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Abstract— In this paper, we formulate a two-player zero-sum
game under dynamic constraints formulated in terms of a
hybrid inclusion. The game consists of a min-max problem
involving a cost functional associated to the actions and corre-
sponding (potentially nonunique) solutions to the system. We
present sufficient conditions given in terms of Hamilton-Jacobi-
Isaacs-like equations to establish a bound on the worst-case cost
under the optimal strategy and to exactly evaluate it. Under
additional conditions, we show that the proposed optimal state-
feedback laws render a set of interest pre-asymptotically stable
for the resulting hybrid closed-loop system. The results are
illustrated in a numerical example.

I. INTRODUCTION

Optimal control analysis tools are powerful for the study
of multi-agent systems operating in contested scenarios in
which each of the agents (or players) are dynamic and select
their control actions so as to optimize a cost functional. When
the constraints are given in terms of differential equations,
such problems are referred to as differential games [1]. The
presence of dynamic constraints involving both continuous
and discrete dynamics imposes challenges to computing opti-
mal feedback laws and to assesing the cost of solutions. Such
a combination of continuous and discrete constraints can be
efficiently captured by hybrid system models, giving rise to
hybrid dynamic constraints. Approaches based on Hamilton-
Jacobi-Bellman equations, e.g., [2], [3], [4], are limited to
continuous-time and discrete-time dynamics, and fall short
when employed to compute and evaluate the optimal cost
in scenarios with hybrid constraints, which we refer to as
hybrid games.

In this paper, following [5], [6], a hybrid dynamical
system is denoted H and is given by the hybrid inclusion

H :

{
ẋ ∈ F (x, uC1, uC2) (x, uC1, uC2) ∈ C
x+ ∈ G(x, uD1, uD2) (x, uD1, uD2) ∈ D (1)

where x ∈ Rn is the state, (uC1, uD1) ∈ RmC1 × RmD1 is
the input chosen by player P1, (uC2, uD2) ∈ RmC2 ×RmD2

is the input1 chosen by player P2, and (C,F,D,G) is the
data of H. Continuous evolution of H is allowed when the
state and the input are in the flow set C, and is governed by
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1Here, mC = mC1 +mC2 and mD = mD1 +mD2.

the flow map F : Rn×RmC⇒Rn. Discrete evolution (or a
jump) of H is allowed when the state and the input are in
the jump set D, and the new value of the state after a jump
is captured by the jump map G : Rn × RmD⇒Rn.

For such type of systems and for the case of one player,
a cost functional has been proposed in [7] and optimality
is certified via Lyapunov-like conditions. The results in [8]
provide cost evaluation tools for the case in which the data is
given in terms of set-valued maps. The work in [9] provides
sufficient conditions to guarantee the existence of optimal
solutions. A receding-horizon algorithm for optimal control
of hybrid systems with single-valued flow and jumps that
extends the model predictive paradigm to such setting is
presented in [10]. Informally, a zero-sum two-player game
with hybrid conditions is given as

min
(uC1,uD1)

max
(uC2,uD2)

J (ξ, uC1, uC2, uD1, uD2). (2)

where J is a cost functional associated to the solutions to
H from the initial condition ξ. The evolution of this hybrid
game is determined by the selection of the inputs which is
made by the players. The outcome of this selection can be
determined by computing J .

In our previous work, cost evaluation results were es-
tablished to guarantee optimality and asymptotic stability of
a set of interest in a discrete-time setting [11]. A finite-
horizon hybrid game, where the dynamical constraints are
expressed in terms of hybrid systems, is studied in [12].
As an extension of our previous work in [13], we propose
a framework for the study of two-player zero-sum hybrid
games with set-valued flow and jump maps. Compared to
[13], we relax the assumption on uniqueness of solutions
to the hybrid system defining the constraints of the game.
Although, it might not be possible to construct a saddle-
point equilibrium as the solution to the game when the
dynamics admit nonunique solutions (due to the game being
ill-defined by the nouniqueness of costs associated to a given
input), a weak saddle-point equilibrium and an upper value
function are provided herein. Specifically, we optimize the
worst-case (due to nonuniqueness of solutions) value of the
cost functional J as in (2), which is conveniently defined to
penalize the evolution of the state and the input during flow,
at jumps and at their final value.

The main contributions of this paper are a formulation
of two-player zero-sum games with hybrid dynamic set-
valued constraints. In Section III, Theorem 3.7 provides
sufficient conditions to characterize the solution of the min-
max problem (2), bounds as well as an expression for the



exact value of the worst-case cost over the set of adversarial
strategies, and the characterization of the feedback law that
attains it. Connections between optimality and stability for
the studied type of games are established in Section IV, while
a numerical example is presented in Section V.

Notation. Given two vectors, x and y, we denote (x, y) =
[x>y>]>. The symbol N denotes the set of natural numbers
including zero. The symbol R denotes the set of real numbers
and R≥0 denotes the set of nonnegative real numbers. Given
a vector x and a nonempty set A, the distance of x to A is
defined as |x|A := infy∈A |x− y|.

II. PRELIMINARIES

A. Hybrid Systems with Inputs

Since solutions to the dynamical system H as in (1)
can exhibit both continuous and discrete behavior, we use
ordinary time t to determine the amount of flow, and a
counter j ∈ N that counts the number of jumps. Based on
this parametrization of time, the concepts of a hybrid time
domain, in which solutions are fully described, defined as in
[5], is employed here.

A hybrid signal is a function defined on a hybrid time
domain. Given a hybrid signal φ and j ∈ N, we define Ijφ: =
{t : (t, j) ∈ domφ}.

Definition 2.1: (Hybrid arc) A hybrid signal φ :
domφ → Rn is called a hybrid arc if for each j ∈ N, the
function t 7→ φ(t, j) is locally absolutely continuous on the
interval Ijφ. A hybrid arc φ is compact if domφ is compact.

Let X be the set of hybrid arcs φ : dom φ→ Rn and U =
UC ×UD the set of hybrid inputs u = (uC , uD) : dom u→
RmC ×RmD , where uC = (uC1, uC2), mC1 +mC2 = mC ,
uD = (uD1, uD2), and mD1 + mD2 = mD. A solution to
the hybrid system H with input is defined as follows.

Definition 2.2: (Solution to H) A hybrid signal (φ, u)
defines a solution pair to (1) if φ ∈ X , u = (uC , uD) ∈ U ,
dom φ = dom u, and

• (φ(0, 0), uC(0, 0)) ∈ C or (φ(0, 0), uD(0, 0)) ∈ D,

• For each j ∈ N such that Ijφ has a nonempty interior
intIjφ, we have, for all t ∈ intIjφ,

(φ(t, j), uC(t, j)) ∈ C

and, for almost all t ∈ Ijφ,

d

dt
φ(t, j) ∈ F (φ(t, j), uC(t, j))

• For all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

(φ(t, j), uD(t, j)) ∈ D
φ(t, j + 1) ∈ G(φ(t, j), uD(t, j))

A solution pair (φ, u) is a compact solution pair if φ is a
compact hybrid arc.

A solution pair (φ, u) to H from ξ ∈ Rn is nontrivial
if dom(φ, u) contains at least two points. It is complete
if dom(φ, u) is unbounded. It is maximal if its domain
cannot be extended. We denote by ŜH(M) the set of solution
pairs (φ, u) to H as in (1) such that φ(0, 0) ∈ M . The set
SH(M) ⊂ ŜH(M) denotes all maximal solution pairs from
M and the set UH(M) denotes all input actions that yield
maximal solutions from M . For a given u ∈ U , we denote
the set of maximal state trajectories to H from ξ for u by
R(ξ, u) = {φ : (φ, u) ∈ SH(ξ)}. We say u renders maximal
a trajectory φ to H from ξ if φ ∈ R(ξ, u).

We define the projections of C and D onto Rn, respec-
tively, as

Π(C) = {ξ ∈ Rn : ∃uC ∈ RmC s.t. (ξ, uC) ∈ C}

Π(D) = {ξ ∈ Rn : ∃uD ∈ RmD s.t. (ξ, uD) ∈ D}

We define supt domφ := sup{t ∈ R≥0 : ∃j ∈
N s.t. (t, j) ∈ domφ} and supj domφ := sup{j ∈ N :
∃t ∈ R≥0 s.t. (t, j) ∈ domφ}. See [5], [6] for more details.

B. Closed-loop Hybrid Systems

Given a hybrid system H and a function κ := (κC , κD)
with κ : Rn → RmC ×RmD , the autonomous hybrid system
resulting from assigning u = κ(x), namely, the hybrid
closed-loop system, is given by

Hκ :

{
ẋ ∈ F (x, κC(x)) x ∈ Cκ
x+ ∈ G(x, κD(x)) x ∈ Dκ

(3)

where Cκ := {x ∈ Rn : (x, κC(x)) ∈ C} and Dκ := {x ∈
Rn : (x, κD(x)) ∈ D}.

III. TWO-PLAYER ZERO-SUM HYBRID GAMES

A. Game Formulation

Following the formulation in [14], for each i ∈ {1, 2},
consider the i -th player Pi with dynamics described by Hi
as in (1) with data (Ci, Fi, Di, Gi), state xi ∈ Rni , and
input ui = (uCi, uDi) ∈ RmCi × RmDi , where Ci ⊂
Rn × RmC , Fi : Rn × RmC⇒Rni , Di ⊂ Rn × RmD
and Gi : Rn × RmD⇒Rni , with ?1 + ?2 = ? for ? ∈
{n,mC ,mD}. We denote by Ui = UCi × UDi the set of
hybrid inputs for Hi; see Definition 2.3.

Definition 3.1: (Elements of a two-player zero-sum hy-
brid game) A two-player zero-sum hybrid game is composed
by

1) The state x = (x1, x2) ∈ Rn, where, for each i ∈ {1, 2},
xi ∈ Rni is the state of player Pi.

2) The set of joint input actions U = U1 × U2 with
elements u = (u1, u2), where, for each i ∈ {1, 2},
ui = (uCi, uDi) is a hybrid input. For each i ∈ {1, 2},
Pi selects ui independently from P3−i, who selects u3−i,
namely, the joint input action u has components ui that
are independently chosen by each player.



3) The dynamics of the game, described as in (1) and
denoted byH, with data (C,F,D,G) given by

C := C1 ∩ C2

F (x, uC) := (F1(x, uC), F2(x, uC))
D := D1 ∪D2

G(x, uD) := {Ĝi(x, uD) : (x, uD) ∈ Di, i ∈ {1, 2}}

where Ĝ1(x, uD) = (G1(x, uD), In2
), Ĝ2(x, uD) =

(In1
, G2(x, uD)), uC = (uC1, uC2), and uD =

(uD1, uD2).

4) For each i ∈ {1, 2}, a strategy space Ki of Pi defined
as a collection of mappings κi : Rn → RmCi × RmDi .
The strategy space of the game, namelyK = K1×K2, is
the collection of mappings with elements κ = (κ1, κ2),
where κi ∈ Ki for each i ∈ {1, 2}. Each κi ∈ Ki is said
to be a permissible pure2 strategy for Pi.

5) A scalar-valued functional3 (ξ, u) 7→ Ji(ξ, u) defined
for each i ∈ {1, 2}, and called the cost associated to
Pi. For each u ∈ U , we refer to J := J1 = −J2
as the worst-case cost of solutions to H from the initial
condition ξ for the hybrid input u.

In this type of game, for each i ∈ {1, 2}, the player Pi aims
to minimize the cost Ji, which, thanks to the definition of
J , allows to define a min-max problem in terms of J alone.

B. Equilibrium Solution Concept

Given the formulation of a zero-sum hybrid game in
Definition 3.1, its solution is defined as follows.

Definition 3.2: (Saddle-point equilibrium) Consider a
two-player zero-sum game, with dynamics H as in (1) with
J1 = J ,J2 = −J , for a given cost functionalJ : Rn×U →
R. We say that a strategy κ = (κ1, κ2) ∈ K is a saddle-point
equilibrium if for each ξ ∈ Π(C ∪ D), every4 solution pair
(φ∗, u∗) = (φ∗, (u∗1, u

∗
2)) ∈ SH(ξ) attaining the worst-case

cost and input components defined, for each i ∈ {1, 2}, as
domφ∗ 3 (t, j) 7→ u∗i (t, j) = κi(φ

∗(t, j)), satisfies

J (ξ, (u∗1, u2)) ≤ J (ξ, u∗) ≤ J (ξ, (u1, u
∗
2)) (4)

for all hybrid inputs u1 and u2 such that R(ξ, (u1, u
∗
2)) and

R(ξ, (u∗1, u2)) are nonempty, respectively.

Definition 3.2 is a generalization of the classical pure strategy
Nash equilibrium [14, (6.3)] to the case where the players
exhibit dynamics expressed in terms of hybrid inclusions and
opposite optimization goals.

2This is in contrast to when Ki is defined as a probability distribution,
in which case κi ∈ Ki is referred to as a mixed strategy.

3Given that we do not insist on having unique solutions to H, the cost
J measures the worst-case cost among that of each solution to H from ξ
for a given hybrid input u. Thus, its second argument is given by hybrid
inputs rather than solution pairs.

4Notice that a given strategy κ can lead to multiple input actions due to
C ∩D being nonempty.

C. Problem Statement

We formulate an optimization problem to solve the two-
player zero-sum hybrid game and provide sufficient condi-
tions to characterize its solution. Following Definition 3.1,
consider a two-player zero-sum hybrid game with dynamics
H as in (1). Given ξ ∈ C ∪ D, a joint input action u =
(uC , uD) ∈ U , the stage cost for flows LC : Rn × RmC →
R≥0, the stage cost for jumps LD : Rn×RmD → R≥0, and
the terminal cost q : Rn → R, we define the cost associated
to the solutions to H from the initial condition ξ and for the
hybrid input u, as

J (ξ, u) := sup
φ∈R(ξ,u)

J̃ (φ, u) (5)

where5

J̃ (φ, u) :=

supj domφ∑
j=0

∫ tj+1

tj

LC(φ(t, j), uC(t, j))dt

+

supj domφ−1∑
j=0

LD(φ(tj+1, j), uD(tj+1, j))

+ lim sup
(t,j)→sup domφ

(t,j)∈domφ

q(φ(t, j)),

(6)

{tj}
supj domφ

j=0 is a nondecreasing sequence associated to the
definition of the hybrid time domain of (φ, u) and R(ξ, u)
is the set of maximal state trajectories to H from the
initial condition ξ and for the hybrid input u, as defined
in Section II-A. The cost J is defined as the worst-case cost
over all solutions from ξ.

A solution to the two-player zero-sum hybrid game can
be obtained by solving the following problem.

Problem (�): Given ξ ∈ Rn, solve

minimize
u1

maximize
u2

u=(u1,u2)∈UH(ξ)

J (ξ, u) (7)

where UH is the set of joint input actions yielding maximal
solutions to H, as defined in Section II.A.

Definition 3.3: (Value function) Given ξ ∈ Π(C ∪D),
the value function at ξ, when it exists, is given by

J ∗(ξ) := min
u1

max
u2

u=(u1,u2)∈UH(ξ)

J (ξ, u)

= max
u2

min
u1

u=(u1,u2)∈UH(ξ)

J (ξ, u)
(8)

D. Weak Saddle-point Equilibrium Solution

In general, the cost evaluation tools employed in ap-
proaches based on dynamic programming fall short to char-
acterize strategies to attain a saddle-point equilibrium solu-
tion for a two-player zero-sum game with dynamics given

5Notice that J depends on the initial condition ξ and input u, while J̃
depends on the solution pair (φ, u) with φ(0, 0) = ξ.



by hybrid inclusions. The classical conditions involved in
dynamic programming do not guarantee the existence of a
lower bound for the cost of solutions toH from a given initial
condition and for an input action. Nevertheless, conditions
can still be established to characterize the worst-case cost
(due to the set-valued dynamics) associated to it. Thus, in this
section, we provide sufficient conditions to solve Problem (�)
via finding a control strategy that minimizes the worst-case
cost under the maximizing adversarial action. This leads to
a solution of a min-max problem with potentially nonunique
solutions, due to F or G being possibly set valued, or
C ∩D being nonempty. In addition, the provided sufficient
conditions allow to evaluate the value function without
computing solutions. First, we provide pointwise conditions
that allow to upper bound the cost for a initial condition and
input action.

Proposition 3.4: (Upper bound for a given input) Given
a hybrid systemH as in (1) with data (C,F,D,G), stage costs
LC : Rn × RmC → R≥0 and LD : Rn × RmD → R≥0, and
terminal cost q : Rn → R, suppose there exists a function V :
Rn → R that is continuously differentiable on a neighborhood
of Π(C) such that

LC(x, uC) + sup
f∈F (x,uC)

〈∇V (x), f〉 ≤ 0 ∀(x, uC) ∈ C,

(9)

LD(x, uD) + sup
g∈G(x,uD)

V (g)− V (x) ≤ 0 ∀(x, uD) ∈ D.

(10)

Let (φ, u) be a solution toH from ξ ∈ Π(C ∪D). Then,

J̃ (φ, u) ≤ V (ξ) (11)

where J̃ is defined in (6).

In the following result we study a special hybrid system,
whose solutions are a subset of the solutions to H as in
(1) and attain the worst-case cost due to nonuniqueness of
solutions to H. Following [15], we provide conditions to
exactly evaluate such a cost and show how it is an upper
bound for the cost of any other solution to H.

Proposition 3.5: (Maximal System) Consider a hybrid
system H as in (1) with data (C,F,D,G), where F and G
are compact for each (x, uC) ∈ C and each (x, uD) ∈ D,
respectively, stage costs LC : Rn × RmC → R≥0 and LD :
Rn × RmD → R≥0, terminal cost q : Rn → R, and suppose
that there exists a continuous function V : domV → R,
domV ⊃ Π(C) ∪ Π(D) ∪ G(D), that is continuously dif-
ferentiable on a neighborhood of Π(C). Given ξ ∈ Π(C ∪D)

and a solution6 (φ∗, u) to

Hmax :


ẋ ∈ argmax

f∈F (x,uC)

〈∇V (x), f〉 (x, uC) ∈ C

x+ ∈ argmax
g∈G(x,uD)

V (g) (x, uD) ∈ D

(12)
from ξ with u = (uC , uD), if

0 = LC(x, uC)+ sup
f∈F (x,uC)

〈∇V, f〉 ∀(x, uC) ∈ C, (13)

0 = LD(x, uD) + sup
g∈G(x,uD)

V (g) ∀(x, uD) ∈ D, (14)

and

lim sup
(t,j)→sup domφ∗

(t,j)∈domφ∗

V (φ∗(t, j)) = lim sup
(t,j)→sup domφ∗

(t,j)∈domφ∗

q(φ∗(t, j)),

(15)
then

J (ξ, u) = J̃ (φ∗, u) (16)

and
V (ξ) = J (ξ, u). (17)

A solution to (12) attains the worst-case cost among the
potential nonunique solutions to (1). Furthermore, the worst-
case cost associated to the input that satisfies (13) and (14)
can be evaluated without computing solutions as it is equal
to V (ξ).

Corollary 3.6: (Change of Signs) If the conditions in
Proposition 3.5 hold with inequality, namely, if in (13) and
(14) “=” is replaced with “≤” (or “≥”), then (17) holds with
“≤” (or “≥”, respectively).

Based on Proposition 3.4, which provides an upper bound on
the cost J̃ , and the exact cost evaluation in Proposition 3.5,
we introduce sufficient conditions in terms of Hamilton-
Jacobi-Isaacs-like equations to characterize the saddle-point
equilibrium strategy and evaluate the value function without
computing solutions.

Theorem 3.7: (Sufficient conditions to solve Problem
(�)) Given a hybrid systemH as in (1) with data (C,F,D,G),
stage costs LC : Rn ×RmC → R≥0 and LD : Rn ×RmD →
R≥0, and terminal cost q : Rn → R, suppose the following
hold:

1) There exists a continuous function V : domV → R,
domV ⊃ Π(C) ∪ Π(D) ∪ G(D), that is continuously
differentiable on a neighborhood of Π(C) and a feedback
law κ := (κC , κD)= ((κC1, κC2), (κD1, κD2)) : Rn →
RmC × RmD such that F (x, κC(x)) and G(x, κD(x))
are compact for every x such that (x, κC(x)) ∈ C and
(x, κD(x)) ∈ D, respectively, and such that the func-
tionsLC(x, uC) := LC(x, uC)+ sup

f∈F (x,uC)

〈∇V (x), f〉,

and LD(x, uD) := LD(x, uD) + sup
g∈G(x,uD)

V (g) satisfy

6Solutions to the “maximal system” in (12) exist under compactness of
the set-valued maps, regularity of V , and a proper selection of the initial
condition.



0 = LC(x, κC(x)) ∀x : (x, κC(x)) ∈ C, (18)

0 ≤ LC(x, (uC1, κC2(x)))

∀(x, uC1) : (x, (uC1, κC2(x))) ∈ C,
(19)

0 ≥ LC(x, (κC1(x), uC2))

∀(x, uC2) : (x, (κC1(x), uC2)) ∈ C,
(20)

V (x) = LD(x, κD(x)) ∀x : (x, κD(x)) ∈ D, (21)

V (x) ≤ LD(x, (uD1, κD2(x)))

∀(x, uD1) : (x, (uD1, κD2(x)))) ∈ D,
(22)

V (x) ≥ LD(x, (κD1(x), uD2))

∀(x, uD2) : (x, (κD1(x), uD2)) ∈ D,
(23)

2) For each ξ ∈ Π(C ∪D), each φ ∈ SHκ(ξ) satisfies

lim sup
(t,j)→sup domφ

(t,j)∈domφ

V (φ(t, j)) = lim sup
(t,j)→sup domφ

(t,j)∈domφ

q(φ(t, j)), (24)

Then
J ∗(ξ) = V (ξ) ∀ξ ∈ Π(C ∪D). (25)

Remark 3.8: (Weak optimality of the saddle-point equi-
librium) When both players play the saddle-point equilibrium
strategy, due to nonuniqueness of solutions, there is no reason
to expect that the worst cost is attained, implying that such
a strategy is not necessarily optimal in the min-max sense.
Nevertheless, by playing the saddle-point equilibrium, the
worst-case cost is minimized under the adversarial action that
aims to maximize it. See the example in Section V.

IV. ASYMPTOTIC STABILITY FOR HYBRID GAMES

We present a result that connects optimality and asymp-
totic stability for two-player zero-sum hybrid games. First,
we introduce a class of positive definite functions.

Definition 4.1: (Positive definite functions) A function
ρ : Rn×Rm → R≥0 is said to be positive definite with respect
to the set A ⊂ Rn, in composition with κ : Rn → Rm, also
written as ρ ∈ PDκ(A), if ρ(x, κ(x)) > 0 for all x ∈ Rn \A
and ρ(A, κ(A)) = {0}.

Theorem 4.2: (Saddle-point equilibrium under the exis-
tence of a Lyapunov function) Consider a two-player zero-
sum hybrid game with closed-loop dynamicsHκ as in (3) with
data (C,F,D,G), and κ := (κC , κD) : Rn → RmC × RmD
such that Cκ = Π(C) and Dκ = Π(D). Given a closed
set A ⊂ Rn, continuous functions LC : C → R≥0 and
LD : D → R≥0 defining the stage costs for flows and
jumps, respectively, and q : Rn → R defining the terminal
cost, suppose there exists a function V : Rn → R that
is continuously differentiable on an open set containing Cκ,
satisfying (18)-(23), and such that, for each ξ ∈ Cκ ∪ Dκ,
each φ ∈ SHκ(ξ) satisfies (24). Furthermore, suppose that

there exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ Cκ ∪Dκ∪G(Dκ)
(26)

and one of the following conditions7 holds:

1) LC ∈ PDκC (A) and LD ∈ PDκD (A);

2) LD ∈ PDκD (A) and there exists a continuous function
η ∈ PD such that LC(x, κC(x)) ≥ η(|x|A) for all x ∈
Cκ;

3) LC ∈ PDκC (A) and there exists a continuous function
η ∈ PD such that LD(x, κD(x)) ≥ η(|x|A) for all x ∈
Dκ.

Then

J ∗(ξ) = V (ξ) ∀ξ ∈ Cκ ∪Dκ (27)

Moreover, the feedback law κ is the saddle-point equilibrium
(see Definition 3.2) and it renders A uniformly globally pre-
asymptotically stable forHκ, as in [5, Definition 3.6].

V. EXAMPLE: SCALAR SET-VALUED HYBRID GAME

The following example characterizes both the saddle-
point equilibrium and the value function in a two-player
zero-sum game with a scalar state associated to player P1.
Thus, n1 = 1, n2 = 0, and the role of player P2 reduces to
select the action uC2. Specifically, consider a hybrid system
H with state x ∈ R, input uC := (uC1, uC2) ∈ R2, and
dynamics

ẋ ∈ F (x, uC) := [a, a]x+BuC x ∈ [0, σ] ∪ [µ, δ]
x+ ∈ G(x) := [σ, σ] x = µ

(28)
where8 a < a < 0, B = [b1 b2] and δ ≥ µ > σ > σ > 0.
Consider the cost functions LC(x, uC) := x2QC+u>CRCuC ,
LD(x) := P (x2 − σ2), and terminal cost q(x) := Px2,
defining J as in (6), with RC :=

[
RC1 0
0 RC2

]
, QC , RC1,

−RC2, P ∈ R>0, such that

QC + 2Pa− P 2(b21R
−1
C1 + b22R

−1
C2) = 0. (29)

Here, uC1 is designed by player P1, which aims to minimize
a cost functional J , while player P2 seeks to maximize it by
means of uC2. This is formulated as a two-player zero-sum
hybrid game, for which we solve Problem (�) in Section
III-C. The function V (x) := Px2 satisfies the sufficient
condition for (18)-(20) in Theorem 3.7 given as

min
uC1

max
uC2

uC=(uC1,uC2)∈R2

{
LC(x, uC) + sup

f∈F (x,uC)

〈∇V, f〉

}
= 0

(30)

which holds for all x ∈ [0, σ] ∪ [µ, δ]. In fact, the min-max
in (30) is attained by κC(x) = (−R−1C1b1Px,−R

−1
C2b2Px).

In particular, thanks to (29), we have −LC(x, κC(x)) =

7The subindexes in the sets of positive definite functions PD∗ denote
the feedback law that they are composed with, as in Definition 4.1.

8Given that µ > δ, flow from µ is not possible.



sup
f∈F (x,κC(x))

〈∇V (x), f〉. Then, V (x) = Px2 is a solution

to (18)-(20). In addition, the function V satisfies the sufficient
condition for (21)-(23) in Theorem 3.7 given as

LD(x) + sup
g∈G(x)

V (g(x)) =Px2 (31)

at x = µ, which makes V (x) = Px2 a solution to (21)-
(23) with saddle-point equilibrium κC . Given that V is
continuously differentiable on R, and that (18)-(23) hold
thanks to (30) and (31), from Theorem 3.7 we have that the
value function is J ∗(ξ) := Pξ2 for any ξ ∈ [0, σ] ∪ [µ, δ].

To study in detail the nonunique solutions yielded by
the feedback law κC , notice that, given that a < a < 0,
solutions from x = δ flow and then jump at x = µ to
any value σs ∈ [σ, σ]. Consider a solution φh with domain
domφh = ([0, th] × {0}) ∪ ([th,∞) × {1}), and given by
φh(t, 0) = δ exp((as−R−1C1b1P−R

−1
C2b2P )t), φh(t, 1) =

σs exp((as−R−1C1b1P −R
−1
C2b2P )(t− th)) with as ∈ [a, a].

In simple words, φh flows from δ to µ in th units of time,
then it jumps to σs, and flows converging (exponentially
fast) to zero. Notice that κC as defined above also yields
a solution φκ with domain domφκ = ([0, tκ] × {0}) ∪
([tκ,∞) × {1}), and given by φκ(t, 0) = δ exp((a −
R−1C1b1P −R

−1
C2b2P )t), φκ(t, 1) = σ exp((a−R−1C1b1P −

R−1C2b2P )(t − tκ)) attaining the worst-case cost. Figure 1
illustrates the similar behavior of the solutions φh and φκ,
yielded by κC , with the cost of the latter equating Pδ2.

Fig. 1. Nonnunique solutions due to set-valued dynamics for a = −2, a =
−1, b1 = b2 = 1, δ = ξ = 2, µ = 1, σ = 0.3, σ = 0.5, QC = 1,
RC1 = 1.304, RC2 = −4, and P = 0.4481. Worst-case cost solution
(green and pruple). Arbitrary solution (blue and red).

This shows that the weak saddle-point equilibrium κC is not
necessarily optimal in the min-max sense. Nevertheless, by
playing κC , player P1 minimizes the worst-case cost under
the maximizing adversarial action.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulate a two-player zero-sum game
under dynamic constraints given in terms of hybrid dynami-

cal systems, as in [5]. Scenarios in which the control action
is selected by a player P1 to accomplish an objective and
countereffect the damage of an adversarial player P2 are
studied. By encoding the objectives of the players in the
optimization of a cost functional, sufficient conditions are
provided to bound and exactly evaluate it. The main result
characterizes the strategy of P1 that minimizes the worst-
case cost under the maximizing adversarial action. Additional
conditions are proposed to allow the saddle-point strategy to
render a set of interest asymptotically stable by letting the
value function take the role of a Lyapunov function.

Future work includes studying conditions to guarantee the
existence of a solution to Problem (�) based on smoothness
and regularity of the data of the system, as in [9].
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