
Robust Global Hybrid Passive Complementary Filter on SO(2)

Piyush P. Jirwankar Ricardo G. Sanfelice

Abstract— We consider the problem of global attitude filtering
on the special orthogonal group. Using hybrid systems theory,
we propose a global and robust hybrid attitude filter on SO(2)
that is inspired from the passive complementary filter. We show
that the proposed filter is input-to-state stable with respect to
noise in the measurements. In the absence of measurement noise,
this filter renders the identity globally exponentially stable for
the attitude error system. Simulations illustrate the results.

I. INTRODUCTION

Attitude estimation is an enabler for feedback control in
numerous applications, especially in aerospace and robotics.
As mentioned in [1], attitude estimation is a two-step process
that involves i) estimating the orientation of one frame of
reference (usually fixed to a rotating rigid body) with respect
to another frame of reference (usually a fixed inertial frame)
and ii) filtering noise induced from noisy measurements.
The attitude of a rigid body is inherently represented by
an element of the special orthogonal group SO(3). As SO(3)
is a non-Euclidean Lie group, the standard nonlinear filtering
techniques, like the extended Kalman filter, though employed
at times, do not provide desirable results [2].

As a result, there has been significant effort to design
filters directly on SO(3). The seminal work [3] proposes
three types of nonlinear complementary filters on SO(3).
The passive complementary filter, proposed in [3], assumes
attitude measurements to be on SO(3), whereas the explicit
complementary filter uses vectorial measurements from IMU
sensors to obtain an estimate of the attitude. These filters
are widely used in aerospace and robotic applications [4].
The passive complementary filter is obtained by minimizing
a smooth cost function on SO(3) [5], and it is shown to
render the identity almost globally asymptotically stable for
the attitude error system [3]. In fact, one cannot use a
smooth feedback law to obtain global asymptotic stability
of a compact set on SO(3), as any smooth potential function
on SO(3) will have at least four critical points [6]. This
motivates the use of hybrid systems theory to obtain global
stability results on SO(3).

An explicit complementary filter-inspired hybrid attitude
estimator is proposed in [7]. It employs a synergistic potential
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function-based switching mechanism, as introduced in [8],
to render the identity globally asymptotically stable for the
attitude error system. The work in [9] also proposes a hybrid
estimator with synergistic potential function-based switching
that results in global exponential stability results. As the
synergistic potential function-based switching is a hysteresis-
based approach, robustness of the filter with respect to
measurement noise is ensured.

Due to the wide applications of the nonlinear complemen-
tary filter, this paper aims to develop a passive complementary
filter-based hybrid filter that renders the identity globally
exponentially stable for the attitude error system. We consider
the case of planar rotations so that the attitude evolves on
SO(2). As SO(2) is a special case of SO(3), the preceding
discussion about SO(3) applies for SO(2). For simplicity, we
assume that the attitude measurements lie on SO(2) and that
the angular velocity measurements are bias-free. The work in
[10] provides a comprehensive stability analysis for a passive
complementary filter with these assumptions. Assuming noisy
measurements, we leverage the passive complementary filter
in [10] to obtain a global hybrid attitude filter on SO(2).
The proposed hybrid filter employs a logic-based switching
and renders the identity input-to-state stable (ISS) for the
attitude error system. In the absence of measurement noise,
the proposed filter renders the identity globally exponentially
stable for the attitude error system. We also comment that the
proposed hybrid filter on SO(2) cannot be directly extended
to SO(3) due to topological obstructions.

The remainder of this paper is arranged as follows. Sec-
tion II introduces relevant preliminaries. Section III discusses
the passive complementary filter with noisy measurements.
Section IV proposes a hybrid attitude filter on SO(2).
Section V presents the simulation results, and Section VI
concludes the paper. Due to space constraints, the proofs
will be presented elsewhere.

II. PRELIMINARIES

A. Notation

The set of nonnegative integers, and real and nonneg-
ative numbers is denoted by N, R, and R≥0, respec-
tively. The set of all n-dimensional rotation matrices is
defined as SO(n) := {R ∈ Rn×n : R⊤R = RR⊤ =
I, detR = 1}. The Lie algebra of SO(n) is defined
as so(n) := {X ∈ Rn×n : X +X⊤ = 0}. The n-sphere is
defined as Sn := {v ∈ Rn+1 : v⊤v = 1}. We define the cross
map ·× : R → so(2) as v× :=

[
0 −v
v 0

]
for each v ∈ R. The

inverse of the cross map is defined by vex : so(2) → R,
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v× 7→ vex(v×) := v. For any matrix A ∈ Rn×n, its skew
symmetric projection is given by Pa(A) := (A−A⊤)/2.

The closure of a set X is denoted by X , and its interior
is denoted by int X . For any set X endowed with a distance
metric d : X × X → R≥0, the distance between a
point x ∈ X and a nonempty set A ⊂ X is defined as
|x|A := infy∈A d(x, y). The distance of point R ∈ SO(2)
to a nonempty set A ⊂ SO(2) is defined as |R|2A =
infX∈A

1
4 tr

(
I −X⊤R

)
.

B. Nonautonomous Hybrid Systems on SO(2)

In this paper, we design an estimation algorithm for
a system on SO(2) that involves a logic variable. This
algorithm can be represented by considering a hybrid system
on SO(2) with a logic variable q ∈ Q ⊂ N, given as [11]

H :


ẋ = f(x, v, w) (x, v, w) ∈ C

x+ = g(x, v, w) (x, v, w) ∈ D

ζ = h(x, v, w)

(1)

where x := (R, q) ∈ X := SO(2) × Q is the state of the
system, v ∈ V is the input, w ∈ W is the disturbance acting
on the system, and ζ is the output. We assume that W has
a group structure with the identity element e ∈ W . The set
C ⊂ X ×V×W is the flow set on which flows are permitted,
and D ⊂ X × V ×W is the jump set on which jumps are
permitted. The function f : C → TSO(2)×{0} denotes the
flow map and g : D → X denotes the jump map. During
flows, H enforces q to be constant, i.e., q̇ = 0.

A solution (x, v, w) to H is parametrized by (t, j) ∈ R≥0×
N, where t denotes the ordinary time that has passed, and j
denotes the number of times the solution has jumped. The
domain of the solution, denoted by dom (x, v, w), is a hybrid
time domain [12, Definition 2.3]. The input-disturbance pair
(v, w) can be interpreted as a hybrid input to H (see [11,
Definition 2.27]). The notion of a solution to H is adapted
from [11, Definition 2.29]. A solution is maximal if it cannot
be extended, and it is complete if its domain is unbounded.

Now, we define the following stability notions, in the
presence of a disturbance w, that are tailored for (1).

Definition 1 (Input-to-state stability notions). The system (1)
is said to be locally input-to-state stable (LISS) with respect
to a nonempty, compact set Ã := A× {q} ⊂ SO(2)×Q if
there exists a class-KL function β, a class-K function γ, and
scalars κ ∈ (0,maxR∈SO(2) |R|A) and kw > 0 such that
each maximal solution (t, j) 7→ (x(t, j), v(t, j), w(t, j)) to
(1) with |x(0, 0)|Ã ≤ κ and |w#|e ≤ kw satisfies

|x(t, j)|Ã ≤ β(|x(0, 0)|Ã, t+ j) + γ(|w#|e) (2)

for all (t, j) ∈ dom (x, v, w), where |w#|e :=
sup(t,j)∈dom w |w(t, j)|e, and dom (x, v, w) = dom x =
dom v = dom w. If (2) holds for each x(0, 0) ∈ X , then
(1) is input-to-state stable (ISS) with respect to Ã.

Definition 2 (Robust pre-forward invariance of a set). A
nonempty set U ⊂ SO(2) × Q is said to be robustly
pre-forward invariant for (1) if every solution (t, j) 7→

(x(t, j), v(t, j), w(t, j)) to (1) with x(0, 0) ∈ U satisfies
x(t, j) ∈ U for all (t, j) ∈ dom (x, v, w).

Now, we provide conditions for H to be well-posed.
In particular, H is well-posed if it satisfies the following
assumption [12].

Assumption 1 (Hybrid basic conditions). For the hybrid
system H in (1),

(A1) C and D are closed subsets of X × V ×W ,
(A2) f : C → TSO(2)× {0} is continuous,
(A3) g : D → SO(2)×Q is continuous.

III. PASSIVE COMPLEMENTARY FILTER

The rotational kinematics of a rigid body on SO(2) are
given by

Ṙ = RΩ× (3)

where t 7→ Ω(t) ∈ R represents the angular velocity in the
body fixed frame. One of the standard tools for estimating
the rigid body attitude that satisfies the kinematics in (3)
is the nonlinear complementary filter [3]. In this filter, the
measurements of the angular velocity Ω and the rotation
matrix R are given as Ωy and Ry, respectively. Then, the
goal of the filter is to generate a filtered estimate R̂ of the
true state R using the measurements. In other words, the filter
error defined as R̃ := R̂⊤R should asymptotically approach
I . We employ the following measurement model:

Ry = RNR, Ωy = Ω+ ηω, (4)

where t 7→ NR ∈ SO(2) and t 7→ ηω(t) ∈ R are signals of
time representing the bounded measurement noise in attitude
and gyroscope measurements, respectively, with the bounds
given by

θR := sup
t∈dom NR

|NR(t)|I , ηω := sup
t∈dom ηω

|ηω(t)|. (5)

We say that the noise signal t 7→ (NR(t), ηω(t)) is admissible
if (NR(t), ηω(t)) ∈ W for all t in its domain, where

W := {X ∈ SO(2) : |X|I ≤ θR} × [−ηω, ηω]. (6)

We use this measurement model, along with the Passive
Complementary Filter proposed in [3, Theorem 4.2], and
obtain the following result.

Theorem 1. Given the rotational kinematics in (3) with
a bounded and locally absolutely continuous input signal
t 7→ Ω(t), a constant kp > 0, and measurements Ry and

Ωy satisfying (4), (5), and θR ≤
√
(5 + 2

√
5)/10, the filter

˙̂
R = R̂

(
Ωy + kpω(R̃

y)
)
×
, R̂(0) ∈ SO(2), (7)

where ω(R̃y) := vex
(
Pa(R̃

y)
)

and R̃y := R̂⊤Ry is such that

(a) the kinematics of the filter error R̃ are given as

˙̃
R = f(R̃,Ω, wc) (8)

:= [R̃,Ω×]− ηω×R̃− kpω(R̃NR)×R̃,



where wc := (NR, ηω) ∈ W , and [R̃,Ω×] := R̃Ω× −
Ω×R̃,

(b) the filter error (8) is LISS with respect to {I} ⊂
SO(2); in particular, for each κ ∈ (0, 1) and each
ε ∈ (0, 2), if |R̂(0)⊤R(0)|I ≤ κ then, for each
t 7→ (NR(t), ηω(t)) ∈ W with bounds as in (5) such that

h(ηω) + g(θR) ∈
[
0, εkpκ

2(1− κ2)
]
, (9)

where h(s) := s/4 and g(s) :=
kp

2

(
2s2 +

√
s2(1− s2)

)
for all s ≥ 0, every solution t 7→ (R̃(t), vc(t), wc(t)) to
(8) satisfies

|R̃(t)|2I ≤ e−2kp(1−κ2)t|R̃(0)|2I +
h(ηω) + g(θR)

2kp(1− κ2)
(10)

for all t ∈ dom (R̃, vc, wc).

Note that in the absence of measurement noise, we have
θR = ηω = 0. In this setting, it follows from Theorem 1 that
the set {I} ∪ USO(2) is pre-forward invariant for (8), where

USO(2) := {X ∈ SO(2) : |X|I = 1}.

The set USO(2) denotes the set of 180◦ rotations from the
identity orientation, and has Lebesgue measure zero in SO(2).
Therefore, if the measurements are noise-free, it follows from
Theorem 1 that I is almost globally exponentially stable
for (8), and USO(2) is unstable for (8). As a result, in the
forthcoming sections, we refer to USO(2) as the unstable
and pre-forward invariant set for (8). Furthermore, for each
solution to (8) starting from USO(2), appropriately chosen
arbitrarily small measurement noise can prevent the filter
error from converging to the identity.

IV. HYBRID PASSIVE COMPLEMENTARY FILTER ON SO(2)

In this section, using the structure in (1), we design the
hybrid filter by employing a logic variable q ∈ Q, where Q
will be defined later in this section. Our design approach for
the hybrid filter is as follows: when R̃y is close enough
to I , the filter is defined by (7). We call this filter the
local filter and denote it by Ĥ0. When R̃y is far enough
from I , a passive complementary filter, called the global
filter and denoted Ĥ1, is designed such that R̃ converges to
R⊤R∗⊤R ∈ SO(2) (which is close to identity) instead of
actually converging to I , where R∗ ∈ SO(2) is defined such
that |R∗|I is close to zero (i.e., 0 < |R∗|I < c1 for some
c1 ∈ (0, 1)). Since |R⊤R∗⊤R|I = |R∗|I , |R̃|I converges
to |R∗|I . This property ensures that the estimate generated
by the filter does not remain in USO(2) owing to item a in
Theorem 1. As a consequence, the global filter brings R̃ into
a small enough neighborhood of I so that the local filter can
be used.

Now, we concretely define the notions of close enough
and far enough. Fix constants c0, c1 ∈ R, and R∗ ∈ SO(2)
such that

0 < |R∗|I < c1 < c0 < 1, and c21 < 1− |R∗|2I . (11)

These constants solidify the notion of R̃y being close enough
and far enough from I ∈ SO(2) as follows:

• the measured filter error R̃y is said to be close enough
to I if R̃y ∈ C0, with C0 defined as

C0 := {X ∈ SO(2) : |X|I ≤ c0}, (12)

• the measured filter error R̃y is said to be far enough
from I if R̃y ∈ C1, where C1 is defined as

C1 := {X ∈ SO(2) : |X|I ≥ c1}. (13)

A. The Global Filter on SO(2)

To formalize the global filter Ĥ1, define

R1 := R∗R, R̃1 := R̂⊤R1 = R̂⊤R∗R. (14)

Therefore, R1 represents a rotation of R by R∗, and R̃1

represents the error rotation between R̂ and R1. Thus, if R̂
converges to R1, the corresponding filter error R̃1 converges
to I and R̃ converges to R⊤R∗⊤R. Next, it is easy to see
from (3) that R1 satisfies the following kinematics:

Ṙ1 = R1Ω×. (15)

Therefore, the Passive Complementary Filter (7) can now be
used to estimate R1. In particular, with kp > 0, we define the
following global filter, for the case when R̃y is far enough
from I:

˙̂
R = R̂

(
Ωy + kpω(R̃

y
1)
)
×
, R̂(0) ∈ SO(2), (16)

where R̃y
1 = R̂⊤Ry

1 . Using Theorem 1, it follows that {I} ⊂
SO(2) is LISS for

˙̃
R1 = f(R̃1,Ω, wc), (17)

where wc and the function f are as defined in (8) and
below it. Hence, for small enough noise and for all initial
conditions such that R̃1(0) /∈ USO(2), it follows from item
b of Theorem 1 that the filter in (16) ensures convergence
of R̂ to a small enough neighborhood of R1. Note that the
set USO(2) = {R̃1 ∈ SO(2) : |R̃1|I = 1} for the global filter
can be written in terms of R̃ using the following equivalence.

Proposition 1. Given R∗ ∈ SO(2) such that |R∗|I ∈ (0, 1),
|R̃1|I = 1 ⇐⇒ |R̃|2I = 1− |R∗|2I .

B. Operation and Logic of the Hybrid Filter on SO(2)

The proposed hybrid passive complementary filter on
SO(2) is a hysteresis-based hybrid filter that guarantees
global estimation and, due to implementing hysteresis-based
switching, ensures that there is no chattering (see [13]). Next,
we present its construction.

We employ a logic variable q ∈ Q := {0, 1} to implement
hysteresis-based switching. The idea is to use the local filter
Ĥ0 when q = 0 and the measured filter error R̃y is close
enough to I , and use the global filter Ĥ1 when q = 1 and
the measured filter error is far enough from I .

The logic of the proposed hybrid filter is as follows:



Case 1 If q = 0 and R̃y is close enough to I (i.e., R̃y ∈ C0),
the proposed hybrid filter employs the local filter
Ĥ0, defined in (7). Due to Theorem 1, exponential
convergence of R̃ to a small neighborhood of I
follows, where the size of the neighborhood is
determined by the size of the noise, through the
last term in (10).

Case 2 If q = 1 and R̃y is far enough from I (i.e., R̃y ∈ C1),
the proposed hybrid filter employs the global filter
Ĥ1, defined in (16). The evolution of this filter will
cause R̃y to get close enough to I in finite time,
resulting in Case 4.

Case 3 If q = 0 and R̃y is far enough from I (i.e., R̃y ∈
D0), the value of q is reset to one, which causes the
proposed filter to use the global filter according to
Case 2.

Case 4 If q = 1 and R̃y is close enough to I (i.e., R̃y ∈ D1),
the value of q is reset to zero, which results in Case 1
and ensures exponential convergence of R̃ to a small
neighborhood of I .

Note that due to the characterization of close enough and
far enough, the regions of operation for Case 1 and Case 2
are the sets C0 and C1, respectively. To ensure convergence
of R̃ to a small neighborhood of I , we design the region of
operation of the filter to be disjoint from the unstable and
pre-forward invariant set for its error dynamics. For Case 2,
Proposition 1, along with our choice of c1 and R∗, ensures
that the region of operation of the global filter and its unstable
and pre-forward invariant USO(2) set are disjoint.

The regions of operation for Case 3 and Case 4 are defined
to contain all the points that are not in the regions of operation
for Case 1 and Case 2, respectively. In particular, we define
the following sets:

D0 := SO(2) \ C0 and D1 := SO(2) \ C1. (18)

The set D0 is the region of operation for Case 3 and the
set D1 is the region of operation for Case 4. Note that, for
each q ∈ Q, Dq contains in its interior the unstable and
pre-forward invariant set of the filter Ĥq .

When q = 0, the sets C0 and D0 capture the notion of close
enough and far enough from I , respectively. Similarly, for
q = 1, the sets D1 and C1 capture the notion of close enough
and far enough from I , respectively. Figure 1 illustrates the
construction of the flow sets and the jump sets.

C. The Hybrid Filter

In this section, we formalize the hybrid filter outlined in
the previous section. Following Case 1-Case 4 and the logic
therein, we model the hybrid filter as a hybrid system of the
form (1). The filter, denoted by ĤPCF, has state x := (R̂, q) ∈
X := SO(2) × Q, output ζ := R̂, and data (Ĉ, F̂ , D̂, Ĝ, ζ)
defined below. Following (7) and (16), the input of ĤPCF is
given by the measurements u := (Ry,Ωy) ∈ U := SO(2)×R.
This input, which naturally is a continuous-time signal, is
defined on the hybrid time domain of a solution x, namely,
dom u = dom x, so that u flows when x flows, and jumps to
the same value when x jumps. More formally, given a signal

|R̃y|2I=0 |R̃y|2I=0

|R̃y|2I=|R∗|2I

|R̃y|2I=1

|R̃y|2I=c20
|R̃y|2I=c21

|R̃y|2I=1

|R̃y|2I=1−|R∗|2I
q = 0 q = 1

Fig. 1: Since SO(2) is isomorphic to S1, the unit circle on
the left represents the values of R̃y ∈ SO(2) for q = 0,
whereas the one on the right represents R̃y for q = 1. Points
on the circle that lie on the same vertical dashed line have the
same value of |R̃y|I . The blue and the red regions represent
the flow set Cq and the jump set Dq, respectively, for each
q ∈ Q.

t 7→ (Ry(t),Ωy(t)) and a solution x, we define the hybrid
input (t, j) 7→ u(t, j) = (Ry(t, j),Ωy(t, j)) as

u(t, j) := (Ry(t),Ωy(t)) ∀(t, j) ∈ dom x. (19)

Next, to define the hybrid filter ĤPCF, we follow the logic
from Case 1-Case 4 and define the flow set Ĉ as the union of
the region of operation for Case 1 and Case 2. The flow map
F̂ is defined such that q remains constant during flows, and
R̂ flows according to the filter Ĥq . The jump set D̂ is defined
to be the set of all points resulting in Case 3 and Case 4.
Furthermore, following the logic in Case 3 and Case 4, the
jump map is defined such that q toggles from zero to one
and vice versa, respectively.

As a result, the data (Ĉ, F̂ , D̂, Ĝ, ζ) of the hybrid filter
ĤPCF is given as

Ĉ :=
{
(x, u) ∈ X × U : (R̂⊤Ry, q) ∈

⋃
q∈Q(Cq × {q})

}
F̂ (x, u) :=

(
R̂κ̂(x, u), 0

)
∀(x, u) ∈ Ĉ

D̂ :=
{
(x, u) ∈ X × U : (R̂⊤Ry, q) ∈

⋃
q∈Q(Dq × {q})

}
Ĝ(x, u) := (R̂, 1− q) ∀(x, u) ∈ D̂

ζ := R̂

where κ̂(x, u) := qκ̂1(x, u)+(1−q)κ̂0(x, u) with κ̂0(x, u) :=
(Ωy + kpω(R̃

y))× and κ̂1(x, u) := (Ωy + kpω(R̃
y
1))×, and

recall that R̃y
1 = R̂⊤R∗Ry. Note that the map Ĝ is well-

defined because the sets D0 and D1 are disjoint.

D. Hybrid Filter Error Dynamics

Recall that the state of the hybrid filter ĤPCF is x = (R̂, q).
The desired reference trajectory for ĤPCF is (R, 0). This
results in the filter error being defined as R̃ := R̂⊤R. To
obtain the hybrid filter error dynamics, we compute the error
dynamics at points in the flow set Ĉ of the filter. Since
the flow map results in ˙̂

R = F̂ (x, u) = R̂κ̂(x, u) for all
(x, u) ∈ Ĉ, the dynamics for R̃ = R̂⊤R are found to be

˙̃
R =

˙̂
R⊤R+ R̂⊤Ṙ = −κ̂(x, u)R̃+ R̃Ω×. (20)



Similarly, we compute R̃+ = R̂+⊤R = R̂⊤R = R̃. Since the
hybrid filter error R̃ flows (resp., jumps) when ĤPCF flows
(resp., jumps), the corresponding flow set (resp., jump set) is
comprised of points R̃ such that, given input Ry, the state-
input pair (x, u) lies in Ĉ (resp., D̂). We now characterize
these flow and jump sets in terms of R̃ as follows.
Lemma 1. Consider constants c0 and c1 satisfying 0 < c1 <
c0 < 1. Given R̃ ∈ SO(2) and a signal t 7→ NR(t) such
that θR is defined in (5) and satisfies θR ≤ (2 +

√
2)/4, the

following holds:
1) R̃y ∈ C0 =⇒

R̃ ∈ C0,w := {X ∈ SO(2) : |X|2I ≤ c20 + F(θR)},
2) R̃y ∈ D0 =⇒

R̃ ∈ D0,w := {X ∈ SO(2) : |X|2I ≥ c20 − F(θR)},
3) R̃y ∈ C1 =⇒

R̃ ∈ C1,w := {X ∈ SO(2) : |X|2I ≥ c21 − F(θR)},
4) R̃y ∈ D1 =⇒

R̃ ∈ D1,w := {X ∈ SO(2) : |X|2I ≤ c21 + F(θR)},
where F(s) := s2 + s

√
1− s2 for all s ∈ [0, 1].

For each q ∈ Q, the sets Cq,w and Dq,w represent the
flow set and the jump set for the hybrid filter error dynamics,
respectively. The subscript w denotes the dependence of these
sets on the bound on attitude measurement noise.

Note that the admissible measurement noise bound θR
needs to be small enough such that D0,w ∩ D1,w = ∅,
which prevents persistent jumping of a solution to the hybrid
filter error dynamics. Furthermore, with (11) satisfied, the
admissible measurement noise should allow R∗ to lie in the
interior of D1,w so that a jump can be triggered in finite
time to switch from the global filter to the local filter. For
each q ∈ Q, the noise must also be small enough to prevent
intersection of the set Cq,w with the unstable and pre-forward
invariant sets of the corresponding filter. These conditions on
the noise are captured by the following bound on F(θR):

F(θR) ≤ ρmax :=min

{
c20 − c21

2
, c21 − |R∗|2I , 1− c20,

c21 + |R∗|2I − 1, c21 −
4|R∗|2I

1 + 3|R∗|2I

}
.

(21)

The last term in ρmax ensures that the filter error decays
exponentially. With W in (6), define, for each ρ ∈ [0, ρmax),
the set of admissible values for the measurement noise signal
t 7→ (NR(t), ηω(t)) as

Wρ := W ∩
(
{X ∈ SO(2) : F(|X|I) ≤ ρ} × [−ηω, ηω]

)
.

Note that the set Wρ ⊂ SO(2)×R is compact, which ensures
that the measurement noise is bounded.

The filter error dynamics is represented by the hybrid
system H̃w

PCF = (C̃w, F̃w, D̃w, G̃w) with state x̃ := (R̃, q) ∈
X , hybrid input signal (t, j) 7→ ṽ(t, j) := (R(t),Ω(t)) ∈
V := SO(2) × R that is obtained from the continuous-
time input signal t 7→ (R(t),Ω(t)) using (19), and hybrid
disturbance signal (t, j) 7→ w̃(t, j) := (NR(t), ηω(t)) ∈ Wρ,
which is obtained from the continuous-time disturbance signal
t 7→ (NR(t), ηω(t)) ∈ Wρ. Following (20) and Lemma 1, the
data of H̃w

PCF is given as follows:

C̃w :=
(⋃

q∈Q(Cq,w × {q})
)
× V ×Wρ

F̃w(x̃, ṽ, w̃) :=
(
−κw(x̃, ṽ, w̃)R̃+ R̃Ω×, 0

)
∀(x̃, ṽ, w̃) ∈ C̃w

D̃w :=
(⋃

q∈Q(Dq,w × {q})
)
× V ×Wρ

G̃w(x̃, ṽ, w̃) := (R̃, 1− q) ∀(x̃, ṽ, w̃) ∈ D̃w

where κw(x̃, ṽ, w̃) := κ̂(x, u), with x (resp., u) denoting the
state (resp., input) of ĤPCF. These are represented using x̃, ṽ,
and w̃, since x = (RR̃⊤, q) and u = (RNR,Ω+ ηω).

Theorem 2. Suppose that the input signal t 7→ Ω(t) ∈ R
is bounded and locally absolutely continuous in dom Ω, and
the noise signal t 7→ wc(t) := (NR(t), ηω(t)) is Lebesgue
measurable and locally essentially bounded in dom wc. Then,
for each constants c0, c1, and R∗ ∈ SO(2) satisfying (11) and
4 < c21(3+

1
|R∗|2I

), each positive constants kp and kp, and each
ρ ∈ [0, ρmax), the following holds:

1) H̃w
PCF and ĤPCF satisfy the hybrid basic conditions,

2) If t 7→ wc(t) satisfies (5), wc(t) ∈ Wρ for all t ∈
dom wc, and dom Ω = dom wc = R≥0, then every
maximal solution to H̃w

PCF from C̃w ∪ D̃w is complete
and exhibits no more than two jumps,

3) H̃w
PCF is ISS with respect to the set Ã := {I} × {0} ⊂

SO(2) × Q; in particular, for each solution (t, j) 7→
(x̃(t, j), ṽ(t, j), w̃(t, j)) to H̃w

PCF and each ε ∈ (0, 2),
there exist constants K,Λ, δ, γmin > 0 such that, if t 7→
wc(t) satisfies (5) and (t, j) 7→ w̃(t, j) ∈ Wρ satisfies

h(ηω) + g(θR) ∈ [0, εγmin],

then the following holds:

|x̃(t, j)|2Ã ≤ Ke−Λt|x̃(0, 0)|2Ã + δ(h(ηω) + g(θR))

(22)

for all (t, j) ∈ dom (x̃, ṽ, w̃).

Remark 1. When the constant K in item 3 of Theorem 2 is
greater than one, since |R̃|2I ≤ 1 already holds for each R̃ ∈
SO(2), the exponential bound in Theorem 2 holds trivially
over an initial window of hybrid time. The bound (22) assures
that there exist T > 0 such that, for each solution (x̃, ṽ, w̃)
to H̃PCF, the first term therein is smaller than one for all
(t, j) ∈ dom (x̃, ṽ, w̃) satisfying t ≥ T .
Remark 2. The proposed hybrid filter is a global filter because
Proposition 1 ensures that the unstable and pre-forward
invariant sets of the complementary filter (7) and of the
global filter (16) do not intersect. Consequently, appropriate
switching between these filters globally steers the filter error
to a neighborhood of I . The direct extension of this approach
to SO(3), however, turns out to be unsuccessful as the
unstable and pre-forward invariant sets of the passive comple-
mentary filter on SO(3) and the global filter always intersect,
irrespective of the choice of R∗ ∈ SO(3). Therefore, there
exists an initial attitude estimate from where convergence of
R̃ to I does not occur. Due to this issue that arises from the
topology of the set U0, alternative global filters must be used
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Fig. 2: Hybrid Passive Complementary Filter on SO(2).
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Fig. 3: Rate of convergence comparison.

instead of simply rotating the passive complementary filter,
as done in this paper.

V. SIMULATION RESULTS

Consider a continuous-time angular velocity signal as
Ω(t) = sin(t), with the initial condition for the rotational
kinematics as R(0, 0) = −I ∈ SO(2). The filter parameters
are chosen as c0 = 0.966, c1 = 0.866, kp = 1, kp = 1,
and R∗ ∈ SO(2) such that |R∗|2I = 0.5. The filter is
initialized as R̂(0, 0) = I , q(0, 0) = 0. Note that the filter
initialization results in R̃(0, 0) = −I ∈ USO(2). With the
above initialization, we simulate1 the hybrid filter, the passive
complementary filter (PCF) in (7), and the Extended Kalman
Filter (EKF). Let θ̃ denote the angle of rotation of the filter
error R̃. We set the noise ηω = sin(θ̃) if |R̃|2I > 0.999 and
ηω = −sign(sin(θ̃)) otherwise. The rotation angle of NR is
sampled from a uniform distribution over [− π

18 ,
π
18 ].

The initialization of the filter results in (R̃(0, 0), q(0, 0)) ∈
D0 × {0}. The choice of noise prevents PCF and EKF from
making R̃ converge to I , as seen in Figure 2a, where the plots
for PCF and EKF both stay at |R̃|2I = 1. For the hybrid filter,
however, we expect that R̃ converges to a small neighborhood
of I , and the solution jumps twice, which is as observed from
Figures 2a and 2b, where the jumps occur at t = 0 sec and
t ≈ 1.6 sec.

Furthermore, the simulations in Figure 3 highlight the
effect of the choice of the parameter c1 for fixed values of c0
and R∗. The conditions in Theorem 2 define an admissible
region for the values of c1. As c1 approaches the boundary
of this admissible region, the rate of convergence of |R̃|2I
decreases. This follows from Theorem 1 as the rate of
convergence of |R̃|2I is smaller when R̃ is closer to either I
or USO(2). A similar trend is observed when parameters c0
and R∗ are varied, keeping the other parameters fixed.

1The simulation files can be found at https://github.com/Hybri
dSystemsLab/HybridComplementaryFilter

The runtime for one iteration of ĤPCF and the PCF, for
randomly chosen values of states and parameters but a fixed
time step h = 0.0001 sec, averaged over 104 iterations
is 3.044 × 10−6 sec and 2.295 × 10−6 sec, respectively.
Though still low, the higher computation time for ĤPCF

is a consequence of performing more computations, which
include assessing if the state-input pair belongs to the flow
and jump set and computation of the jump map.

VI. CONCLUSION

Inspired by the passive complementary filter, we propose
a global hybrid filter on SO(2). Assuming that the measure-
ments of the attitude and the angular velocity are corrupted
by a bounded noise signal, the proposed filter renders the
identity input-to-state stable for the hybrid filter error system.
In the absence of measurement noise, the filter renders the
identity globally exponentially stable for the hybrid filter error
system. Simulations show that the passive complementary
filter and the EKF fail to ensure global convergence, whereas
the hybrid filter successful does so.
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