
RLJ | RLC 2024

MultiHyRL: Robust Hybrid RL for Obstacle Avoid-
ance against Adversarial Attacks on the Observa-
tion Space

Jan de Priester
jadeprie@ucsc.edu
University of California Santa Cruz
Department of Electrical and Computer Engineering

Zachary I. Bell
zachary.bell.10@us.af.mil
Air Force Research Lab
Munitions Directorate

Prashant Ganesh
prashantganesh@episci.com
EpiSci

Ricardo G. Sanfelice
ricardo@ucsc.edu
University of California Santa Cruz
Department of Electrical and Computer Engineering

Abstract

Reinforcement learning (RL) holds promise for the next generation of autonomous
vehicles, but it lacks formal robustness guarantees against adversarial attacks in
the observation space for safety-critical tasks. In particular, for obstacle avoid-
ance tasks, attacks on the observation space can significantly alter vehicle behavior,
as demonstrated in this paper. Traditional approaches to enhance the robustness
of RL-based control policies, such as training under adversarial conditions or em-
ploying worst-case scenario planning, are limited by their policy’s parameterization
and cannot address the challenges posed by topological obstructions in the pres-
ence of noise. We introduce a new hybrid RL algorithm featuring hysteresis-based
switching to guarantee robustness against these attacks for vehicles operating in en-
vironments with multiple obstacles. This hysteresis-based RL algorithm for coping
with multiple obstacles, referred to as MultiHyRL, addresses the 2D bird’s-eye view
obstacle avoidance problem, featuring a complex observation space that combines
local (images) and global (vectors) observations. Numerical results highlight its
robustness to adversarial attacks in various challenging obstacle avoidance settings
where Proximal Policy Optimization (PPO), a traditional RL method, fails.

1 Introduction

To develop the next generation of autonomous vehicles that can robustly and safely navigate the
physical world, reinforcement learning (RL) has shown a lot of promise (Everett et al., 2018; Cimurs
et al., 2020; Choi et al., 2021; Feng et al., 2021; Kästner et al., 2021). In Everett et al. (2018); Cimurs
et al. (2020); Choi et al. (2021), methodologies for obstacle avoidance are developed that leverage RL
and are effective in environments with dynamic obstacles, such as pedestrians. In Feng et al. (2021);
Kästner et al. (2021), methodologies are developed for applying RL in challenging environments, such
as narrow corridors or highly dynamic environments. One of the main challenges of applying RL
safely for safety-critical tasks, such as obstacle avoidance, is the lack of formal robustness guarantees
against adversarial attacks.

Adversarial attacks can occur in various forms. Simply stated, attacks can target the state space,
such as a change in dynamics like a propeller chipping of a quadrotor, or the observation space,
such as a perturbation on the camera image. In this paper, the focus is on robustness against
adversarial attacks on the observation space. Specifically, we consider adversarial attacks on vehicle



RLJ | RLC 2024

Figure 1: Overview of the bird’s-eye view obstacle avoidance setting. The orange arrow depicts the
vehicle, the yellow square depicts the bird’s-eye view image, the gray circle depicts the obstacle, and
the cross depicts the target. The blue and green arrows represent trajectories from the RL policy
when the vehicle is above or below the red dashed decision boundary. The red arrow shows the
trajectory with small measurement noise. The purple arrow indicates the vehicle’s orientation ξ.
The black arrows represent the position and orientation errors ed and eθ with respect to the target.

problems operating in environments with obstacles. An obstacle introduces a topological obstruction
by dividing the navigable space, requiring vehicles to pass the obstacle clockwise or counterclockwise.
Employing a discontinuous control strategy allows the vehicle to be directed around the obstacle to
its target. However, (arbitrarily) small measurement noise can undermine the global attractiveness
of such a discontinuous controller, making the controller lack robustness against (arbitrarily) small
measurement noise, see Prieur et al. (2007); Mayhew et al. (2011). To illustrate these robustness
issues, consider the problem of steering a vehicle to move past an obstacle so as to reach a target.
After successfully training the control algorithm onboard the vehicle, a policy is found that navigates
the vehicle to bypass an obstacle and reach a target, rendering the target globally attractive. Figure 1
shows an overview of the found policy: the vehicle steers left when above the decision boundary,
illustrated by the red dashed line in Figure 1, and steers right below the decision boundary. However,
when the vehicle is near the decision boundary, issues may arise due to noisy observations. For
instance, suppose the vehicle is physically above the decision boundary, but the noisy observations
may report it to be below it. As a result, the vehicle wrongly turns right. Conversely, if the
vehicle is physically below the decision boundary but reported to be above, it would incorrectly
turn left. Repetition of this occurrence can cause the vehicle to get stuck in front of the obstacle
or drive straight into it, as shown in Figure 1 (see also Section 3.2). This scenario demonstrates
that (arbitrarily) small noise can compromise the policy in critical situations. The notion of critical
points in the observation space is relevant to other problems where chattering between policies
causes undesired behavior. This extends to various RL domains, such as hierarchical RL (Frans
et al., 2017; Nachum et al., 2018) and options-based methods (Bacon et al., 2016; Barreto et al.,
2021). For example, in a pick-and-place task, a robot might need to place an object into one of
two equally distant and suitable boxes. If the robot is positioned at exactly the same distance
between the two boxes, even an arbitrarily small amount of noise can cause indecisiveness, leading
to chattering between the options and resulting in inefficiencies and delays.

Various approaches have been proposed in the literature to improve the general robustness of RL-
based control policies against noisy observations or model parameter alterations. Examples are
training in the presence of adversarial attacks (Papernot et al., 2015; Mandlekar et al., 2017; Madry
et al., 2018; Tramèr et al., 2018), considering a worst-case scenario (Pinto et al., 2017; Lütjens
et al., 2020; Zhang et al., 2020; Everett et al., 2022; Liang et al., 2022), or by using control barrier
functions (Emam et al., 2021; Cheng et al., 2023). Notably, a few studies address adversarial attacks
targeting the observation space (Lütjens et al., 2020; Zhang et al., 2020; Everett et al., 2022).
However, these methods focus on worst-case adversary scenarios for (memoryless) policies with
traditional continuous or discrete action spaces. While these methods enhance the general robustness
against noisy observations or model parameter alterations, they cannot address the challenges posed
by topological obstructions. Specifically, because these methods utilize a continuous or (memoryless)
discrete policy parameterization, they fail to prevent the problematic chattering behavior as sketched



RLJ | RLC 2024

in the autonomous vehicle example above and shown in more detail in Section 3. Contrary to these
works, our approach amalgamates ideas from hybrid control theory to overcome the limitations of
traditional policies. We introduce a new hybrid RL algorithm, referred to as MultiHyRL, that
overcomes these limitations by implementing hysteresis switching modeled by a hybrid system.
MultiHyRL, described in Section 4, provides a hybrid control policy that is robust against adversarial
attacks on the observation space near critical areas for environments with an arbitrary number of
randomly located obstacles. MultiHyRL identifies critical points, such as the decision boundary in
Figure 1, for a control policy obtained via a standard RL method1 and uses this policy to separate
the state space into overlapping sets, thereby effectively removing the topological obstruction from
the state space. Next, new control policies are trained for each overlapping set via a standard RL
method, and the policies are combined in a hybrid system that supervises the newly obtained policies
and implements hysteresis-based switching by introducing two logic variables. To emphasize the
effectiveness of our approach, we consider the bird’s-eye view obstacle avoidance problem, described
in Section 3, whose observation space is complex with the combination of local (images), shown on
the left in Figure 1, and global (vectors) observations, shown on the right in Figure 1. In Section 5,
we empirically show the robustness of the MultiHyRL agent compared to the normal agent for
various settings.2

2 Preliminaries

2.1 Notation

The following notation is used throughout the paper. The n-dimensional Euclidean space is denoted
by Rn. The real numbers are denoted by R. The nonnegative real numbers are denoted by R≥0,
i.e., R≥0 := [0,∞). The natural numbers including 0 are denoted by N, i.e., N := {0, 1, 2, ...}. The
natural numbers excluding 0 are denoted by N>0, i.e., N>0 := {1, 2, ...}. The closed unit ball, of
appropriate dimension and centered at the origin, in the Euclidean norm is denoted by B. The
Euclidean norm of the vector x is denoted by |x|. The distance from x to the set nonempty S
is denoted by |x|S , which is given by infy∈S |x − y|. The convex hull of the set S is denoted
by Conv(S). The interior of a set S is denoted by int S. The boundary of the set S is denoted
by ∂S. The domain of a map f is denoted by dom f . The unit circle is denoted by S1 and is defined
as S1 :=

{
x ∈ R2, |x| = 1

}
. The 4-quadrant inverse tangent is denoted by arctan2. The signum

function is denoted by sgn and is defined as sgn(χ) := −1 if χ < 0 and sgn(χ) := 1 if χ ≥ 0. The

identity matrix is denoted by I. The rotation matrix
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is denoted by Rot(θ).

2.2 Reinforcement learning framework

Markov decision processes (MDPs) are used as a formalism for Reinforcement Learning (RL) (Put-
erman, 1994). In an MDP, the learner/controller is referred to as the agent and interacts with an
environment. An episode is the system’s deployment in an environment from an initial condition and
subjected to inputs over a finite or infinite time horizon. The agent’s state z ∈ Z , where Z ⊂ Rn is
a set of states, evolves according to its dynamics

ż = f(z, u), (1)

where f : Z × U → Z and u ∈ U is the control input, where U ⊂ Rm is a set of actions. During an
episode, the environment yields rewards based on the reward function R : Z × U → R to connect
specific state-action pairs to reward values. The goal of RL is to find a policy π : Z → U that

1Proximal Policy Optimization (PPO) (Schulman et al., 2017) is used as the ‘normal’ RL algorithm for the control
policies derived in this paper. Nevertheless, the approach can be applied to other RL methods as well. The details
on the used PPO implementation are given in Appendix A.1.

2All the simulation files are available at www.github.com/HybridSystemsLab/MultiHyRL

www.github.com/HybridSystemsLab/MultiHyRL


RLJ | RLC 2024

maximizes the return functional

G(τ) :=
∫ T

t=0
γtR(z(t), u(t)) dt, (2)

where τ = (z, u) ∈ Z × U is a solution pair to (1), defined for each t ∈ [0, T ], where T ∈ R>0 is the
horizon length, under the policy π ∈ Π, where Π is the set of possible policies, and γ ∈ [0, 1) is the
discount factor that weighs the importance of future rewards.

2.3 Hybrid Systems

A hybrid system H = (C,F,D,G) is defined as

H :
{
ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

(3)

where x ∈ Rn denotes the state variable, x+ the state variable after a jump, F : C → Rn
is a function referred to as the flow map, C ⊂ Rn is the set of points referred to as the flow
set, G : D → Rn the jump map, and D ⊂ Rn is the jump set. When the state is in the flow set,
the state is allowed to evolve continuously and is described by the differential equation defined by the
flow map. When the state is in the jump set, the state is allowed to be updated using the difference
equation defined by the jump map. In this way, with some abuse of notation, the solution to (3) is
given by a function (t, j) 7→ x(t, j) defined on a hybrid time domain, which properly collects values
of the ordinary time variable t ∈ R≥0 and of the discrete jump variable j ∈ N. The hybrid system H
allows for the combination of continuous-time behavior (flow) with discrete-time behavior (jumps).
For more details on hybrid dynamical systems, see Goebel et al. (2012); Sanfelice (2021).

3 Motivation

3.1 Vehicle Dynamics and Bird’s-Eye View Problem Formulation

We consider a vehicle evolving on the plane with the state z = (p, ξ) ∈ Z ⊂ R2 × S1 and dynamics
given by

ż = f(z, u) :=
[

uvξ
urRot

(
− 1

2π
)
ξ

]
, (4)

where p = (px, py) ∈ P denotes the planar position, with px ∈ Px and py ∈ Py being the coor-
dinates along the x- and y-axes, respectively. The orientation of the vehicle is ξ ∈ S1, as shown
in Figure 1. The control input u = (uv, ur) consists of uv ∈ [−1, 1] controlling the forward veloc-
ity and ur ∈ [−1, 1] controlling the orientation. In addition, the environment features N ∈ N>0
circular obstacles with a radius of rob ∈ R>0 centered at Pob = {pob,1, pob,2, . . . , pob,N} ⊂ P ,
where pob,i = (pob,i,x, pob,i,y) is the planar position of obstacle i ∈ {1, 2, . . . , N}. To detect collisions
of the vehicle with an obstacle, we define the collision set C as the set of planar positions p for which
the distance to the boundary of an obstacle is zero, that is, C := {p ∈ P : |p|Pob ≤ rob}.

The problem to solve consists of designing an RL-based controller for the vehicle in (4) to avoid
the obstacles and safely reach the set-point position p∗ = (p∗

x, p
∗
y) ∈ P asymptotically. The full

plant model of the system, shown in Figure 2, consists of the vehicle’s dynamics (4) and a function
that provides measurements, or equivalently, observations based on the perturbed state z′ := z+m,
where z′ = (p′, ξ′) ∈ Z and m ∈ R4 is measurement noise. The observations consist of the planar
position error ep(p′) = |p′|p∗ , the orientation error eθ(z′) = arctan2(p∗ − p′) − arctan2(ξ′) mapped
within −π to π, and a binary square image I ∈ {0, 1}nres×nres , where 0 corresponds to no obstacle, 1
corresponds to an obstacle, and nres ∈ N>0 is the resolution of the image. The image is taken
from above, providing a limited bird’s-eye view of the environment, as shown in Figures 1 and 2.
The image is centered on the vehicle’s perceived center of mass, which is located at p′.3 To ensure

3The image is based on the perturbed state z′. Robustness against image-level noise, such as blurriness and
rotations, is beyond the scope of this paper as the focus is on perturbations that cause chattering behavior.



RLJ | RLC 2024

Figure 2: Overview of the closed-loop control architecture for the bird’s-eye view obstacle avoidance
problem.

consistency of the image with the perceived vehicle’s body frame as the vehicle turns, the image is
rotated with the angle of ξ′ as shown in the ‘Output to Observation’ block in Figure 2. Furthermore,
the image has an equal width and length of wbev×wbev, and a resolution of nres×nres array elements.

The obstacles have the following three properties:
(O1) the obstacles are static and have the same radius rob;4
(O2) the obstacles are disconnected from each other with a spacing between each obstacle greater
than

√
2wbev, such that only one obstacle is visible to the agent for any state z ∈ Z ;

(O3) the distance between an obstacle and the set-point position p∗ is greater than 1
2
√

2wbev, such
that no obstacles are visible to the agent when the agent is at the set-point position p = p∗.

The control architecture, shown in Figure 2, consists of a feature extractor and a standard Multi-
Layer Perceptron (MLP) to map the extracted features to a control policy. An MLP is trained
to extract the relevant features from the planar position error ep and the orientation error eθ.
Concurrently, a Convolutional Neural Network (CNN) is trained to extract the relevant features
about nearby obstacles from the bird’s-eye view image I .5 The details on the architectures of the
CNN and MLPs and their hyperparameters are given in Appendix A.2.

To motivate the agent to navigate around obstacles and reach the set point, a smooth reward function
is crafted with the following components three components:
(R1) a penalty for deviating from the set-point position p∗, encouraging the agent to reach the
set-point position via the shortest path: −c1ep ∈ R≤0, where c1 ∈ R>0 is a weight;
(R2) a penalty for deviating from the orientation corresponding to the shortest path to the position
set point p∗ : −c2 min(ep, c3)|eθ| ∈ R≤0, where c2, c3 ∈ R>0 are weights. This component is scaled
by min(ep, c3) such that c2 min(ep, c3)|eθ| → 0 as ep → 0 and c2 min(ep, c3)|eθ| → c2c3|eθ| as ep →
∞;6
(R3) a penalty for when the agent is in observable proximity to an obstacle for any orientation ξ ∈ S1

to encourage a safe distance between the agent and the obstacle: −c4B(|p|C), where c4 ∈ R>0 is a
weight. The function B, similar to the one defined in Sanfelice et al. (2006), serves as a barrier
function and is defined as B(χ) := (χ− 1

2wbev)2 ln wbev
2χ if χ ∈ [0, 1

2wbev] and B(χ) := 0 if χ > 1
2wbev.

The agent is in observable proximity to an obstacle for any orientation ξ ∈ S1 when the distance to
an obstacle is less than half the width of the image: |p|C ∈ [0, 1

2wbev]. Combining these components
yields the following reward function, which, in this case, depends on z only:

R(z) = −c1ep − c2|eθ|min(ep, c3)− c4B(|p|C) ∀z ∈ Z . (5)

4The method can be applied to moving obstacles and those with various radii, as demonstrated in Appendix C.
5The relevant features for the network in Figure 2 are unknown before training. During training, both the network

and feature extractor are trained concurrently, so the meaning of relevant features may change. After training, the
extracted features can be analyzed to interpret their meanings.

6This scaling is necessary as eθ is undefined for p = p∗. Furthermore, the min saturates the penalty for large values
of ep, such that the orientation penalty does not grow unproportionally large with respect to the other penalties.



RLJ | RLC 2024

3.2 Lack of Robustness

4 2 0 2 4

px

4

2

0

2

4

p
y

p ∗

(a) Without noise.

4 2 0 2 4

px

4

2

0

2

4

p
y

p ∗

(b) With noise εp = 0.1.

Figure 3: Visualization of state trajectories (or
solutions) for various initial conditions in a four
obstacle scenario, with and without measurement
noise. The trajectories alternate colors for read-
ability. The gray circles denote obstacles, the ×’s
denote the initial conditions, the ◦’s denote the
terminal positions, and the red ⋆ denotes the set-
point position p∗.

To demonstrate the lack of robustness in RL-
based control policies, a policy for the system
described in Section 3.1 is found using the PPO
algorithm. Specifically, the control policy is
trained for a canonical setting with a single
obstacle at pob = (−2, 0) and a set point at
p∗ = (0, 0). The observations provided to the
agent enable the policy to generalize across var-
ious obstacle settings, as long as the obstacles
adhere to the properties outlined in Section 3.1.
Figure 3 shows the state trajectories for a four-
obstacle setting; details on the simulation imple-
mentation are provided in Appendix B.4. Fig-
ure 3a shows that the policy steers the vehicle
clockwise or counterclockwise for a small change
in the initial condition (denoted by ×). How-
ever, the policy fails to pass the obstacle when it approaches the obstacle in the center. This is a
limitation of the continuity of the policy parameterization, which causes it not to steer away from
the obstacle for some states. When an arbitrarily small amount of noise is applied to the perceived
position of the vehicle, the policy can mistakenly steer the vehicle clockwise when it should steer
counterclockwise and vice versa, inducing “chattering” behavior. Figure 3b demonstrates this chat-
tering behavior and the vehicle getting stuck in front of the obstacle due to measurement noise on
the measured vehicle position. Details on the simulation are given in Section 5.

In this paper, motivated by such fragility of RL-based algorithms, we develop an algorithm that
results in a closed-loop hybrid system whose behavior is robust against those disturbances in the
presence of multiple obstacles.

4 Multi Hysteresis-Based RL

A hysteresis-based RL algorithm to guarantee safety and robustness in environments with multiple
obstacles and measurement noise is proposed. The algorithm, which we call MultiHyRL, deals with
any number of obstacles by implementing a hysteresis switching mechanism that prevents chattering
behavior from occurring in the presence of measurement noise. In this section, the MultiHyRL
algorithm is discussed.

4.1 MultiHyRL Overview

In simple words, the MultiHyRL algorithm operates as follows:
(Step 1) Utilize the RL method of choice, such as PPO, to find an initial control policy;
(Step 2) Detect the critical points for the initial control policy; see (⋆) in Section 4.2. The critical
points are the areas in front of each obstacle for which solutions evolve in opposite directions for
a small change in the state. For example, the dashed red line in Figure 1 is a collection of critical
points;
(Step 3) Utilize these critical points to partition the state space into two overlapping sets; see Sec-
tion 4.3. The union between the overlapping sets covers the whole state space, and the intersection
covers the critical points and an area around the set point. By this construction, for each overlapping
set, only one path exists that connects the critical points to the set point for each obstacle;
(Step 4) Train a new policy for both of these overlapping sets using the chosen RL method. The
vehicle’s passage around each obstacle is constrained to a single side due to the design of the overlap-
ping sets. Thereby effectively eliminating the topological obstructions. For example, for the scenario
depicted in Figure 1, the vehicle is only permitted to navigate around the obstacle via either the



RLJ | RLC 2024

blue trajectory or the green trajectory for each respective overlapping set;
(Step 5) Introduce a logic variable to dictate the active policy and a logic variable to indicate the
focused obstacle to be avoided. The logic variables change their values only when the system exits
the overlapping set corresponding to their current logic value index. This mechanism enables hys-
teresis switching between the newly acquired policies for each obstacle. With this approach, small
measurement noise does not lead to chattering behavior. Instead, the same policy continues to be
applied as the logic variables remain unchanged under small measurement noise.

The MultiHyRL algorithm can be applied to any number of obstacles that satisfy the properties
outlined in Section 3.1. However, Steps 1-4 are executed for the canonical obstacle setting as
discussed in Section 3.2, namely, a single obstacle positioned at pob = (−2, 0) and a positional set
point p∗ = (0, 0). By means of a transformation, the results for the canonical obstacle setting are
generalized to apply for any number of obstacles that satisfy the properties outlined in Section 3.1,
without the need for fine-tuning the policies found in Step 4 or tweaking the partitions found in
Step 3. In the following subsections, the MultiHyRL algorithm is applied to the canonical obstacle
setting, and in Section 4.3 the transformation is discussed that generalizes the results to any obstacle
setting that satisfies the properties outlined in Section 3.1.

4.2 Finding Critical Points

By leveraging a set of critical points, the state space can be partitioned into two sets for each
obstacle. This division is achieved by ensuring that trajectories originating near these critical points
evolve in divergent directions within each respective partition and do not leave the partition they
start in. A set of critical points M∗ ⊂ Z exists for a closed-loop system ż = f(z, π(z)) when the
following property holds:

(⋆) there exists δ > 0 such that for each state z ∈M∗ there exist initial states z0, z1 ∈ {z}+ δB
such that solutions ϕ0, ϕ1 to ż = f(z, π(z)) starting from z0, z1, respectively, satisfy

ϕ0(t) ∈ int M0 for all t ∈ dom ϕ0 \ {0} and ϕ1(t) ∈ int M1 for all t ∈ dom ϕ1 \ {0}, (6)

where M0 and M1 are partitions of the environment Z with properties M0 ∪M1 = Z
and M0 ∩M1 = M∗.

In the context of obstacle avoidance (topological obstructions), each obstacle has an associated set
of critical points. As discussed in Section 3.2, solutions evolve in divergent directions for a small
change in the vehicle’s state when facing an obstacle. For each obstacle, the state space can be
partitioned into two parts: solutions that steer past the obstacle clockwise (e.g., M0) and solutions
that steer past the obstacle counterclockwise (e.g., M1). Using (⋆), we can state that for each
obstacle ℓ ∈ {1, 2, . . . , N}, we can find a set of critical points M∗

ℓ and partition the state space Z
into M0,ℓ and M1,ℓ with properties M0,ℓ ∪M1,ℓ = Z and M0,ℓ ∩M1,ℓ = M∗. An algorithm is
designed that searches the state space for initial conditions for which (⋆) holds and thereby finds the
sets of critical points M∗

ℓ for each obstacle ℓ ∈ {1, 2, . . . , N}. A detailed description of the algorithm
is given in Appendix B.1. The algorithm is applied to the canonical setting described in Section 3.2
to find its set of critical points M∗.

4.3 Partitioning the State Space

In this section, the state space for the canonical setting described in Section 3.2 is partitioned into
two overlapping sets Mext

0 and Mext
1 . This partition ensures the vehicle can only pass an obstacle

on one side (clockwise or counterclockwise), thus removing the topological obstruction. To create
these overlapping sets, a Support Vector Machine (SVM) model is trained to classify if a position p
is in Mext

0 \Mext
1 , Mext

1 \Mext
0 , or in the overlap Mext

0 ∩Mext
1 . This classification identifies when

a switch needs to occur in the hysteresis switching mechanism, as discussed in Step 5 in Section 4.1.
This section discusses the creation of the data set for training the SVM model and the transformation



RLJ | RLC 2024

Figure 4: Overview of five regions used for the creation of the SVM data set. The red areas
denote regions related to the conditions (S1), (S2), and (S3). The blue and green areas denote the
regions (S4) and (S5), respectively. The black line denotes the center line yc, the gray circle denotes
the obstacle, and the red ⋆ denotes the set-point position p∗.

that generalizes the results for the canonical setting to apply for any number of obstacles that satisfy
the properties outlined in Section 3.1.

To create a training data set for the SVM model, a rough estimate of the partitions Mext
0 \

Mext
1 , Mext

1 \Mext
0 , and Mext

0 ∩Mext
1 is made. The estimate of overlapping Mext

0 ∩Mext
1 consists

of three regions, namely, (S1), (S2), and (S3). The estimates of Mext
0 \Mext

1 and Mext
1 \Mext

0
consist of the regions (S4) and (S5), respectively. An overview of the regions is shown in Figure 4.
Region (S1) collects positions that are inside the smoothened set of critical points Mσ. The set of
critical points M∗ is smoothened by a factor of σ ∈ R>0 and defined as Mσ := Conv (M∗ + σB).
Region (S2) collects positions that are in the vicinity of the set-point position, namely, p ∈ p∗ +c5B,
where c5 ∈ R>0. Region (S3) collects positions that are in the vicinity of the center line yc : Px → Py
and are not inside the obstacle. A position p is not inside an obstacle if the distance to the obstacle is
greater than zero, namely, |p|C > 0. The center line is obtained by fitting a second-order polynomial
through the center pc of Mσ defined as pc = (px,c, py,c) := arg minpx,c∈Px maxpy,c∈Mσ |px,c − py,c| ,
the center of the obstacle pob, and the set-point position p∗. A position p = (px, py) is in the
vicinity of the center line yc if yc(px) − c6 ≤ py ≤ yc(px) + c6, where c6 < rob. Region (S4) col-
lects positions p = (px, py) that are not in the regions (S1-S3) and are above the center line, that
is, py > yc(px). Region (S5) collects positions p = (px, py) that are not in the regions (S1-S3) and
are below the center line, that is, py < yc(px). A training dataset is generated by labeling a grid of
positions according to the regions (S1-S5). An SVM model is trained using this dataset with a Gaus-
sian radial basis function to ensure that the boundaries between the sets Mext

0 \Mext
1 , Mext

1 \Mext
0 ,

and Mext
0 ∩Mext

1 are smooth. The sets Mext
0 and Mext

1 are then obtained by inferencing the trained
SVM model. Namely, a position is in Mext

i if the position is in Mext
i \Mext

h or Mext
0 ∩Mext

1
for i, h ∈ {0, 1} and i ̸= h.

To generalize the SVM model to find the sets Mext
0 and Mext

1 for any obstacle settings, a transfor-
mation is applied to the inputs of the SVM model. The details on the transformation are discussed in
Appendix B.2. Additionally, if more than one obstacle is present in the environment, the sets Mext

0
and Mext

1 are partitioned with a relaxed Voronoi partition into N Voronoi cells, one for each ob-
stacle. The relaxed partition allows for overlap between the cells to prevent Zeno behavior (infinite
jumps in finite time) for the resulting hybrid system.7 With this relaxed Voronoi partition, the pair
of sets Mext

0,ℓ and Mext
1,ℓ are obtained for each obstacle ℓ ∈ {1, 2, . . . , N}. Figure 5 shows an example

of the sets Mext
0,ℓ and Mext

1,ℓ for a four obstacle setting N = 4.

4.4 Training two new control policies

After finding the extended overlapping sets Mext
0 and Mext

1 for the canonical obstacle-setting de-
scribed in Section 3.2, two new policies are trained for the same obstacle setting. A policy, de-
noted π0, is trained on Mext

0 and another policy, denoted π1, is trained on Mext
1 .8 To train these

policies, a slight modification is made to the reward function. Specifically, for each i ∈ {0, 1}, the

7See Sanfelice (2021) for more information on Zeno behavior. The details and additional examples on the relaxed
Voronoi partition are given in Appendix B.3.

8The policy parameters from Step 1 in Section 4.1 can initialize policies π0 and π1 to speed up training.



RLJ | RLC 2024

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1
2

3 4

p1

p2

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1
2

3 4

p1

p2

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1
2

3 4

p1

p2

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1
2

3 4

p1

p2

p ∗

Figure 5: Visualization of the state space partition for four obstacles. For each obstacle ℓ ∈
{1, 2, 3, 4}, the blue & red and the green & red areas denote the sets Mext

0,ℓ and Mext
1,ℓ , respec-

tively. The red area denotes the intersection Mext
0,ℓ ∩Mext

1,ℓ . The black lines denote the Voronoi
vertices, the gray circles denote the obstacles, and the red circle denotes the set-point position p∗.
The points p1 and p2 are referenced in Section 4.5 to derive the hybrid control algorithm.

set Z \Mext
i is added to the collision set C. This penalizes the agent for leaving its respective

extended overlapping set, motivating it to stay inside. For the single obstacle-setting described in
Section 3.2, the policy π0 steers the vehicle clockwise past the obstacle for each z ∈Mext

0 , and the
policy π1 steers the vehicle counterclockwise past the obstacle for each z ∈Mext

1 . As discussed in
Section 3.2, the policies π0 and π1 generalize across various obstacle settings, as long as the obstacles
adhere to the properties outlined in Section 3.1.

4.5 Hybrid Control Algorithm for Supervising Policies

After obtaining the sets Mext
0,ℓ and Mext

1,ℓ for each obstacle ℓ ∈ {1, 2, . . . , N} and the control policies π0
and π1, a hybrid control algorithm is designed to supervise the policies. To do so, two logic variables
are introduced: q ∈ {0, 1} indicating the active policy and λ ∈ {1, 2, . . . , N} indicating the focused
obstacle to be avoided. To construct the hybrid closed-loop system H = (C,F,D,G), we define its
state as the collection of the vehicle’s state z, and the newly introduced logic variables q and λ,
namely, x := (z, q, λ) ∈ Z × {0, 1} × {1, 2, . . . , N}. Next, we define the flow map F that describes
the continuous evolution of the state z asżq̇

λ̇

 = F (x) :=

f(z, πH(z, q))
0
0

 x ∈ C, (7)

where πH is the hybrid control policy that allows us to switch between π0 and π1 depending on the
value of the logic variable q. The hybrid control policy is given by

πH(z, q) :=
{
π0(z) if q = 0
π1(z) if q = 1

. (8)

In (7), it can be seen that the vehicle’s state flows according to its dynamics (4) under the hybrid
control policy (8), the logic variables q and λ do not change during flow, and that the system flows
whenever the state is inside the flow set C, which is defined below. As the logic variables do not
change during flow, the hybrid policy remains equal to π0 or π1 during flow, depending on the value
of q. To define the flow set, consider the four obstacle setting and the sets Mext

0,ℓ and Mext
1,ℓ for each

obstacle ℓ ∈ {1, 2, 3, 4} shown in Figure 5. Suppose the vehicle’s position is p1 = (px, py) = (−3, 5),
that is, the vehicle’s state z is in the overlapping extended set Mext

0,1 ; see Figure 5. From this vehicle
position, the vehicle has to pass obstacle 1 clockwise. So for the system to flow, the focused obstacle
has to be obstacle 1, that is, λ = 1, and the policy that steers the vehicle clockwise has to be
active, namely, policy π0 and thus q = 0. Moreover, for x to flow, the logic variables q and λ must
correspond to the indexes of the overlapping extended set Mext

q,λ the vehicle’s state is in. Therefore,
the flow set is given by

C :=
⋃

q∈{0,1}, λ∈{1,2,...,N}

(
Mext

q,λ × {q} × {λ}
)
. (9)



RLJ | RLC 2024

Next, suppose again that the vehicle’s position is p1, that is, z ∈Mext
0,1 , the logic variable λ = 1, and

the logic variable q = 1. This time, the state x is not in the flow set (9) as q ̸= 0. Therefore, the
value of the logic variable q has to jump from q = 1 to q = 0 such that the state x after the jump is
in the flow set (9). To capture this jump for the logic value q, we define the hysteresis jump set as

Dhyst
h,q,λ :=

(
Mext

h,λ \Mext
q,λ

)
× {q} × {λ}, (10)

for h ∈ {0, 1} where h ̸= q and h is the value to reset q to. In (10), it can be seen that this jump
set captures the condition when the focused obstacle λ corresponds to the overlapping set Mext

q,λ,
but the value of q needs to be switched. The second type of jump can occur when the obstacle that
needs to be focused does not correspond to the value of the logic variable λ. For example, suppose
again that the vehicle’s position is p1, that is, z ∈ Mext

0,1 , the logic variable q = 0, and the logic
variable λ = 3. From this state, the hybrid system cannot flow as the state is not in the flow set (9).
Hence, we want to reset the value of λ from λ = 3 to λ = 1. Additionally, the new value for the
logic variable λ can be arbitrarily chosen as the sets Mext

0,ℓ and Mext
1,ℓ for ℓ ∈ {1, 2, . . . , N} overlap by

their construction. For example, suppose that the vehicle’s position is p2 = (px, py) = (1.5,−1.5),
that is, z ∈

⋂
q∈{0,1}, λ∈{2,3,4}

Mext
q,λ, the logic variable q = 0, and the logic variable λ = 1. The logic variable λ

needs to be reset as the state is not in the flow set, but the logic variable can be updated to 2, 3,
or 4. When multiple options are available, the new value of λ is picked uniformly at random from
the available options, that is, λ+ ∈ {2, 3, 4}. An instantiation of λ+ would be 3. The jump map G
that captures these situations is given by

z+

q+

λ+

 ∈ G(x) :=


z{

q if x ∈Mext
q,λ′(x) × {q} × {λ

′(x)}{
h ∈ {0, 1} \ {q} : x ∈ Dhyst

h,q,λ′(x)

}
else

λ′(x)

 x ∈ D,

(11)
where

λ′(x) =
{

Γ(x) if x ∈ D \Dfcs
λ

λ else
, Dfcs

l :=
(
Mext

0,l ∪Mext
1,l
)
× {0, 1} × {l}, (12)

where Dfcs
l is the set of points that correspond to the focused obstacle l ∈ {1, 2, . . . , N} and Γ is the

focused obstacle jump map for switching the logic parameter λ (in)deterministically and is given by

Γ(x) =

Λ ⊂ {1, 2, . . . , N} :
(⋂
l∈Λ

Dfcs
l

)
\

 ⋃
i̸∈Λ, i∈{1,2,...,N}

Dfcs
i

 . (13)

Lastly, the jump set D of for the hybrid system is given by

D :=
⋃

q∈{0,1}, λ∈{1,2,...,N}

(
Dhyst
q,λ ∪D

fcs
λ

)
= (Z × {q} × {λ}) \ C. (14)

It is important to note that the sets Mext
0,λ and Mext

1,λ overlap each other in front of each obstacle λ
with respect to the positional set point. Furthermore, the sets Mext

0,λ ∪Mext
1,λ and Mext

0,h ∪Mext
1,h also

overlap each other for each obstacle λ and h where λ ̸= h ∈ {1, 2, . . . , N}. Therefore, the hybrid
system cannot continuously switch between its values of q and λ in the presence of measurement
noise. Hence, the hybrid system cannot switch continuously between its policies π0 and π1 to pass
an obstacle in the presence of small measurement noise. The vehicle will pass the obstacle clockwise
if q = 0 and counterclockwise if q = 1, thereby implementing a hysteresis switching effect between the
two policies and granting robustness against the small measurement noise. The level of robustness is
related to the amount of overlap the sets Mext

0,λ and Mext
1,λ and the sets Mext

0,λ∪Mext
1,λ and Mext

0,h∪Mext
1,h

for λ ̸= h ∈ {1, 2, . . . , N} have. Specifically, if the overlap width is greater than ε ∈ R>0, the hybrid
system is robust against chattering behavior caused by measurement noise of ε on the vehicle’s
perceived position.



RLJ | RLC 2024

5 Numerical Validation

In this Section, we apply the MultiHyRL algorithm as described in Section 4 to overcome the lack of
robustness of the normal agent. To demonstrate the robustness of the MultiHyRL agent, both the
normal agent and the MultiHyRL agent are simulated in various settings for many initial conditions
in the presence of the exact same measurement noise signal. The controllers use a sample-and-hold
approach for both the normal and MultiHyRL agents, modeled as a hybrid system; details are given
in Appendix B.4.

The normal and MultiHyRL agents are deployed in two environments with eight and ten static
obstacles that satisfy the properties outlined in Section 3.1. Four measurement noise settings are
considered for both agents: (a) no measurement noise, εp = εξ = 0, (b) only positional noise, εp =
0.2, εξ = 0, (c) only orientational noise, εp = 0, εξ = 0.3, and (d) both positional and orientational
noise, εp = 0.05, εξ = 0.1. The applied measurement noise signal m : S1 × R≥0 → R4 is given by

m(ξ, t) =

 msgn(t)εp
−msgn(t)εp

(Rot(msgn(t)εξ)− I)ξ

 , msgn(t) = sgn
(

cos
(
πt

∆t

))
, (15)

where the function msgn changes its sign at every sampling time interval ∆t. For the MultiHyRL
agent, the logic variables q and λ are randomly initialized. Figure 6 shows the simulation results for
each setting. In the first and third rows of column (a) in Figure 6, it can be seen that the normal
agent gets stuck in front of an obstacle for a select few initial conditions. This can be attributed
to the continuous policy that is used for the normal agent. Specifically, by the property (⋆) in
Section 4.2, solutions get stuck at critical points located in front of the obstacles. Furthermore, the
first and third rows of columns (b), (c), and (d) show that the normal agent’s ability to reach the
positional set point worsens significantly due to measurement noise, causing chattering behavior and
resulting in many initial conditions getting stuck in front of obstacles.

Contrary to the normal agent, the MultiHyRL agent reaches the positional set point for all noise
settings and initial conditions, as shown in the second and fourth rows of Figure 6.9 This is due
to the hysteresis and obstacle focus mechanisms that prevent chattering in front of the obstacles.
The MultiHyRL agent’s solutions sometimes cross each other for similar initial positions due to
the random initialization of logic parameters q and λ. For example, if the initial position is in the
overlapping region between Mext

0,λ and Mext
1,λ for obstacle λ, the initial value of q can be 0 or 1,

steering the vehicle clockwise or counterclockwise, respectively. In column (a), the MultiHyRL
agent typically takes a slightly longer path to the positional set point than the normal agent due to
these mechanisms. However, the robustness benefits of the MultiHyRL agent outweigh this slight
performance loss in the noiseless setting.

Without any modifications, the MultiHyRL algorithm can be applied to obstacles of different sizes
and even dynamic obstacles.10 To further validate the MultiHyRL agent’s performance over the
normal agent, they can be deployed in a simplified game of Capture the Flag against each other.
Additional simulations are provided in Appendix C.

6 Conclusion

This paper presents a new hybrid RL algorithm, referred to as MultiHyRL, for vehicles operating in
environments with an arbitrary number of randomly located obstacles to overcome the challenges
posed by topological obstructions. MultiHyRL provides a hybrid control policy with hysteresis
switching that is robust against adversarial attacks on the observation space near critical areas for
such environments. MultiHyRL addresses the 2D bird’s-eye view obstacle avoidance problem fea-
turing a complex observation space that combines local (images) and global (vectors) observations.

9There exists another topological obstruction on the vehicle’s orientation ξ, which can be dealt with following the
procedure done on the unit circle problem in de Priester et al. (2022).

10For dynamic obstacles, we assume they do not move faster than the vehicle and satisfy the properties in Section 3.1.



RLJ | RLC 2024

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

(a) εp = εξ = 0.

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

(b) εp = 0.2 and εξ = 0.

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

(c) εp = 0 and εξ = 0.3.

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y p ∗

(d) εp = 0.05 and εξ = 0.1.

Figure 6: Visualization of the state trajectories under different measurement noise settings for the
normal agent (rows 1 and 3) versus the MultiHyRL agent (rows 2 and 4) in two static obstacle
environments. The logic variables q and λ are randomly initialized for the MultiHyRL agent. The
trajectories alternate colors for readability. The gray circles denote obstacles, the ×’s denote the
initial conditions, the ◦’s denote the terminal positions, and the red ⋆ denotes the set-point posi-
tion p∗.

Numerical results highlight its robustness to adversarial attacks in various challenging obstacle avoid-
ance settings where PPO, a traditional RL method, fails. With some modifications, the MultiHyRL
algorithm can be extended to 3D tasks, as future work will demonstrate. While our primary focus is
on obstacle avoidance, the concept of critical points in the observation space applies to other prob-
lems where chattering between policies causes undesired behavior. This relevance extends to various
RL domains, such as hierarchical RL and options-based methods. The MultiHyRL algorithm can
be adapted to enhance the robustness of these methods as well.

Acknowledgments

Research by Jan de Priester and R. G. Sanfelice partially supported by NSF Grants no. CNS-
2039054 and CNS-2111688, by AFOSR Grants nos. FA9550-19-1-0169, FA9550-20-1-0238, FA9550-
23-1-0145, and FA9550-23-1-0313, by AFRL Grant nos. FA8651-22-1-0017 and FA8651-23-1-0004,
by ARO Grant no. W911NF-20-1-0253, and by DoD Grant no. W911NF-23-1-0158.



RLJ | RLC 2024

References
Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR,

abs/1609.05140, 2016. URL http://arxiv.org/abs/1609.05140.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
Toyama, Jonathan J. Hunt, Shibl Mourad, David Silver, and Doina Precup. The option keyboard:
Combining skills in reinforcement learning. CoRR, abs/2106.13105, 2021. URL https://arxiv.
org/abs/2106.13105.

Yikun Cheng, Pan Zhao, and Naira Hovakimyan. Safe and efficient reinforcement learning using
disturbance-observer-based control barrier functions. In Nikolai Matni, Manfred Morari, and
George J. Pappas (eds.), Proceedings of The 5th Annual Learning for Dynamics and Control
Conference, volume 211 of Proceedings of Machine Learning Research, pp. 104–115. PMLR, 15–16
Jun 2023. URL https://proceedings.mlr.press/v211/cheng23a.html.

Jaewan Choi, Geonhee Lee, and Chibum Lee. Reinforcement learning-based dynamic obstacle avoid-
ance and integration of path planning. Intelligent Service Robotics, 14:663–677, 2021.

Reinis Cimurs, Jin Han Lee, and Il Hong Suh. Goal-oriented obstacle avoidance with deep rein-
forcement learning in continuous action space. Electronics, 9(3), 2020. ISSN 2079-9292. doi:
10.3390/electronics9030411. URL https://www.mdpi.com/2079-9292/9/3/411.

Jan de Priester, Ricardo G. Sanfelice, and Nathan van de Wouw. Hysteresis-based rl: Robustify-
ing reinforcement learning-based control policies via hybrid control. In 2022 American Control
Conference (ACC), pp. 2663–2668, 2022. doi: 10.23919/ACC53348.2022.9867627.

Yousef Emam, Paul Glotfelter, Zsolt Kira, and Magnus Egerstedt. Safe model-based reinforcement
learning using robust control barrier functions. CoRR, abs/2110.05415, 2021. URL https://
arxiv.org/abs/2110.05415.

Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion planning among dynamic, decision-
making agents with deep reinforcement learning. CoRR, abs/1805.01956, 2018. URL http:
//arxiv.org/abs/1805.01956.

Michael Everett, Björn Lütjens, and Jonathan P. How. Certifiable robustness to adversarial state
uncertainty in deep reinforcement learning. IEEE Transactions on Neural Networks and Learning
Systems, 33(9):4184–4198, 2022. doi: 10.1109/TNNLS.2021.3056046.

Shumin Feng, Bijo Sebastian, and Pinhas Ben-Tzvi. A collision avoidance method based on deep rein-
forcement learning. Robotics, 10(2):73, May 2021. ISSN 2218-6581. doi: 10.3390/robotics10020073.
URL http://dx.doi.org/10.3390/robotics10020073.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. CoRR, abs/1710.09767, 2017. URL http://arxiv.org/abs/1710.09767.

Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, 2012. ISBN 9780691153896. URL http:
//www.jstor.org/stable/j.ctt7s02z.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:6628106.

Linh Kästner, Xinlin Zhao, Teham Buiyan, Junhui Li, Zhengcheng Shen, Jens Lambrecht, and Cor-
nelius Marx. Connecting deep-reinforcement-learning-based obstacle avoidance with conventional
global planners using waypoint generators. In 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 1213–1220, 2021. doi: 10.1109/IROS51168.2021.9636039.

http://arxiv.org/abs/1609.05140
https://arxiv.org/abs/2106.13105
https://arxiv.org/abs/2106.13105
https://proceedings.mlr.press/v211/cheng23a.html
https://www.mdpi.com/2079-9292/9/3/411
https://arxiv.org/abs/2110.05415
https://arxiv.org/abs/2110.05415
http://arxiv.org/abs/1805.01956
http://arxiv.org/abs/1805.01956
http://dx.doi.org/10.3390/robotics10020073
http://arxiv.org/abs/1710.09767
http://www.jstor.org/stable/j.ctt7s02z
http://www.jstor.org/stable/j.ctt7s02z
https://api.semanticscholar.org/CorpusID:6628106


RLJ | RLC 2024

Yongyuan Liang, Yanchao Sun, Ruijie Zheng, and Furong Huang. Efficient adversar-
ial training without attacking: Worst-case-aware robust reinforcement learning. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 22547–22561. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
8d6b1d775014eff18256abeb207202ad-Paper-Conference.pdf.

Björn Lütjens, Michael Everett, and Jonathan P. How. Certified adversarial robustness for deep
reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.),
Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine Learning
Research, pp. 1328–1337. PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.mlr.press/
v100/lutjens20a.html.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3932–3939. IEEE, 2017.

C. G. Mayhew, R. G. Sanfelice, and A. R. Teel. Quaternion-based hybrid controller for robust global
attitude tracking. IEEE Transactions on Automatic Control, 56(11):2555–2566, November 2011.
doi: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5701762. URL https://hybrid.
soe.ucsc.edu/files/preprints/50.pdf.

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical re-
inforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks. CoRR, abs/1511.04508,
2015. URL http://arxiv.org/abs/1511.04508.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
2817–2826. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pinto17a.
html.

Christophe Prieur, Rafal Goebel, and Andrew R. Teel. Hybrid feedback control and robust stabi-
lization of nonlinear systems. IEEE Transactions on Automatic Control, 52(11):2103–2117, 2007.
doi: 10.1109/TAC.2007.908320.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley &amp; Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

R. G. Sanfelice. Hybrid Feedback Control. Princeton University Press, New Jersey, 2021.

R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-
time systems with applications to obstacle avoidance and regulation to disconnected set of
points. In Proc. 25th American Control Conference, pp. 3352–3357, 2006. doi: http://ieeexplore.

https://proceedings.neurips.cc/paper_files/paper/2022/file/8d6b1d775014eff18256abeb207202ad-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8d6b1d775014eff18256abeb207202ad-Paper-Conference.pdf
https://proceedings.mlr.press/v100/lutjens20a.html
https://proceedings.mlr.press/v100/lutjens20a.html
https://openreview.net/forum?id=rJzIBfZAb
https://hybrid.soe.ucsc.edu/files/preprints/50.pdf
https://hybrid.soe.ucsc.edu/files/preprints/50.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
http://arxiv.org/abs/1511.04508
https://proceedings.mlr.press/v70/pinto17a.html
https://proceedings.mlr.press/v70/pinto17a.html
http://jmlr.org/papers/v22/20-1364.html


RLJ | RLC 2024

ieee.org/iel5/11005/34689/01657236.pdf?tp=\&isnumber=\&arnumber=1657236. URL https:
//hybrid.soe.ucsc.edu/files/preprints/7.pdf.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal pol-
icy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.
06347.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rkZvSe-RZ.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state obser-
vations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 21024–21037. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
f0eb6568ea114ba6e293f903c34d7488-Paper.pdf.

A Reinforcement Learning Implementation Details

A.1 Proximal Policy Optimization

This paper uses OpenAI’s Stable Baselines 3 implementation of the PPO algorithm (Raffin et al.,
2021) to learn an approximate value function v̂, parameterized by ϕ, and stochastic policy πs,
parameterized by θ. For a training episode, the simulation provides information at time points k ∈
{0, 1, . . . ,K} where K ∈ N is the time point corresponding to the maximum simulation horizon
time. The approximated value function v̂ is trained by minimizing the mean squared error between
the approximated value function v̂ and the returns Gk observed during training episodes, given by

Gk(ζ) =
K−1∑
ℓ=k

γℓ−kR(zℓ+1, uℓ), (16)

where ζ = {(u0, z1), (u1, z2), . . . , (uK−2, zK−1), (uK−1, zK)} is the discrete-time solution pair to (1).
The update of the approximate value function’s parameters ϕ is given by

ϕψ+1 = min
ϕ

1
|Dψ|K

∑
ζ∈Dψ

K−1∑
k=0

(v̂(zk;ϕ)−Gk)2
, (17)

where ψ ∈ N is the update step and Dψ is a set containing discrete-time solution pairs ζ obtained
during training episodes under the stochastic policy πsψ.11 The value function update in (17) is done
via gradient ascent with Adam (Kingma & Ba, 2014).

During training, a stochastic policy is used such that the agent can explore the environment, that
is, to observe the rewards obtained for a large variety of state-action pairs. A multivariate Gaussian
distribution is used to parameterize a stochastic policy and is given by

πs (u|z) = N
(
µ (z) ,Σ2 (z)

)
, (18)

11As the value function estimates the return under a specific policy π, the trajectories used for updates on the
approximate value function must be under the same policy. Therefore, the trajectories ζ obtained under different
policies πs ̸= πsψ are not used to update ϕψ .

https://hybrid.soe.ucsc.edu/files/preprints/7.pdf
https://hybrid.soe.ucsc.edu/files/preprints/7.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=rkZvSe-RZ
https://proceedings.neurips.cc/paper_files/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf


RLJ | RLC 2024

where µ : Z → U denotes the mean vector of the multivariate Gaussian distribution N and Σ2 :
Z → U × U the diagonal covariance matrix of the multivariate Gaussian distribution N . A neural
network parameterizes this distribution; we use a neural network to map the states z to a mean
vector µ and a state covariance matrix Σ2. A deterministic policy π : Z → U is then obtained by
evaluating the mean vector µ of the stochastic policy πs, that is, π = µ. The policy is parameterized
by a neural network with parameters θ. The update of the policy’s parameters θ is given by

θψ+1 = max
θ

1
|Dψ|K

∑
ζ∈Dψ

K−1∑
k=0

L(ζ, θψ, θ), (19)

where L is the objective function given by

L(ζ, θψ, θ) = min
(
πs(uk|zk; θ)
πsψ(uk|zk; θψ) Âψ,k(ζ), g(ϵ, Âψ,k(ζ))

)
, (20)

where the estimated advantage Âψ,k at update step ψ and time step k is obtained via the Generalized
Advantage Estimator (GAE) (Schulman et al., 2016) method and is given by

Âψ,k(ζ) =
K−1∑
l=k

(γλ)l−kδψ(zl, ul, zl+1), (21)

where δψ,k is the TD error at update step ψ and time step k given by

δψ(zl, ul, zl+1) = R(zl+1, ul) + v̂ψ(zl+1)− v̂ψ(zl), (22)

and λ ∈ (0, 1] is a factor for the trade-off between bias and variance for the GAE. If λ→ 0, the bias
for the GAE is minimal, but the variance is high for the GAE. If λ = 1, the variance is minimal for
the GAE, but the GAE is most biased. Furthermore,

g(ϵ, Âψ,k) =
{

(1 + ϵ)Âψ,k if Âψ,k ≥ 0
(1− ϵ)Âψ,k if Âψ,k < 0

, (23)

where ϵ ∈ R>0 is a hyperparameter that controls how far a new policy may deviate from the old
policy. The policy update in (19) is done via gradient ascent with Adam (Kingma & Ba, 2014).

A.2 Network Architectures and Hyperparameters

This section describes the network architectures used and the hyperparameters used for the PPO
algorithm. The architecture of the CNN is given by

CNN(I) = Flatten
(

MaxPool2D
[
ReLU(Conv2D(I ,ΨConv2D)),ΨMaxPool2D

])
, (24)

where I is the input image with equal width and length of wbev×wbev = 2×2 and a resolution of nres×
nres = 64 × 64 array elements, Flatten is a function that converts the 2D input into a 1D vector,
MaxPool2D is a 2D max pooling layer to reduce the spatial dimensions of the input feature map
with hyperparameters ΨMaxPool2D = {kernel size = 2}, ReLU is the rectified linear unit activation
function given by f(χ) = max(χ, 0) for an input χ, and Conv2D is the 2D convolution operation
for with hyperparameters ΨConv2D = {out channels = 2, kernel size = 6, stride = 2, padding = 0}.
The architecture of the feature extractor’s MLP is given by

MLPfeature(e) = ReLU(wfeaturee) + bfeature, (25)

where e = (ep, eθ) and wfeature and bfeature are the weights and biases of the feature extractor’s MLP
with 32 neurons. The architecture of the network’s MLP, that is, the actor and critic networks, is
given by

MLPnetwork(features) = wn,2ReLU(wn,1ReLU(wn,0features) + bn,0) + bn,1) + bn,2, (26)



RLJ | RLC 2024

Parameter Value Parameter Value
Time steps 200 Sampling time in seconds 0.05
Total training steps 5000000 Entropy coefficient 0.001
Number of parallel environments 8 Learning rate 0.0001
Discount factor γ 0.99 GAE factor λ 0.95
Batch size 64 Clip range 0.2
Value function coefficient 0.5 Maximum value for gradient clipping 0.5

Table 1: Hyperparameters used for the PPO algorithm

where features= (CNN(I), MLPfeature(e)), and wn,i and bn,i are the weights and biases of the
network’s MLP with 32 neurons for each layer i ∈ {0, 1, 2}. The actor network (26) outputs two
variables, namely, the mean µ and the diagonal covariance matrix Σ that defines the stochastic
policy (18) for the input features. The critic network outputs one value for the input features: the
approximated value function.

The hyperparameters used for the PPO algorithm are shown in Table 1.

B MultiHyRL Implementation Details

B.1 Algorithms

This Section provides the pseudocode for the algorithm used in Section 4.2 to find the critical points
of a control policy π for the MultiHyRL algorithm. The goal of Algorithm 1 is to search the state
space for initial conditions for which (⋆) holds under a control policy π. For the first iteration
of the algorithm, the set of initial conditions (points) Z0 is a grid with a spacing between points
of δ ∈ R>0. Next, for each point zc ∈ Z0, we test nrp ∈ N>0 times if two points near zc evolve in
divergent directions. Specifically, the two nearby points z1 and z2 are computed using Algorithm 2.
Algorithm 2 computes a symmetric point pair (z1, z2) ∈ zc + δB by sampling a random vector of
the same dimensionality as zc from a uniform distribution, that is, ν ∼ U(−δ, δ), and the points are
defined as z1 = zc + ν and z2 = zc − ν.12 Next, the system is simulated under the control policy π
for a horizon time of T ∈ R>0 to obtain the solutions t 7→ ϕi(t) for i ∈ {1, 2}. To determine if the
solutions ϕ1 and ϕ2 evolve in divergent directions, the sum of the absolute differences between the
two trajectories d is computed at times t when the simulation provides information. Specifically, at
each sampling time interval t, we evaluate ϕ1 and ϕ2. Moreover, the difference at each time point t
is adjusted by subtracting the initial differences ϕ1(0) and ϕ2(0) to focus on the divergence from the
initial conditions and is normalized by the sampling time ∆t. Next, the value of d is compared to
the distance threshold value η ∈ R>0, which acts as a benchmark to identify significant divergences
between trajectories. If d > η, the point zc is potentially a critical point and is stored in a set Zc

0 that
is reset for each iteration of the main loop of Algorithm 1.13 After evaluating every point in Z0 and
populating the set Zc

0 , k-means clustering is applied on Zc
0 to “summarize” the points by ncp ∈ N>0

clusters in Zc
0 . This ensures that the total number of points evaluated in each iteration of the main

loop remains computationally manageable. The set Z0 is reset to an empty set and repopulated
with the newly found ncp clusters.14 Lastly, the value of δ is reduced by a factor β ∈ (0, 1) to
facilitate convergence to a set of critical points. If δ becomes smaller than the sampling time ∆t, the
sampling time is also scaled by β to ensure the system samples fast enough to dodge obstacles if it
starts close to them.15 After reducing the value of δ and repopulating the set Z0, the main loop of
the algorithm is run again until nit ∈ N>0 of the main loop have passed. By iterative refining δ, the

12The symmetry of the point pair (z1, z2) refers to the addition/subtraction of the random vector ν.
13Potentially here refers to the fact solutions can satisfy d > η for large values of δ while the point zc is not actually

a critical point. Therefore, the point zc is considered potentially a critical point. To verify whether the point zc is
indeed a critical point, the value of δ is decreased every iteration of the main loop of Algorithm 1.

14If the number of points in Z0 is less than ncp, the clustering step is skipped, and Z0 is not reset.
15If the sampling cannot be adjusted in this manner, the algorithm stops when δ < ∆t.



RLJ | RLC 2024

Algorithm 1: Finding critical points
Data: Policy π ∈ Π to be evaluated, number of iterations nit ∈ N>0, number of random

symmetric point pairs per center point nrp ∈ N>0, initial set of points Z0 ⊂ Z ,
Euclidean distance δ ∈ R>0 between initial points zc ∈ Z0, simulation horizon
time T ∈ R>0, sampling time ∆t, distance threshold η ∈ R>0, reduction factor distance
points β ∈ (0, 1), maximum number of point clusters ncp ∈ N>0.

Result: ncp clusters centers of critical points.
1 for nit iterations do
2 Define the empty set Zc0.
3 for each point zc ∈ Z0 do
4 for nrp iterations do
5 Apply Algorithm 2 with zc and δ to find z1 and z2.
6 for z1 and z2 do
7 Simulate the system under policy π for a horizon time of T seconds to obtain to

obtain the solutions t 7→ ϕi(t) for i ∈ {1, 2}.
8 Compute the sum of the differences between the solutions ϕ1 and ϕ2 at t’s where the

simulation provides information:
∑T
t=0 |ϕ1(t)− ϕ1(0)− ϕ2(t) + ϕ2(0)|∆t = d.

9 if d > η then
10 if in the nitth iteration then
11 Store zc in Zc0.
12 else
13 Store zc, z1, and z2 in Zc0.
14 Apply k-means clustering on Zc

0 to find ncp cluster centers of critical points. Store cluster
centers as Z0.

15 Set δ ← βδ.
16 if δ < ∆t then
17 Set ∆t← ∆tβ

Algorithm 2: Generate a symmetric point pair
Data: Center point of the symmetric point pair zc, spread of the symmetric point pair δ.
Result: Two points z1, z2 ∈ zc + δB that are point symmetric w.r.t. zc.

1 Sample a random vector of the same dimensionality as zc from a uniform
distribution: ν ∼ U(−δ, δ).

2 Define the point symmetric points w.r.t. zc as z1 = zc + ν and z2 = zc − ν.

algorithm converges to a continuous set of critical points as the sampling time ∆t goes to zero and
the simulation horizon time T and the number of cluster centers of critical points goes to infinity.

Algorithm 1 assumes that the system can be initialized from any initial condition, which may be
challenging in some settings. For example, this can be problematic if the training is performed on
a real system. Algorithm 1 can be adapted to work for such systems by storing and utilizing the
state trajectories (solutions) obtained during training. Algorithm 1 still starts with a grid of points
Z0. However, instead of computing a symmetric point pair (z1, z2) from which we simulate the
system, we retrieve two solutions (or tails of solutions) that start from a δ neighborhood of zc and
evaluate the remainder of the algorithm in the same manner as before. For this adapted version
of Algorithm 1, the underlying assumptions are that the state trajectories obtained during training
sufficiently explore the areas of critical points and that the state is measurable to determine if a
solution (or tail of a solution) starts from a δ neighborhood of zc.



RLJ | RLC 2024

B.2 Transforming the SVM’s Input

This Section describes the transformation used in Section 4.3. The transformation is performed
on the input of the canonical setting’s SVM model to obtain the extended overlapping sets for
different obstacles or set-point positions. The function htrans : P → P maps a position from the
desired obstacle and set point setting into the canonical setting. Let pcan

ob = (pcan
x,ob, p

can
y,ob) ∈ P

and p∗,can = (0, 0) denote the obstacle position and the positional set point for the canonical setting,
respectively. Furthermore, let pdes

ob = (pdes
x,ob, p

des
y,ob) ∈ P and p∗,des = (p∗,des

x , p∗,des
y ) ∈ P denote the

obstacle position and the positional set point for the desired setting, respectively. The function htrans

is given by

htrans(p) =
[
rtrans(p) cosϕtrans(p)
rtrans(p) sinϕtrans(p)

]
, (27)

where rtrans is the ray and ϕtrans is the angle of the transformed point in polar coordinates given by

rtrans(p) = radj(p)r
can
ob

radj
ob

, ϕtrans(p) = ϕadj(p)− ϕadj
ob + ϕcan

ob , (28)

where rcan
ob is the ray and ϕcan

ob is the angle of pob in polar coordinates, and radj and ϕadj are given
by

radj(p) =
√(

px − p∗,des
x

)2
−
(
py − p∗,des

y

)2
, ϕadj(p) = arctan2

(
py − p∗,des

y , px − p∗,des
x

)
, (29)

and radj
ob and ϕadj

ob are given by

radj
ob (p) =

√(
px − padj

x,ob

)2
−
(
py − padj

y,ob

)2
, ϕadj

ob (p) = arctan2
(
py − padj

y,ob, px − p
adj
x,ob

)
. (30)

B.3 Relaxed Voronoi Partition

This section discusses the creation of the relaxed Voronoi partition used in Section 4.3 to obtain
the extended overlapping sets. The Voronoi partitions are created with respect to the N obstacle
locations. In a conventional Voronoi partition, the cell i ∈ {1, 2, . . . , N} is the set of points for
which obstacle i is the closest in terms of Euclidean distance. As the cells are created based on
which obstacle is closest, only the boundary of cells can overlap. Without overlap of these cells, the
closed-loop hybrid system (7-14) in Section 4.5 can exhibit chattering or Zeno behavior around the
boundaries of each cell for an infinitely small amount of noise. For more details on this chattering
phenomenon and Zeno behavior, see Sanfelice (2021); de Priester et al. (2022). The conventional
Voronoi partitions are relaxed by expanding the cell boundaries based on the distance to the cell’s
obstacle and enforcing a minimum distance to other obstacles. The latter constraint ensures that
obstacles in other cells are not visible when the agent is trying to pass the current focused obstacle.
Figure B.3 shows the relaxed Voronoi partition in an additional setting to the setting shown in
Figure 5 in Section 4.3.

B.4 Sample-and-Hold Hybrid Systems

This section describes the hybrid systems used in Section 5 to model the normal and Mul-
tiHyRL agents as sample-and-hold control systems. The state for the normal agent is given
by x = (z, u, τ,m) ∈ Xnrm, where τ ∈ [0,∆t] is a timer and m ∈ R4 is the applied measure-
ment noise. For the normal agent, the hybrid system Hnrm = (Cnrm, Fnrm, Dnrm, Gnrm) is given
by 

ż
u̇
τ̇
ṁ

 = Fnrm(x) :=


f(z, u)

0
1
0

 x ∈ Cnrm, (31)



RLJ | RLC 2024

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

Figure 7: Visualization of the relaxed Voronoi partition for eight obstacles. For each obstacle ℓ ∈
{1, 2, 3, 4, 5, 6, 7, 8}, the blue & red and the green & red areas denote the sets Mext

0,ℓ and Mext
1,ℓ ,

respectively. The red area denotes the intersection Mext
0,ℓ ∩Mext

1,ℓ . The black lines denote the Voronoi
vertices, the gray circles denote the obstacles, and the red circle denotes the set-point position p∗.


z+

u+

τ+

m+

 = Gnrm(x) :=


z

πnrm(z +m)
0
Gε

 x ∈ Dnrm, (32)

where πnrm is the policy corresponding to the normal agent, the flow set is given by

Cnrm := {x ∈ Xnrm : τ ≤ ∆t}, (33)

and the jump set by
Dnrm := {x ∈ Xnrm : τ ≥ ∆t}, (34)

and the noise jump map by

Gε =


[−εp, εp]
[−εp, εp]
[−εξ, εξ]
[−εξ, εξ]

 , (35)

where εp ∈ R≥0 is the magnitude of the measurement noise on the vehicle’s perceived position
and εξ ∈ R≥0 is the magnitude of the measurement noise on the vehicle’s perceived orientation. The
flow map (31) captures the evolution of the vehicle and the timer, and the jump map (32) captures
the controller being updated every ∆t seconds. Furthermore, the observation given to the controller
is perturbed by the measurement noise m. Lastly, the applied measurement noise jumps according
to (35). The system flows whenever the timer’s value is less or equal to the sampling time ∆t, as
shown in the flow set (33). The system jumps whenever the timer’s value is greater or equal to the
sampling time ∆t, as shown in the jump set (34).

The state for simulating the sample-and-hold MultiHyRL agent is given by x = (z, u, τ,m, q, λ) ∈
XHy, where q ∈ {0, 1} and λ ∈ {1, 2, . . . , N} are the logic parameters from the MultiHyRL algorithm.
For the MultiHyRL agent, the hybrid system HHy = (CHy, FHy, DHy, GHy) is given by

ż
u̇
τ̇
ṁ
q̇

λ̇

 = FHy(x) :=


f(z, u)

0
1
0
0
0

 x ∈ CHy, (36)



RLJ | RLC 2024


z+

u+

τ+

m+

q+

λ+

 = GHy(x) :=



z{
π0(z +m) if q = 0
π1(z +m) if q = 1

0
Gε{

0 if x+ ρ(m) ∈ Dhyst
0,λ

1 if x+ ρ(m) ∈ Dhyst
1,λ

Γ(x+ ρ(m)) if x+ ρ(m) ∈ D \Dfcs
λ


x ∈ DHy, (37)

where the MultiHyRL algorithm is used to find the control policies π0 and π1, the jump
sets Dhyst

0,λ , Dhyst
1,λ , and Dfcs

λ , and ρ(m) is the perturbation on the state defined as

ρ(m) =
[
m 0 0 0 0 0

]⊤
. (38)

The jump map Γ is given by (13). The flow set is given by

CHy := {x ∈ XHy : τ ≤ ∆t}, (39)

and the jump set by
DHy := {x ∈ XHy : τ ≥ ∆t}. (40)

Note that by implementing the MultiHyRL agent as a sample-and-hold controller, we can only
update our logic variables q and λ during timer jumps.

C Additional Simulations

This section provides the additional simulations mentioned in the main text. Three additional sets
of simulations are performed to highlight the effectiveness of the MultiHyRL algorithm: moving
obstacles, obstacles with various sizes, and a Capture the Flag between the normal and MultiHyRL
agents. As mentioned in the main text, the controllers are implemented with a sample-and-hold
approach; discussed in Appendix B.4.

C.1 Moving Obstacles

In this set of simulations, the obstacles are dynamic, have the same radius, have a spacing between
each obstacle greater than 1

2
√

2wbew, and their velocity is less than 1, such that the vehicle can outrun
an obstacle. Figure 8 shows still frames from the simulation in which the set-point position changes
from p∗ = (p∗

x, p
∗
y) = (3, 0.1) to p∗ = (3,−0.1) every ten seconds. The normal and MultiHyRL

agents are deployed in the same environment in the presence of the exact same measurement noise
signal, given by (15). The measurement noise signal consists of a positional measurement noise
of magnitude εp = 0.2 and no orientational measurement noise, namely, εξ = 0. Figure 8 shows
that both the normal and MultiHyRL agents are effective in environments with dynamic obstacles.
However, the MultiHyRL agent outperforms the normal agent as the normal agent crashes into some
obstacles in the presence of the positional measurement noise. In contrast, the MultiHyRL does not
crash into any obstacle in the presence of positional measurement noise, thanks to the MultiHyRL
agent’s robustness properties.

C.2 Varying Obstacle Size

In this set of simulations, the obstacles satisfy the properties listed in Section 3.1 except that the
radius of the obstacles varies. The same measurement noise and obstacle setting used in Section 5
are considered with varying obstacle radius. Figure 9 shows the result of these simulations. The
same discussion described in Section 5 applies here. In essence, the hysteresis and obstacle focus
mechanism of the MultiHyRL agent allows it to reach the set point for all the scenarios considered,
contrary to the normal agent, which gets stuck for several initial conditions.



RLJ | RLC 2024

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

4 3 2 1 0 1 2 3 4

px

4

3

2

1

0

1

2

3

4

p
y

p ∗

Figure 8: Still frames of the dynamic obstacle avoidance simulation in the presence of positional
measurement noise of magnitude εp = 0.2 for the normal and MultiHyRL agents. The logic vari-
ables q and λ are randomly initialized for the MultiHyRL Agent. The normal agent and its bird’s-eye
view image are represented by the red triangle with a semicircle and the red box, respectively. The
MultiHyRL agent and its bird’s-eye view image are represented by the blue triangle with a semicir-
cle and the blue box, respectively. For the MultiHyRL agent, the extended overlapping sets Mext

0,ℓ
and Mext

1,ℓ are drawn for the currently focused obstacle ℓ ∈ {1, 2, . . . , N}. The red ⋆ denotes the
set-point position p∗ for the current still frame.

C.3 Capture the Flag

In this set of simulations, the normal and MultiHyRL agents play a simplified game of Capture the
Flag against each other. However, in this game, measurement noise and obstacles are present. The
agents are given the same observations as discussed in Section 3.1, namely, the planar position error
with respect to a set-point position, the orientation error, and a bird’s-eye view image. The rules
of the game are as follows. Each player has a flag that is located at their base. At the start of the
game, each player starts in their base. Each player’s set-point position is set to the opposing player’s
flag. If player A grabs player B’s flag, player A’s set-point position is set to player A’s base, and
player B’s set-point position is set to player A’s position. If player B tags player A before player A
reaches its base, player A is reset to its base, and player B’s flag is returned. If player A reaches
its base untagged, player A scores a point, and player B’s flag is returned to player B’s base. If the
players collide and no one holds a flag, they are reset to their bases. Figure 10 shows still frames
from a game of Capture the Flag with measurement noise. The normal and MultiHyRL agents
undergo the exact same measurement noise signal, given by (15). The measurement noise signal
consists of a positional measurement noise of magnitude εp = 0.2 and no orientational measurement
noise, namely, εξ = 0. Figure 10 shows that the normal agent gets stuck numerous times in front
of an obstacle, which allows the MultiHyRL agent to score points easily. It can also be seen that
the MultiHyRL agent seems unaffected by the noise thanks to the MultiHyRL agent’s robustness
properties.



RLJ | RLC 2024

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

(a) εp = εξ = 0.

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

(b) εp = 0.2 and εξ = 0.

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

(c) εp = 0 and εξ = 0.3.

8 6 4 2 0 2 4 6 8

px

8

6

4

2

0

2

4

6

8

p
y p ∗

(d) εp = 0.05 and εξ = 0.1.

Figure 9: Visualization of the state trajectories under different measurement noise settings for the
normal agent (row 1) versus the MultiHyRL agent (row 2) in a static obstacle environment with
varying obstacle radii. The logic variables q and λ are randomly initialized for the MultiHyRL agent.
The trajectories alternate colors for readability. The gray circles denote obstacles, the ×’s denote
the initial conditions, the ◦’s denote the terminal positions, and the red ⋆ denotes the set-point
position p∗.



RLJ | RLC 2024

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 0

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 0

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 0

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 0

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 1

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 2

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 2

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 3

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 3

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 4

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 0 Score 5

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 1 Score 5

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 1 Score 5

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 1 Score 6

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

Score 1 Score 6

Figure 10: Still frames of the Capture the Flag simulations in the presence of positional measurement
noise of magnitude εp = 0.2 for the normal and MultiHyRL agents. The logic variables q and λ are
randomly initialized for the MultiHyRL Agent. The normal agent, its current set-point position,
and its bird’s-eye view image are represented by the red triangle with a semicircle, the red dotted
line, and the red box, respectively. The MultiHyRL agent, its current set-point position, and its
bird’s-eye view image are represented by the blue triangle with a semicircle, the blue dotted line,
and the blue box, respectively. The flags are denoted by Γ.


