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This paper proposes a digital twin formulation for on-orbit servicing operations involving
multiple spacecraft operating in resource-constrained and uncertain scenarios. Our problem
setup considers multiple spacecraft, each comprised of multiple subsystems, and develops a
modular digital twin formulation that incorporates state estimation, information sharing, and
compatible control strategies across the various subsystem digital twins, with a goal of driving
the system-of-systems towards mission success. The proposed formulation is implemented and
demonstrated for a simulated on-orbit servicing mission featuring a controllable, health-aware
chaser spacecraft performing a rendezvous with an uncontrollable target spacecraft. The
modular digital twin formulation handles uncertainty in the kinematic states as well as the
health of the propulsion subsystem, while producing optimal control strategies that are robust
to the considered modes of failure.

I. Introduction
Digital twins provide an integrated framework for translating observed data into control decisions via an asset-specific

representation of the physical systems of interest and their unique characteristics [1–4]. A predictive digital twin
integrates predictive models, data assimilation, model calibration, uncertainty quantification, and control algorithms to
optimize the monitoring and operation of an autonomous system [5, 6]. Specifically, one begins with a predictive model
of the system dynamics (either physics-based, data-driven, or a hybrid combination of both). As observations of the
physical system are collected, parameters of the model and their associated uncertainty are calibrated in real-time so that
the digital twin continually reflects the current understanding of the system’s state. These calibrated models are then
used to issue predictions about future system states, conditioned on past observations and future control decisions. Such
a predictive capability can be leveraged to explore, validate, and/or optimize these control decisions via optimization or
control-theoretic approaches.

In this work, we consider autonomous on-orbit spacecraft operations, such as on-orbit assembly, decommissioning
and towing, and on-orbit refueling of satellites. These applications pose some unique challenges for digital twins.
Consider the on-orbit servicing mission illustrated in Fig. 1. A potentially non-cooperative target spacecraft (e.g.,
space debris or a spacecraft that has undergone damage or system failure) needs to be towed to a disposal orbit by
a controllable chaser spacecraft equipped with a robotic manipulator. As described in [7, 8], this close-proximity
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operation can be broken down into three main phases. In the pre-capture phase, the two spacecraft will be on potentially
different orbits and the chaser must rendezvous with the target (Fig. 1a). In the capture phase, a docking maneuver must
be carried out, starting with the two spacecraft separated by some distance and ending with the two spacecraft attached
using the robotic arms on the chaser (Fig. 1b). Finally, in the post-capture phase the docked assembly will be towed to
the disposal orbit while being actuated by the propulsion system on the chaser (Fig. 1c).
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Fig. 1 An on-orbit servicing mission broken down into three phases: pre-capture, capture, and post-capture.

The success of the mission described above depends on precise control of the chaser spacecraft. This is challenged
by uncertainty in the estimated position, velocity, and attitude of both the target and chaser spacecraft. These estimates
are informed by noisy, temporally sparse, and potentially intermittent or corrupted measurements, thus increasing
reliance on model-based predictive capabilities for the systems involved. Moreover, the control decisions of each
spacecraft could depend on their instantaneous condition, for example, the health of the propulsion or power subsystems
could necessitate the application of more conservative control inputs. The digital twin framework seeks to address
these challenges by continually calibrating predictive models of each relevant subsystem in order to maintain real-time
estimates of their state and associated uncertainty. However, it remains a challenge that the control algorithms must
be capable of handling the uncertain state estimates provided by digital twins, as well as constraints resulting from
subsystem health predictions.

The coupled dynamics between different spacecraft, or between the subsystems that compose a single spacecraft,
presents a major challenge in both the digital twin design and the control design. On the digital twin side, there are
modeling challenges. For example, the capture phase dynamics may involve complex contact physics that require
a nonlinear high-fidelity contact model. When coupled with other aspects of the system models, this can lead to a
monolithic coupled system of equations that is computationally expensive to solve. In addition, the models may be
uncertain; for example, the post-capture dynamics of the spacecraft may depend on the exact docked configuration of
the two spacecraft, which may be unknown a priori. Further, treating the virtual representation as a monolithic coupled
set of nonlinear equations may lead to a digital twin for which continual dynamic updating becomes computationally
intractable. On the control side, simultaneously determining control inputs for all coupled subsystems, while accounting
for uncertainty in their current and future states, may lead to a large multi-objective optimization under uncertainty
problem that becomes intractable. These challenges make a monolithic approach to digital-twin-based estimation and
control not ideal for such complex and interconnected systems.

In this work we aim to overcome these challenges by developing a modular digital twin abstraction tailored to
multi-spacecraft missions. Instead of considering a monolithic digital twin of the entire mission or scenario at-hand,
we focus on constructing subsystem-level digital twins that can be coupled together to represent a single spacecraft,
and coupled with subsystems of other spacecraft to represent a complete mission or scenario. The predictive dynamic
models for each subsystem-level digital twin are tractable to derive, implement, update, and solve, while approximate
coupling can be achieved via on-demand communication between the subsystem-level digital twins.

Section II presents the proposed digital twin formulation and discusses the associated challenges from a controls
perspective. Section III applies the formulation to a simulated on-orbit rendezvous scenario between a controllable
chaser and a non-cooperative target. We formulate the modular digital twins for this scenario, focusing on their coupling
and interaction, and how their individual updates inform health-aware control inputs for the chaser spacecraft. Simulation
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results demonstrate the health-aware rendezvous under uncertainty. Finally, Section IV concludes the paper.

II. Motivation: Modular Digital Twins
A digital twin, as defined in [1, 2], is an asset-specific set of computational models that mimic the structure, context,

and behavior of a system of interest. These models are dynamically updated from observations of such a system,
provide predictive capabilities beyond the current state, and ultimately inform decisions that realize value throughout
the lifetime of the system. A key component of a digital twin is the bidirectional flow of information between the
physical and virtual worlds, in terms of observations coming from the system and decisions being sent in return. Such
a bidirectional interaction translates into improved monitoring, planning, and control for critical on-orbit spacecraft
operations. Complex spacecraft operations often involve multiple interacting spacecraft, and each individual spacecraft
is comprised of multiple interacting subsystems (structures, power, kinematics, propulsion, etc.). Motivated by this
application, this section presents a modular digital twin formulation and outlines the need to develop methods for
modeling, analyzing, and enabling interaction among multiple digital twin instances.

A. Modular Digital Twin Formulation for Multi-spacecraft Operations
Consider the on-orbit servicing scenarios depicted in Fig. 1, where a controllable chaser spacecraft, which is

composed of multiple subsystems, interacts with a non-cooperative target spacecraft, also composed of multiple
subsystems. Depending on the phase of the mission, these subsystems may be coupled in the sense that the decisions
made by one subsystem will affect the state of another subsystem. Consider, for instance, how a sudden maneuver
directed by the kinematics subsystem might require extended thrust from the propulsion subsystem, thus drawing more
power and generating more heat on-board the spacecraft. If we consider building digital twins of these interacting
spacecraft, then it becomes clear that the digital twin abstraction must be capable of handling the coupling and
interconnection among the different subsystems.

One approach to achieving this would be to create a single monolithic digital twin that includes the state of all
involved subsystems. However, this would require a model of the fully-coupled dynamics, something that is typically
expensive to solve and difficult or impossible to update in real-time operational settings. On the other hand, employing
a set of subsystem-specific models is typically more tractable, and provides a modular formulation to augment with
additional subsystem models as needed. Thus, we instead seek a modular digital twin formulation that leverages each
subsystem’s models to achieve tractability and scalability.

To this end, we propose a formulation in terms of subsystem-level digital twins as depicted in Fig. 2. In this setting,
each subsystem composing the spacecraft (such as kinematics, propulsion, thermal, etc.) is represented as a single
digital twin instance whose underlying models are updated given subsystem-specific prediction, observation, and control
frequencies. The chaser spacecraft’s subsystem-level digital twins feature a bidirectional flow of information with their
physical counterparts, which can be commanded with control inputs. The target spacecraft’s subsystem-level digital
twins, on the other hand, rely only on limited observations of the evolution of the target, such as tracking and localization
data, and may not be able to communicate control decisions to their physical counterparts. Modeling the interaction
between subsystem-level digital twins is an application-dependent choice that responds to the required level of modeling
fidelity. For instance, in some scenarios, sharing information on-demand via polling among digital twin instances will
suffice, while in others, formulating coupled dynamics and controls problems may be required instead.

Since each subsystem is represented as a single digital twin instance, we can leverage previous work on the
mathematical abstraction of single digital twins and extend the representation to consider the aggregate of interacting
subsystems during a given mission phase. This approach results in the mathematical abstraction for modular digital
twins summarized in Table 1. This abstraction considers the six interacting quantities proposed by Kapteyn et al. to
define a digital twin [5], here extended to be defined for each interacting subsystem with label ℓ.

Consider the lifespan of a mission discretized as [𝑡1, 𝑡2, ..., 𝑡𝑘 , ..., 𝑡final], where 𝑡𝑘 denotes the time at timestep 𝑘
and 𝑡final denotes the mission’s final time. Let 𝒔ℓ

𝑘
represent the physical state of the subsystem ℓ at time 𝑡 = 𝑡𝑘 . In this

setting, the physical state 𝒔ℓ
𝑘

evolves according to the dynamics of the physical system and is indirectly observed via
observations 𝒐ℓ

𝑘
. At time 𝑡𝑘 , estimates of the physical state are computed from the observations, thus producing the

digital state 𝒅ℓ
𝑘
, which can then be used to compute quantities of interest 𝒒ℓ

𝑘
(e.g., system performance characteristics

that depend upon the digital state estimate). Furthermore, the predictive capabilities of the calibrated computational
models that define the digital twin can be used to make predictions about the future evolution of the digital state, i.e.,
𝒅ℓ
𝑘+1, ..., 𝒅

ℓ
final. The estimated and predicted digital states and quantities of interest inform current and future control
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Fig. 2 Multi-spacecraft modular digital twin formulation. Each spacecraft is represented as the aggregate of
subsystem-level digital twins that interact to achieve mission success.

Table 1 Abstraction of the modular digital twin formulation, adapted from [5]. All quantities defined for each
interacting subsystem with label ℓ at time 𝑡 = 𝑡𝑘 . Uppercase script letters denote the space where each quantity in
the abstraction evolves, and lowercase letters denote realizations of such quantities.

Quantity Notation Description

Physical State 𝒔ℓ
𝑘
∈ Sℓ True parameterized state of the subsystem

Digital State 𝒅ℓ
𝑘
∈ Dℓ Estimate of the parameterized state of the subsystem

Quantities of Interest
(QoIs)

𝒒ℓ
𝑘
∈ Qℓ Additional quantities describing the subsystem that are estimated from

the digital state and model outputs

Observations 𝒐ℓ
𝑘
∈ Oℓ Measurements that are informative of the true state of the subsystem

Control Inputs 𝒖ℓ
𝑘
∈ Uℓ Commanded actions or decisions that influence the evolution of the

subsystem’s state

Reward 𝒓ℓ
𝑘
∈ Rℓ Mission goals and objective functions that quantify the performance and

costs of the subsystem

decisions 𝒖ℓ
𝑘
, 𝒖ℓ
𝑘+1, . . . that drive the evolution of the physical system subject to maximizing desired rewards 𝒓ℓ

𝑘
, 𝒓ℓ
𝑘+1, . . ..

So far, the presented abstraction has assumed that each subsystem is represented by an independent digital twin that can
be updated independently. For cases when coupling between subsystems is involved, communication occurs on-demand
between the digital twin instances in order to share the most recent digital state estimate at time 𝑡𝑘 . Consider, for
instance, the scenario where the control input of subsystem ℓ depends on another subsystem ℓ′, then the state of system
ℓ′ can be queried for the purpose of evaluating 𝒖ℓ

𝑘
as a function of both 𝒅ℓ

𝑘
and 𝒅ℓ

′

𝑘
. Such a flow of information hence

contributes to the expressivity and value of the mission-level digital twin abstraction.
There are additional components of a digital twin that enable the evolution of the quantities underlying the abstraction

outlined in Table 1. Firstly, a predictive model describing the evolution of the physical state is needed. The level of
fidelity of such a model needs to be tailored to the application-specific context of each mission phase, allowing for
first-principle models of the subsystem’s relevant dynamics, physics-aware reduced-order models, and surrogate models
derived via data-driven approaches. Secondly, a data assimilation strategy is needed to solve the inverse problem of
estimating the states from observations. In the context of spacecraft operations, sequential state estimation (i.e., filtering)
techniques are suitable for performing this task. Note that the concept of physical state in the context of digital twins
extends the traditional concept of system state; in particular, the physical state, as defined in Table 1, allows for any
parametrization of the subsystem’s condition. Hence it can include, but is not limited to, the state vector arising in a
state-space representation of a given dynamical system, which is commonly the state to be estimated using filtering
techniques. Lastly, a control strategy is needed to drive the evolution of the physical state towards mission success. For
example, optimal control techniques can be used to produce control policies that maximize given reward functions.
Coupling challenges arise when formulating such control problems in a modular setting, as discussed in Section II.B.
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B. Control Approaches for Modular Digital Twin Systems
A modular system, in contrast with a monolithic one, may involve multiple controllers each tasked with controlling

a specific subsystem. Moreover, each of these controllers may not have access to the full system state, and may not
be aware of other controllers. These challenges mean that controller design in the context of the modular digital twin
formulation proposed in Section II.A requires careful consideration. Fortunately, such challenges have long been faced
in the controls community when attempting to design controllers for large, complex, and potentially distributed systems,
and have resulted in the formulation of a wide range of control strategies. Here we compare and contrast several of these
approaches, as defined in [9]. In a centralized approach (Fig. 3a), a single controller receives system-wide information
and is tasked with defining control inputs for all interacting subsystems, yet this approach has limited scalability due to
the complexity of the coupled system dynamics, and the number of control variables to be determined in the optimization.
Instead, in a distributed setting there are multiple controllers, where each is in charge of a specific subsystem and has
access to partial information about the overall system. Ideally, these controllers would actively communicate with their
neighbors to determine control inputs (Fig 3b), but there are also scenarios where neighboring controllers are not able to
cooperate (Fig. 3c) and their commanded control inputs may be opposing due to being completely unaware of other
subsystems. Additionally, a hierarchical scheme may be in place (Fig. 3d), where a supervisor agent would receive
system-wide information and is charged with providing control objectives to each subsystem-level controller, which can
cooperate to fulfill these objectives.
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Controller

Spacecraft

Subsystem-level  
control inputs

System-wide state

(a) Centralized.

Controller m Controller n

Spacecraft

Subsystem-level 
control input

Partial system state Partial system state
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control input
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(c) Distributed and decentralized.
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Controller m Controller n

Spacecraft

Subsystem-level 
control task

Subsystem-level 
control input

System-wide state

(d) Distributed and hierarchical.

Fig. 3 Different control strategies for modular digital twins adapted from [9] In contrast with the monolithic
approach, subsystem-level digital twins may not have access to system-wide state information. Thus, a supervisory,
distributed, or fully decentralized control approach may be required.

The question that remains is how to tailor the control schemes of the interacting subsystems on each mission
phase to work in the context of modular digital twins in support of the overall success of on-orbit servicing missions.
Feedback-based control schemes, while fundamental, are excellent candidates for performing the intended on-orbit
operations and can be naturally integrated into the digital twin formulation [10, 11]. Considering that a digital twin by
definition features continual state estimation and updating from indirect observations, a feedback control law would
be a complementary approach for controls, with such state estimates being used to inform the control inputs required
to achieve the desired performance measured by a given reward function. There are multiple implementations of
feedback-based control strategies that are suitable for integrating with modular digital twins in the context of on-orbit
spacecraft operations. For instance, the Linear Quadratic Regulator (LQR) has been demonstrated to perform well when
augmented with a supervisory control scheme to coordinate control algorithms for the different mission phases outlined
in Fig. 1, as described in [8]. Alternatively, Model Predictive Control (MPC) could also be complementary to digital
twins. MPC-based techniques could leverage the continually calibrated predictive models with quantified uncertainty
that encompass the digital twin to define a feedback control law through the solution of an optimal control problem
subject to state and control constraints [12]. Therefore, the predictive capabilities of digital twins combined with the
optimality of MPC are an opportunity to realize guidance and control for on-orbit space operations under stringent and
time-evolving state and control constraints.
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III. Application: Digital-twin-enabled Rendezvous for On-orbit Servicing
This section presents an example of modular digital twins for an on-orbit servicing mission. Section III.A introduces

the simulated pre-capture mission scenario. In Section III.B we formulate the problem into individual subsystem-level
digital twins. A summary of the mission-level integration is presented in Section III.C, leading to the simulation results
presented in Section III.D.

A. Problem Description
For this demonstration we consider the initial pre-capture phase of a simulated on-orbit servicing mission, as

depicted in Fig 1a. Following [7], both spacecraft are modeled as point masses featuring two degrees of freedom for
in-plane motion. Our goal is to control the chaser spacecraft to minimize its relative position and velocity with respect
to the target spacecraft, while considering the individual orbital motion of each spacecraft around the Earth. In addition,
we incorporate the task of monitoring and accounting for the health of the chaser’s thrusters. We model this scenario via
the modular digital twin formulation outlined in Section II via three interacting subsystems: (1) the target spacecraft
kinematics, (2) the chaser spacecraft kinematics, and (3) the chaser’s propulsion subsystem. The position and velocity
of each spacecraft are estimated based on range and bearing angle measurements. Estimates of the thrusters’ health
and the presence of failure in the propulsion subsystem are inferred based on the deviation between the predicted and
measured kinematics, with the commanded thrust adjusted accordingly to minimize the error in the intended rendezvous
trajectory. The unifying component among these digital twin instances is the computation of a health-aware control
input for the on-orbit chaser spacecraft, which is informed by both the relative position and velocity between the two
spacecraft, and the current health estimates of the propulsion subsystem.

B. Subsystem-level Digital Twin Formulation
The following subsections introduce the prediction, state estimation, and control approaches that will comprise

the digital twin instances of the interacting subsystems in the pre-capture phase. Despite the specific choices made
regarding the spacecraft dynamics model, estimation algorithm, and controls technique, recall that this is a modular
implementation and such models and algorithms can be replaced with higher fidelity versions aligned with the modeling
requirements of the digital twin implementation.

1. Kinematics
Throughout this section, all quantities denoted with the superscript ℓ apply to either the target or the chaser spacecraft,

i.e., ℓ ∈ {target, chaser}. Let 𝒔ℓ
𝑘

represent the physical state of the kinematics subsystem of each spacecraft. The target
kinematics subsystem digital twin is concerned with tracking the position and velocity of the target spacecraft, hence
𝒔

target
𝑘

≔ 𝒙
target
𝑘

∈ R4 represents the physical state of the target spacecraft kinematics, where 𝒙ℓ
𝑘
=

[
𝑥ℓ
𝑘
, 𝑦ℓ

𝑘
, ¤𝑥ℓ
𝑘
, ¤𝑦ℓ

𝑘

]
is the

kinematic state vector containing the position and velocity components of the spacecraft in an Earth-centered, Earth-fixed
frame. The chaser kinematics digital twin, in addition to tracking the position and velocity of the spacecraft, is also
tasked with estimating an acceleration bias term that could be indicative of the presence of a failure in the propulsion
subsystem. Let 𝒔chaser

𝑘
≔

[
𝒙chaser
𝑘

, 𝝉chaser
𝑘

]⊤ ∈ R6 represent the physical state of the chaser spacecraft kinematics, which
augments the kinematic state vector 𝒙chaser

𝑘
∈ R4 with the acceleration bias vector 𝝉chaser

𝑘
∈ R2 containing the bias

components. The acceleration bias term is described further in Section III.B.2.
Let 𝒖ℓ

𝑘
be the control input to each of the spacecraft. Since the target spacecraft is assumed to be non-cooperative, it

has no control inputs and this quantity only applies to the chaser spacecraft. The control input for the chaser spacecraft
𝒖chaser
𝑘

is discussed in Section III.B.3. For observations, we consider discrete and noisy measurements of the range 𝜌 and
bearing angle 𝜃 for both spacecraft separately, i.e., 𝒐ℓ

𝑘
≔

[
𝜌ℓ
𝑘
, 𝜃ℓ
𝑘

]⊤ ∈ R2, expressed in an Earth-centered, Earth-fixed
frame.

Define the digital state 𝒅ℓ
𝑘

as an estimate of the physical state 𝒔ℓ
𝑘

of the kinematics subsystem of each spacecraft. A
key aspect of the digital twin abstraction we adopt from [5] is the treatment of uncertainty. We represent the digital state
probabilistically via the random variable

𝐷ℓ𝑘 ∼ 𝑝
(
𝒅ℓ𝑘

)
≔ N

(
𝒔ℓ𝑘 , 𝑃

ℓ
𝑘

)
, (1)

where N denotes a Gaussian distribution whose mean 𝒔ℓ
𝑘

corresponds to the maximum a posteriori (MAP) estimate of
the corresponding spacecraft’s physical state 𝒔ℓ

𝑘
, and its covariance 𝑃ℓ

𝑘
corresponds to the state estimate covariance [13].
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The estimate of the digital state is computed via a standard Extended Kalman Filter (EKF) setup [14], where prediction
and correction steps are alternated to maintain a posterior belief of the digital state as new observations are acquired. In
this context, process noise is added to the predictive dynamics to model uncertainty in our prediction of the physical
state evolution, thus introducing the random variable

𝑆ℓ𝑘+1 ∼ 𝑝
(
𝒔ℓ𝑘+1

)
, 𝑆ℓ𝑘+1 ≔ 𝒇 ℓ

(
Δ𝑡ℓ𝑘 , 𝒔

ℓ
𝑘 , 𝒖

ℓ
𝑘 , 𝑽

ℓ
𝑘

)
, (2)

where 𝒇 ℓ represents the discrete-time function capturing nonlinear orbital dynamics of the spacecraft (presented in
Appendix A.1.1 Eq. 23 and Appendix A.1.2 Eq. 25 for the target and chaser spacecraft, respectively), Δ𝑡ℓ

𝑘
= 𝑡ℓ

𝑘+1 − 𝑡
ℓ
𝑘

is
the integration time step, and 𝑽ℓ

𝑘
∼ N

(
0, 𝑄ℓ

𝑘

)
represents the discrete-time process noise with covariance matrix 𝑄ℓ

𝑘
.

Additionally, the EKF incorporates uncertainty in the observed data via the measurement model

𝑂ℓ𝑘 ∼ 𝑝
(
𝒐ℓ𝑘

)
, 𝑂ℓ𝑘 ≔ 𝒉

(
𝒔ℓ𝑘

)
+𝑾ℓ

𝑘 , (3)

where 𝑾ℓ
𝑘
∼ N

(
0, 𝑅ℓ

𝑘

)
represents measurement noise with covariance matrix 𝑅ℓ

𝑘
, and 𝒉 denotes the nonlinear

state-to-measurement map

𝒉(𝒔ℓ𝑘) ≔

√︃(
𝑥ℓ
𝑘

)2 +
(
𝑦ℓ
𝑘

)2

arctan
(
𝑦ℓ
𝑘

𝑥ℓ
𝑘

)  . (4)

In the prediction step, we seek to update our belief for the digital state at 𝑡 = 𝑡𝑘+1 via the discrete-time dynamics
model. The EKF uses a first-order linearization of the dynamics around the MAP state estimate 𝒔ℓ

𝑘
= 𝒔ℓ

𝑘
and the mean

of the process noise 𝑉ℓ
𝑘
= 0, resulting in the predicted digital state

�̄�ℓ𝑘+1 ∼ 𝑝
(
𝒅ℓ𝑘+1 | 𝐷ℓ𝑘 , 𝒖

ℓ
𝑘

)
≔ N

(
𝒔ℓ𝑘+1, �̄�

ℓ
𝑘+1

)
, (5)

where the mean 𝒔ℓ
𝑘+1 corresponds to the predicted state obtained by propagating the MAP state estimate 𝒔ℓ

𝑘
as

𝒔ℓ𝑘+1 = E
[
𝑆ℓ𝑘+1 | 𝐷ℓ𝑘 , 𝒖

ℓ
𝑘

]
= 𝒇 ℓ

(
Δ𝑡ℓ𝑘 , 𝒔

ℓ
𝑘 , 𝒖

ℓ
𝑘 , 0

)
, (6)

and the covariance matrix is obtained by propagating the state covariance matrix 𝑃ℓ
𝑘

via the state-transition matrix 𝐹ℓ
𝑘
,

and the process noise covariance 𝑄ℓ
𝑘

via the process noise-transition matrix Γℓ
𝑘

as

�̄�ℓ𝑘+1 = Var
[
𝑆ℓ𝑘+1 − 𝒔ℓ𝑘+1 | 𝐷ℓ𝑘 , 𝒖

ℓ
𝑘

]
= 𝐹ℓ𝑘 𝑃

ℓ
𝑘 𝐹

ℓ
𝑘

⊤ + Γℓ𝑘 𝑄
ℓ
𝑘 Γ

ℓ
𝑘

⊤
. (7)

We can follow this approach to predict the future evolution of the kinematics digital twins before a new measurement
becomes available. Uncertainty in these predictions is quantified through the propagated state covariance matrices.

The correction step occurs whenever a new measurement 𝒐ℓ
𝑘+1 becomes available. The posterior belief for the digital

state is updated as
𝐷ℓ𝑘+1 ∼ 𝑝

(
𝒅ℓ𝑘+1 | �̄�ℓ𝑘+1, 𝒐

ℓ
𝑘+1

)
≔ N

(
𝒔ℓ𝑘+1, 𝑃

ℓ
𝑘+1

)
, (8)

where the mean is given by correcting the predicted state 𝒔ℓ
𝑘+1 with information from the new observation 𝒐ℓ

𝑘+1 as

𝒔ℓ𝑘+1 = E
[
𝑆ℓ𝑘+1 | �̄�ℓ𝑘+1, 𝒐

ℓ
𝑘+1

]
= 𝒔ℓ𝑘+1 + Kℓ

𝑘+1 𝝊
ℓ
𝑘+1, (9)

with Kℓ
𝑘+1 denoting the Kalman gain matrix as defined by [14], and 𝝊𝑘 denoting the innovation, i.e., the residual between

the received measurement and the predicted measurement,

𝝊ℓ𝑘+1 = 𝒐ℓ𝑘+1 − �̄�ℓ𝑘+1, (10)

where �̄�ℓ
𝑘+1 denotes the expected measurement corresponding to the predicted state 𝒔ℓ

𝑘+1, i.e.,

�̄�ℓ𝑘+1 = E
[
𝑂ℓ𝑘+1 | �̄�ℓ𝑘+1

]
= 𝒉

(
𝒔ℓ𝑘+1

)
. (11)

The posterior covariance matrix is corrected by accounting for uncertainty in the measurement model as

𝑃ℓ𝑘+1 = Var
[
𝑆ℓ𝑘+1 − 𝒔ℓ𝑘+1 | �̄�ℓ𝑘+1, 𝒐

ℓ
𝑘+1

]
=

[
𝐼 − Kℓ

𝑘+1 𝐻
ℓ
𝑘+1

]
�̄�ℓ𝑘+1, (12)
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where 𝐼 denotes the identity matrix, and 𝐻ℓ
𝑘+1 denotes the measurement model Jacobian evaluated at 𝒔ℓ

𝑘+1.
We compute the target’s orbital rate �̂�𝑘 as a quantity of interest for the target’s kinematics based on the current MAP

estimate of its physical state,

𝑞
target
𝑘

≔ �̂�𝑘 =

√︄
𝜇

�̂�3
𝑘

, �̂�𝑘 =

(
2
𝑟𝑘

−
𝑣2
𝑘

𝜇

)−1

, (13)

where 𝜇 is the Earth’s gravitational constant, �̂�𝑘 denotes the current estimate of the target’s orbit semi-major axis, and
𝑟𝑘 , �̂�𝑘 are the target’s position and velocity magnitudes computed from its current MAP digital state estimate 𝒔

target
𝑘

.
Additionally, define the innovation presented in Eq. 10 as a quantity of interest for the chaser’s kinematics that is

informative of the deviation between the predicted and observed dynamics, i.e.,

𝒒chaser
𝑘 ≔ 𝝊chaser

𝑘 = 𝒐chaser
𝑘 − �̄�chaser

𝑘 . (14)

where �̄�chaser
𝑘

= 𝒉
(
𝒔chaser
𝑘

)
is the measurement estimate obtained with the current prior belief of the digital state, as

defined in Eq. 11.

2. Propulsion Subsystem Health Monitoring
We define the propulsion subsystem of the chaser spacecraft to be equipped with a set of four thrusters positioned

such that they are capable of applying an arbitrary in-plane thrust vector, which in turn accelerates the spacecraft along
the desired direction. Assume that each thruster is continually aligned with one of the axes in the Earth-centered,
Earth-fixed frame {+X, +Y, -X, -Y}. We consider a mode of failure in the propulsion subsystem including a constant leak
of propellant from the tank to the mounted thrusters and a misalignment in the thrusters’ nominal pointing directions.
This failure results in a constant additive acceleration bias that affects the motion of the chaser spacecraft independently
of the commanded acceleration magnitude. We design a propulsion subsystem health monitoring digital twin concerned
with estimating whether the spacecraft is operating in such a failure condition and which thruster is the most likely to be
experiencing the failure. Define the the physical state for this subsystem as 𝒔propulsion

𝑘
≔ [ 𝑓𝑘 , 𝑖𝑘]⊤, where

𝑓𝑘 ≔

{
0 ⇔ No current failure,
1 ⇔ The system is experiencing a failure,

(15)

denotes the failure status at time 𝑡 = 𝑡𝑘 and

𝑖𝑘 ∈
{
{0} if 𝑓𝑘 = 0
{+X, +Y, -X, -Y} otherwise ,

(16)

identifies the thruster that is most likely to be faulty among all four available thrusters once the failure has been detected.
Indirect observations of this state are available via both the MAP estimate of the acceleration bias and the innovation
coming from the chaser kinematics digital twin, hence we define the observations 𝒐propulsion

𝑘
≔

[
�̂�chaser
𝑘

, 𝝊chaser
𝑘

]⊤.
Let the digital state be defined as the estimate of the physical state, i.e., 𝒅propulsion

𝑘
≔

[
𝑓𝑘 , 𝑖𝑘

]⊤, which we seek
to compute via an online Fault Detection, Isolation, and Recovery (FDIR) algorithm adapted from [15]. Consider a
sequence length 𝑤 of the most recent innovations 𝝊chaser

𝑘−𝑤 , ..., 𝝊
chaser
𝑘

in the chaser’s kinematic state estimation algorithm.
This sequence of observed innovations corresponds to a realization of the sequence of independent random variables
𝑍chaser

1 , ..., 𝑍chaser
𝑘

. In the absence of a failure, it can be shown that the random sequence is identically distributed with
𝑍chaser
𝑗

∼ N(0, 𝑅chaser), ∀ 𝑗 ∈ {𝑘 − 𝑤, ..., 𝑘}, which follows from the definition of innovation given in Eq. 10 and the
fact that the additive measurement noise is Gaussian with mean 0 and variance 𝑅chaser. In the presence of a failure,
however, the random sequence will no longer be identically distributed, and the mean of some 𝑍chaser

𝑗
will shift to an

unknown nonzero value, i.e., ∃ 𝑗 : E
[
𝑍chaser
𝑗

]
≠ 0, 𝑗 ∈ {𝑘 − 𝑤, ..., 𝑘}. Hence, an estimate of the the health of the

propulsion subsystem in terms of the presence of a failure can be inferred from a sequence of innovations via the
hypothesis test for the mean of the variables in the random sequence

𝑯0 : ∀ 𝑗 ∈ {𝑘 − 𝑤, ..., 𝑘}, E
[
𝑍chaser
𝑗

]
= 0,

𝑯1 : ∃ 𝑗 ∈ {𝑘 − 𝑤, ..., 𝑘}, E
[
𝑍chaser
𝑗

]
≠ 0.

(17)
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Formulating this problem in the context of the Generalized Likelihood Ratio algorithm [16], our goal is to identify
the combination of timestep index 𝑗 and mean vector �̄� that will yield the greatest cumulative sum of the log-likelihood
ratios over a subsequence starting at index 𝑗 . We introduce the test statistic

𝜆𝑘 = max
𝑘−𝑤≤ 𝑗≤𝑘

sup
�̄�≠0

𝑘∑︁
𝑖= 𝑗

ln
𝐿
(
�̄� | 𝝊chaser

𝑖

)
𝐿
(
0 | 𝝊chaser

𝑖

) = max
𝑘−𝑤≤ 𝑗≤𝑘

𝑘 − 𝑗 + 1
2

�̂�( 𝑗)⊤inv
(
𝑅chaser)�̂�( 𝑗), (18)

where 𝐿
(
�̄� | 𝝊chaser

𝑖

)
denotes the likelihood of observing 𝝊chaser

𝑖
given E

[
𝑍chaser
𝑖

]
= �̄�. Since the measurement noise is

Gaussian, there exists an exact solution to the inner maximization problem over �̄� that yields the right-most equality
with �̂�( 𝑗) = 1/(𝑘 − 𝑗 + 1)∑𝑘

𝑖= 𝑗 𝝊
chaser
𝑖

. The outer maximization problem over 𝑗 can be solved by brute force since the
window size 𝑤 is small. Comparing the test statistic 𝜆𝑘 against a set threshold value 𝜀, produces the failure status
estimate

𝑓𝑘 =

{
0 if 𝜆𝑘 < 𝜀 ⇒ accept 𝑯0 ⇔ No current failure,
1 otherwise ⇒ reject 𝑯0 ⇔ The system is experiencing a failure.

(19)

Finally, the failure is isolated by identifying the thruster that is most likely to be experiencing the failure, thus
producing an estimate 𝑖𝑘 . We use the scalar projection to compute the angle that the current acceleration bias estimate
makes with each of the thrusters’ pointing directions. This angle serves as a measure of each thruster’s likelihood of
being faulty. In this context, the smaller the angle, the higher the likelihood of being faulty.

3. Controls
Let 𝒖chaser

𝑘
∈ R2 be the control input for the chaser corresponding to an commanded acceleration described in the

Earth-centered, Earth-fixed frame. We adopt a feedback control law (described in Appendix A.2, Eq. 29) designed to
achieve rendezvous with the target. In particular, the implemented feedback controller applies a pre-computed controller
gain to minimize the relative kinematic state between the chaser and the target spacecraft, i.e., maximizing the reward
𝑟chaser
𝑘

= −∥�̂�chaser
𝑘

− �̂�
target
𝑘

∥, with the minimum cost over the entire chaser’s trajectory. In this setting, cost is defined as
the cumulative magnitude of the applied accelerations, which is a measure of the fuel required to complete the maneuver.

We augment the feedback control system with thruster health-awareness, informed by the propulsion subsystem
health monitoring digital twin described in Section III.B.2. After detecting and isolating a failure in the propulsion
subsystem, a recovery strategy can be implemented in the control strategy to produce a health-aware acceleration given
by

𝒖
propulsion
𝑘

=


𝒖chaser
𝑘

if 𝑓𝑘 = 0 ⇔ No need to compensate for the bias,
𝒖chaser
𝑘

+ �̂�𝑘 if 𝑓𝑘 = 1 and ∥�̂�𝑘 ∥ ≤ 𝜏max ⇔ Compensate for the bias if operating in failure,
𝒖abort
𝑘

if 𝑓𝑘 = 1 and ∥�̂�𝑘 ∥ > 𝜏max ⇔ Abort mission,
(20)

where 𝜏max denotes a threshold for the acceleration bias magnitude, and 𝒖abort
𝑘

denotes a commanded acceleration
intended to abort the rendezvous mission when the failure is deemed too critical and instead bring the chaser spacecraft
to a safe location.

C. Mission-level Integration of the Interacting Digital Twin Instances
Table 2 summarizes the previously defined components, giving rise to our mission-level modular digital twin

formulation to enable a controllable chaser spacecraft to perform a rendezvous with a non-cooperative target via control
inputs that are aware of the propulsion subsystem’s health.

In our setup, each subsystem digital twin is able to evolve independently based on specified prediction, observation,
and control frequencies. However, all digital twins can be updated to a given time (via their respective prediction
models) and the current state information can be shared across the independent digital twin instances to enable the
coupling required when computing a control input for the chaser spacecraft. To evaluate the controller that produces the
chaser acceleration 𝒖chaser

𝑘
, current estimates of both the chaser’s and target’s kinematic states, i.e, 𝒙chaser

𝑘
and 𝒙

target
𝑘

,
respectively, are required to compute the relative kinematic state vector. Also, an estimate of the target’s orbital rate
𝑛

target
𝑘

is required to define the linearized relative motion dynamics used to compute the controller gain matrix. To
compute a health-aware control input 𝒖propulsion

𝑘
, a sequence of length 𝑤 of the most recent innovations 𝝊chaser

𝑘−𝑤 , ..., 𝝊
chaser
𝑘

9



Table 2 Summary of the interacting subsystem-level digital twins in the simulated on-orbit rendezvous.

Subsystem

Quantity Notation
Target’s kinematics

(ℓ = target)
Chaser’s kinematics

(ℓ = chaser)
Propulsion’s health

(ℓ = propulsion)

Physical State 𝒔ℓ
𝑘
∈ Sℓ 𝒙

target
𝑘

∈ R4 [
𝒙chaser
𝑘

, 𝝉chaser
𝑘

]⊤ ∈ R6 [
𝑓𝑘 , 𝑖𝑘

]⊤ ∈ R2

Digital State 𝒅ℓ
𝑘
∈ Dℓ N

(
�̂�

target
𝑘

, 𝑃
target
𝑘

)
N

( [
�̂�chaser
𝑘

, �̂�chaser
𝑘

]⊤
, 𝑃chaser

𝑘

) [
𝑓𝑘 , 𝑖𝑘

]⊤ ∈ R2

QoIs 𝒒ℓ
𝑘
∈ Qℓ �̂�

target
𝑘

∈ R 𝝊chaser
𝑘

∈ R2 -

Observations 𝒐ℓ
𝑘
∈ Oℓ

[
𝜌

target
𝑘

, 𝜃
target
𝑘

]⊤ ∈ R2 [
𝜌chaser
𝑘

, 𝜃chaser
𝑘

]⊤ ∈ R2 [
�̂�chaser
𝑘

, 𝝊chaser
𝑘

]⊤ ∈ R4

Control Inputs 𝒖ℓ
𝑘
∈ Uℓ - 𝒖chaser

𝑘
∈ R2 𝒖

propulsion
𝑘

∈ R2

Reward 𝒓ℓ
𝑘
∈ Rℓ - −∥�̂�chaser

𝑘
− �̂�

target
𝑘

∥ ∈ R -

is needed to estimate the current state of the failure, and the current estimate of the acceleration bias �̂�chaser
𝑘

is needed to
identify the thruster that is most likely to be faulty. These health estimates are then used to inform how the controller
acceleration 𝒖chaser

𝑘
is accommodated into a health-aware control input. The computations required for this chain of

events are summarized in Algorithm 1.

Algorithm 1 Mission-level integration of the subsystem-level digital twins.
Input: Chaser spacecraft’s request for a control input at time 𝑡 = 𝑡𝑘

1: Update target’s kinematics digital twin to the requested time: 𝒅
target
𝑘

as described in Section III.B.1
2: Update chaser’s kinematics digital twin to the requested time: 𝒅chaser

𝑘
as described in Section III.B.1

3: Update thrusters’ health digital twin to the requested time: 𝒅
propulsion
𝑘

as described in Section III.B.2
4: Evaluate chaser’s controller: 𝒖chaser

𝑘
as described in Appendix A.2, Eq. 29

5: Compute the health-aware commanded control input: 𝒖propulsion
𝑘

as described in Section III.B.3, Eq. 20

D. Simulation Results
The simulated on-orbit rendezvous scenario considers a non-controllable target spacecraft placed on a circular orbit

with an altitude of 103 km above the Earth’s surface, corresponding to an orbital rate of 10−3 rad/s and a period of
6.3 × 103 s. The controllable chaser spacecraft is initially located on a nearby elliptical orbit whose semi-major axis
is aligned with the horizontal axis of the Earth-centered, Earth-fixed frame. We assume that immediately before the
chaser initiates the rendezvous operation, the chaser’s and target’s positions are connected by a line segment starting at
the Earth’s center and ending at the chaser’s orbit perigee, i.e., the nearest point in the orbit to Earth. For simplicity,
we set the prediction, observation, and control frequencies to 0.1 Hz for all the interacting digital twins, but note that
the implementation can support any combination of frequencies. In this simulated scenario, the chaser spacecraft’s
propulsion subsystem experiences a failure at 𝑡failure = 3 × 103 s, leading to a constant additive acceleration bias of
𝝉failure = [0.2, 0.05] km/s2 associated with a major failure in the thruster pointing along the +X direction. In our
simulated pre-capture phase, mission-success is defined as the chaser achieving a relative distance to the target of 10 km
or less. This chaser’s position could serve as the starting point for the capture phase depicted in Fig. 1b. The following
subsections present the simulation results corresponding to the update of each subsystem-level digital twin and their
integration to enable the health-aware rendezvous.

1. Localization and Tracking of the Target
The evolution of the components of the target’s kinematics digital state corresponding to the position of the spacecraft

is shown in Fig. 4a. Observe that the repeated updates of the kinematics digital twin successfully localize and track
the target spacecraft along its ground truth orbital trajectory. Uncertainty is quantified in the posterior belief of the
digital state. This posterior belief balances the uncertainty in the localization measurements with the uncertainty in the
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modeled dynamics based on a standard EKF setup. This balancing strategy explains why the MAP position estimates
may deviate from the measured position, as seen in Fig. 4a. The evolution of the target’s orbital rate, a quantity of
interest derived from the target’s kinematics digital state, is shown in Fig. 4b. The time window shown corresponds to
the the portion of the target’s trajectory shown in Fig. 4a. Since the computation of the chaser’s controller gain matrix
requires a point-estimate of the orbital rate, we calculate the orbital rate using the MAP estimate of the target’s digital
state. Despite the variations of this quantity of interest around its ground truth value as a result of the measurement
and process noise, the chosen controls strategy is robust enough to these perturbations and the stability of the chaser
spacecraft dynamics is not affected, as described below.

Ground truth
orbit

MAP position 
estimate

Measurements

Uncertainty 
ellipses

(a) Localization and tracking of the target spacecraft.

Ground truth
orbital rate

Estimated 
orbital rate

(b) Orbital rate of the target spacecraft.

Fig. 4 Updating of the target’s kinematics digital twin. Uncertainty in the spacecraft’s position estimates is
represented using the 3𝜎 uncertainty ellipses shown in the inset.

2. Controlling the Chaser’s Kinematics
Figure 5a shows the trajectories of both the target and chaser spacecraft starting from their initial position estimates,

but before the failure occurs. The solid lines connect the MAP estimates of the digital states for each spacecraft, while
uncertainty ellipses are shown every 5 timesteps. The velocity components of the digital state of each spacecraft are
shown in Fig. 5b. The time window corresponds to the the portion of the trajectories shown in Fig. 5a. Note that these
velocity estimates are enabled by the predictive dynamic models underlying the kinematics digital twins since the range
and bearing angle measurements only inform the position of each spacecraft. We observe that the chaser’s position and
velocity converge towards the position and velocity of the target. This is achieved by the chaser’s kinematics digital twin
requesting the target’s digital state on-demand, and using the relative state to compute a control input that maximizes the
chaser’s kinematics reward 𝒓chaser

𝑘
. An important condition for the stability of the chosen state estimation strategy is the

choice of initial guess for the digital state estimates, since the EKF relies on a linearized version of the orbital dynamics
of the spacecraft. To initialize the filter, we use the first 𝒐ℓ1, 𝒐

ℓ
2, 𝒐

ℓ
3 observations of each spacecraft ℓ ∈ {target, chaser} to

obtain an initial guess for the position and velocity at 𝑡 = 𝑡2, leveraging a 3-point central difference stencil for computing
an approximation of the velocity and assigning an initial diagonal covariance matrix. Additionally, for the chaser’s
digital state, the acceleration bias components were initialized to zero. Note that in this implementation both kinematics
digital twins feature modular and independent underlying predictive dynamic models, measurements, state estimation,
and controls. We emphasize that the specific choices made for those components in this specific simulation setup can be
replaced by higher- or lower-fidelity counterparts depending on the mission-level modeling fidelity requirements, thus
highlighting the modularity of the subsystem-level digital twins formulation.

3. Health Monitoring of the Chaser’s Propulsion Subsystem
When a failure occurs in the propulsion subsystem, the chaser spacecraft will diverge from the desired rendezvous

trajectory until the acceleration bias is estimated and accounted for by the health-aware control system. The main
diagnostic tool that informs about the presence of the failure is the innovation in the chaser’s kinematics (Eq. 14)
which is visualized in Fig. 6a. Note how before the failure starts, both components of the innovation are dominated
by measurement noise. When the failure occurs, the innovation component corresponding to the range measurement
exhibits a deviation that is ultimately indicative of the failure, while the variation of the component corresponding to the
bearing angle does not change significantly. Processing the sequence of innovations through the propulsion subsystem
health monitoring strategy described in Section III.B.2 leads to detection of the failure within a few timesteps of it
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Target’s trajectory 

Chaser’s trajectory 

Initial position 
estimates

(a) Estimated trajectories.

Target

Chaser

(b) Estimated component-wise velocities.

Fig. 5 Chaser performing a rendezvous with the target before the failure occurs. Uncertainty in the spacecraft’s
position estimates is represented using the 3𝜎 uncertainty ellipses, whereas uncertainty in the velocity estimates
is represented using the 3𝜎 uncertainty bands.

occurring. Simultaneously, the chaser’s kinematics digital twin estimates the acceleration bias, as shown in Fig. 6b.
Once the failure is detected, a recovery strategy is triggered as described in Section III.B.3, correcting the chaser’s
control input with the current estimate of the acceleration bias. With the recovery strategy in place, the innovation
component corresponding to the range measurement decreases, indicating how the error in the predicted digital state
of the chaser’s kinematics is addressed by using the health-aware control inputs. A few timesteps later, the estimated
acceleration bias converges to the ground truth value and both components of the innovation are back to the baseline
levels observed before the failure occurs.

Failure
started

Failure
detected

Recovered
from failure

(a) Component-wise innovation in the chaser’s kinematics.

Estimated 
bias

Ground truth 
bias

(b) Estimated component-wise acceleration bias.

Fig. 6 Evidence of the failure in the chaser’s kinematics. Uncertainty in the acceleration bias components
estimate is represented with the 3𝜎 uncertainty bands. The shaded region in red denotes the time window when
the spacecraft is operating in the presence of a failure. The recovery from the failure during operation is enabled
by health-aware control inputs.

Analyzing the failure and recovery from the perspective of the propulsion subsystem health monitoring digital twin
provides additional insight about how the failure is detected and isolated. Consider the continual update of this digital
twin, which involves estimating the failure status (Fig. 7a), and identifying the thruster that is most likely of being
faulty (Fig. 7b) via the failure detection and isolation strategy described in Section III.B.2. Note the evolution of the
failure status among the three possible states. Up to the actual failure start time, no failure has been identified. For this
particular failure condition, the health monitoring algorithm took 50 s to detect the failure, after which the recovery
strategy took 140 s to bring the chaser’s kinematics innovation back to baseline levels, hence entering a recovered
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from failure mode of operation. Since no intervention was done on the thrusters themselves, in this recovered mode of
operation the failure is still present in the propulsion subsystem, but the spacecraft is able to compensate for this failure
with health-aware control inputs to successfully continue performing the intended rendezvous operation. Figure 7b
shows that by the time the failure is detected the thruster pointing along the +X direction has already been identified as
the most likely of being faulty. Additionally, note that the ground truth acceleration bias has a small positive component
along the vertical axis, which is identified by the failure isolation strategy by assigning some likelihood of being faulty
to the thruster pointing along the +Y direction.

Failure
started

Failure
detected

Recovered
from failure

(a) Estimated failure status.
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(b) Estimated thruster’s likelihood of being faulty.

Fig. 7 Updating the digital twin of the propulsion subsystem health monitoring. The shaded region in red
denotes the time window when the spacecraft is operating in the presence of a failure.

4. Digital-twin-enabled Health-aware Rendezvous
The overall rendezvous simulation is depicted in Fig. 8a, showing the evolution of both spacecraft from their initial

positions to successful rendezvous within a 10 km radius after experiencing and recovering from a failure. Initially, the
chaser maneuvers to the target’s orbit successfully. After experiencing the propulsion subsystem failure, the chaser
spacecraft starts drifting away from the target. If the failure is not addressed, the chaser would continue on this diverging
trajectory. Instead, the failure recovery strategy provides the chaser with a sequence of health-aware control inputs
that compensate for the failure and once again achieve a successful rendezvous with the target. Figure 8b shows the
time history of both the desired accelerations 𝒖chaser

𝑘
and the health-aware accelerations 𝒖propulsion

𝑘
, along with the actual

acceleration the chaser spacecraft is subject to. Before the failure, the chaser’s actual acceleration matches the desired
acceleration commanded by the controller. At the time of failure, the chaser’s actual acceleration shifts suddenly due to
the acceleration bias resulting from the failure. At this point, the controller is not yet aware of the failure and continues
commanding the desired accelerations as usual. Once the failure is detected, health-aware control inputs are commanded
which compensate for the acceleration bias using its most recent estimate to reduce the error between the chaser’s
actual acceleration and the desired acceleration. After both components of the acceleration bias have converged to their
ground truth value, the actual acceleration the chaser spacecraft is subject to is close enough to the desired acceleration
commanded by the controller, thus enabling the chaser to successfully complete the pre-capture phase of the on-orbit
servicing mission.

IV. Conclusions and Future Work
This work has proposed a modular digital twin formulation of a multi-spacecraft on-orbit servicing scenario where

each spacecraft is represented as the aggregate of several subsystem-level digital twins that interact to achieve mission
success. This modular formulation defines a digital twin for each subsystem using predictive models, state estimation
algorithms, and control strategies that respond to the modeling fidelity requirements of the mission. In contrast with
a monolithic digital twin defined by fully-coupled system-wide dynamics, which may be expensive to control and
continually update, the modular approach proposes a computationally tractable and scalable alternative for improved
monitoring, planning, and control.

In this work we considered achieving coupling between subsystems via on-demand information sharing, but this
may not always be feasible, either due to communication limitations or two-way dependencies between subsystem
dynamics. Further work is needed to explore how to rigorously manage the coupling between subsystem-level digital
twins, especially in regards to controlling the aggregate system-of-systems towards mission success.
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(a) Estimated trajectories.
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(b) Chaser’s acceleration.

Fig. 8 Overall digital-twin enabled rendezvous simulation results. The shaded region in red denotes the time
window when the spacecraft is operating in failure.

The modular digital twin formulation is demonstrated in the context of the pre-capture phase of an on-orbit servicing
mission where a controllable and health-aware chaser performs a rendezvous with a noncooperative target. Independent
digital twins of the target’s and chaser’s kinematics are continually calibrated to inform control decisions that enable
the rendezvous operation in a failure-free scenario. A digital twin representing the health of the chaser’s propulsion
subsystem triggers a recovery strategy once a failure is detected and isolated, resulting in a sequence of health-aware
control inputs that enable the chaser to continue with the rendezvous operation despite the presence of the failure. Future
work on this application may consider extending this example to feature rigid body dynamic models of the interacting
spacecraft. Estimates with quantified uncertainty of the spacecraft attitude, inertia, and docking ports may be required
to inform further control decisions in later stages of an on-orbit servicing scenario considering the capture of the target
and its posterior towing to disposal orbit. Additionally, the presented modular digital twin formulation can also be
leveraged to inform estimates of the performance and condition of additional subsystems and their intricate modes of
failure. Further work is required to integrate observations, predictive models, and control strategies of such subsystems
into continually calibrated digital twins that are coupled with other mission-critical subsystems.

Appendix A: Computational Models

A.1. Orbital Motion
In the setting of the two-body problem, the continuous-time equations of motion that describe the in-plane orbit of a

spacecraft around the Earth, as defined in [17] and expressed in the Earth-centered, Earth-fixed frame, are

¥𝑥 = − 𝜇
𝑟3 𝑥 + 𝑢𝑥 − 𝜏𝑥 + 𝑣𝑥 ,

¥𝑦 = − 𝜇
𝑟3 𝑦 + 𝑢𝑦 − 𝜏𝑦 + 𝑣𝑦 ,

(21)

where the position of the spacecraft is denoted by 𝒓 = [𝑥, 𝑦]⊤ ∈ R2, whose magnitude is 𝑟 =
√︁
𝑥2 + 𝑦2, and 𝜇 denotes the

Earth’s gravitational constant. Control inputs are denoted by the vector 𝒖 = [𝑢𝑥 , 𝑢𝑦]⊤ ∈ R2, bias terms in the acceleration
resulting from potential failures in the propulsion subsystem are represented by 𝝉 = [𝜏𝑥 , 𝜏𝑦]⊤ ∈ R2. Uncertainty in
the acceleration is represented by a realization of the continuous-time process noise vector 𝒗 = [𝑣𝑥 , 𝑣𝑦]⊤ ∈ R2. We
consider two modeling scenarios spanning an uncontrollable and a controllable spacecraft, referred to as the target and
chaser spacecraft, respectively.

A.1.1 Target Spacecraft Kinematics
For the target spacecraft, we set both the control input and the acceleration bias vectors to zero in the equations

of motion (Eq. 21) and rewrite the system of equations in a first-order continuous-time state space formulation with
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kinematic state vector 𝒙 = [𝑥, 𝑦, ¤𝑥, ¤𝑦] ∈ R4 as

¤𝒙(𝑡) = 𝒇 (𝒙(𝑡)) + 𝐷𝒗(𝑡), (22)

where 𝒇 (𝒙(𝑡)) ≕
[
¤𝑥, ¤𝑦, − 𝜇

𝑟3 𝑥, − 𝜇

𝑟3 𝑦
]⊤ represents the nonlinear continuous-time dynamics function, with 𝜇 and

𝑟 as defined in Eq. 21. The process noise gain matrix is denoted by 𝐷 = [02×2, 𝐼2×2]⊤ ∈ R4×2, with 0 and 𝐼

representing the zero and identity matrices, respectively. Consider the following time discretization [𝑡1, 𝑡2, ..., 𝑡𝑘 , ..., 𝑡final],
with Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 , and let 𝒙𝑘 = 𝒙(𝑡𝑘). Using a zero-order hold across each Δ𝑡𝑘 for the process noise, i.e.,
𝒗(𝑡) = 𝒗𝑘 ∀ 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], we arrive to the discretized dynamics

𝒙𝑘+1 = 𝒙𝑘 +
∫ 𝑡𝑘+1

𝑡𝑘

𝒇 (𝒙(𝑡)) 𝑑𝑡 + Δ𝑡𝑘𝐷𝒗𝑘 ≕ 𝒇 (Δ𝑡𝑘 , 𝒙𝑘 , 𝒗𝑘), (23)

where 𝒇 (Δ𝑡𝑘 , 𝒙𝑘 , 𝒗𝑘) represents the discrete-time dynamics function, and the term involving the integral of the
continuous-time dynamics function 𝒇 (𝒙(𝑡)) is computed via a suitable numerical integration scheme. Uncertainty in
the discrete-time dynamics is represented by the additive process noise vector 𝒗𝑘 ∈ R2, which we model as a realization
of the random variable 𝑽𝑘 ∼ N(0, 𝑄𝑘), with discrete-time covariance matrix 𝑄𝑘 ∈ R2×2.

A.1.2 Chaser Spacecraft Kinematics
The chaser spacecraft admits a control input in the form of an acceleration 𝒖(𝑡) and may be subject to a additive

acceleration bias 𝝉(𝑡) that takes nonzero values only in the presence of a failure in the propulsion subsystem. This
acceleration bias term is a consequence of one or more thrusters being faulty, which can be identified based on the
pointing direction of the resulting bias given that the pointing directions of all thrusters are fixed. In a simulation
setting, we prescribe the failure by setting the starting time of the failure 𝑡failure and the resulting acceleration bias 𝝉failure.
However, the ground truth values of these quantities are not shared with any of the involved digital twins and their values
are estimated instead to compute health-aware control inputs.

To estimate the acceleration bias, we consider an augmented version of the dynamics that includes the acceleration
bias as part of the state to propagate. Consider the augmented state vector [𝒙, 𝝉]⊤ =

[
𝑥, 𝑦, ¤𝑥, ¤𝑦, 𝜏𝑥 , 𝜏𝑦

]⊤ ∈ R6, and
augment the equations of motion presented in Eq. 21 with a model for the evolution of the acceleration bias as ¤𝝉 = 0. In
this setting, the estimate of the acceleration bias would remain constant during the prediction step, but would be updated
in the correction state of the state estimation algorithm by exploiting the correlation between the acceleration bias with
the acceleration of the spacecraft as outlined in the Eq. 21. This augmented dynamics system can be represented in the
first-order continuous-time state space formulation as

¤𝒙(𝑡)

¤𝝉(𝑡)

 =


𝒇 (𝒙(𝑡)) + 𝐵 [𝒖(𝑡) − 𝝉(𝑡)]

0

 + 𝐷𝒗(𝑡), (24)

where 𝒇 (𝒙(𝑡)) ≔
[
¤𝑥, ¤𝑦, − 𝜇

𝑟3 𝑥, − 𝜇

𝑟3 𝑦
]⊤ ∈ R4 represents the nonlinear continuous-time dynamics function, with 𝜇 and 𝑟

as defined in Eq. 21. The control gain matrix is denoted by 𝐵 = [02×2, 𝐼2×2]⊤ ∈ R4×2, with 0 and 𝐼 representing the
zero and identity matrices, respectively. The process noise gain matrix is represented by 𝐷 = [02×4, 𝐼4×4]⊤ ∈ R6×4

with process noise vector 𝒗(𝑡) ∈ R4, which was augmented to include model uncertainty corresponding to the dynamics
of the acceleration bias. Discretizing time as [𝑡1, 𝑡2, ..., 𝑡𝑘 , ..., 𝑡final] and using a zero-order hold across each Δ𝑡𝑘 for the
control, acceleration bias, and process noise, i.e., 𝒖(𝑡) = 𝒖𝑘 , 𝝉(𝑡) = 𝝉𝑘 , and 𝒗(𝑡) = 𝒗𝑘 ∀ 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], we arrive to the
discretized dynamics

𝒙𝑘+1

𝝉𝑘+1

 =


𝒙𝑘 +

∫ 𝑡𝑘+1
𝑡𝑘

𝒇 (𝒙(𝑡)) 𝑑𝑡 + Δ𝑡𝑘𝐵 [𝒖𝑘 − 𝝉𝑘]

𝝉𝑘

 + Δ𝑡𝑘𝐷𝒗𝑘 ≕ 𝒇 (Δ𝑡𝑘 , [𝒙𝑘 , 𝝉𝑘]⊤ , 𝒖𝑘 , 𝒗𝑘), (25)

where 𝒇 (Δ𝑡𝑘 , [𝒙𝑘 , 𝝉𝑘]⊤ , 𝒖𝑘 , 𝒗𝑘) represents the discrete-time dynamics function. Uncertainty in the discrete-time
dynamics is represented via the additive process noise vector 𝒗𝑘 ∈ R4, which we model as a realization of the random
variable 𝑽𝑘 ∼ N(0, 𝑄𝑘) with discrete-time covariance matrix 𝑄𝑘 ∈ R4×4.
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A.2. Controlling the Relative Motion Kinematics
In the pre-capture phase, the relative motion between the controllable chaser and the target spacecraft needs to be

controlled such that their relative position and velocity is minimized under the smallest possible control input magnitude.
Consider a rotating frame attached to the target spacecraft’s center of mass, whose 𝑥-direction pointing radially outward
away from the Earth and 𝑦-direction points parallel to the target’s orbital velocity direction. Assume the target moves
in a circular orbit to maintain the orthogonality of this frame, while the chaser is initially at an elliptic orbit. The
continuous-time relative motion of the chaser with respect to the target in this rotating frame can be approximated by
the Clohessy–Wiltshire–Hill equations [18] resulting from linearizing the coupled relative rotational and translational
kinematics between the target and chaser spacecraft as

¥𝑥 − 2𝑛 ¤𝑦 − 3𝑛2𝑥 = 𝑢𝑥 ,

¥𝑦 + 2𝑛 ¤𝑥 = 𝑢𝑦 ,
(26)

where [𝑥, 𝑦]⊤ ∈ R2 and [ ¤𝑥, ¤𝑦]⊤ ∈ R2 represent the position and velocity of the chaser spacecraft under control input
[𝑢𝑥 , 𝑢𝑦]⊤ ∈ R2, all written in the rotating target-centered frame. The parameter 𝑛 ∈ R denotes the ground truth
target’s orbital rate. In our simulation setting, 𝑛 is not prescribed a priori, and instead it is estimated from the target’s
position and velocity estimates. These estimates change in time, thus resulting in a discrete sequence of estimates
�̂�1, �̂�2, ...�̂�𝑘 , ..., which are used to recompute the equations of motion in Eq. 26 for each �̂�𝑘 . Introducing the state vector
𝒙 = [𝑥, 𝑦, ¤𝑥, ¤𝑦]⊤ and assuming the following time discretization [𝑡1, 𝑡2, ..., 𝑡𝑘 , ...], the first-order discrete-time relative
motion dynamics function corresponding to the equations of motion in Eq. 26 is

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 , (27)

where 𝐴 denotes the linear discrete-time state-transition matrix and 𝐵 denotes the control gain matrix. Introducing the
proportional control law 𝒖𝑘 = −𝐾𝒙𝑘 with controller gain matrix 𝐾 ∈ R2×4, the control problem can be formulated as an
infinite-horizon Linear Quadratic Regulator (LQR) [19]. We seek to minimize the 𝑄-weighted norm of the relative state
vector and the 𝑅-weighted norm of the control input simultaneously. The optimal control gain matrix 𝐾 in the rotating
target-centered frame is given by

𝐾 ≔ arg min
𝐾

∞∑︁
𝑘=1

𝒙⊤𝑘
(
𝑄 + 𝐾⊤𝑅𝐾

)
𝒙𝑘 , (28)

where 𝑄 and 𝑅 are the positive-definite state and control weight matrices. An analytical solution for the control gain
matrix 𝐾 exists in terms of the discrete-time linear operators 𝐴 and 𝐵 and the associated Riccati equation, as described
in [19]. Note that both the discrete-time state transition matrix 𝐴 and the controller gain matrix 𝐾 depend on the target’s
orbital rate �̂�𝑘 , hence must be recomputed whenever a new estimate for the orbital rate becomes available.

Note that the control gain matrix in Eq. 28 is defined with respect to the relative position and velocity state vector 𝒙
and produces an commanded acceleration vector 𝒖, with both vectors expressed in the target-centered frame. Instead,
we are interested in controlling the chaser nonlinear dynamics presented in Appendix A.1.2, which are expressed in
the Earth-centered, Earth-fixed frame. Given estimates of the chaser’s 𝒙chaser

𝑘
and the target’s 𝒙target

𝑘
kinematic states

expressed in the Earth-centered, Earth-fixed reference frame, we apply appropriate reference frame vector rotations to
produce a control input to the nonlinear orbit dynamics of the chaser spacecraft as

𝒖chaser
𝑘 = −Θ⊤

𝑘𝐾
(
𝐼 ⊗ Θ𝑘

) (
𝒙chaser
𝑘 − 𝒙

target
𝑘

)
, (29)

where Θ𝑘 ∈ R2×2 is a rotation matrix between the Earth-centered, Earth-fixed and the rotating target-centered reference
frames, and 𝐼 ⊗ Θ𝑘 ∈ R4×4 denotes the Kronecker product between the identity matrix 𝐼 of order 2 and the rotation
matrix Θ𝑘 .
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