than the results for quadratic programs with limited
numbers of constraints in [25]. An example in Section V
demonstrates the design process of the CBF-based control law,
where we implement the RISE-based observer coupled with a
pretrained DNN approximation of the unknown dynamics.

Notation: For vectors x ∈ Rn, y ∈ Rm, ∥x∥ denotes
the Euclidean norm, and (x, y) ≜

[
xT , yT

]T
. The shorthand

[r] ≜ {1, 2, . . . , r} denotes the first r positive integers. For
a function ϵ : R → R, the notation ϵ (t) ↘ 0 as t → ∞
means that ϵ (t) → 0 as t → ∞ and ϵ (t) ≥ 0 for all t ≥ 0.
Given a function B : Rn → Rr, the components are indexed
as B (x) ≜ (B1 (x) , B2 (x) , . . . , Br (x)) and the inequality
B (x) ≤ 0 means that Bi (x) ≤ 0 for all i ∈ [r]. For a set
A ⊂ Rn, ∂A denotes its boundary, A its closure, and U (A)
denotes some open neighborhood of A.

II. PROBLEM STATEMENT

A. Preliminaries

We consider the problem of developing an estimate of
the unknown dynamics for a control-affine system with input

constraints,

ẋ = f (x) + g (x)u+ d (x) , u ∈ Ψ(x) , (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
the functions f and g are known functions, and d represents
the unknown dynamics. The function f represents a priori
knowledge while the disturbance d represents modeling error.
In our framework, it is acceptable to include time as a state
so that d could model a time-varying disturbance. The set
Ψ(x) ≜ {u ∈ Rm : ψ (x, u) ≤ 0} represents state-dependent
constraints ψ : Rn × Rm → Rk on the control input, such
as limits on its magnitude. Given a controller κ : Rn → Rm

with κ (x) ∈ Ψ(x) for all x ∈ Rn, we refer to the closed-
loop dynamics defined by (1) and κ as ẋ = fcl (x) ≜ f (x) +
g (x)κ (x)+d (x). The following assumption on the dynamics
will be used throughout our development.

Assumption 1. The functions f : Rn → Rn, g : Rn×Rn×m,
and d : Rn → Rn are continuous.

The following definition of a CBF is a specialization of the
one in [3, Defn. 2] to the dynamics considered in this paper.
Our framework allows the safe set to be defined by multiple
functions through vector-valued CBF candidates. A function
B : Rn → Rr is called a CBF candidate defining the safe set
S ⊂ Rn if S = {x ∈ Rn : B (x) ≤ 0}. For each i ∈ [r],
we also define the sets Si ≜ {x ∈ Rn : Bi (x) ≤ 0} and
Mi ≜ {x ∈ ∂S : Bi (x) = 0}.

Definition 1. A continuously differentiable CBF candidate B :
Rn → Rr defining the set S ⊂ Rn is a CBF for (1) and S
on a set O ⊂ Rn with respect to a function γ : Rn → Rr if
1) there exists a neighborhood of the boundary of S such that
U (∂S) ⊂ O, 2) the function γ is such that, for each i ∈ [r],
γi (x) ≥ 0 for all x ∈ U (Mi) \Si, and 3) the set

Kc (x) ≜ {u ∈ Ψ(x) : Γ (x, u) ≤ −γ (x)} , (2)

is nonempty for every x ∈ O, where, for each i ∈ [r],
Γi (x, u) ≜ ∇BT

i (x) (f (x) + g (x)u+ d (x)).

Remark 1. For each i, the function γi is required to be
nonnegative only on the region U (Mi) \Si, which corresponds
to a region outside the safe set nearby points where Bi (x) = 0.
The set O describes the region on which the mapping Kc is
nonempty, which must contain at a minimum a neighborhood
of the boundary of the safe set U (∂S).

The set-valued mapping Kc : O ⇒ Rm represents, at each
state x ∈ O, a set Kc (x) ⊂ Rm of safety-ensuring control
inputs. Unlike [26], safety here is characterized by forward
invariance of the safe set S. Given a controller κ, the set S is
forward invariant for the closed-loop dynamics ẋ = fcl (x) if
every maximal solution starting from S remains in S for all
time. We also refer to the notion of forward pre-invariance,
which allows for maximal solutions that are not complete,
meaning that they are defined on a bounded time domain [3,
Defn. 3]. The following specialization of Theorems 1 and 2
in [3] shows that continuous selections of Kc (i.e., continuous
functions with κ (x) ∈ Kc (x) for all x ∈ O) render the safe
set S forward (pre-)invariant. The proposition is a special case



of the results in [3] to the case when the dynamics are not set-
valued and there are no state constraints.

Proposition 1. [3, Thms. 1 and 2] Let Assumption 1 hold. If
B : Rn → Rr is a CBF for (1) and S on O with respect to
γ, and κ : Rn → Rm is continuous on O with κ (x) ∈ Kc (x)
for all x ∈ O, then S is forward pre-invariant for the closed-
loop system ẋ = fcl (x) defined by (1) and κ. Moreover, if
in addition κ is continuous on O ∪ S , and either 1) S is
compact, 2) fcl is bounded on S, or 3) fcl has linear growth
on S in the sense that there exists c > 0 such that, for all
x ∈ S, |fcl (x)| ≤ c (|x|+ 1), then S is forward invariant for
ẋ = fcl (x).

Frequently, a selection of Kc is obtained by solving the
following optimization problem at each x ∈ O,

κ∗ (x) ≜ arg min
u∈Rm

Q (x, u) (3)

s.t. C (x, u) ≤ 0,

where Q : Rn × Rm → R is a cost function and C :
Rn × Rm → Rl defines the constraints. When Kc in
(2) is nonempty on a set O ⊂ Rn, selecting C (x, u) ≜
(Γ (x, u) + γ (x) , ψ (x, u)) implies that κ∗ (x) ∈ Kc (x) for
every x ∈ O. The optimization problem in (3) can be thought
of as a state-feedback controller that yields a safety-ensuring
control input at each state.

B. Robust Safety with Improved Performance

The function Γ defining Kc in (2) cannot be directly
computed because it depends on the disturbance d, so it is
not possible to implement the controller κ∗ in (3). Suppose,
for each i ∈ [r], there exists an upper bound χi : Rn → R
of the unknown term ∇BT

i (x) d (x). One can then implement
an optimization-based control law with feasible set defined by
the mapping

K̄c (x) ≜
{
u ∈ Ψ(x) : Γ̄ (x, u) ≤ −γ (x)

}
, (4)

where Γ̄i (x, u) ≜ ∇BT
i (x) (f (x) + g (x)u) + χi (x) for

each i ∈ [r]. It holds that Γ̄ (x, u) ≥ Γ (x, u) for any
(x, u) ∈ Rn × Rm, and hence, K̄c (x) ≜ {u ∈ Ψ(x) :
Γ̄(x, u) ≤ −γ (x)} is a subset of Kc (x). Thus, any continuous
controller κ (x) ∈ K̄c (x) is also a selection of Kc, and
therefore using Proposition 1 such controllers render the safe
set S forward pre-invariant. This approach requires K̄c (x) to
be nonempty for all x ∈ O. As an example, an upper bound
of the disturbance d̄ ∈ R>0 with ∥d (x)∥ ≤ d̄ for all x ∈ Rn

could be used to define χi (x) ≜ d̄ ∥∇Bi (x)∥.
When the upper bound χ is conservative, the mismatch

between Γ̄ and Γ is restrictive because trajectories of the
closed-loop dynamics under a selection of K̄c are able to
explore less of the safe set than if inputs could be selected
from Kc. To see how conservativeness degrades performance,
note that if Γ̄i (x, u) ≤ 0, as is required near the boundary of
the safe set by Definition 1, then Γi (x, u) ≤ −ϵi (x), where
ϵi (x) ≜ χi (x) − ∇BT

i (x) d (x) ≥ 0 denotes the mismatch
between Γ̄i and Γi. When Γi is strictly negative near the
boundary of the safe set, the control law will force trajec-
tories into the interior of the safe set, potentially creating an

Figure 1. Illustration of the effect of conservativeness in upper bounds of the
disturbance. The trajectory x attempts to track the desired trajectory xd, but
must deviate from it to ensure safety. It is desirable for the trajectory to be
allowed near the boundary of the safe set S.

asymptotically stable subset of the safe set. Figure 1 illustrates
a trajectory that is overly restricted due to a conservative upper
bound. To remedy the mismatch between Γ̄ and Γ, adaptive
upper bounds that solve the following problem are desirable.

Problem 1. For each i ∈ [r], find an upper bound χi :
Rn → R of the unknown disturbance term such that along
any trajectory t 7→ x (t) of the closed-loop system, χi (x (t))−
∇BT

i (x (t)) d (x (t)) ↘ 0 as t→ ∞.

Remark 2. Problem 1 has been solved in certain special
cases. For example, [11] assumes a finite-excitation condition
and linearly parameterized uncertainty d (x) = Y (x) θ, with
θ ∈ Rp denoting a vector of unknown constant model
parameters. The approach uses integral concurrent learning to
produce an exponentially convergent estimate θ̂ : R≥0 → Rp

of the unknown parameters and an exponentially decaying
upper bound θ̃UB : R≥0 → R of the estimation error with
θ̃UB (t) ≥∥ θ̃ (t) ∥ for all time and θ̃UB (t) → 0 as t → ∞,
where θ̃ = θ − θ̂. Problem 1 is solved by defining the term
χi (x, t) ≜ ∇BT

i (x)Y (x) θ̂ (t) +
∥∥∇BT

i (x)Y (x)
∥∥ θ̃UB (t).

III. ESTIMATION OF DISTURBANCE

A. RISE-Based Disturbance Observer

Motivated by Problem 1 and results such as [27] and [28],
the following RISE-based disturbance observer is developed

˙̂x = f (x) + g (x)u+ d̂+ αx̃ (5)

˙̂
d = kd

(
˙̃x+ αx̃

)
+ x̃+ βdir (x̃) , (6)

where x̃ ≜ x − x̂; α, β, kd > 0 are control gains; and
dir (x̃) ≜ x̃/ ∥x̃∥ if x̃ ̸= 0 and dir (x̃) ≜ 0 otherwise. We
assume that state feedback is possible, namely x̃ is measurable,
and it is therefore always possible to set x̂ (0) = x (0)
leading to x̃ (0) = 0. We also define d̃ ≜ d − d̂. Since
the derivative of x̃ is unavailable in many applications, an
implementable form of the disturbance estimate is obtained



by integrating (6) and using the facts that
∫ t

0
˙̃x (τ) dτ =

x̃ (t)− x̃ (0) and x̃ (0) = 0 to obtain d̂ (t) = d̂ (0)+ kdx̃ (t)+∫ t

0
[(kdα+ 1) x̃ (τ) + βdir (x̃ (τ))] dτ .

Remark 3. The RISE paradigm typically uses the component-
wise sign of the error x̃ in place of the term dir (x̃) in (6) [22].
The term dir (x̃) indicates the direction of the error vector x̃
and is advantageous because it is discontinuous only when
x̃ = 0, whereas the component-wise sign is discontinuous on
each coordinate axis, i.e., when x̃i = 0 for some i ∈ [n].

To facilitate the subsequent development, we impose the
following assumption on the total derivative of the disturbance
term. Assumptions on the first derivative are common in
the disturbance observer literature [16], [20], while it is less
common to impose boundedness of the second derivative.
The assumption that the derivatives exist will require some
additional regularity of the dynamics beyond the continuity of
Assumption 1.

Assumption 2. Given a set R ⊂ Rn and a controller
κ : Rn → Rm, assume there exist constants c1, c2 > 0 such
that any solution x : domx → Rn, where domx ⊂ R≥0,
to the closed-loop system ẋ = fcl (x) defined by (1) and κ
with x (0) ∈ R satisfies ∥ḋ (x (t)) ∥ ≤ c1 for all t ∈ domx
and ∥d̈ (x (t)) ∥ ≤ c2 for almost all t ∈ domx, where we
have assumed that ḋ exists everywhere and d̈ exists almost
everywhere.

We next justify Assumption 2 by providing a sufficient
condition under common assumptions relevant to the safety
application. To aid in the upcoming proofs, for a given
controller κ : Rn → Rm recall that ḋ (x) ≜ Jd (x) fcl (x),
where Jd : Rn → Rn×n denotes the Jacobian of d.

Lemma 1. Consider the functions f , g, and d in (1) and
a controller κ : Rn → Rm. Let R ⊂ Rn be forward pre-
invariant for ẋ = fcl (x) and suppose that f , g, d, and κ are
Lipschitz and bounded on R, and Jd : Rn → Rn×n exists and
is Lipschitz (in the sense of the induced matrix norm) on R.
Then Assumption 2 is satisfied for R and κ.

Proof: Since d is Lipschitz and Jd exists on R, Jd
is bounded on R. If x : domx → Rn is a solution
starting from R, it remains in R for all t ∈ domx via
forward pre-invariance, so that t 7→ ẋ (t) is bounded on
domx via boundedness of the dynamics on R. Thus, since
ḋ (x (t)) = Jd (x (t)) ẋ (t), there exists a constant c1 > 0 such
that ∥ḋ (x (t)) ∥ ≤ c1 for all t ∈ domx.

The function x 7→ ḋ (x), being an additive/multiplicative
combination of Lipschitz and bounded functions, is Lipschitz
on R. Under the assumptions of the lemma, any solution
t 7→ x(t) to ẋ = fcl (x) starting from R is continuously differ-
entiable with bounded derivative [29, Sec. 3.1], and therefore
Lipschitz. Thus, the function t 7→ ḋ (x (t)) is Lipschitz on
domx, which implies that there exists c2 > 0 such that
∥d̈ (x (t)) ∥ ≤ c2 for almost all t ∈ domx.

Remark 4. The assumptions of Lemma 1 will also guarantee
uniqueness of solutions to the closed-loop dynamics [29, Thm.
3.2]. In the case that R is compact, the assumptions of Lemma
1 reduce to assuming that f , g, and κ are locally Lipschitz

and d is continuously differentiable with locally Lipschitz
Jacobian.

Next, we provide conditions under which the disturbance
observer in (5) and (6) exponentially identifies the unknown
disturbance in (1) with a quantifiable rate of decay. Our result
applies even when the system in (1) does not have complete
or bounded solutions. However, the resulting observer in
(5) and (6) may not be bounded. In practice, developing
a bounded observer requires ensuring that the closed-loop
system has bounded solutions, which can be accomplished via,
e.g., designing a control law that ensures forward invariance
of a compact safe set.

Theorem 1. Let Assumption 1 hold and let R ⊂ Rn and
κ : Rn → Rm be such that Assumption 2 holds with bounds
c1 and c2. If the control gains α, β, and kd in (5) and (6)
satisfy

β > c1 +
c2

max{1, α− kd}
, (7)

then, for each solution to the closed-loop system defined by
(1), (5), (6), and κ with x (0) ∈ R and x̂ (0) = x (0),
the dynamic estimator is exponentially convergent such that∥∥d̃(t)∥∥ ≤

∥∥d̃(0)∥∥e−λt and
∥∥x̃(t)∥∥ ≤

∥∥d̃(0)∥∥e−λt for all
t ∈ domx ⊂ R≥0, where

λ = min{α− 1, kd}/2. (8)

Proof: Using the transformations d̃ ≜ d (x)− d̂ and x̃ ≜
x − x̂, every solution to the closed-loop system corresponds
to a solution to the following transformed system:

˙̃x = d̃− αx̃, (9)

˙̃
d ∈ ḋ (x)− kdd̃− x̃− βDIR (x̃) , (10)

where (10) is derived by noticing that (9) implies ˙̂
d = kdd̃+

x̃ + βdir (x̃). We have taken the Filippov regularization of
the original dynamics to ensure that the analysis is robust to
small noise, which results in the set-valued function DIR (x̃) ≜
x̃/ ∥x̃∥ if x̃ ̸= 0 and DIR (x̃) = B if x̃ = 0, with B ⊂ Rn

being the closed unit ball. The error system in (9) and (10)
has the same form as the one in [22, Eqns. (3) and (7)] with
NB (x) ≜ ḋ (x).

The analysis proceeds similarly to [22], while we provide
a summary here due to minor differences. We first design an
auxiliary term P ∈ R with the following set-valued dynamics:

Ṗ ∈ −λPP + d̃T
(
βDIR (x̃)− ḋ (x)

)
, (11)

with λP > 0. Defining a composite state ζ ≜ (x, x̃, d̃, P ) ∈
R3n+1, we analyze a differential inclusion with dynamics
defined by (1), (9), (10), and (11), respectively. Define the
function V : R3n+1 → R as V (ζ) ≜ 1

2 x̃
T x̃ + 1

2 d̃
T d̃ + P.

Consider the set D ≜ {ζ ∈ R3n+1 : x̃ = 0, d̃ ̸= 0}. For
ζ ∈ R3n+1\D, we have

V̇ (ζ) = −α
∥∥x̃∥∥2 − kd

∥∥d̃∥∥2 − λPP ≤ −λV V (ζ) ,

with λV ≜ min{α, kd, λP }. Let ζ : dom ζ → R3n+1 be a
solution to the differential inclusion defined above with x (0) ∈
R. Due to the dynamics defining x̃, it can be shown that the



set of time instants {t ∈ dom ζ : ζ(t) ∈ D} has Lebesgue
measure zero (cf. [22, Lem. 1]). It follows that V̇ (ζ (t)) ≤
−λV V (ζ (t)) for almost all t ∈ dom ζ. Thus,

V (ζ (t)) ≤ V (ζ (0)) e−λV t, ∀t ∈ dom ζ. (12)

Next, we show that the initial condition for the state P
can be selected so that P (t) ≥ 0 for all t ∈ dom ζ.
Given a solution ζ with x (0) ∈ R, consider the func-
tion P (t) = (P (0) − β ∥x̃ (0)∥ + x̃T (0)ḋ (x (0)))e−λP t +
β ∥x̃ (t)∥ − x̃T (t) ḋ (x (t)) + e−λP t ∗ [(α − λP )(β ∥x̃ (t)∥ −
x̃T (t) ḋ (x (t))) − x̃T (t) d̈ (x (t))], with p (t) ∗ q (t) ≜∫ t

0
p (t− τ) q (τ) dτ denoting the convolution operation. A

similar analysis to [22, Lem. 3] shows that P is the unique
solution to (11) corresponding to a given trajectory ζ. We
select P (0) = β ∥x̃ (0)∥ − x̃ (0)

T
ḋ (x (0)), although any

larger value of P (0) is also sufficient. Using the bounds in
Assumption 2, we find that P (t) ≥ (β − c1) ∥x̃ (t)∥+e−λP t∗
[(α− λP ) (β ∥x̃ (t)∥ − c1 ∥x̃ (t)∥)− c2 ∥x̃ (t)∥] . Thus, P (t)
is nonnegative for all t ∈ dom ζ if α > λP and β > c1+

c2
α−λP

.
To simplify parameter selection, we choose λP = min{α −
1, kd}, which leads to (7). Since P (t) ≥ 0 for all t ∈ dom ζ

and V (ζ (0)) = 1
2

∥∥x̃(0)∥∥2 + 1
2

∥∥d̃(0)∥∥2 + P (0), it follows
from (12) that∥∥d̃(t)∥∥ ≤

√∥∥x̃(0)∥∥2 + ∥∥d̃(0)∥∥2 + 2P (0) e−λV t/2, (13)

for all t ∈ dom ζ, showing that the disturbance estimation error
is exponentially convergent. The same upper bound can be
shown to hold for

∥∥x̃(t)∥∥. The right-hand side of (13) becomes∥∥d̃(0)∥∥e−λt when x̃ (0) = 0 and λ ≜ λV /2, leading to (8).
Additionally, the composite solution t 7→ ζ (t) has the same
domain of definition as the component t 7→ x (t) (i.e., dom ζ =
domx) because the components (x̃, d̃, P ) cannot exhibit finite-
time escape due to (12).

Remark 5. The Lyapunov analysis of Theorem 1 suggests
that faster convergence of the disturbance observer can be
obtained by increasing both of the gains kd and α (see (8)).
It is also observed in (7) that the lower bound on β imposed
by (7) is smaller when α is significantly larger than kd. In
the continuous-time setting, the RISE gain β can be selected
arbitrarily large to satisfy (7). However, large values of α, β,
or kd can lead to performance degradation in discrete-time
implementations of the algorithm.

Remark 6. The gain condition in (7) requires the gain β
to be large enough relative to the rates of change of the
disturbance. The constants c1 and c2 defined in Assumption
2 can be approximated using some a priori knowledge of the
dynamics, such as conservative upper bounds based on physics
or estimates from identification experiments. It should also be
noted that the performance of the estimator can be verified
online using the measurable quantity x̃, which converges
according to the bound

∥∥x̃(t)∥∥ ≤
∥∥d̃(0)∥∥e−λt provided β is

sufficiently large.

B. Implementation in Control Law

Theorem 1 applies even when the disturbance is unbounded
(although its rate of change should be bounded according to

Assumption 2). However, the bound
∥∥d̃(t)∥∥ ≤

∥∥d̃(0)∥∥e−λt

cannot be computed without information about the initial es-
timation error d̃ (0). Bounds on

∥∥d̃(0)∥∥ are typically obtained
under the assumption that the disturbance is bounded on the
safe set.

Assumption 3. Given the safe set S ⊂ Rn, there exists d̄ ∈
R≥0 such that ∥d (x)∥ ≤ d̄ for all x ∈ S.

The disturbance observer is injected into the original dy-
namic model in (1) as follows. Define the vector z ≜
(x, x̂, d̂, t) ∈ R3n × R≥0 ≜ Z . Recalling Section II-B,
we define the term Γ̄i (z, u) ≜ ∇BT

i (x) (f (x) + g (x)u) +
χi (z) where χi (z) ≜ min{d̄ ∥∇Bi (x)∥ ,∇BT

i (x) d̂ +
d̃UB (t) ∥∇Bi (x)∥} for each i ∈ [r], and d̃UB (t) ≜ 2d̄ e−λt,
with λ defined according to (8). Under the assumptions of
Theorem 1, the term χi solves Problem 1, so that the set
K̄c (z) ≜

{
u ∈ Ψ(x) : Γ̄ (z, u) ≤ −γ (x)

}
converges to the

true set of safety-ensuring control inputs as t → ∞. We
next show that safety is ensured using an optimization-based
control law where the unknown function Γ is replaced with Γ̄.

Theorem 2. Consider the dynamical system in (1) for which
Assumptions 1 and 3 hold. Let B : Rn → Rr be a continuously
differentiable CBF candidate defining S ⊂ Rn and let the
set O ⊂ Rn and function γ : Rn → Rr respectively satisfy
conditions 1) and 2) of Definition 1. Let (x̂, d̂) be updated
according to the estimator in (5) and (6) with x̂ (0) = x (0),∥∥d̂(0)∥∥ ≤ d̄, and where the observer gains satisfy (7). Define
the controller κ∗ : Z → Rm as

κ∗ (z) ≜ arg min
u∈Rm

Q (x, u) (14)

s.t. Γ̄ (z, u) ≤ −γ (x) ,
ψ (x, u) ≤ 0,

for the cost function Q : O×Rm → R. Assume that K̄c (z) =
{u ∈ Ψ(x) : Γ̄ (z, u) ≤ −γ (x)} is nonempty for all z ∈
O ×R2n ×R≥0, and κ∗ is single-valued and continuous1 on
O×R2n ×R≥0. If Assumption 2 holds with R = S and κ =
κ∗ and the RISE gain β satisfies (7), then S is forward pre-
invariant for the closed-loop dynamics ẋ = fcl (z) ≜ f (x) +
g (x)κ (z)+d (x). If additionally κ∗ is continuous on (O∪S)×
R2n × R≥0 and either S is compact or z 7→ fcl (z) satisfies
Condition 2) or 3) of Proposition 1 on S × R2n × R≥0, then
S is forward invariant for ẋ = fcl (z).

Proof: Let t 7→ z (t) = (x (t) , x̂ (t) , d̂ (t)) be a solu-
tion to the closed-loop dynamics in (1), (5), and (6) with
x (0) ∈ S. Assumption 2 and Theorem 1 show that

∥∥d̃(t)∥∥ ≤∥∥d̃(0)∥∥e−λt for all t ∈ dom z. Since
∥∥d̃(0)∥∥ ≤ 2d̄, we

have χi (z (t)) ≥ ∇BT
i (x (t)) d̂ + d̃UB (t) ∥∇Bi (x (t))∥ ≥

∇BT
i (x (t)) d (x (t)) for every i ∈ [r] and t ∈ dom z. It fol-

lows that for every u ∈ Ψ(x (t)), Γ̄i (z (t) , u) ≥ Γi (x (t) , u).
Thus, κ∗ (z (t)) ∈ K̄c (z (t)) ⊂ Kc (x (t)) for all t ∈ dom z.
Since K̄c (z) is nonempty on O×R2n×R≥0, Kc is nonempty
on O so that B is a CBF. Since κ∗ is continuous, Proposition
1 shows that S is forward pre-invariant for the closed-loop

1The controller can be certified as single-valued and continuous using the
result in [3, Thm. 3].



dynamics. The claim of forward invariance is a direct conse-
quence of Proposition 1.
Remark 7. Before deploying a controller, it is important to
verify that the set K̄c (z) = {u ∈ Ψ(x) : Γ̄ (z, u) ≤ −γ (x)}
is nonempty on the operating region of the dynamical system.
Section V of [3] develops sum of squares (SoS) optimiza-
tion tools that can be used to verify feasibility. This task
is generally not possible without knowing a bound on the
unknown disturbance d. Supposing that Assumption 3 holds,
the feasibility verification should be performed using the set
KUB (x) ≜ {u ∈ Ψ(x) : ΓUB (x, u) ≤ −γ (x)} with
ΓUB (x, u) ≜ ∇BT

i (x) (f (x) + g (x)u) + d̄ ∥∇Bi (x)∥. We
have KUB (x) ⊂ K̄c (z) for every z ∈ Z . Thus, verifying the
nonemptiness of KUB also certifies that K̄c is nonempty.

C. Interconnection with Secondary Estimator

An important setting in adaptive safety is one where a
model of a totally unknown set of dynamics has already been
developed using a secondary estimator. Such models can be
developed using system identification experiments. The RISE-
based observer in Section III can provide safety guarantees to
the secondary model without the need to precisely characterize
the modeling error. While the RISE observer can serve as
a standalone estimator for unknown dynamics, employing a
secondary estimator can reduce the gain condition in (7),
enhancing performance with smaller gains.

Suppose the dynamics originally are ẋ = fk (x)+g (x)u for
an unknown function fk that is approximated using a model
f̂k : Rn → Rn. For such models, knowledge of the estimation
error is typically unavailable. Defining the estimation error
f̃k ≜ fk − f̂k, the dynamics are rewritten as

ẋ = f̂k (x) + g (x)u+ f̃k (x) ,

which matches the model in (1) with the known function f ≜
f̂k and the unknown function d ≜ f̃k. The RISE observer can
then be implemented as described in Section III to identify
the residual estimation error f̃k. In this case, the controller in
(14) remains as defined with f̂k taking the place of f and f̃k
taking the place of d.

Based on Assumption 2 and the gain condition (7), the
interconnected secondary estimator will offer an improvement
over the standalone RISE observer when the rates of change
of the estimation error are smaller than those of the unknown
dynamics. Whether this holds true is dependent on the ap-
plication and the quality of the estimated model. Numerical
analysis of these rates of change is provided in the example
of Section V.

IV. LOCAL LIPSCHITZ CONTINUITY OF κ∗

In this section, we study the continuity of the optimization-
based controller κ∗ in (14). We refer to the generic definition
in (3) for generality. In order to meet Assumption 2, it will
often be desirable for κ∗ to be locally Lipschitz, which aids in
applying Lemma 1. The following result from [30] provides
conditions for when the function κ∗ is locally Lipschitz under
the linear independence constraint qualification (LICQ). A
comparable result is available in [31, Thm. 5.1]. The author

of [32] provides a result for a weaker notion of pointwise
Lipschitz continuity using the weaker Mangasarian-Fromovitz
constraint qualification. The Mangasarian-Fromovitz qualifica-
tion is typically easier to verify than the LICQ.

Definition 2. Let I (x, u) ≜ {i ∈ [l] : Ci (x, u) = 0} denote
the active constraints of problem (3) at a given point. The
LICQ is said to hold at (x, u) ∈ Rn × Rm if the vectors
{∇uCi (x, u)}i∈I(x,u) are linearly independent.

Theorem 3. (Local Lipschitz Continuity of κ∗) Consider the
controller κ∗ : Rn → Rm in (3). Given x̄ ∈ Rn, assume there
exists a neighborhood U (x̄) of x̄ such that κ∗ is single-valued
and continuous on U (x̄) and, for each i ∈ [l],
A) The functions (x, u) 7→ Q (x, u) and (x, u) 7→ Ci (x, u) are
twice continuously differentiable on U (x̄)× Rm,
B) The LICQ holds at (x̄, κ∗ (x̄)),
and for every x ∈ U (x̄),
C) the function u 7→ Ci (x, u) is convex on K (x) ≜ {u ∈
Rm : C (x, u) ≤ 0} and the function u 7→ Q (x, u) is strongly
convex on K (x).
Then κ∗ in (3) is locally Lipschitz at x̄.

Proof: We apply Theorem D.1 of [30]. Conditions (D.2)
and (D.3) in [30] hold by assumption. Since κ∗ is continuous
on U (x̄), it is also bounded and (D.4) in [30] holds. Condition
(D.5) holds when u 7→ Q (x, u) is strongly convex and the
matrix M (x) ≜ [∇uCi(x, κ∗(x))T ]i∈I(x,κ∗(x)) has full rank
for all x in a neighborhood of x̄. The LICQ ensures that M (x̄)
has full rank, and continuity of the constraints and optimal
value κ∗ can be used to find that it remains full rank in
a neighborhood of x̄. Thus, Theorem D.1 shows that κ∗ is
locally Lipschitz.

Remark 8. According to the conditions in [30], Assumption
A of Theorem 3 can be relaxed when the problem defining κ∗

is a quadratic program. Assume that Q (x, u) = uTH (x)u+
h (x)

T
u and C (x, u) = A (x)u + b (x). Then via [30, Thm.

3.1], Assumption A can be replaced with the assumption that
H , h, A, and b are locally Lipschitz.

V. SIMULATION

A. Dynamics

The following example demonstrates the effectiveness of
the RISE-based disturbance observer. The nonlinear system
ẋ = fk (x) + u is considered where x, u ∈ R2, Ψ(x) = R2

for all x ∈ R2, and fk (x) = (cos (x1) sin (x2) tanh (x2) +
sech2 (x1) , sech2 (x1)). To constrain the state to a safe set, a
CBF candidate is defined as B (x) ≜ (−x1− c, x1− c,−x2−
c, x2 − c) where c = 1, which defines a square safe set S =
{x ∈ R2 : B (x) ≤ 0}. A DNN function approximator is used
to estimate the unknown term fk in the dynamics. The DNN
was pretrained using noisy data (Gaussian noise with nonzero
mean) from a simulated trajectory of the system, thereby
leading to imperfect function approximation. The DNN has
tanh activation functions with 3 hidden layers and 10 neurons
in each layer, for a total of 272 individual weights. The weights
are initially randomized for pretraining. Denoting the DNN
approximation of the dynamics as f̂k : R2 → R2, the dynamics
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Figure 2. a) Trajectory of the closed-loop system in the example of Section V using a pretrained DNN coupled with the RISE-based disturbance observer.
Magnitude of the estimation error along the closed-loop trajectory for the b) pretrained DNN defined as

∥∥∥fk − f̂k

∥∥∥ and c) disturbance estimation error d̃

for the RISE observer. The safety-ensuring control law maintains the state inside the safe set although the desired trajectory leaves the set. The trajectory is
allowed to closely approach the boundary of the safe set because the RISE observer accurately identifies the DNN estimation error.

are written as ẋ = f̂k (x) + u+ d (x) with d (x) representing
the residual estimation error d (x) = fk (x)− f̂k (x).

The RISE-based observer was used to identify d with α = 8,
kd = 2, and β = 1.5. Numerical derivatives of the training
dataset were used to approximate the constants c1 and c2
and then β was selected according to (7). The conservative
upper bound of the disturbance was set to d̄ = 3 and the
performance function is designed as γ (x) = kbB (x) for
kb = 10. In practice, some amount of estimation error is
expected in the disturbance observer due to discretization error.
To account for small errors, the upper bound of d̃ is defined as
d̃UB (t) ≜ max

(
d̄ e−λt, 0.01

)
. The control law κ∗ is defined

as in (14) with the cost function Q (z, u) = ∥u− κnom (z)∥2,
where the expanded state is z = (x, x̂, d̂, t) ∈ Z ≜ R6 ×R≥0

and κnom (z) = ẋd (t) − fk (x) − K (x− xd (t)) is a nom-
inal controller designed to track a spiral trajectory xd (t) =
min{0.1t, 5} · (sin (t) ,− cos (t)). The nominal controller is
given access to the actual dynamics fk to improve tracking
performance and better highlight when the safety constraints
cause κ∗ to deviate from κnom. The controller κ∗ is a quadratic
program with constraints of the form Au ≤ b (z), where
A = JB is the constant Jacobian of the CBF candidate B.

B. Results

The system was simulated using Euler integration with a
timestep of dt = 1E-4 s. An example trajectory is shown in
Figure 2a). Although the desired trajectory exits the safe set,
the controller κ∗ deviates from the nominal controller to keep
the trajectory in the safe set. As can be seen in Figure 2a),
the trajectory x never exits the safe set. Figure 2b) shows the
neural network function approximation error and Figure 2c)
shows the estimation error for the RISE observer. The RISE
observer was able to identify the large approximation error in
the DNN caused by noisy training data. After the disturbance
was identified, the trajectory closely approached the boundary
of the safe set; the maximum value for the CBFs was −0.001.

To show how the developed controller would behave without
either the DNN approximation of fk or the use of the distur-
bance observer, two additional simulations were performed.
To remove the DNN from the simulation, the approximation
of the dynamics was set to f̂k = 0. In this case, the trajectory

remained in the safe set, but the RISE gain β had to be
increased from β = 1.5 to β = 6 to compensate for the
larger uncertainty. Alternatively, if the RISE terms are removed
so that Γ̄i (x, u) ≜ ∇BT

i (x) (f̂k (x) + u), the trajectory
escapes the safe set because the imperfect approximation of the
dynamics by the DNN is not able to ensure safety, as shown
in Figure 3. The maximum value of the four CBFs with the
DNN alone was 0.26. The trajectory in Figure 1 was also
generated from the dynamics in this example using a robust
control approach where Γ̄i (x, u) ≜ ∇BT

i (x)u+d̄ ∥∇Bi (x)∥,
in which case the closed-loop trajectory was not allowed to
approach the boundary of the safe set as closely as with the
adaptive approach; the maximum value of the CBFs was −0.2.

C. Discussion

The results in Sections III and IV can be applied to the
example problem in this section. The feasibility and continuity
of the optimization-based control law can be verified using
Theorem 3. Recalling Remark 7, manual computation reveals
that the set K◦

UB (x) ≜ {u ∈ Ψ(x) : ΓUB (x, u) < −γ (x)}
is nonempty for all x ∈ R2 if kbc > d̄. Thus, K̄◦

c (z) =
{u ∈ Ψ(x) : Γ̄ (z, u) < −γ (x)} is also nonempty on Z and
[3, Thm. 3] shows that κ∗ is continuous. Moreover, whenever
K̄◦

c (z) is nonempty, the LICQ must hold because the feasible
set is a rectangle and only two constraints can be active at
a given point. Via Theorem 3 and Remark 8, it follows that
κ∗ is locally Lipschitz on Z . Since the desired trajectory is
bounded and χi (z) ≤ d̄ ∥∇Bi (x)∥ for every i ∈ [r], it can
be found that κ∗ is Lipschitz and bounded on S ×R4 ×R≥0.
The dynamics f̂k, g, and f̃k are locally Lipschitz and S ⊂
R2 is compact, so Lemma 1 shows that Assumption 2 holds
with R = S. The next paragraph indicates that the observer
gains satisfy (7), so that Theorem 1 verifies the exponential
convergence of the disturbance estimation error. Since S is
compact, Theorem 2 shows that S is forward invariant for the
closed-loop dynamics.

The disturbance bounds in Assumption 2 were reduced
significantly by the DNN. When the DNN was active, the
disturbance was equal to the estimation error d (x) = f̃ (x).
For the sake of analysis, exact knowledge of the dynamics
was used to determine accurate values of the disturbance



Figure 3. Trajectory of the closed-loop system in the example of Section
V using a pretrained DNN but without the RISE-based disturbance observer.
Since the DNN estimate is imperfect, the trajectory is allowed to leave the
safe set.

rate of change as c1 = 0.54 and c2 = 4.02, so that the
choice of β = 1.5 determined without model knowledge was
sufficient since (7) requires that β > 1.19. When the DNN
was inactive, the entire dynamics were treated as a disturbance
d (x) = f (x), in which case c1 = 2.2 and c2 = 15.0, so that
the gain needed to be increased significantly to β = 6 to meet
the specification of β > 4.7.

The gain condition in (7) provides a sufficient condition for
convergence of the estimator. It was observed in the simulation
that convergence is possible for smaller values of the gain β.
When the DNN was active, it was found that the estimator
converged within a threshold of

∥∥d̃(t)∥∥ ≤ 0.01 with β as
low as 0.35. With the DNN inactive, the estimator converged
within the threshold when β was as low as 2.5.

VI. CONCLUSION

This paper developed a RISE-based observer that expo-
nentially identifies unknown dynamics. The RISE-based dis-
turbance estimate is integrated into an optimization-based
controller which enforces input constraints defined by a CBF.
Sufficient conditions for the control law to be locally Lipschitz
are presented. A simulation demonstrates the reduced conser-
vativeness and safety guarantees offered by the observer.
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[20] A. Alan, T. G. Molnar, E. Daş, A. D. Ames, and G. Orosz, “Distur-
bance observers for robust safety-critical control with control barrier
functions.”

[21] D. R. Agrawal and D. Panagou, “Safe and robust observer-controller
synthesis using control barrier functions,” vol. 7, pp. 127–132.

[22] O. Patil, A. Isaly, B. Xian, and W. E. Dixon, “Exponential stability with
RISE controllers,” IEEE Control Syst. Lett., vol. 6, pp. 1592–1597, 2022.

[23] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, “Asymptotic
tracking for uncertain dynamic systems via a multilayer neural network
feedforward and RISE feedback control structure,” IEEE Trans. Autom.
Control, vol. 53, no. 9, pp. 2180–2185, 2008.

[24] B. J. Morris, M. J. Powell, and A. D. Ames, “Continuity and smoothness
properties of nonlinear optimization-based feedback controllers,” in
Proc. IEEE Conf. Decis. Control, 2015, pp. 151–158.

[25] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of
control barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[26] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-
case and stochastic safety verification using barrier certificates,” IEEE
Transactions on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.

[27] A. Dani, Z. Kan, N. Fischer, and W. E. Dixon, “Structure and motion
estimation of a moving object using a moving camera,” in Proc. Am.
Control Conf., Baltimore, MD, 2010, pp. 6962–6967.

[28] S. Bhasin, R. Kamalapurkar, H. T. Dinh, and W. Dixon, “Robust
identification-based state derivative estimation for nonlinear systems,”
IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 187–192, Jan. 2013.

[29] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

[30] W. W. Hager, “Lipschitz continuity for constrained processes,” SIAM
Journal on Control and Optimization, vol. 17, no. 3, pp. 321–338, 1979.

[31] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis for
nonlinear programming,” Ann. Oper. Res., vol. 27, no. 1, pp. 215–235,
1990.

[32] A. Shapiro, “Sensitivity analysis of nonlinear programs and differentia-
bility properties of metric projections,” SIAM J. Control Optim., vol. 26,
no. 3, pp. 628–645, 1988.


