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Abstract— This paper addresses the problem of global attitude
filtering on the special orthogonal group SO(3). A hysteresis-
based hybrid switching strategy is used to switch between two
filters that operate in different regions of SO(3). The first filter
is the passive complementary filter, whereas the second filter
is designed using an appropriately chosen Morse function. To
this end, a novel approach to design Morse functions on SO(3)
is proposed. The proposed hybrid filter is shown to be input-
to-state stable with respect to measurement noise. Simulations
validate the stability properties of the hybrid filter.

I. INTRODUCTION

The attitude of a rigid body is represented as an element of
the special orthogonal group of dimension three, denoted by
SO(3). The problem of attitude estimation/filtering involves
using noisy measurements of the attitude and the angular
velocity to obtain a filtered attitude estimate. As SO(3) is
a non-Euclidean Lie group, standard estimation methods
like the extended Kalman filter fail to ensure that the
attitude estimate remains on SO(3). To address this issue, the
multiplicative extended Kalman filter (MEKF) was proposed
in [1], where the update step of the Kalman filter satisfies the
constraints posed by the structure of the Lie group SO(3).

While MEKF works with quaternion parametrization of the
attitude, [2] proposes a version of the complementary filter for
attitude estimation without requiring attitude parametrization.
Notably, a passive complementary filter and an explicit
complementary filter are proposed in [2]. The former assumes
that the measurements of the attitude lie on SO(3), whereas
the latter relaxes this assumption by considering vector
measurements that are obtained from the IMU sensor. These
filters render the identity element of SO(3) almost globally
asymptotically stable for the filter error dynamics. Indeed, it
is shown in [3] that a continuous feedback on SO(3) cannot
render a point globally asymptotically stable. Furthermore,
[4] proves that a discontinuous feedback on SO(3), while
guaranteeing global asymptotic stability, is not robust to
arbitrarily small measurement noise. Unfortunately, these
issues also affect filtering algorithms.
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Motivated by these challenges, hybrid systems theory [5],
[6] has been used to design attitude filters that ensure robust
and global asymptotic stability of the identity element for
the filter error dynamics. In particular, using ideas from
synergistic hybrid control proposed in [7], a hybrid filter
motivated by the explicit complementary filter is proposed
in [8] that renders the identity globally asymptotically stable
for the filter error dynamics. Hybrid attitude estimators that
utilize synergistic potential functions are also proposed in
[9] and [10] to obtain global stability results, where, notably,
the filter in [10] results in global exponential stability of the
identity for the error dynamics.

In this paper, we propose a global hybrid attitude filter on
SO(3). While leveraging the passive complementary filter,
we design a filter on SO(3) that causes the filter error
to evolve in the direction of the negative gradient of an
appropriately chosen Morse function. We design the Morse
function with desired critical points as a function on the
real projective space of dimension three, denoted by RP3.
Since RP3 is diffeomorphic to SO(3), we obtain a Morse
function on SO(3). Then, an appropriate hysteresis-based
switching mechanism ensures robust and global convergence
of the attitude estimate to its true value. A special case of
the results in this paper can be found in [11], where a global
attitude filter on SO(2) was developed. The Morse function-
based design on RP3 is the key difference between the hybrid
filter proposed in this paper and the ones in [8]–[10].

The remainder of this paper is organized as follows.
Section II introduces notation and preliminaries. Section III
sets up the problem formulation. The passive complementary
filter and the Morse function-based filter are designed in
Section IV. Section V describes the switching strategy. Sec-
tion VI provides simulation results and Section VII concludes
the paper. Due to space constraints, proofs are omitted and
will be published elsewhere.

II. PRELIMINARIES

A. Notation

The set of real and nonnegative numbers is denoted by
R and R≥0, respectively. The special orthogonal group of
dimension n is defined as SO(n) := {R ∈ Rn×n : R⊤R =
RR⊤ = I, detR = 1}. The Lie algebra of SO(n) is defined
as so(n) := {X ∈ Rn×n : X + X⊤ = 0}. The n-sphere
is defined as Sn := {v ∈ Rn+1 : v⊤v = 1}. We define the
cross map ·× : R3 → so(3) such that v×w = v × w for
each v, w ∈ R3. The inverse of the cross map is defined
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by vex : so(3) → R3, v× 7→ vex(v×) := v. The distance
from a point R ∈ SO(3) to another point X ∈ SO(3) is
defined as |R|2X := tr

(
I −R⊤X

)
/4. The distance from a

point R ∈ SO(3) to a nonempty, compact set A ⊂ SO(3)
is defined as |R|A := minX∈A |R|X . For each A ∈ Rn×n,
E(A) denotes the set of eigenvectors of A. Given functions
f : A → B and g : B → C, their composition is denoted by
g ◦ f : A → C.

The set of all lines in Rn+1 passing through the origin is
defined by the real projective space

RPn := (Rn+1 \ {0})/ ∼,

where the equivalence relation is x ∼ λx for each λ ∈
R \ {0}. Given an equivalence relation x ∼ y on a set X ,
the equivalence class of x ∈ X is defined as [x] := {y ∈ X :
y ∼ x}.

Let M and N be smooth manifolds. The tangent space to
M at x ∈ M and the tangent bundle of M are denoted by
TxM and TM, respectively. For a smooth map f : M → N ,
the differential of f at x ∈ M acting on v ∈ TxM is denoted
by dfx(v). The set of all critical points of f is crit f := {x ∈
M : dfx(v) = 0 ∀v ∈ TxM}. If (M, gM) is a Riemannian
manifold and f : M → R is a smooth function, the gradient
of f at x ∈ M, denoted by gradf(x), is the unique element
in TxM satisfying dfx(v) = gxM(grad f(x), v) for each
v ∈ TxM, where gxM : TxM × TxM → R denotes the
evaluation of the Riemannian metric gM at x.

B. Nonautonomous Hybrid Systems

In this paper, we design an estimation algorithm for attitude
kinematics on SO(3) that involves a logic variable. Such a
system can be modeled as a hybrid system H with data
(C,F,D,G, ζ) as follows [6]:

H :


ẋ = F (x, v, w) (x, v, w) ∈ C

x+ = G(x, v, w) (x, v, w) ∈ D

ζ = H(x, v, w)

(1)

where x ∈ X is the state of the system which accounts for
the attitude as well as the logic variable, v ∈ V is the input,
w ∈ W is the disturbance acting on the system, and ζ is the
output. We let id ∈ W denote the zero disturbance. The set
C ⊂ X ×V×W is the flow set on which flows are permitted,
and D ⊂ X × V ×W is the jump set on which jumps are
permitted. The function F : C → TX denotes the flow map
and G : D → X denotes the jump map.

A solution (x, v, w) to H is parametrized by (t, j) ∈
R≥0 ×N, where t denotes the ordinary time that has passed,
and j denotes the number of times the solution has jumped.
The domain of the solution, denoted by dom (x, v, w), is a
hybrid time domain [5, Definition 2.3]. With some abuse of
notation, dom (x, v, w) represents dom x ∩ dom v ∩ dom w.
For simplicity, in this paper, we assume dom (x, v, w) =
dom x = dom v = dom w. The input-disturbance pair (v, w)
is a hybrid input to H (see [6, Definition 2.27]). The notion
of a solution to H is adapted from [6, Definition 2.29].
A solution is maximal if it cannot be extended, and it is
complete if its domain is unbounded.

Now, we define the following stability notion for (1).

Definition 1 (Input-to-state stability). A nonempty set A is
said to be locally input-to-state stable (LISS) for a system
H if there exist functions β ∈ KL and γ ∈ K, and constants
δ ∈ (0, supx∈X |x|A) and kw > 0 such that every solution
(t, j) 7→ (x(t, j), v(t, j), w(t, j)) to H with |x(0, 0)|A ≤ δ
and |w#|id ≤ kw satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + γ(|w|id) (2)

for all (t, j) ∈ dom (x, v, w), where |w#|id :=
sup(t,j)∈dom (x,v,w) |w(t, j)|id. If (2) holds for all x(0, 0) ∈
X , then A is input-to-state stable (ISS) for H.

Now, we provide conditions for H to be well-posed.
In particular, H is well-posed if it satisfies the following
assumption [5].

Assumption 1 (Hybrid basic conditions). For the hybrid
system H,

(A1) C and D are closed subsets of X × V ×W ,
(A2) F : C → TX is continuous,
(A3) G : D → G(D) is continuous.

III. PROBLEM FORMULATION AND
OUTLINE OF THE PROPOSED SOLUTION

The rotational kinematics of a rigid body on SO(3) are
given by

Ṙ = RΩ× (3)

where t 7→ Ω(t) ∈ R3 represents the angular velocity of the
rigid body in the body fixed frame. We employ the following
measurement model:

Ry = NR, Ωy = Ω+ η. (4)

where t 7→ N(t) ∈ SO(3) and t 7→ η(t) ∈ R3 are signals of
time denoting bounded noise in attitude and angular velocity
measurements, respectively, with the bounds given by

θR := sup
t≥0

|N(t)|I , η := sup
t≥0

|η(t)|. (5)

These bounds on the noise define the set of admissible
measurement noise (N, η) as follows:

W := {X ∈ SO(3) : |X|I ≤ θR} × {x ∈ R3 : |x| ≤ η}.
(6)

The objective of this paper is to design an attitude filter
that has output R̂ ∈ SO(3) and uses noisy measurements
of R and Ω to ensure that R̂ asymptotically converges to
some neighborhood of R, or, alternatively, R̃ := R̂R⊤

practically stabilizes to I ∈ SO(3). The size of the said
neighborhood depends on the size of the noise. As any
continuous feedback on SO(3) cannot be globally stabilizing
[3], we are motivated to design a hybrid filter that uses two
attitude filters, which will operate in overlapping regions
on SO(3), such that appropriate switching between the two
filters results in convergence of R̂ to a neighborhood of
R with arbitrary initial estimate R̂(0). This is achieved as
follows:



• The first filter that we will design operates in a neigh-
borhood of the identity. We call this the local filter and
denote its region of operation by C0 ⊂ SO(3).

• The second filter, which we call the global filter, is
designed such that its region of operation, denoted by
C1 ⊂ SO(3), contains the portion of SO(3) that is not
included in the region of operation of the local filter. In
particular, C1 is such that SO(3) \ C0 ⊂ C1. We also
require that the global filter practically stabilize R̃ to a
point in the interior of the set C0.

We introduce a logic variable q ∈ Q := {0, 1} that decides
which filter is being operated, with q = 0 corresponding to
the local filter and q = 1 to the global filter.

IV. THE LOCAL AND GLOBAL FILTERS

A. The Local Filter
With the measurement model in (4) and (5), we use the

passive complementary filter [2] as the local filter and obtain
the following result.

Theorem 1. Given the rotational kinematics (3) with a locally
absolutely continuous signal t 7→ Ω(t), a constant kp > 0,
and measurements Ry and Ωy satisfying (4), (5), and θR ≤√

(5 + 2
√
5)/10, the filter given by

˙̂
R = R̂

(
Ωy + kpω(R

y
)
)
×
, R̂(0) ∈ SO(3), (7)

where ω(R
y
) := vex(R

y −Ry⊤

)/2 and R
y
:= R̂⊤Ry is such

that the set {I} ⊂ SO(3) is LISS for the filter error dynamics
of R̃ = R̂R⊤, which are given by

˙̃
R = F0(R̃, vc, wc) := R̂η×R

⊤ + kpR̂ω(R
y
)×R

⊤ (8)

where t 7→ vc(t) := (R(t),Ω(t)) ∈ SO(3) × R3 and t 7→
wc(t) := (N(t), η(t)) ∈ W .

We refer the reader to [11, Theorem 1] for the explicit
KL-bound, similar to (2), for the above result.

In the absence of measurement noise, as a consequence
of Theorem 1, the identity is almost globally exponentially
stable for (8) and the basin of attraction is SO(3) \ U0,
where the set U0 := {X ∈ SO(3) : |X|I = 1} is the
set of Lebesgue measure zero in SO(3) that represents all
rotations by 180◦ from the identity orientation. Therefore,
if R̃(0) ∈ U0, then appropriately chosen arbitrarily small
measurement noise can prevent the convergence of R̃ to a
small neighborhood of the identity. This motivates the need
for a hysteresis-based hybrid filter that ensures robustness of
the filter with respect to bounded measurement noise.

In the remainder of this paper, we refer to the set U0 as
the unstable and forward invariant set for (8) as that indeed
holds true when θR = η = 0.

B. The Global Filter Design Approach
Firstly, we design a Morse function1 on SO(3) with a

unique local minimum such that all of its critical points lie

1Given a smooth manifold M, a function f : M → R is a Morse
function if all of its critical points are nondegenerate, i.e., the Hessian,
evaluated at the critical points, is nonsingular.

away from U0. This is achieved by exploiting the fact that the
set RP3 is diffeomorphic to SO(3) [12, Proposition 9.2.10].
Therefore, it suffices to design a Morse function with desired
critical points on RP3, which can then be pulled onto SO(3)
via the diffeomorphism to obtain a Morse function on SO(3).
Then, following [13], we design the global filter such that
its error dynamics, defined by the negative gradient of this
Morse function, cause the value of the Morse function to
decrease to its minimum value almost everywhere. Using the
Morse function as a Lyapunov function candidate, we certify
almost global asymptotic stability of the stable critical point
of the Morse function for the global filter error dynamics.

C. Morse Functions on RP3

Given an invertible matrix B ∈ R4×4 and a matrix A =
A⊤ ∈ R4×4 with distinct eigenvalues λ1 < λ2 < λ3 < λ4,
consider the function f : RP3 → R such that

f([v]) :=
v⊤B⊤ABv

v⊤B⊤Bv
∀v ∈ R4 \ {0}. (9)

Since f([v]) = f([λv]) for each λ ∈ R \ {0} and each
v ∈ R4 \ {0}, f is well defined on RP3.

D. Global Filter Design on SO(3)

As SO(3) and RP3 are diffeomorphic, let φ : SO(3) →
RP3 be a diffeomorphism. Consequently, f ◦φ : SO(3) → R
is a Morse function on SO(3). Since the gradient computation
of f ◦ φ requires a Riemannian metric on SO(3), let gSO(3)

be the Frobenius inner product, i.e. for each R ∈ SO(3)

gRSO(3)(X,Y ) := tr
(
X⊤Y

)
∀X,Y ∈ TRSO(3). (10)

Then, gSO(3) induces a Riemannian metric gRP3 on RP3 due
to the diffeomorphism φ; see [14, p. 332]. Using the resulting
metric gRP3 , we obtain the following result.

Lemma 1. Given an invertible matrix B ∈ R4×4 and a
matrix A = A⊤ ∈ R4×4 with distinct eigenvalues λi and
corresponding eigenvector ξi for each i ∈ {1, 2, 3, 4}, the
function f : RP3 → R, as defined in (9), is a Morse function,

grad f([v]) = 2
B⊤ABv − f([v])B⊤Bv

v⊤B⊤Bv
∀v ∈ R4 \ {0},

crit f =
{
[B−1ξ1], [B

−1ξ2], [B
−1ξ3], [B

−1ξ4]
}
,

f([B−1ξi]) = λi ∀i ∈ {1, 2, 3, 4}.

With the measurement model in (4), we follow ideas from
[13] to design a gradient-like filter on SO(3) using the Morse
function f ◦ φ and obtain the following result.

Theorem 2. Given the rotational kinematics (3) with a locally
absolutely continuous signal t 7→ Ω(t), measurements Ry and
Ωy satisfying (4), (5), and θR ≪ 1, an invertible matrix B ∈
R4×4, a matrix A = A⊤ ∈ R4×4 with distinct eigenvalues λi
and corresponding eigenvector ξi for each i ∈ {1, 2, 3, 4} with
λ1 < λ2 < λ3 < λ4, a Morse function f : RP3 → R as in (9),
a diffeomorphism φ : SO(3) → RP3, the Riemannian metric
gSO(3) as defined in (10), an induced Riemannian metric gRP3 ,
and a constant kp > 0, the filter given by

˙̂
R = R̂Ωy

× − k̄p

(
(dφR̃y )

−1 ◦ grad f ◦ φ(R̃y)
)
Ry (11)



with R̂(0) ∈ SO(3), where R̃y := R̂Ry⊤, is such that the
singleton set {φ−1([B−1ξ1])} ⊂ SO(3) is LISS for the filter
error dynamics of R̃, given by

˙̃
R = F1(R̃, vc, wc)

:= R̂η×R
⊤ − k̄pgrad (f ◦ φ)(R̃y)RyR⊤,

(12)

where we recall vc and wc from (8).

To unite the local and the global filter so as to obtain
a hybrid filter, the unstable and forward invariant sets for
the filter error dynamics of the local and the global filter
must be disjoint. Since the forward invariant set for the filter
error dynamics of the global filter is simply crit (f ◦φ), the
following holds:

U0 ∩ crit (f ◦ φ) = ∅. (13)

Then, using Lemma 1, we can design matrices A and B that
define the Morse function f on RP3 and a diffeomorphism
φ : SO(3) → RP3 such that (13) holds.

V. UNITING LOCAL AND GLOBAL FILTERS

In this section, we construct appropriate regions of opera-
tions for the local and global filters according to the outline
mentioned in Section III, and formulate the hybrid filter. This
construction follows closely to [11].

We define the sets C0 ⊂ SO(3) and C1 ⊂ SO(3), which
are the regions of operation of the local and global filters
as explained in Section III, using positive constants c0 and
c1, respectively. In particular, pick constants c0, c1 satisfying
0 < c1 < c0 < 1. Then, we define the region of operation of
the local and global filter as

C0 := {X ∈ SO(3) : |X|I ≤ c0}, (14)
C1 := {X ∈ SO(3) : |X|I ≥ c1}. (15)

Note that, since c1 < c0, the nonempty set C0 ∩ C1 is the
hysteresis region.

Recall from Section III that the proposed hybrid filter
employs a logic variable q ∈ Q = {0, 1}. We define the
sets where R̃y can lie to trigger a switch in the value of q
as follows:

D0 := SO(3) \ C0, D1 := SO(3) \ C1. (16)

In particular, if q = 1 and R̃y ∈ D1, i.e., R̃y does not lie
in the interior of the region of operation of the global filter,
the value of q is reset to zero, and since D1 ⊂ C0, R̃y now
belongs in the region of operation of the local filter. Thus,
operating the local filter then ensures convergence of R̃ to a
neighborhood of I .

Similarly, if q = 0 and R̃y ∈ D0, i.e., R̃y does not lie in
the interior of the region of operation of the local filter, the
value of q is reset to one. Since D0 ⊂ C1, R̃y now lies in
the region of operation of the global filter. Then, if the global
filter can bring the filter error in the interior of D1 in finite
time, a jump in the value of q can be triggered, causing the
local filter to ensure practical stabilization of R̃ to I .

For the global filter to bring the filter error in the interior of
D1 in finite time for any choice of a matrix A = A⊤ ∈ R4×4

with distinct eigenvalues λi and corresponding eigenvectors
ξi for each i ∈ {1, 2, 3, 4}, we design an invertible matrix
B ∈ R4×4 such that crit (f ◦ φ) ⊂ intD1. In particular, we
design the invertible matrix B ∈ R4×4 such that for each
i ∈ {1, 2, 3, 4},

φ−1([B−1ξi]) ∈ intD1 =⇒ |φ−1([B−1ξi])|I < c1. (17)

The existence of such a matrix B is guaranteed by Lemma ??.
Note that, due to the choice of the constant c1, every Morse
function f ◦ φ satisfying (17) also satisfies (13).

A. Hybrid Filter Design

We formalize the above logic by modeling the filter as a
hybrid system Ĥ of the form (1), with state x̂ := (R̂, q) ∈
X := SO(3) × Q, output ζ := R̂ ∈ SO(3), and data
(Ĉ, F̂ , D̂, Ĝ, ζ). Recall that Q = {0, 1}. The input u to
the hybrid filter consists of measurements Ry and Ωy, i.e.,
u := (Ry,Ωy) ∈ U := SO(3)× R3. However, since Ry and
Ωy are signals of time and u is supposed to be a hybrid
input to Ĥ, we define u on the hybrid time domain of a
solution x̂, i.e., dom x̂ = dom u, so that u flows when x̂
flows, and jumps to the same value when x̂ jumps. More
formally, given a signal t 7→ (Ry(t),Ωy(t)) and a solution
x̂, the hybrid input (t, j) 7→ u(t, j) is defined as

u(t, j) := (Ry(t),Ωy(t)) ∀(t, j) ∈ dom x̂. (18)

The flow set for Ĥ is defined to be the points where, for
each q ∈ Q, the state-input pair causes R̃y to lie in the region
of operation of the corresponding filter. The flow map defines
the filter dynamics according to (7) and (11). Similarly, the
jump set is defined to be the values of (x̂, u) that trigger a
jump in q, as explained below (16). The jump map resets q
from zero to one and vice versa, keeping R̂ unchanged.

Therefore, the data (Ĉ, F̂ , D̂, Ĝ, ζ) of the hybrid filter Ĥ
is given as

Ĉ :=

(x̂, u) ∈ X × U : (R̂Ry⊤, q) ∈
⋃
q∈Q

(Cq × {q})


F̂ (x̂, u) :=

(
(1− q)F̂0(x̂, u) + qF̂1(x̂, u)

0

)
∀(x̂, u) ∈ Ĉ

D̂ :=

(x̂, u) ∈ X × U : (R̂Ry⊤, q) ∈
⋃
q∈Q

(Dq × {q})


Ĝ(x̂, u) :=

(
R̂

1− q

)
∀(x̂, u) ∈ D̂

ζ := R̂

where, for each (x̂, u) ∈ Ĉ, the maps F̂0(x̂, u) and F̂1(x̂, u)
are defined using (7) and (11) as follows:

F̂0(x̂, u) := R̂
(
Ωy + kpω(R

y
)
)
×
,

F̂1(x̂, u) := R̂Ωy
× − k̄p

(
(dφR̃y )

−1 ◦ grad f ◦ φ(R̃y)
)
Ry.

Note that, since D0 and D1 are disjoint, the jump map Ĝ is
well defined.



B. Hybrid Filter Error Dynamics

Since the desired reference trajectory for the attitude
estimate R̂ is the true attitude R, the filter error is defined
as R̃ := R̂R⊤ so that R̃ approaches I as R̂ approaches R.
We compute the dynamics of R̃ as follows:

˙̃
R =

˙̂
RR⊤ + R̂Ṙ⊤,

where, for q = 0 (resp., q = 1), ˙̂
R is given as in (7) (resp.,

(11)). This results in the following filter error dynamics:

˙̃
R = (1− q)F0(R̃, vc, wc) + qF1(R̃, vc, wc),

where the functions F0 and F1 are as defined in (8) and (12),
respectively. For its jump dynamics, we see that R̃ jumps
when R̂ jumps, resulting in R̃+ = R̂+R⊤ = R̂R⊤ = R̃.

We use the following result from [11, Lemma 1] and
characterize the flow and the jump sets of R̃ as follows.

Lemma 2. Consider constants c0 and c1 satisfying 0 < c1 <
c0 < 1. Given R̃ ∈ SO(3) and a signal t 7→ N(t) satisfying
(5) with θR ≤ 1

2 + 1
2
√
2

, the following holds:

1) R̃y ∈ C0 =⇒
R̃ ∈ C0,w := {X ∈ SO(3) : |X|2I ≤ c20 + F(θR)},

2) R̃y ∈ D0 =⇒
R̃ ∈ D0,w := {X ∈ SO(3) : |X|2I ≥ c20 − F(θR)},

3) R̃y ∈ C1 =⇒
R̃ ∈ C1,w := {X ∈ SO(3) : |X|2I ≥ c21 − F(θR)},

4) R̃y ∈ D1 =⇒
R̃ ∈ D1,w := {X ∈ SO(3) : |X|2I ≤ c21 + F(θR)},

where F(s) := s2 +
√
s2(1− s2) for all s ∈ [0, 1].

For each q ∈ Q, the set Cq,w denotes the flow set and Dq,w

denotes the jump set for the hybrid filter error dynamics.
These sets depend on measurement noise, which is made
evident from the subscript w.

The choice of constants c0 and c1, and the matrices A and
B determines the bound on the admissible measurement noise.
In particular, the noise should be small enough to ensure
D0,w ∩D1,w = ∅ so that persistent jumping of a solution to
the filter error dynamics is prohibited. Furthermore, to ensure
that the global filter steers R̃y to the interior of D1,w in finite
time, it is desired that crit (f ◦φ) ⊂ intD1,w. Similarly, for
the local filter, it is desired that U0 ⊂ D0,w. These conditions
are captured by the bound F(θR) ≤ ρmax, where

F(θR) ≤ ρmax := min

{
c20 − c21

2
, 1− c20, c

2
1 − c2

}
(19)

and c2 := maxi∈{1,2,3,4} |φ−1([B−1ξi])|2I . We define the
admissible measurement noise so that (5) and (19) hold.
In particular, for each ρ ∈ [0, ρmax), we define the set of
admissible measurement noise as
Wρ := {(X,x) ∈ W : F(|X|I) ≤ ρ} ⊂ SO(3)× R3, (20)

where W is defined in (6). As Wρ is compact, the measure-
ment noise is bounded.

The hybrid filter error dynamics are defined as a hybrid
system H̃ = (C̃, F̃ , D̃, G̃). The state of H̃ is defined as
x̃ := (R̃, q) ∈ X . The input signal (t, j) 7→ ṽ(t, j) :=

(R(t, j),Ω(t, j)) ∈ U to H̃ is the hybrid signal obtained
from the continuous-time signal t 7→ vc(t) according to (18).
Similarly, the hybrid disturbance signal (t, j) 7→ w̃(t, j) :=
(N(t, j), η(t, j)) ∈ Wρ acting on H̃ is obtained from the
measurement noise signal t 7→ wc(t).

With this, the data (C̃, F̃ , D̃, G̃) of the hybrid system H̃
is defined as follows:

C̃ :=
⋃
q∈Q

(Cq,w × {q})× U ×Wρ,

F̃ (x̃, ṽ, w̃) :=

(
(1− q)F0(R̃, ṽ, w̃) + qF1(R̃, ṽ, w̃)

0

)
∀(x̃, ṽ, w̃) ∈ C̃,

D̃ :=
⋃
q∈Q

(Dq,w × {q})× U ×Wρ,

G̃(x̃, ṽ, w̃) :=

(
R̃

1− q

)
∀(x̃, ṽ, w̃) ∈ D̃.

Theorem 3. Suppose that the input signal t 7→ Ω(t) ∈ R3 is
locally absolutely continuous in dom Ω, and the noise signal
t 7→ wc(t) := (N(t), η(t)) ∈ SO(3) × R3 is Lebesgue
measurable and locally essentially bounded in dom wc. Then,
for each constants c0 and c1 satisfying 0 < c1 < c0 < 1,
each diffeomorphism φ : SO(3) → RP3, each matrix A =
A⊤ ∈ R4×4 with distinct eigenvalues , each invertible matrix
B ∈ R4×4 satisfying (17), a Morse function f on RP3 as in
(9), the Riemannian metrics on SO(3) and RP3 as defined in
(10), each constants kp, k̄p > 0, and each ρ ∈ [0, ρmax) the
following holds:

i) the hybrid systems Ĥ and H̃ are well-posed,
ii) if t 7→ wc(t) satisfies (5), θR ≪ 1, wc(t) ∈ Wρ for each

t ∈ dom wc, and dom Ω = dom wc = R≥0, then every
maximal solution to H̃ is complete and exhibits no more
than two jumps,

iii) if t 7→ wc(t) satisfies (5), θR ≪ 1, and wc(t) ∈ Wρ for
all t ∈ dom wc, then A := {I} × {0} ∈ X is ISS for H̃.

Remark 1. Item iii of Theorem 3 implies that, in the absence
of measurement noise, the set A is globally asymptotically
stable for H̃. As the hybrid error system H̃ is well-posed, it
follows from [5] that the global asymptotic stability property
of A for H̃ is robust to arbitrarily small measurement noise.
However, since A is ISS for H̃, robustness is guaranteed
even when the noise is not arbitrarily small.

VI. NUMERICAL EXAMPLE AND SIMULATION RESULTS

A. Choosing a Diffeomorphism φ

We note that RP3 = S3/∼S3 , where the equivalence
relation is such that x ∼S3 −x. The corresponding equiv-
alence class is defined as [x]S3 := {y ∈ S3 : y ∼S3 x}
for each x ∈ S3. Furthermore, for each q ∈ S3 and
each χ ∈ TqS3, we have T[q]S3

RP3 = [χ]TS3 , where the
equivalence class [·]TS3 is defined by the equivalence relation
TqS3 ∋ χ ∼TS3 −χ ∈ T−qS3.

Consider the set-valued map ψ : SO(3) ⇒ S3 that maps
each R ∈ SO(3) to the corresponding unit quaternion as
ψ(R) := ±[cos θ

2 v⊤ sin θ
2 ]

⊤, where (v, θ) ∈ S2 × [0, π]



denotes the axis and the angle of rotation corresponding to
the rotation matrix R. Note that ψ maps each R ∈ SO(3) to
two values in S3 that are negations of each other. Due to the
equivalence relation ∼S3 , we have [q]S3 = [−q]S3 for each
q ∈ S3. Then, we define the diffeomorphism φ : SO(3) →
RP3 as follows:

φ(R) := [ψ(R)]S3 ∀R ∈ SO(3). (21)

We note from [3], [15] that for each continuous curve t 7→
R(t) that is a solution to (3) and each q(0) ∈ S3 such that
φ(R(0)) = [q(0)]S3 , there exists a unique, continuous curve
t 7→ q(t), with dom q = domR, that is a solution to

q̇ =
1

2
Π(q)Ω, (22)

where q =
[
s ε⊤

]⊤
and Π(q) :=

[
−ε sI − ε×

]⊤
.

Therefore, using Π(q)⊤Π(q) = I for all q ∈ S3, it follows
from (3) and (22) that, for each [q]S3 ∈ RP3 and each
χ ∈ T[q]S3

RP3, the following holds:
(dφφ−1([q]S3 )

)−1(χ) = 2φ−1([q]S3)(Π(q)⊤χ)× (23)

The above equation, together with (21) and Lemma 1, defines
the global filter according to (11).

B. Simulation Results

We set the parameters c0 = 0.866, c1 = 0.5, kp = k̄p = 1,

A =

[
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

]
, B =

[
0.882 0.571 −2.130 −2.130
0.597 −2.227 1.172 −1.441
0.597 −2.227 −1.442 1.172
−1.034 3.857 2.495 2.495

]
.

This choice of c0, c1, A, and B satisfies (17).
With the angular velocity signal t 7→ Ω(t) =[

sin t cos t sin 2t
]⊤

, the true kinematics are initialized as
R(0, 0) = I , and the hybrid filter is initialized as R̂(0, 0) =
diag(−1, 1,−1). This initialization results in R̃(0, 0) ∈ U0;
in particular, (R̃(0, 0), q(0, 0)) ∈ D0 × {0}. Let θ̄ denote
the angle of rotation of R̃ and let R := R̂⊤R. For each
X ∈ SO(3), let axis(X) ∈ S2 denote its axis of rotation.
We consider a bounded noise signal η(t) = sin(θ̄)axis(R) if
|R̃|I > 0.999 and η(t) = −sign(sin(θ̄))axis(R) otherwise.
The noise in attitude measurements N(t) ∈ SO(3) is such
that axis(N(t)) is sampled from a uniform distribution over
S2, and its angle of rotation is sampled from a uniform distri-
bution over [−π/18, π/18]. In this setting, the simulations2

show that the passive complementary filter (PCF) and the
extended Kalman filter (EKF) fail to ensure convergence of
the filter error R̃ to a neighborhood of the identity, as seen in
Figure 1a. The hybrid filter, however, is successful in ensuring
said convergence, and the solution jumps at t = 0 sec and at
t = 5.32 sec, as seen from Figures 1a and 1b.

VII. CONCLUSION

We have proposed a hybrid global attitude filter using
the following two filters: i) the passive complementary filter,
and ii) a gradient-like filter obtained from an appropriately

2The simulation files can be found at https://github.com/Hybri
dSystemsLab/HybridComplementaryFilterOnSO3.
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Fig. 1: Comparison of the hybrid filter with PCF and EKF.

chosen Morse function. The proposed hybrid filter is input-to-
state stable to bounded measurement noise. In the process of
designing this filter, we have proposed a novel, constructive
approach to construct Morse functions on SO(3) with desired
critical points. Simulations illustrate the validity of the
proposed hybrid filter.
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