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1. INTRODUCTION

Capture the flag is a rule-based game allegedly dating back
to the book “Scouting For Boys”, by Baden-Powell (1908),
where two (or more) teams of players compete against each
other, trying to capture the opponents flag and return it
to their own base. This game describes a rich family of
sub-problems, where team members (representing robots
and/or humans) cooperate with each other to maximize
their profits, while teams compete to outperform each
other. While humans and robots operate in continuous
time, the capture-the-flag game is governed by discrete-
time events at unknown and possibly periodic time in-
stances, making it a hybrid dynamical game.

Classical competitive and non-cooperative dynamic games,
such as chess and go, have seen a recent success in the
software and algorithm development of AlphaZero and
AlphaGo, as in Bertsekas (2022), for example. However,
in chess and in go, the game takes place in a discrete-time
horizon, which allows for solution concepts that employ
tools from the discrete-time systems literature. Game the-
ory for hybrid systems is discussed in Tomlin et al. (2000),
in Altman et al. (2000), in (Lin and Antsaklis, 2022, Ch.
6.5), and in Jimenez Leudo and Sanfelice (2022a,b). Recent
controller designs for capture-the-flag games can be found
in Garcia et al. (2018), Huang et al. (2015), and in Wang
et al. (2023), among others.

While decision-making processes are often relatively easy
to describe informally, mathematically-precise formula-
tions are generally difficult.The framework of hybrid sys-
tems theory in Goebel et al. (2012) and Sanfelice (2021)
provides a useful level of versatility and formalism to
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study many modern hybrid games. Accordingly, a main
contribution of this paper is the formulation of capture-
the-flag games as hybrid dynamical systems. This work is
motivated by the Aquaticus competition 1 and the pre-
liminary work in Braun et al. (2023) discussing a heuristic
controller design for capture-the-flag games without refer-
ring to a hybrid systems formulation.

The remainder of this paper is organized as follows. Section
2 briefly summarizes the rules of a capture-the-flag game.
Section 3 provides the derivation of a hybrid system
formulation and Section 4 discusses objective functions to
define a zero-sum game. Section 5 presents a numerical
example. By considering the dynamics of capture-the-
flag games, this paper is meant to be a stepping stone
to investigate the foundations of multi-player decision
making in dynamical systems with composite discrete and
continuous-time components using the said hybrid systems
formalism.

Notation. The symbol N denotes the set of natural
numbers including zero. The symbol R denotes the set
of real numbers and R≥0 denotes its nonnegative subset.
The Euclidean norm of a vector x ∈ Rn is denoted by

|x| =
√
x⊤x. Given vectors x and y in Rn, we write

(x, y) = [x⊤, y⊤]⊤. Given a nonempty set A ⊂ Rn, the
distance from x to A is defined as |x|A = infy∈A |x − y|.
We denote with 1A : Rn → {0, 1} the indicator function of
the set A. A ball of radius γ centered at p ∈ R2 is denoted
by γBp = {q ∈ R2| |p− q| ≤ γ}.

2. CAPTURE-THE-FLAG GAMES

In this section, we introduce the rules of the game before
they are translated into a hybrid system formulation in
Section 3. The Aquaticus competition1 consists of two
teams, a blue team (B) and a red team (R). The blue
team has b ∈ N robots and the red team has r ∈ N robots.

1 Aquaticus competion: https://oceanai.mit.edu/aquaticus



Fig. 1. Playing field of the Aquaticus competition with
three blue and three red robots arbitrarily positioned.

The k-th robot in either team is modeled as the dynamical
system

ṗk =

[
ṗk,1
ṗk,2

]
=

[
vk cosuk

vk sinuk

]
=: f(pk,uk), (1)

where pk = (pk,1, pk,2) ∈ R2 is the position, uk ∈ Uk ⊆
[−π, π] is an input representing the instantaneous heading
angle, and vk is the input velocity.

The k-th robot in team B is denoted kB, with k ∈ NB :=
{1, 2, . . . , b}, and the i-th robot in team R is denoted iR,
with i ∈ NR := {1, 2, . . . , r}. The playing field 2 X :=
[−Xx,Xx] × [−Xy,Xy] ⊂ R2 is divided into the regions
XB := [−Xx,−ε] × [−Xy,Xy], XR := [ε,Xx] × [−Xy,Xy],
where ε > 0, and an arbitrarily small neutral zone (−ε, ε)×
[−Xy,Xy]. The neutral zone is introduced to ensure that
XB ∩ XR = ∅. This simplifies the presentation in the
following by excluding situations that might occur on the
zero-measure set defined by XB ∩ XR. Each team has a
flag that it protects from being captured by the opponent
team. The flags’ bases are located at FB = (−XF , 0) ∈ X
and FR = (XF , 0) ∈ X, where XF > 0 (see Figure 1).

The parameters of the game are the tagging radius γc> 0,
the capturing radius γF> 0, and a timeout parameter
T̄> 0. Without loss of generality, considering the per-
spective of a robot kB ∈ NB that competes with a robot
iR ∈ NR, the rules of the game are as follows:

(a) Tagging: If kB and iR are in the blue region, namely,
pkB , piR ∈ XB, and if piR ∈ γcBpkB

, then iR is tagged
by kB, i.e., iR is temporarily deactivated and the
blue flag is instantaneously returned to FB if iR was
carrying it.

(b) Reactivation: A robot iR, which is temporarily de-
activated by being tagged or by leaving the playing
field, which corresponds to piR /∈ X, needs to satisfy
piR ∈ γFBFR

to be reactivated. A robot leaving the
playing field loses the flag if it was carrying it.

(c) Disabled Tagging: After tagging iR, kB loses its ability
to tag another robot for time T̄> 0.

(d) Flag Capturing: If kB is not temporarily deactivated,
and if pkB

∈ γFBFR
, then kB grabs the red flag. Only

blue robots can grab the red flag.
(e) Only one robot can carry the flag at a time.
(f) Flag Return: If kB satisfies pkB ∈ γFBFB while

carrying the red flag, then the blue team scores and
the red flag is instantaneously returned to FR.

2 In Aquaticus, Xx := 80m, Xy := 40m, and XF := 60m.

The goal of team B is to capture the red flag and to
successfully return it to its own base γFBFB

as many times
as possible.

3. HYBRID SYSTEMS GAME FORMULATION

In this section, we formulate a hybrid system model
of capture-the-flag games. Hybrid systems include states
that evolve both continuously and discretely over time.
Following the framework in Sanfelice (2021), a hybrid
system is defined by its data (C,F,D,G), such that

• the continuous evolution of the state is governed by
a differential equation defined by the flow map F and
it occurs when in the flow set C; and

• the discrete evolution of the state is governed by a
difference inclusion defined by the jump map G and
it occurs when in the jump set D.

For the purpose of this paper, a hybrid dynamical system,
which is denoted by H, is given in terms of the hybrid
inclusion with inputs (Sanfelice, 2021)

H
{

ẋ = F (x, uB, uR) x ∈ C
x+ ∈ G(x) x ∈ D

(2)

where x is the state, and uB and uR are the inputs. We
define a solution (x(·), (uB(·), uR(·))) to H from the initial
condition x0, as in (Sanfelice, 2021, Definition 2.29) and
denote by R(x0, (uB(·), uR(·))) the set of maximal state
trajectories to H from x0 for (uB(·), uR(·)).

3.1 Implementation of the Rules of the Game

From the description of the competition above, to encode
the rules of the game given in (a)-(f), we propose a
state vector that includes the position of the k−th robot,
introduced in (1). For each kB ∈ NB and each iR ∈ NR, the
additional states with associated dynamics are described,
without loss of generality, taking the perspective of an
arbitrary robot kB ∈ NB, as follows. In addition to pkB

,
the state of the robot kB has a timer τkB

to model its
tagging ability and two logic variables, (qkB

, ηkB
) ∈ {0, 1}2

to model whether kB is tagged and whether it carries
the flag, respectively. The timer decreases according to
τ̇kB = −1, and takes values in (−∞, T̄ ], where T̄ > 0 is as
in rule (c). Thus, the state of kB is

xkB
:=(pkB

, τkB
, qkB

, ηkB
)∈XkB

:=R2×(−∞, T̄ ]×{0, 1}2.
(3)

We model the dynamics of kB as a hybrid system, for
which the flow and jump sets are defined to constrain the
evolution of the state pkB

, the timer τkB
, and the logic

variables (qkB
, ηkB

).

To model the tagging ability of kB (item (c)), we define

τkB

{
> 0 : robot kB does not have tagging ability,
≤ 0 : robot kB has tagging ability.

(4)

To model whether a robot is tagged or carrying a flag, the
logic variables take the following values:

qkB =

{
0 : robot kB is active,
1 : robot kB is deactivated,

(5)

ηkB
=

{
0 : robot kB does not carry the flag,
1 : robot kB carries the flag.

(6)



The logic variables remain constant while the other states
evolve in continuous time. In addition to the states
introduced above for robot kB, a flag state µB is introduced
for each team, as follows:

µB =

{
0 : the blue flag is not at its base,
1 : the blue flag is at its base.

(7)

With these definitions, the rules outlined in Section 2 can
be summarized through the following update laws.

The dynamics of the ‘tagging ability’ state: Accord-
ing to rule (c), a robot loses its tagging ability after tagging
another robot. Hence, if

∃iR ∈ NR,
∃kB ∈ NB

s.t.

{
piR

∈XB, qiR=0,

piR
∈γCBpkB

,τkB
≤0,

pkB
∈XB, and qkB

=0,
then τ+kB

= T̄ . (8a)

Here, (8a) encodes that robot kB is in the position to tag
robot iR, and thus, τkB

is updated. By setting the flow of
τkB

as τ̇kB
= −1, we can ensure that a robot regains its

tagging ability after T̄ seconds by checking when τkB
≤ 0.

The dynamics of the ‘tagged’ state: To implement
rule (a), we consider the following scenario and update
law. If

∃iR ∈ NR,
∃kB ∈ NB

s.t.

{
piR

∈XR, qiR=0,

pkB
∈γCBpiR

,τiR≤0,

pkB
∈XR, and qkB

=0
then q+kB

=1− qkB .

(9a)

Here, (9a) reflects that robot iR is in the position to tag
robot kB, and thus, qkB

is updated to 1.

Two additional cases are considered for the update of qkB
.

In particular,

if { pkB
/∈X and qkB

=0, then q+kB
= 1− qkB , (9b)

and

if { pkB
∈γFBFB

and qkB
=1, then q+kB

= 1− qkB
, (9c)

cover rule (b), i.e., a robot leaving the playing field is
deactivated and a deactivated robot returning to its flag
base is reactivated. If none of these events occur, qkB

remains constant and, thus, q̇kB
= 0.

The dynamics of the ‘carrying-the-flag’ state: If a
robot kB ∈ NB carries the flag when it is tagged, then it
loses the flag. This (see rule (a)) is encoded through the
following update law. If

∃iR ∈ NR s.t.


piR

∈XR, qiR=0,

τiR≤0, µR=0,

pkB
∈γCBpiR

,

qkB
=0, and ηkB

=1,

then η+kB
=1−ηkB

.

(10a)

Similarly,

if
{

pkB
/∈X, qkB

=0,
ηkB

=1, µR=0, then η+kB
=1− ηkB (10b)

encodes that kB ∈ NB loses the flag when leaving the
playing field (see rule (b)). The update law

if

{
pkB

∈γFBFR
,

qkB
=0, ηkB

=0,
µR=1,

then η+kB
=1− ηkB (10c)

encodes that kB captures the red team’s flag (see rule (d)).
If kB returns the red flag to the blue flag base, then ηkB is
updated according to rule (f), which is

if

{
pkB

∈γFBFB
,

qkB
=0,ηkB

=1,
µR=0

then η+kB
=1− ηkB . (10d)

A final rule is implemented to ensure that only one robot
carries the flag at a time. According to (10c), more than
one robot is able to update their η logic state at the
same time, encoding that they all have “captured the flag.”
To address this, and ensure that only one blue robot is
carrying the red flag according to rule (e), for all kB ∈ NB,
the update law

if

(
ηkB

kB∑
mB=1

ηmB

)
≥ 2 then η+kB

=1− ηkB
(10e)

ensures that only one robot (by convention the robot with
the smallest index) has its η logic state equal to 1 after
the update. As before, if none of these events occur, ηkB

remains constant and thus, η̇kB = 0.

The dynamics of the flag state: If a red robot grabs
the blue flag according to rule (d), µB needs to be updated
from 1 to 0. This is modeled by the following update. If

∃iR ∈ NR s.t.

{
qiR=0, ηiR

=0,

piR
∈γFBFB

,
µB=1,

then µ+
B =1− µB. (11a)

Similarly, if the red flag is successfully carried to the
blue flag base γFBFR

(see rule (f)), then, the flag is
instantaneously returned to its base and µB is updated
to 1, which is described by

if ∃iR ∈ NR s.t.

{
qiR=0,ηiR

=1,

piR
∈γFBFR

,
µB=0,

then µ+
B =1− µB. (11b)

If the robot carrying the flag is deactivated by leaving the
playing field, then the flag is instantaneously returned to
its base, i.e.,

if ∃iR ∈ NR s.t.
{

qiR=0,ηiR
=1,

piR
/∈X,µB=0, then µ+

B =1− µB,

(11c)

(see rule (b)). Similarly, if a red robot is tagged while
carrying the blue flag, then the flag is instantaneously
returned to its base (see rule (a)), as follows. If

∃iR ∈ NR,
∃kB ∈ NB

s.t.


qiR=0,ηiR

=1,

piR
∈XB,µB=0,

piR
∈γCBpkB

,

qkB
=0,pkB

∈XB,
τkB

=0,

then µ+
B =1−µB. (11d)

If none of these events occur, µ̇B = 0.

3.2 Flow and Jump Sets of the Hybrid Dynamical System

Using the scenario-based update laws in the previous
section, we describe the game as a hybrid dynamical
system H. The state and input of the system are

x = (xB, xR), u = (uB, uR),

xB = (x1B , . . . , xbB , µB), uB = (u1B , . . . , ubB),

xR = (x1R , . . . , xrR , µR), uR = (u1R , . . . , urR),

where each xkB
and xiR is defined as in (3), and the state

space and input space are defined as

X =

{
x

∣∣∣∣∣ xkB
∈ XkB

∀ kB ∈ NB

xiR ∈ XiR ∀ iR ∈ NR

µB, µR ∈ {0, 1}

}
,

U =

{
u

∣∣∣∣ ukB
∈ UkB

∀ kB ∈ NB

uiR ∈ UiR ∀ iR ∈ NR

}
,

(12)

respectively, with XkB defined as in (3). The definitions
of the flow map F , the jump map G, the flow set C, and
the jump set D are presented next. With that aim, we
introduce first the following case-based jump sets.



Define the set where robot kB ∈ NB tags robot iR ∈ NR

Dtag
kB,iR

:=

x ∈ X

∣∣∣∣∣∣
pkB

∈ XB, qkB
= 0,

piR ∈ XB, qiR = 0,
piR ∈ γCBpkB

, τkB
≤ 0

 . (13)

This set corresponds to the update (8a). In addition,
to encompass the states where the red robot iR is tagged
while carrying the blue flag, we define

Dtagf
kB,iR

:=
{
x ∈ Dtag

kB,iR
|ηiR = 1, µB = 0

}
, (14)

encoding the set for the jump of µB in (11d). For any

iR ∈ NR and kB ∈ NB, the set Dtagf
iR,kB

is defined similarly.

Combining these definitions, denote

Dtag
kB

:=
⋃

iR∈NR

Dtag
kB,iR

, (15)

Dtagf
kB

:=
⋃

iR∈NR

Dtagf
kB,iR

, (16)

Dtag
B :=

⋃
kB∈NB

Dtag
kB

, (17)

Dtagf
B :=

⋃
kB∈NB

Dtagf
kB

. (18)

Here, (15) characterizes the set where the robot kB can tag,
and (17) characterizes the sets where the blue team can
tag. Likewise, (16) and (18) are subsets of (15) and (17),
respectively, where the tagged robot carries the flag.

Remark 1. Due to the definitions of XB and XR, it is not
possible that kB ∈ NB and iR ∈ NR tag each other at the
same time since ε > 0 and XB ∩ XR = ∅. ◦

A robot kB ∈ NB captures the flag when in the set

Dflag
kB

:= {x ∈ X| qkB = 0, ηkB = 0, pkB ∈ γFBFR , µR = 1},
which corresponds to the update in (10c). The set at which
the blue team can capture the red flag is defined as the
union of individual sets, namely,

Dflag
B :=

⋃
kB∈NB

Dflag
kB

. (19)

As modeled by (10e), multiple blue robots potentially
could capture the red flag at the same time. To rule
out having multiple blue robots carrying the red flag
simultaneously, we define the sets

Dflag,µ
kB

:=

{
x ∈ X

∣∣∣∣∣
(
ηkB

kB∑
mB=1

ηmB

)
≥ 2

}
, Dflag,µ

B :=
⋃

kB∈NB

Dflag,µ
kB

(20)

which trigger a jump if multiple blue robots update their
η state at the same time and ensure that only one has its
η logic state equal to 1 at the same time.

The red flag has been successfully carried to the blue
team’s base if the state is in

Dµ
B :=

⋃
kB∈NB

Dµ
kB
, (21a)

where

Dµ
kB

:= {x ∈ X| pkB ∈ γFBFB , ηkB = 1, µR = 0, qkB = 0} .
(21b)

The corresponding jump is encoded by the update (10d),
modeling that the blue robot no longer carries the red flag
and the flag is instantaneously returned to the red base.

If a robot kB ∈ NB is active and leaves the playing field,
i.e., the state is in

DX
kB

:=
{
x ∈ X| pkB

∈ R2\X, qkB = 0
}
, (22)

then, qkB
is updated according to (9b). The closure of

R2\X is used so that DX
kB

is closed.

If in addition, the corresponding robot is carrying the red
flag when leaving the playing field, that is, the state is in

DXf
kB

:=
{
x ∈ DX

kB
|ηkB

= 1, µR = 0
}
,

then the states ηkB and µkB are updated according to (10b)
and (11c), respectively. From the local jump sets, we define
the sets at which B leaves the playing field as

DX
B :=

⋃
kB∈NB

DX
kB
, DXf

B :=
⋃

kB∈NB

DXf
kB

, (23)

If a robot kB is tagged or has left the playing field, it needs
to reach the set

Dutag
kB

:= {x ∈ X| qkB
= 1, pkB

∈ γFBFB
} (24)

to be reactivated, as encoded through (9c).

We define the set at which B regains its tagging ability as

Dutag
B :=

⋃
kB∈NB

Dutag
kB

.

The sets above define the events that encode the rules of
the game, which we use to define the jump set of H as

D := Dtag
B ∪Dtag

R ∪Dflag
B ∪Dflag

R ∪Dflag,µ
B ∪Dflag,µ

R

∪Dµ
B ∪Dµ

R ∪DX
B ∪DX

R ∪Dutag
B ∪Dutag

R .
(25)

Note that D ⊂ X is closed since it is the union of closed
sets. Correspondingly, the flow set is defined as

C := X\D. (26)

The closure is used to ensure that C is closed, which is
needed to guarantee that H is well-posed.

Remark 2. Note that the proposed modeling approach
allows a robot kB ∈ NB to tag multiple robots of R at
the same time if the state is in multiple tagging jump sets
simultaneously, e.g., x ∈ Dtag

kB,1R
∩Dtag

kB,2R
. Likewise, a robot

kB can be tagged by multiple robots of R at the same time
(if x ∈ Dtag

1R,kB
∩Dtag

2R,kB
, for example), removing multiple

tagging abilities for T̄ seconds. ◦

3.3 Overall Hybrid System Model

Now, we use the expressions in Sections 3.1 and 3.2 to
define a hybrid dynamical system H to model the capture-
the-flag game. For each x in the flow set C as in (26) and
each u in the set of inputs U as in (12), the state of a robot
kB ∈ NB evolves continuously according to

ẋkB
=

 ṗkB

τ̇kB

q̇kB

η̇kB

=FkB
(xkB

, ukB
) :=

 f(pkB , ukB)
−1
0
0

,
and the flag state evolves according to µ̇B = 0. The maps
FiR(xiR , uiR), iR ∈ NR, are defined similarly.

Based on the robots individual flow maps, the game
evolves continuously for all x ∈ C according to

ẋ = F (x, uB,uR)

:= (F1B(x1B , u1B), . . . , FbB(xbB , ubB), 0,

F1R(x1R , u1R), . . . , FrR(xrR , urR), 0). (27)

The definition of the jump map is more complicated since
it requires the union of case-based individual jump maps.
Again, we focus on the derivation from the perspective



of B, while the definitions for R follow analogously. For
x ∈ D, kB ∈ NB, we consider the following definitions.
First, notice that the position of a robot does not change at
a jump, i.e., p+kB

= pkB for each x ∈ D. For the remaining

state variables recall the set Dtag
kB

in (15), where a robot
kB tags a robot iR, and define the sets

D
(1)
kB

:=Dtag
kB

,

D
(2)
kB

:=

(( ⋃
iR∈NR

Dtag
iR,kB

)
∪DX

kB
∪Dutag

kB

)
\D(1)

kB
,

D
(3)
kB

:=

(( ⋃
iR∈NR

Dtagf
iR,kB

)
∪Dflag

kB
∪Dflag,µ

kB
∪Dµ

kB
∪DXf

kB

)
\D(1)

kB
∪D

(2)
kB

,

DµR
:=Dtagf

R ∪Dflag
B ∪Dµ

B ∪DXf
B ,

where a jump is triggered to update the variables τkB
, qkB

,
ηkB

, and µR. This construction gives a sequential priority
to the jumps that occur on DkB1, then on DkB2, and lastly
on DkB3. The definition of DkB2 follows from the local
jump sets (13), (22), and (24). The justification for the
form of DkB3 stems from (16), (19), (20), (21), and (23).
The definition of DµR

is consistent with the definition of
the sets (18), (19), (21), and (23).

Based on these sets, we define the corresponding local

jump maps ĝkB,m : D
(m)
kB

→ X, m ∈ {1, 2, 3}, where
ĝkB,1(x) := (zkB

, T̄ , qkB
, ηkB

) if x ∈ DkB1,

ĝkB,2(x) := (zkB , τkB , 1− qkB , ηkB) if x ∈ DkB2,

ĝkB,3(x) := (zkB
, τkB

, qkB
, 1− ηkB

) if x ∈ DkB3,

ĝµR(x) := 1− µR if x ∈ DµR .

Depending on the local jump maps, the corresponding
states are updated.

Simplifying the jump sets above by eliminating the disjoint
sets via a scenario-based analysis, we define the sets

∆τ
kB

:= Dtag
kB

,

∆q
kB

:= (DX
kB

\Dtag
kB

) ∪Dutag
kB

,

∆η
kB

:=

(
Dflag

kB
\
⋃

iR∈NR

Dtagf
iR,kB

)
∪ (Dµ

kB
\Dtag

kB
),

∆µ
kB

:= Dflag,µ
kB

\
⋃

iR∈NR

Dtag
iR,kB

.

To construct the jump map of the tagging ability states,
we define, for kB ∈ NB, iR ∈ NR, the maps

Ĝτ
kB,iR(x) :=

(x1B
,...,ĝkB,1(x),...,xbB

,µB,

x1R
,...,ĝiR,2(x),...,xrR

,µR)
if x ∈Dtag

kB,iR
.

Putting the individual jump maps together, we define

ĜkB,τ (x) :=
⋃

iR∈NR

Ĝτ
kB,iR(x) if x ∈ ∆τ

kB
.

Consider the jump map of the tagged states for which we
define, for kB ∈ NB, the mappings

ĜkB,q(x) :=
(x1B

,...,ĝkB,2(x),...,xbB
,µB,

x1R
,...,xrR

,µR)
if x ∈ ∆q

kB
.

Consider the jump map of the carrying-the-flag states for
which we define, for kB ∈ NB, the mappings

ĜkB,η(x) :=
(x1B

,...,ĝkB,3(x),...,xbB
,µB,

x1R
,...,xrR

,ĝµR
(x))

if x ∈ ∆η
kB
,

and for the case of multiple robots capturing the flag, the
mappings

ĜkB,µ(x) :=
(x1B

,...,ĝkB,3(x),...,xbB
,µB,

x1R
,...,xrR

,µR)
if x ∈ ∆µ

kB
.

The constructions above lead to the jump map

G(x) :=

{
Ĝs⋆,z(x)

∣∣∣∣ x ∈ ∆z
s⋆ , ⋆ ∈ {B,R},

s ∈ N⋆, z ∈ {τ, q, η, µ}

}
. (28)

The discrete evolution of the game is governed by

x+ ∈ G(x), x ∈ D. (29)

The overall game is modeled by H given in (25)–(29).

Before we introduce the objective function of the game in
the next section, we highlight some important properties
of the hybrid system.

Lemma 1. Consider the hybrid system defined in (25)–
(29). Suppose f is continuous. Then, H satisfies the hybrid
basic conditions (Sanfelice, 2021, Def. 2.20), that is, F is
continuous, G : D ⇒ X in (28) is outer semicontinuous
and locally bounded, and C and D are closed. ⌟

Following (Sanfelice, 2021, Definition 2.18), we say that
a system H that satisfies the hybrid basic conditions is
well posed. Well posedness of hybrid closed-loop systems
guarantees key structural properties of solutions.

Lemma 2. Consider the hybrid system defined in (25)–
(29). For each given input t 7→ (uB(t), uR(t)) with domain
[0,∞), and for each initial condition x0 ∈ C ∪ D, there
exists a maximal solution (Sanfelice, 2021, Definition 2.29)
to H that is complete and its domain is unbounded in the
ordinary time variable. ⌟

4. ZERO-SUM FORMULATION

This section discusses the objective of the game that was
described in Section 2 and it proposes a meaningful
objective function to define a zero-sum game.

Based on the definition of Dµ
B and Dµ

R in (21), the overall
goal of capturing the opponent’s flag and returning it to
the team’s own base is encoded by the objective function

Jg(x0, (uR(·), uB(·))) := sup
x(·)∈R(x0,(uR(·),uB(·)))∑

(tj+1,j)∈dom x(·)

(
1Dµ

B
(x(tj+1, j))− 1Dµ

R
(x(tj+1, j))

) (30)

where {tj}
supj dom x

j=0 is a nondecreasing sequence asso-
ciated to the definition of the hybrid time domain of
(x(·), (uR(·), uB(·))) as in Sanfelice (2021) and R(x0, u)
is the set of maximal state trajectories to H from x0

for (uR(·), uB(·)), as defined in Section 3. The cost Jg is
defined as the worst-case cost over all solutions from x0.

Based on this definition, the value function is given by

J ⋆
g (x0) = inf

uR(·)
sup
uB(·)

Jg(x0, (uR(·), uB(·))) (31)

= sup
uB(·)

inf
uR(·)

Jg(x0, (uR(·), uB(·))) (32)

where team B aims to maximize the cost while team R
seeks to minimize it. If J ⋆

g (x0) > 0, team B wins, and if
J ⋆
g (x0) < 0, team R wins.



Even though the cost function in (30) encodes the objec-
tive of each team, the synthesis of optimal control laws is
an open problem of research.

5. NUMERICAL SIMULATIONS

Consider a scenario with three robots in each team,
initialized as in Figure 1. A simulation tool has been
developed 3 where the rules of the game are encoded by
implementing the hybrid model in Section 3. This tool
allows one to test different controllers. Some of the robots
have been endowed with a switched controller following
the derivations in Garcia et al. (2018).

(a) Blue robots getting tagged. (b) Blue robots are deactivated.

(c) Red robot captures the flag. (d) Red robot carries the flag.

(e) Red robot dropping the flag. (f) Flag back at blue home.

Fig. 2. Simulation of hybrid model as in Section 3. Each
row depicts an update on the state due to a jump.

In Figure 2(a), a blue robot is about to be tagged and
another blue robot is about to exit the playing field.
Thus, x ∈ Dtag

iR,kB
∩DX

kB
as in (13) and (22), which trigger

the state to jump according to (9). When the state qkB is
updated, denoting a robot has been deactivated, its marker
color changes to black as in (b) and the controller leads
them to head back to the base according to the law

κkB
(x) := cos−1

(−XF − pkB,1

|FB − pkB |

)
. (33)

In addition, a robot that has a tagging timeout changes its
color to green or orange, depending on whether it belongs
to B or R, respectively. In (c), a red robot is about to

capture the blue flag, so x ∈ Dflag
iR

as in (19), which triggers
a jump in the state according to (10c) and (11a). When the
states ηiR and µB are updated, denoting that a red robot
has captured the blue flag, its marker changes to a star as
in (d), the marker denoting the position of the flag at its
base turns white, and the controller leads the red robot
to head back to its base according to the attack strategy
design in Phase II in Garcia et al. (2018). In (e), the red
robot carrying the flag arrives to its base, namely, x ∈ Dµ

R
as in (21), which triggers a jump in the state according to

3 Code at https://github.com/sjleudo/HybridCaptureTheFlag

(10d) and (11b). When the states ηiR and µB are updated,
denoting the red team has scored because a red robot
returns the blue flag to the red base, its marker changes
back to a circle as in (f), the marker denoting the position
of the base turns blue, and the controller κiR(x) := π leads
the red robot to cross the midfield.

6. DISCUSSION AND CONCLUDING REMARKS

This paper proposes a hybrid system formulation with a
zero-sum hybrid games framework to describe exhaustively
capture-the-flag games. While synthesizing a controller in
an optimal fashion represents an unsolved challenge, a
simulation tool is developed to implement the game model
with a preliminary controller design. Future work will
focus on suboptimal controller designs with performance
guarantees using model predictive control approaches.
This will be further explored following Braun et al. (2023).
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