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M
any dynamical systems combine behaviors 
that are typical of continuous-time dynamical 
systems with behaviors that are typical of dis-
crete-time dynamical systems. For example, 
in a switched electrical circuit, voltages and 

currents that change continuously according to classical 
electrical network laws also change discontinuously due 
to switches opening or closing. Some biological systems 
behave similarly, with continuous change during normal 
operation and discontinuous change due to an impul-
sive stimulus. Similarly, velocities in a multibody system 
change continuously according to Newton’s second law but 
undergo instantaneous changes in velocity and momen-
tum due to collisions. Embedded systems and, more gener-

ally, systems involving both digital and analog components 
form another class of examples. Finally, modern control al-
gorithms often lead to both kinds of behavior, due to either 
digital components used in implementation or logic and 
decision making encoded in the control algorithm. These 
examples fi t into the class of hybrid dynamical systems, or 
simply hybrid systems. 

This article is a tutorial on modeling the dynamics of 
hybrid systems, on the elements of stability theory for 
hybrid systems, and on the basics of hybrid control. The 
presentation and selection of material is oriented toward 
the analysis of asymptotic stability in hybrid systems 
and the design of stabilizing hybrid controllers. Our em-
phasis on the robustness of asymptotic stability to data 
perturbation,  external disturbances, and measurement 
error  distinguishes the approach taken here from other 
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 approaches to hybrid systems. While we make some con-
nections to alternative  approaches, this article does not as-
pire to be a survey of the hybrid system literature, which is 
vast and multifaceted. 

The interaction of continuous- and discrete-time dynam-
ics in a hybrid system leads to rich dynamical  behavior and 
phenomena not encountered in purely continuous-time 
systems. Consequently, several challenges are encountered 
on the path to a stability theory for  hybrid systems and to a 
methodology for robust hybrid control  design. The  approach 
outlined in this article addresses these  challenges, by using 
mathematical tools that go  beyond classical analysis, and 
leads to a stability theory that unifies and extends the theo-
ries developed for continuous- and discrete-time systems. In 
particular, we give necessary and sufficient Lyapunov con-
ditions for asymptotic stability in hybrid systems, show uni-
formity and robustness of asymptotic stability, generalize 
the invariance principle to the hybrid setting and combine it 
with Barabasin-Krasovskii techniques, and show the utility 
of such results for hybrid control design. Despite their neces-
sarily more technical appearance, these results parallel what 
students of nonlinear systems are familiar with.

We now present some background leading up to the 
model of hybrid systems used in this article. A widely 
used model of a continuous-time dynamical system is the 
first-order differential equation x# 5 f 1x 2 , with x belonging 
to an n-dimensional Euclidean space Rn. This model can 
be expanded in two directions that are relevant for hybrid 
systems. First, we can consider differential equations with 
state constraints, that is, x# 5 f 1x 2  and x [ C, where C is a 
subset of Rn. For example, the set C might indicate that 
the force of gravity cannot push a ball through the floor. 
Alternatively, the set C might indicate a set of physically 
meaningful initial conditions of the system. Second, we 
can consider the situation where the right-hand side of the 
differential equation is replaced by a set that may depend 
on x. For example, when the force applied to a particle var-
ies with time in an unknown way in the interval 3a, b 4, 
we can model the derivative of the velocity as belonging 
to 3a, b 4. Another reason for considering set-valued right-
hand sides is to account for the effect of perturbations, 
such as measurement error in a feedback control system, 
on a  differential equation. Both situations lead to the dif-
ferential inclusion x# [ F 1x 2 , where F is a set-valued mapping. 
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Combining the two generalizations leads to constrained dif-
ferential inclusions x# [ F 1x 2 , x [ C. 

A typical model of a discrete-time dynamical system 
is the first-order equation x1 5 g 1x 2 , with x [ Rn. The 
notation x1 indicates that the next value of the state is 
given as a function of the current state x through the 
value g 1x 2 . As for differential equations, it is a natural 
extension to  consider constrained difference equations 
and difference inclusions, which leads to the model 
x1 [ G 1x 2 , x [ D, where G is a set-valued mapping and 
D is a subset of Rn. 

Since a model of a hybrid dynamical system requires a 
description of the continuous-time dynamics, the discrete-
time dynamics, and the regions on which these dynamics 
apply, we include both a constrained differential inclusion 
and a constrained difference inclusion in a general model 
of a hybrid system in the form 

 x# [ F(x ) ,   x [ C,  (1) 
 x1 [ G (x ) ,   x [ D.  (2) 

The model (1), (2) captures a wide variety of dynamic 
phenomena including systems with logic-based state 
components, which take values in a discrete set, as well 
as timers, counters, and other components. Examples 
in this article demonstrate how to cast hybrid automata 
and switched systems, as well as sampled-data and net-
worked control systems, into the form (1), (2). We refer 
to a hybrid system in the form (1), (2) as H. We call C 
the flow set, F the flow map, D the jump set, and G the 
jump map. 

For many systems, the generality provided by the in-
clusions in (1), (2) is not needed. Thus, the reader may 

replace the set-valued mappings and the corresponding 
inclusions in (1), (2) with equations and proceed confi-
dently. It is often the geometry of sets C and D that pro-
duces the rich dynamical phenomena in a hybrid system 
rather than the multivaluedness of the mappings F and G. 
However, this article does justify, beyond the sake of gen-
erality, the use of differential inclusions and difference 
inclusions. 

We provide examples of hybrid models in the follow-
ing section. Subsequently, we make precise the meaning 
of a solution to a hybrid dynamical system and describe 
basic mathematical properties of the space of solutions. 
Afterward, we present results on asymptotic stability in 
hybrid systems, with an emphasis on robustness. Initially, 
we focus on Lyapunov functions as the primary stability 
analysis tool and show how Lyapunov functions are used 
in hybrid control design. Finally, we present tools for sta-
bility analysis based on limited events in hybrid systems 
and show how these tools are related to hybrid feedback 
control algorithms. 

The main developments of the article are comple-
mented by several supporting discussions. “Hybrid 
Automata” and “Switching Systems” relate systems 
in the form (1), (2) to hybrid automata and switching 
systems, respectively. “Related Mathematical Frame-
works”  presents other mathematical descriptions of 
systems where features of both continuous- and discrete-
time dynamical systems are present. “Existence, Unique-
ness, and other Well-Posedness Issues” discusses basic 
properties of solutions to hybrid systems in the form 
(1), (2). “Set Convergence” and “Robustness and Gen-
eralized Solutions” introduce mathematical tools from 
beyond classical analysis and motivate the assumptions 

placed on the data of a hybrid sys-
tem H, as given by 1C, F, D, G 2 . “Mo-
tivating Stability of Sets” and “Why 
‘Pre’- Asymptotic Stability?” explain 
distinct features of the asymptotic 
stability concept used in the article. 
“Converse Lyapunov Theorems” and 
“Invariance” state and discuss main 
tools used in the stability analysis. 
“Zeno Solutions” describes a phe-
nomenon unique to hybrid  dynamical 
systems. “Simulation in Matlab/
Simulink” presents an approach to 
simulation of hybrid systems. The 
notation used throughout this article 
is  defined in “List of Symbols.” 
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FIGURE 1 Collision between two particles. (a) Two particles are initialized to positions p1
0  

and p2
0  and with velocities v  1  

0  and v  2
0 . (b) An impact between the particles occurs at the 

position p* . (c) The direction of the motion of each particle is reversed after the impact. 

The examples of hybrid control systems provided in this article only scratch 
the surface of what is possible using hybrid feedback control.
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HYBRID PHENOMENA AND MODELING

Colliding Masses
Many engineering systems experience impacts [8], 
[56]. Walking and jumping robots, juggling sys-
tems, billiards, and a bouncing ball are examples. 
 Continuous-time equations of motion describe the 
behavior of these systems between impacts, whereas 
discrete dynamics approximate what happens during 
 impacts. 

Consider two particles that move toward each other, 
collide, and then move away from each other, as shown 
in Figure 1. Before and after the collision, the position and 
velocity of each particle are governed by Newton’s second 
law. At impact, the velocity evolution is modeled by an 
instantaneous change in the velocities but no change in 
the positions of the particles. 

The combined continuous and discrete behavior of 
the particles can be modeled as a hybrid system with 
a differential equation governing the continuous dy-
namics,  constraints describing where the continuous 
dynamics  apply, a difference equation governing the 
discrete  dynamics, and constraints describing where 
the discrete dynamics apply. The state is the vector 
x5 1p, v 2 5 1p1, p2, v1, v2 2 , where p1 and p2 denote the par-
ticles’ positions and v1 and v2 denote the particles’ veloci-
ties. The state vector changes continuously if, as shown in 
Figure 1, the first particle’s  position is at or to the left of 
the second particle’s position. This condition is described 
by the flow set C J 5 1p, v 2  : p1 # p26 . Assuming no fric-
tion, the flow map obtained applying Newton’s second 
law and using (1) is F 1p, v 2 5 1v1, 0, v2, 0 2 . 

An impact occurs when the positions of the particles 
are identical and their velocities satisfy v1 $ v2. These con-
ditions define the jump set D J 5 1p, v 2  : p15 p2,  v1 $ v26. 
Letting v1

1 and v2
1 indicate the velocities after an impact, 

we have the conservation of momentum equation 

 m1v1
1 1m2v2

1 5m1v11m2v2 (3) 

and the energy dissipation equation 

 v1
1 2 v2

1 5 2 r 1v12 v2 2 ,  (4) 

where m1 and m2 are the masses of the particles and the 
constant r [ 10, 1 2  is a restitution coefficient.  Solving (3) 
and (4) for v1

1 and v2
1 and using (2) yields the jump map 

 G 1p1, p2, v1, v2 2 5 1p1, p2, v12m2l 1v12v2 2 , v21m1l 1v12v2 2 2 , 
where l5 111r 2 / 1m11m2 2 . 
Impulsive Behavior in Biological Systems
Synchronization in groups of biological oscillators occurs in 
swarms of fireflies [10], groups of crickets [88],  ensembles of 

neuronal oscillators [32], and groups of heart muscle cells 
[61]. Detailed treatments include [62] and [78]. The discussion 
below is related to [10] and [55], where models of a collection 
of nonlinear clocks with impulsive coupling are studied. A 
model of two linear clocks with impulsive coupling is used 
in [61] to analyze the synchronization of heart muscle cells. 

List of Symbols
x
#
  The derivative, with respect to time, of the 

state of a hybrid system 
x1  The state of a hybrid system after a jump 
R   The set of real numbers 
Rn   The n -dimensional Euclidean space 
R$0   The set of nonnegative real numbers, 

R$0 5 30, ` )  
Z   The set of all integers 
N    The set of nonnegative integers, N5   50, 1, c6  
N$k   5k, k1 1, c6  for a given k [ N  
[   The empty set 
S   The closure of the set S  
con S   The convex hull of the set S  
con S   The closure of the convex hull of a set S  
S1\  S2   The set of points in S1  that are not in S2  
S13 S2    The set of ordered pairs (s1, s2 )  with 

s1 [ S1,  s2 [ S2  
x^  The transpose of the vector x 
(x, y )  Equivalent notation for the vector 3x^y^ 4  T

|x|   The Euclidean norm of a vector x [ Rn  
B   The closed unit ball, of appropriate dimension, 

in the Euclidean norm
|x|S    infy [g |x2 y|  for a set S ( Rn  and a point 

x [ Rn

Sn   The set 5x [ Rn11 : |x|5 16
f  : Rm S Rn  A function from Rm  to Rn  
F  : Rm SS Rn  A set-valued mapping from Rm  to Rn  

R ( #)   The rotation matrix

 R 1f 2 5 ccosf 2 sinf

sinf      cosf
d

F (S )   hx[SF (x )  for the set-valued mapping 
F  : Rm SS Rn  and a set S ( Rm  

TS (h )   The tangent cone to the set S ( Rn  at h [ S . 
TS (h )  is the set of all vectors w [ Rn  for 
which there exist h i [ S , ti . 0 , for all 
i5 1, 2, c  such that h i S h , ti  R 0 , and 
(h i2h ) /ti S w  as i S `  

K`   The class of functions from R$0  to R$0  that 
are continuous, zero at zero, strictly increas-
ing, and unbounded 

LV (m)   The m-level set of the function V  : dom V S R , 
which is the set of points 5x [ dom  V :
V (x ) 5m6
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Some models of hybrid systems explicitly partition the state of 
a system into a continuous state j and a discrete state q, the 

latter describing the mode of the system. For example, the val-
ues of q may represent modes such as “working” and “idle.” In a 
temperature control system, q may stand for “on” or “off,” while j 
may represent the temperature. By its nature, the discrete state 
can change only during a jump, while the continuous state of-
ten changes only during fl ows but sometimes may jump as well. 
These systems are called differential automata [82], hybrid au-
tomata [S2], [51], or simply hybrid systems [S1], [9]. All of these 
systems can be cast as a hybrid system of the form (1), (2). 

The data of a hybrid automaton are usually given by 
a  » set of modes Q, which in most situations can be identi-
fied with a subset of the integers
a  » domain map Domain: Q SS Rn,  which gives, for each 
q [ Q , the set Domain(q) in which the continuous state 
j  evolves
a »  flow map f :  Q 3 Rn S Rn , which describes, through 
a differential equation, the continuous evolution of the 
continuous state variable j
a  » set of edges Edges ( Q 3 Q , which identifies the 
pairs (q, q r )  such that a transition from the mode q to 
the mode q r  is possible
a  » guard map Guard : Edges SS Rn,  which identifies, for each 
edge (q, q r ) [ Edges, the set Guard1q, q r 2  to which the 
continuous state j must belong so that a transition from q 
to q r  can occur
a  » reset map Reset : Edges 3 Rn S Rn , which de-
scribes, for each edge (q, q r ) [ Edges, the value to 
which the continuous state j [ Rn  is set during a transi-
tion from mode q to mode q r.  When the continuous state 
variable j  remains constant at a jump from q to q r,  the 
map Reset 1q, q r, # 2  can be taken to be the identity.

Figure S1 depicts part of a state diagram for a hybrid automaton. 
The continuous dynamics of two modes are shown, together 

with the guard conditions and reset rules that govern transitions 
between these modes. 

We now show how a hybrid automaton can be modeled as a 
hybrid system in the form (1), (2). First, we reformulate a hybrid 
automaton as a hybrid system with explicitly shown modes. For 
each q [ Q , we take 

 Cq5 Domain (q ) ,   Dq5 d
(q, qr)[Edges

Guard (q, q r ) , 

 Fq (j ) 5 f(q, j ) ,    for  all  j [ Cq, 

Gq (j ) 5 d5qr:j[Guard(q, qr)6
(Reset(q, q r, j ) , q r ) ,   for  all  j [ Dq.

When j  is an element of two different guard sets Guard (q, q r )  
and Guard (q, qs ) ,  Gq (j )  is a set consisting of at least two 
points. Hence, Gq  can be set valued. In fact, Gq  is not neces-
sarily a function even when every Reset(q, q r, #)  is the identity 
map. With Cq , Fq , Dq , and Gq  defi ned above, we consider the 
hybrid system with state (j, q ) [ Rn 3 R  and representation 

 j
#
5 Fq (j ) ,   q [ Q,  j [ Cq,

 (j1, q1 ) [ Gq (j ) ,   q [ Q,  j [ Dq.

Example S1: Reformulation of a Hybrid Automaton 
Consider the hybrid automaton shown in figures S2 and S3, 
with the set of modes Q5 51, 26 ; the domain map given by 

Domain (1 ) 5 R#0 3 R,  Domain (2 ) 5 506 3 R;

the fl ow map, for all j [ R2, given by 

f(1, j ) 5 (1, 1 ) ,  f(2, j ) 5 (0,21 ) ;

the set of edges given by Edges5 5 (1, 1 ) , (1, 2 ) , (2, 1 ) 6 ; 
the guard map given by 

 Guard (1, 1 ) 5 R$0 3 R#0,
 Guard (1, 2 ) 5 R2

$0,
 Guard (2, 1 ) 5 506 3 R#0;

and the reset map, for all j[R2, given 
by 

 Reset(1, 1, j ) 5 (25, 0 ) ,
 Reset(1, 2, j ) 5j,
 Reset(2, 1, j ) 5 2j.

The sets Guard (1, 1 )  and Guard (1, 2 )  
overlap, indicating that, in mode 1, a re-
set of the state j  to (25, 0 )  or a switch 
of the mode to 2 is possible from points 

FIGURE S1 Two modes, q and q r,  of a hybrid automaton. In mode q, the state j  evolves 
according to the differential equation j

#
5 f(q, j )  in the set Domain1q 2.  A transition 

from mode q to mode q r  can occur when, in mode q, j  is in the set Guard1q, q r 2 .  
During the transition, j  changes to a value j1  in Reset1q, q r, j 2 .  Transitions from 
mode q to other modes, not shown in the figure, are governed by similar rules.

ξ ∈Guard(q, q′)

ξ ∈Guard(q′, q)

ξ+ ∈Reset(q, q′, ξ)

ξ+ ∈Reset(q′, q, ξ)

⇒

⇒

ξ ∈Domain(q′)

q′
ξ = f (q′, ξ )

ξ ∈Domain(q)

q
ξ = f (q, ξ )
. .

Hybrid Automata
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where j1 $ 0 and j25 0. Formulating this hybrid automa-
ton as a hybrid system with explicitly shown modes leads to 
D15Guard 11, 12 c Guard 11, 225 R$0 3 R  and the set- valued 
jump map G1 given by 

G1 (j )5 •
(25, 0, 1), if j1 $ 0, j2 , 0, 

(25, 0, 1) h (j1, j2, 2) , if j1 $ 0, j25 0, 
(j1, j2, 2) , if j1 $ 0, j2 . 0.

 !

To formulate a hybrid automaton in the form (1), (2), we 
 define x5 (j, q ) [ Rn11 and

C5 d
q[Q

(Cq 3 5q6) , F (x )5Fq (j ) 3 506  for  all  x[ C, 

D5 d
q[Q

(Dq 3 5q6) , G (x )5Gq (j )  for all  x[ D.

When the domains and guards are closed sets, the fl ow and 
jump sets C and D are also closed. Similarly, when the fl ow and 
reset maps are continuous, the fl ow map F and the jump map G 
satisfy the Basic Assumptions.

Example S1 Revisited: Solutions to a Hybrid Automaton 
Consider the hybrid system modeling the hybrid automaton of 
Example S1. The initial condition j 5 (3, 3 ) , in mode q5 1, 
of the hybrid automaton corresponds to the initial condi-
tion (3, 3, 1) for the hybrid system. The maximal solution 
to the hybrid system starting from (3, 3, 1), denoted xa , 
has domain dom xa5 10, 0 2  c 10, 1 2  and is given by 
xa (0, 0 ) 5 (3, 3, 1 ) , xa (0, 1 ) 5 (3, 3, 2 ) . The solution jumps 
once, the jump takes xa outside of both the jump set and the fl ow 
set, and thus cannot be extended. 

The hybrid system has multiple solutions from the initial 
point (0, 0, 1 ) . One maximal solution starting from (0, 0, 1 ), 
denoted xb , is complete and never flows. This solution has 
dom xb5 506 3 N  and is given by xb (0, j) 5 1.52 .5 (21 ) j . 
That is, the solution xb  switches back and forth between mode 
1 and mode 2 infinitely many times. Another solution starting 
from (0, 0, 1 ) , denoted xc , has dom xc5 10, 02 c 1 30, 5 4, 12 c   1 35, 10 4, 2 2 c 110, 3 2  and is given by 

xc( t, j)5 µ
(0, 0, 1) , if  t5 0, j5 0,

 (251 t, t, 1) ,  if  t[ 30, 5 4, j5 1,

 (0, 52 (t2 5) , 2) ,  if  t[ 35, 10 4, j5 2,

 (0, 0, 1) ,  if t5 10, j5 3.

In the language of hybrid automata, this solution undergoes 
a reset of the state without a switch of the mode, fl ows for 
fi ve units of time until it hits a guard, switches the mode with-
out resetting the state, fl ows for another fi ve units of time until 
it hits another guard, and switches the mode without resetting 
the state. This solution is not maximal since it can be extended 

in several ways. One way is by concatenating xc with xb , that 
is, by setting xc(t110, j13)5xb (t, j)  for ( t, j) [ dom xb . In 
other words, xc  can be extended by back and forth switches 
 between modes. The solution xc  can be also extended to be 
periodic. We can consider xc(t, j)5 (251 (t210), t210, 1)  
for t[ 310, 154 , j5 4, xc(t, j)5 (0, 52 (t215) , 2)  for 
t[ 315, 204 , s5 5, xc(20, 6 ) 5 (0, 0, 1 ) ,  and repeat.
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FIGURE S2 Two modes of the hybrid automaton in Example 
S1. In mode 1, the state j evolves according to the differen-
tial equation j

#
5 (1, 1 )  in the set Domain (1)5R#03R.  

A transition from mode 1 to mode 2 occurs when j is in 
the guard set Guard (1, 2)5R$0

2  but not in the guard set 
Guard (1, 1)5R$0 3 R#0. During the transition, j does not 
change its value. Also in mode 1, a jump in j to the value (25, 0)  
occurs when j is in the guard set Guard (1, 1)5R$0 3 R#0 
but not in the guard set Guard (1, 2)5R$0

2 . When j belongs 
to Guard (1, 2)  and Guard (1, 1) , either the transition to mode 
2 or the jump of j can occur. In mode 2, the state j evolves 
according to the differential equation j

#
5 (0, 21 )  in the set 

Domain (2 ) 5 5063R. A transition from mode 2 to mode 1 can 
occur when j is in the guard set Guard (2, 1)5 5063R#0. Dur-
ing the transition, j changes to the value 2j.

ξ ∈R≥0 × R≤0 ⇒ ξ+ = (–5, 0) ξ ∈R≥0 ⇒ ξ+ = ξ2

ξ+ = 2ξ ⇐ ξ ∈{0} × R≤0

ξ ∈R≤0 × R

q = 1
ξ = (1, 1)
.

ξ ∈{0} × R

q = 2
ξ = (0, –1)
.

FIGURE S3 Data for the hybrid automaton in Example S1. 
Solid arrows indicate the direction of flow in Domain(1) and 
Domain (2 ) . Dashed arrows indicate jumps from Guard(1, 1) 
and Guard(2, 1).

q  = 1 q  =  2

Domain(1)

Domain(2)

−5

x2

x1 x1

x2

Guard(1, 1)

Guard(1, 2)

Guard(2, 1)
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Consider a group of fireflies, each of which has an 
internal clock state. Suppose each firefly’s clock state 
increases monotonically until it reaches a positive thresh-
old, assumed to be the same for each firefly. When a 
firefly’s clock reaches its threshold, the clock resets to 
zero and the firefly flashes, which causes the other fire-
flies’ clocks to jump closer to their thresholds. In this 
way, the flash of one firefly affects the internal clocks of 
the other fireflies. 

Figure 2 depicts the evolution of the internal clocks of 
two fireflies coupled through flashes. The time units are 
normalized so that each firefly’s internal clock state takes 
values in the interval 30, 1 4, and thus the threshold for flash-
ing is one for each firefly. 

A hybrid model for a system of n fireflies, each with the 
same clock characteristics, has the state x5 1x1, c, xn 2 , 
flow map F 1x 2 5 1   f 1x1 2 , c, f 1xn 2 2 , where f : 30, 1 4 S R.0 

is continuous, and flow set C5 30, 1 4n, where 30, 1 4n 
indicates the set of points x in Rn for which each com-
ponent xi belongs to the interval 30, 1 4 . The function f  
governs the rate at which each clock state evolves in the 
interval 30, 1 4 . 

Since jumps in the state of the system are allowed when 
any one of the fireflies’ clocks reaches its threshold, the 
jump set is D5 5x [ C : maxi 

xi5 16 . One way to  model 
the impulsive changes in the clock states is through a 
rule that instantaneously advances a clock state by a fac-
tor 11 e, where e . 0, when this action does not take the 
clock state past its threshold. Otherwise, the clock state 
is reset to zero, just as if it had reached its threshold. The 
corresponding jump map G does not satisfy the  regularity 
condition (A3) of the Basic Assumptions imposed in the 
section “Basic Mathematical Properties.” The algorithm 
for defining generalized solutions in “Robustness and 

Switching Systems

A  switching system is a differential equation whose right-hand 
side is chosen from a family of functions based on a switching 

signal [49], [S4]. For each switching signal, the switching system is 
a time-varying differential equation. As in [S3], we study the prop-
erties of a switching system not under a particular switching signal 
but rather under various classes of switching signals. 

In the framework of hybrid systems, information about the 
class of switching signals often can be embedded into the sys-
tem data by using timers and reset rules, which can be viewed 
as an autonomous, that is, time-invariant hybrid subsystem. Re-
sults for switching systems, including converse Lyapunov theo-
rems and invariance principles [25], can be then deduced from 
results obtained for hybrid systems. 

A switched system can be written as 

 j
#
5 fq (j ) ,  (S1)

where, for each q [ Q5 51, 2, c, qmax6 , fq : R
n S Rn  is a 

continuous function. A complete solution to the system (S1) con-
sists of a locally absolutely continuous function j : R$0 S Rn  
and a function q : R$0 S Q  that is piecewise constant, has a 
fi nite number of discontinuities in each compact time interval, 
and satisfi es j

#
( t) 5 fq (t) (j ( t) )  for almost all t [ R$0. In what 

follows, given a complete solution (j, q )  to (S1), let I be the 
number of discontinuities of q, with the possibility of I5 ` , and 
let t05 0 and 5ti6 i51

I  be the increasing sequence of times at 
which q  is discontinuous. For simplicity, we discuss complete 
solutions only. 

A solution (j, q )  to (S1) is a dwell-time solution with dwell 
time tD . 0 if ti112 ti $ tD  for all i5 1, 2, c, I2 1. That is, 
switches are separated by at least an amount of time tD . Each 
dwell-time solution can be generated as part of a solution to the 
hybrid system with state x5 (j, q, t ) [ Rn12 given by 

FIGURE S4 Hybrid time domain for a solution under dwell-time 
switching and average dwell-time switching. (a) Hybrid time do-
main for a dwell-time solution with dwell-time constant tD  larger 
or equal than min5t22 t1, t32 t2, c6 . (b) Hybrid time domain for 
an average dwell-time solution for parameters (d, N)  satisfying 
the average dwell-time condition in (S2). For example, parameters 1d, N 2 5 14/min 5t1, t22 t16, 2 2  and (d, N) 5 (4/t2, 4 )  satisfy 
(S2). The domain repeats periodically, as denoted by the blue dot.
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j
#
5 fq 1j 2

q
#
5 0

t
#
[ 30, 1/tD 4

¶  5:  F 1x 2 ,   x [ C J Rn 3 Q3 30, 14, 
j1 5 j

q1 [ Q

t1 5 0
¶  5: G 1x 2 , x [ D J Rn 3Q 3 516.

Note that it takes at least an amount of time tD for the timer 
state t to increase from zero to one with velocity t

#
[ 30, 1/tD 4.

Therefore, t ensures that jumps of this hybrid system occur with 
at least tD  amount of time in between them. In fact, there is 
a one-to-one correspondence between dwell-time solutions to 
(S1) and solutions to the hybrid system initialized with t 5 1 for 
which t

#
5 1 when t [ 30, 1 )  and t

#
5 0 when t 5 1. 

A solution (j, q )  to (S1) is an average dwell-time solution if the 
number of switches in a compact interval is bounded by a number 
that is proportional to the length of the interval, with proportionality 
constant d $ 0, plus a positive constant N [34]. In the framework 
of hybrid systems, each average dwell-time solution has a hybrid 
time domain E such that, for each pair (s, i )  and ( t, i )  belonging 
to E and satisfying with s # t  and i # j , 

 j2 i # ( t2 s )d 1 N. (S2)

Dwell-time solutions are a special case, corresponding to 
d 5 1/tD and N5 1. Every hybrid time domain that satisfi es 
(S2) can be generated by the hybrid subsystem with compact 
fl ow and jump sets given by 

 t
#
[ 30, d 4,  t [ 30, N 4,  (S3)

 t1 5 t2 1,  t [ 31, N 4.  (S4)

The time domain for each solution of this hybrid system satisfi es the 
constraint (S2). Furthermore, for every hybrid time domain E sat-
isfying (S2) there exists a solution of (S3), (S4), starting at t 5 N , 
and defi ned on E [S5], [14]. In turn, switching systems under an av-

erage dwell-time constraint with parameters (d, N)  are captured 
by the hybrid system with state x5 (j, q, t ) [ Rn12 given by 

j
#
5 fq 1j 2

q
#
5 0

t
#
[ 30, d 4

¶  5:  F 1x 2 ,   x [ C J Rn 3 Q 3 30, N 4, 
j1 5 j

q1 [ Q

t1 5 t2 1

¶  5: G 1x 2 ,   x [ D J Rn 3Q 3 31, N 4.

Figure S4 depicts a hybrid time domain for a dwell-time solution 
and an average dwell-time solution to a switching  system. 

More elaborate families of solutions to switching systems 
can be modeled by means of hybrid systems. We briefly men-
tion one such family. A solution (x, q )  to (S1) is a persistent 
dwell-time solution with persistent dwell time tD . 0 and 
period of persistence T . 0 if there are infinitely many inter-
vals of length at least tD  on which no switches occur, and such 
 intervals are separated by at most an amount of time T [S3]. A 
hybrid system that models such solutions involves two timers. 
One timer ensures that periods with no switching last at least an 
amount of time tD ; the other timer ensures that periods of arbi-
trary switching do not last more than an amount of time T. The 
hybrid system also involves a differential inclusion j

#
[ F (j ) , 

where F 1j 2 J conhq[Q  fq 1j 2 , to describe solutions to the 
switching system during periods of arbitrary switching. 

REFERENCES
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vol. 49, pp. 470–482, 2004.
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switched systems,” IEEE Control Syst. Mag., vol. 19, pp. 59–70, 1999. 
[S5] S. Mitra and D. Liberzon, “Stability of hybrid automata with average 
dwell time: An invariant approach,” in Proc. 43rd IEEE Conf. Decision 
and Control, Bahamas, Dec. 2004, pp. 1394–1399.

Generalized Solutions” motivates the modified jump map 
G 1x 2 5 1g 1x1 2 , c, g 1xn 2 2 , where 

 g 1xi 2 5 •
111 e 2xi, when 111 e 2xi , 1, 

0, when 111 e 2xi . 1, 50, 16, when 111 e 2xi5 1, 

which does satisfies the regularity condition (A3). This 
jump map advances the clock state xi by the factor 11 e 
when this action keeps xi below the threshold, and it resets 
xi to zero when multiplying xi by 11 e produces a value 
greater than the threshold value. Either resetting the clock 
state to zero or advancing the clock state by 11 e can occur 
when 111 e 2xi5 1. 

A group of fireflies can exhibit almost global synchro-
nization, meaning that, from almost every initial condition, 
the state vector tends to the set where all of the clock states 

are equal [55]. Synchronization analysis for the case n5 2 
is given in Example 25. 

Explicit Zero-Crossing Detection
Zero-crossing detection (ZCD) algorithms for sinusoidal 
signals are crucial for estimating phase and frequency as 
well as power factor in electric circuits. ZCD algorithms 
employ a discrete state, which remembers the most recent 
sign of the signal and is updated when the signal crosses 
zero, as indicated in Figure 3. 

We cast a simple ZCD algorithm for a sinusoidal signal 
in terms of a  hybrid system. Let the sinusoid be  generated 
as the output of the linear system j

#
15vj2, j

#
252vj1, 

y5j1, where v . 0, and let q denote a discrete state taking 
values in Q J 521, 16  corresponding to the sign of j1. The 
state of the hybrid system is x5 1j, q 2 , while the flow map 
is F 1x 2 5 1vj2, 2 vj1, 0 2 . 
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As j1 changes sign, a zero-crossing event occurs. We 
model the detection of this event as a toggling of the state q 
through the rule q1 52q . In a more elaborate model, either 
a counter that keeps track of the number of zero-crossing 
events can be incremented, or a timer state that monitors 
the amount of time between zero-crossing events can be 
reset. The state j does not change during jumps. The jump 
map is thus G 1x 2 5 1j, 2q 2 . 

When q and j1 have the same sign, that is, qj1 $ 0, 
flows are allowed. This behavior corresponds to the flow 
set C5 hq[Q 1Cq 3 5q6 2 , where Cq J 5j [ R2 : qj1 $ 06 . 
In other words, the flow set C is the union of two sets. 
One set corresponds to points where q5 1 and j1 $ 0, 
while the other set corresponds to points where q521 
and j1 # 0. 

When j15 0 and the sign of q is opposite to the sign of the 
derivative of j1, that is, qj2 # 0, the value of q is toggled. This 
behavior corresponds to the jump set D5 hq[Q 1Dq 3 5q6 2 , 
where Dq J 5j [ R2 : j15 0, qj2 # 06 . Thus, the jump set 
D is the union of two sets. One set corresponds to points 
where q5 1, j15 0, and j2 # 0, while the other set corre-
sponds to points where q521, j15 0, and j2 $ 0. 

Figure 4 shows the flow and jump sets of the hybrid 
system. The figure also depicts the sinusoidal signal j1 and 

the discrete state q obtained for initial conditions with j1 
starting at one, j2 starting at zero, and q starting at one. 

Sample-and-Hold Control Systems
In a typical sample-and-hold control scenario, a continu-
ous-time plant is controlled by a digital controller. The con-
troller samples the plant’s state, computes a control signal, 
and sets the plant’s control input to the computed value. 
The controller’s output remains constant between updates. 
Sample-and-hold devices perform analog-to-digital and 
digital-to-analog conversions. 

As noted in [59], the closed-loop system resulting 
from this control scheme can be modeled as a hybrid 
system. Sampling, computation, and control updates in 

q

t

t

1

1
ξ1

ξ2

ξ1

–1

(a)

(b)

FIGURE 3 Detection of zero crossings of a sinusoidal sig-
nal. The sinusoidal signal j1  is the output of the linear system 
j
#
1 5vj2, j

#
2 52vj1 , where v . 0 . (a) The discrete state q  is 

toggled at every zero crossing of the sinusoidal signal j1 . (b) The 
signal evolves in the j 5 (j1, j2 )  plane.

0

0
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1

t

t

x1

x2

FIGURE 2 Trajectories of the internal clocks of two fireflies with im-
pulsive coupling. When either clock state x1  or x2  reaches the unit 
threshold, both states experience a jump. When a state reaches 
the threshold, it is reset to zero. At the same time, the other state is 
increased by a factor 1 1 e  if this increase does not push the state 
past the threshold; otherwise, this state is also reset to zero.
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sample-and-hold control are associ-
ated with jumps that occur when one 
or more timers reach thresholds 
defining the update rates. When 
these operations are performed syn-
chronously, a single timer state and 
threshold can be used to trigger their 
execution. In this case, a sample-and-
hold implementation of a control law 
samples the state of the plant and up-
dates its input when a timer reaches 
the threshold T . 0, which defines 
the sampling period. During this up-
date, the timer is reset to zero. 

For the static, state-feedback law 
u5k 1j 2  for the plant j

#
5 f 1j, u 2 ,  a hy-

brid model uses a memory state z to 
store the samples of u, as well as a timer 
state t to determine when each sample 
is stored. The state of the resulting 
closed-loop system, which is depicted in Figure 5, is taken 
to be x5 1j, z, t 2 . 

During flow, which occurs until t reaches the thresh-
old T, the state of the plant evolves according to j

#
5 f 1j, z 2 , 

the value of z is kept constant, and t grows at the constant 
rate of one. In other words, z# 5 0 and t# 5 1. This behavior 
corresponds to the flow set C5Rn 3 Rm 3 30, T 4, while the 
flow map is given by F 1x 2 5 1  f 1j, z 2 , 0, 1 2  for all x [ C. 

When the timer reaches the threshold T, the timer state 
t is reset to zero, the memory state z is updated to k 1j 2 , 
but the plant state j does not change. This behavior corre-
sponds to the jump set D J Rn 3 Rm 3 5T6  and the jump 
map G 1x 2 J 1j, k 1j 2 , 0 2  for all x [ D. 

Hybrid Controllers for Nonlinear Systems
Hybrid dynamical systems can model a variety of closed-
loop feedback control systems. In some hybrid control appli-
cations the plant itself is hybrid. Examples include juggling 
[70], [73] and robot walking control [63]. In other applica-
tions, the plant is a continuous-time system that is con-
trolled by an algorithm employing discrete-valued states. 
This type of control appears in a broad class of industrial 
applications, where programmable logic controllers and 
microcontrollers are employed for automation. In these ap-
plications, discrete states, as well as other variables in soft-
ware, are used to implement control logic that incorporates 
decision-making capabilities into the control system. 

Consider a plant described by the differential equation 

 x# p5 fp 1xp, u 2 ,  (5)

where xp [ Rn , u [ Rr, and fp is continuous. A hybrid 
controller for this plant has state xc [ Rm , which can 
contain logic states, timers, counters, observer states, 
and other continuous-valued and discrete-valued states. 

A hybrid controller is defined by a flow set Cc ( Rn1m, 
flow map fc  : Cc S Rn , jump set Dc ( Rn1m, and a possi-
bly set-valued jump map Gc  : Rn1m SS Rm , together with 
a feedback law kc  : Cc S Rr  that specifies the control 
signal u. Figure 6  illustrates this setup. 

During continuous-time evolution, which can occur 
when the composite closed-loop state x5 1xp, xc 2  belongs 
to the set Cc, the controller state satisfies x# c5 fc 1x 2  and the 
control signal is generated as u5kc 1x 2 . At jumps, which 
are allowed when the closed-loop state belongs to Dc, the 
state of the controller is reset using the rule xc

1 [ Gc 1x 2 .  
The closed-loop system is a hybrid system with state 
x5 1xp, xc 2 ,  flow set C5Cc, jump set D5Dc, flow map 

 F 1x 2 5 c fp 1xp, kc 1x 2 2
fc 1x 2 d    for all  x [ C, (6) 

and jump map 

 

q = −1

D −1

D 1C −1 C1

q = 1

ξ1ξ1

ξ2 ξ2

ξ (0, 0)

FIGURE 4 Flow and jump sets for each q [ Q  and trajectory to the hybrid system in 
“Explicit Zero-Crossing Detection.” The trajectory starts from the initial condition at 
( t, j ) 5 (0, 0 )  given by j1 (0, 0 ) 5 1, j2 (0, 0 ) 5 0, q (0, 0 ) 5 1 . The jumps occur 
on the j2  axis and toggle q . Flows are permitted in the left-half plane for q521  and in 
the right-half plane for q5 1 .

ZOH
A/DD/A

T

T

Nonlinear
System

Algorithm

ξu = z

FIGURE 5 Digital control of a continuous-time nonlinear system 
with sample-and-hold devices performing the analog-to-digital 
(A/D) and digital-to-analog (D/A) conversions. Samples of the 
state j  of the plant and updates of the control law k(j )  com-
puted by the algorithm are taken after each amount of time T . The 
controller state z  stores the values of k(j ) .
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G 1x 2 5 c xp

Gc 1x 2 d   for all  x [ D. (7) 

One way hybrid controllers arise is through supervisory 
control. A supervisor oversees a collection of controllers and 
makes decisions about which controller to insert into the 
closed-loop system based on the state of the plant and the 
 controllers. The supervisor associates to each controller a 
region of operation and a region where switching to other 
controllers is possible. These regions are subsets of the state 
space. In the region where changes between controllers are 
allowed, the supervisor specifies the controllers to which 
authority can be switched. In supervisory control, it is pos-
sible for the individual controllers to be hybrid controllers. 
Through this degree of flexibility, it is possible to generate hy-
brid control  algorithms through a hierarchy of  supervisors. 

The following example features a supervisor for two 
state-feedback control laws. 

Example 1:  Dual-Mode Control for Disk Drives 
Control of read/write heads in hard disk drives requires 
precise positioning on and rapid transitioning between 
tracks on a disk drive. To meet these dual objectives, some 

commercial hard disk drives use mode-switching control 
[27], [81], [87], which combines a track-seeking controller 
and a track-following controller. The track-seeking con-
troller rapidly steers the magnetic head to a neighborhood 
of the desired track, while the track-following controller 
regulates position and velocity, precisely and robustly, to 
enable read/write operations. Mode- switching control 
uses the track-seeking controller to steer the magnetic 
head’s state to a point where the track-following control-
ler is applicable, and then switches the control input to 
the track-following controller. The control strategy re-
sults in a hybrid closed-loop system. 

Let p [ R be the position and v [ R the velocity of the 
magnetic head in the disk drive. The dynamics can be ap-
proximated by the double integrator system p# 5 v, v# 5 u 
[27], [87].

The hybrid controller for the magnetic head super-
vises both the track-seeking control law u5k1 1p, v, p* 2  
and the track-following control law u5k2 1p, v, p* 2 , 
where p* is the desired position. We assume that the 
track-seeking control law globally asymptotically stabi-
lizes the point 1p*, 0 2 , while the track-following control 
law locally  asymptotically stabilizes the point 1p*, 0 2 . 
Let C2 be a compact neighborhood of 1p*, 0 2  that is con-
tained in the basin of attraction for 1p*, 0 2  when using 
the track-following control law, and let D1 be a com-
pact neighborhood of 1p*, 0 2  such that solutions using 
the track-following control law that start in D1 do not 
reach the boundary of C2. Also define C15R

2\D1  and 
D25R

2\C2 . Figure 7 illustrates these sets. 
Let the controller state q [ Q J 51, 26  denote the op-

erating mode. The track-seeking mode corresponds to 
q5 1, while the track-following mode corresponds to 
q5 2. The mode-switching strategy uses the track-seek-
ing controller when 1p, v 2 [ C1 and the track-following 
controller when 1p, v 2 [ C2. Figure 7 indicates the inter-
section of C1 and C2, where either controller can be used. 
To prevent chattering between the two controllers in the 
intersection of C1 and C2, the supervisor allows mode 
switching when 1p, v 2 [ Dq. In other words, a switch 
from the track-seeking mode to the track-following 
mode can occur when 1p, v 2 [ D1, while a switch from 
the track-following mode to the track-seeking mode can 
occur when 1p, v 2 [ D2. 

The hybrid controller executing this logic has the flow 
set Cc5 hq[Q 1Cq 3 5q6 2 , flow map fc 1p, v, q 2 5 0, jump set 

u = Kc (xp, xc) xp

Hc

Plant State: xp
(Continuous State)

Controller State: xc
(Such as Timers and

Discrete States)

Nonlinear
System

FIGURE 6 Closed-loop system consisting of a continuous-time 
nonlinear system and a hybrid controller. The nonlinear system 
has state xp , which is continuous, and input u . The hybrid control-
ler has state xc , which has continuous state variables, such as 
timer states, and discrete state variables, such as logic modes. 
The control input u5kc(xp, xc)  to the nonlinear system is a func-
tion of the plant state xp  and the controller state xc .

The interaction of continuous- and discrete-time dynamics in a 
hybrid system leads to rich dynamical behavior and phenomena not 

encountered in purely continuous-time systems.
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(p∗, 0)

C1
B
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D1

D2

0

1
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t1 = t2

j
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t3 tt4

FIGURE 8 A hybrid time domain. The hybrid time domain, which is 
denoted by E , is given by the union of 30, t1 4  3 50 6 , 3t2, t2 4  3 51 6 , 3t2, t3 4  3 52 6 , and 3t3, t4 )  3 536 . 

Dc J hq[Q 1Dq 3 5q6 2 , and jump map Gc 1p, v, q 2 5 32 q, 
which toggles q in the set Q5 51, 26. 

The idea behind this control construction applies to 
 arbitrary nonlinear control systems and state-feedback 
laws [66]. !

CONCEPT OF A SOLUTION

Generalized Time Domains
Solutions to continuous-time dynamical systems are 
para meterized by t [ R$0, whereas solutions to discrete-
time dynamical systems are parameterized by j [ N. 
Parameterization by t [ R$0 is possible for a continu-
ous-time system even when solutions experience jumps, 
as long as at most one jump occurs at each time t. For ex-
ample, parameterization by t [ R$0 is used for switched 
systems [49] as well as for impulsive dynamical systems 
[43], [30]. However, parameterization by t [ R$0 of dis-
continuous solutions to a dynamical system may be an 
obstacle for establishing sequential compactness of the 
space of solutions. For example, sequential compactness 
may require us to admit a solution with two jumps at the 
same time instant to represent the limit of a sequence 
of solutions for which the time between two consecu-
tive jumps shrinks to zero. By considering a generalized 
time domain, we can overcome such obstacles and, fur-
thermore, treat continuous- and discrete-time systems 
in a unified framework. 

A subset E of R$0 3 N is a hybrid time domain [23], [26] 
if it is the union of infinitely many intervals of the form 3tj, tj11 4 3 5j6, where 05 t0 # t1 # t2 #c , or of finitely 
many such intervals, with the last one possibly of the form 3tj, tj11 4 3 5j6, 3tj, tj11 2 3 5j6, or 3tj, ` 2 3 5j6. An example of 
a hybrid time domain is shown in Figure 8. 

A hybrid time domain is called a hybrid time set in 
[17] and is equivalent to a generalized time domain [51] 
defined as a sequence of intervals, some of which may 
consist of one point. The idea of a hybrid time domain is 
present in the concept of a solution given in [4], which ex-
plicitly includes a nondecreasing sequence of jump times 
in the solution description. 

More general time domains are sometimes considered. 
For details, see [54], [18], or the discussion of time scales in 
“Related Mathematical Frameworks.” Some time domains 
make it possible to continue solutions past infinitely many 
jumps. For an initial exposition of hybrid system and for 
the analysis of many hybrid control algorithms, domains 
with this feature are not necessary. 

Solutions
A solution to a hybrid system is a function, defined on 
a hybrid time domain, that satisfies the dynamics and 
constraints given by the data of the hybrid system. The 
data in (1), (2) has four components, which are the flow 
set, the flow map, the jump set, and the jump map. For 

a hybrid system (1), (2) on Rn, the flow set C is a subset 
of Rn, the flow map is a set-valued mapping F : Rn SS Rn , 
the jump set D is a subset of Rn, and the jump map is a 
set-valued mapping G : Rn SS Rn.  A set-valued mapping 
on Rn associates, to each x [ Rn, a set in Rn. A function 
is a set-valued mapping whose values can be viewed as 
sets that consist of one point. 

A hybrid arc is a function x : dom x S Rn , where 
dom x is a hybrid time domain and, for each 

FIGURE 7 Sets of the hybrid controller for dual-mode control of disk 
drives. The flow and jump sets for the track-seeking mode q5 1  
and the track-following mode q5 2  are constructed from the sets 
C1, D1  and C2, D2 , respectively. The set B is the basin of attraction 
for (p*, 0 )  when the track-following controller is applied. In addi-
tion, this set contains the compact set D1 , from which solutions 
with the track-following controller do not reach the boundary of C2, 
a compact subset of B. This property is illustrated by the solid 
black solution starting from D1 . The dashed black solution is the 
result of applying the track-seeking controller, which steers solu-
tions to the set D1  in finite time.
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fixed j, t A x 1t, j 2  is a locally absolutely continuous func-
tion on the interval 

 Ij5 5t : 1t, j 2 [ dom x6.  

The hybrid arc x is a solution to the hybrid system 
H5 1C, F, D, G 2  if x 10, 0 2 [ C h D  and the following con-
ditions are satisfied. 

Flow Condition 
For each j [ N such that Ij has nonempty interior, 

 
x# 1t, j 2 [ F 1x 1t, j 2 2    for almost all t [ Ij, 
x 1t, j 2 [ C    for all t [ 3min Ij, sup Ij 2 . 

Jump Condition 
For each 1t, j 2 [  dom x such that 1t, j1 1 2 [  dom x, 

 x ( t, j1 1) [ G (x ( t, j) ) , 

 x ( t, j) [ D. 

If the flow set C is closed and Ij has nonempty interior, 
then the requirement x 1t, j 2 [ C for all t [ 3min Ij, sup Ij 2  
in the flow condition is equivalent to x 1t, j 2 [ C for 

Interest in hybrid systems grew rapidly in the 1990s with com-
puter scientists and control systems researchers coming to-

gether to organize several international workshops. See [S8] 
and similar subsequent collections. Additional books dedicated 
to hybrid systems include [86] and [S10]. The legacy of the co-
operative initiative with computer science is the successful con-
ference “Hybrid Systems: Computation and Control (HSCC),” 
now a part of the larger “cyber-physical systems week,” which 
includes real-time and embedded systems and information pro-
cessing in sensor networks. At the same time, many mathemat-
ical frameworks related to hybrid systems have also appeared 
in the literature. Some of those frameworks are discussed be-
low. Additional ideas appear in the concept of a discontinuous 
dynamical system, described in [S11] and [S12]. 

IMPULSIVE DIFFERENTIAL EQUATIONS
Impulsive differential equations consist of the classical differ-
ential equation x

# ( t ) 5 f (x ( t ) ) ,  which applies at all times ex-
cept the impulse times, and the equation Dx ( ti) 5 Ii(x ( ti) ) ,  
which describes the impulsive behavior at impulse times. 
The impulse times are often fi xed a priori for each particular 
solution and form an increasing sequence t1, t2, c . In oth-
er words, a solution with the state x ( ti)  before the ith jump 
has the value x ( ti) 1 Ii(x ( ti) )  after the jump. Solutions to 
impulsive differential equations are piecewise differentiable 
or piecewise absolutely continuous functions parameterized 
by time t. These functions cannot model multiple jumps at a 
single time instant. 

An impulsive differential equation can be recast as a hybrid 
system in the case where the impulse times are determined by 

the condition x ( t ) [ D  for some set D. This situation requires 
some conditions on D and Ii  to ensure that x ( ti)1 Ii(x ( ti) ) o D . 
For simplicity, consider the case where Ii  is the same map I for 
each i. Then the corresponding hybrid system has the flow map 
f, the jump map x A x1 I (x ) , the jump set D, and the flow set 
C given by the complement of D. 

Natural generalizations of impulsive differential equations 
include impulsive differential inclusions, where either f or I may 
be replaced by a set-valued mapping. For details, see [S6], 
[43], [S15], and [30].

MEASURE-DRIVEN DIFFERENTIAL EQUATIONS
The classical differential equation x# ( t ) 5 f (x ( t ) )  can be re-
written as 

dx ( t )5 f (x ( t ) )dt.

Measure-driven differential equations are formulated as 

dx (t )5 f1(x (t ) )dt1 f2(x (t ) )m(dt ) , 

where f1, f2 are functions and m is a nonnegative scalar or 
vector-valued Borel measure. Solutions to measure-driven differ-
ential equations are given by functions of bounded variation pa-
rameterized by t and are not necessarily differentiable, absolutely 
continuous, or even continuous. The discontinuous behavior is 
due to the presence of atoms in the measure m. In control situ-
ations, the driving measure m, in particular, the atoms of m, can 
approximate time-dependent controls that take large values on 
short intervals.

Related Mathematical Frameworks

C D

x

FIGURE 9 Evolution of a solution to a hybrid system. Flows and jumps 
of the solution x  are allowed only on the flow set C  and from the jump 
set D , respectively. The solid blue curves indicate flow. The dashed 
red arcs indicate jumps. The solid curves must belong to the flow set 
C . The dashed arcs must originate from the jump set D .
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all t [ Ij and is also equivalent to x 1t, j 2 [ C for 
almost all t [ Ij. 

The solution x to a hybrid system is nontrivial if dom x 
contains at least one point different from 10, 0 2 ; maximal 
if it cannot be extended, that is, the hybrid system has 
no solution x r whose domain dom x r contains dom x as 
a proper subset and such that x r agrees with x on dom x; 
and complete if dom x is unbounded. Every complete 
solution is maximal. 

Figure 9 shows a solution to a hybrid system flowing, 
as solutions to continuous-time systems do, at points 
in the flow set C, and jumping, as solutions to discrete-
time systems do, from points in the jump set D. At 
points where D overlaps with the interior of C, solutions 
can either flow or jump. Thus, the jump set D enables 
rather than forces jumps. To force jumps from D, the 
flow set C can be replaced by either the set C \ D or the 
set C \ D. 

The parameterization of a solution x by 1t, j 2 [ dom x 
means that x 1t, j 2  represents the state of the hybrid 
system after t time units and j jumps. Figure 10 shows a 

Natural generalizations, needed to analyze mechanical 
systems with friction or impacts [S13], include measure-
 driven differential inclusions, where f1, f2 are replaced by set-
valued mappings. Formulating a robust notion of a solution 
to measure-driven differential inclusions is technically chal-
lenging [S9], [S14].

DYNAMICAL SYSTEMS ON TIME SCALES
A framework for unifying the classical theories of differential 
and difference equations is that of dynamical systems on time 
scales [S7]. Given a time scale T, which is a nonempty closed 
subset of R, a generalized derivative of a function f : T S R  
relative to T can be defi ned. This generalized derivative reduces 
to the standard derivative when T5 R , and to the difference 
f (n1 1)2f (n )  when evaluated at n and for T5N . As spe-
cial cases, classical differential and difference equations can be 
written as systems on time scales. Systems on time scales can 
also be used to model populations that experience a  repeated 
pattern consisting of continuous evolution followed by a dor-
mancy [S7, Ex. 1.39]. 

Consider a time scale T that is unbounded to the right, and, 
for t [ T , define s( t ) 5 inf 5s [ T : s . t6 . The generalized 
derivative of f : T S R  at t [ T  is the number fD ( t ) , if it 
 exists, such that, for each e . 0 and each s [ T  sufficiently 
close to t, 

0 3f (s(t ) )2f (s ) 42fD (t ) 3s(t )2 s 4 0 # e 0s(t )2 s 0 .
The function f  is differentiable if fD  exists at every t [ T . A 
dynamical system on the time scale T has the form 

xD (t )5 f (x (t ) )      for every t[ T.

One advantage of the framework of dynamical systems on 
time scales is the generality of the concept of a time scale. A 
drawback, especially for control engineering purposes, is that 
a time scale is chosen a priori, and all solutions to a system are 
defined on the same time scale. 
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FIGURE 10 A solution to a hybrid system. The solution, which is 
denoted by x, has initial condition x (0, 0 ), is given by a hybrid 
arc, and has hybrid time domain dom x . The hybrid time domain E 
in Figure 8 is equal to dom x .
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solution to a hybrid system and illustrates the parameter-
ization by 1t, j 2 . 

Every solution x to a hybrid system has a hybrid time 
domain dom x associated with it. However, for a given 
hybrid system, not every hybrid time domain is the domain 
of a  solution to this system. This phenomenon goes be-
yond what can happen in unconstrained continuous-time 
systems, where solutions may blow up in finite time, and, 
hence, may be defined on only a bounded subset of 30, ` 2 . 
For example, for a hybrid system in which two jumps 
cannot occur at the same time instant, a hybrid time do-
main that contains 1t, j 2 , 1t, j1 1 2 , and 1t, j1 2 2  for some 
t [ R$0 , j [ N is not a domain of any solutions. Hence, 
we do not pick a hybrid time domain and then look for a 
solution to a hybrid system on that time domain. Rather, 
the domain must be generated along with the solution. 
Example 2 shows how a hybrid system can have complete 
solutions with different domains.

Example 2: Solutions to a Hybrid System 
Consider the hybrid system in R2 given by 
D5 5x [ R2 : x1 # x2 # 36 , C5R2 \ D, f 1x 2 5 1 2 1, 1 2  for 
all x [ C, and g 1x 2 5 12x1

2, 0 2 , as depicted in Figure 11. 
Solutions flow in C with velocity 1 2 1, 1 2  and jump 
from points x5 1x1, x2 2 [ D to 12x1

2, 0 2 . We consider 

maximal solutions from points of the form 1z, 0 2  with 
z [ 58, 4, 2, 1, 06. 

The maximal solution starting from 18, 0 2 , denoted 
by xa, flows and never hits the jump set D. More 
precisely, dom xa5R$0 3 506  and xa(t, 0) = (8 2 t, t) 
for t $ 0. 

The maximal solution starting from 14, 0 2 , denoted by 
xb, hits the jump set at the point 12, 2 2 , jumps to 18, 0 2 , 
and then flows without hitting the jump set D again. 
More precisely, dom xb5 30, 2 4 3 506 h 32, ` 2 3 516  and 

 xb 1t, j 2 5 e 142 t, t 2 for 0 # t # 2, j5 0, 182 1t2 2 2 , t2 2 2 for 2 # t, j5 1.

The maximal solution starting from 12, 0 2 , denoted by xc, 
hits the jump set at 11, 1 2 , jumps to 12, 0 2 , and repeats 
this behavior infinitely many times. More precisely, 
dom xc5 h`

j50
3j, j1 1 4 3 5j6 and 

xc 1t, j 2 5 122 1t2 j 2 , t2 j 2   for  j5 0, 1, 2, c,  t [ 3j, j1 1 4.  
The maximal solution starting from 11, 0 2 , denoted 

by xd, jumps infinitely many times and converges to 
the origin. More precisely, dom xd5 h`

j50
3tj, tj11 4 3 5j6 , 

where a05 1, aj5 a2
j21/2 for i5 1, 2, . . . , tj5 a j21

i50
ai/2 

and 

 xd ( t, j) 5 (aj2 ( t2 tj) , t2 tj)   
   for  j5 0, 1, 2, c,  t [ 3tj, tj11 4. 

Finally, the maximal solution starting from 10, 0 2 , denoted 
by xe, never flows, has dom xe5 506 3 N and is given by 
xe 10, j 2 5 10, 0 2  for all j [ N. 

The solutions xa, xb, xc, xd, and xe are complete. Note 
that solutions xd and xe are complete even though dom xd 
and dom xe do not contain points 1t, j 2  with arbitrarily 
large t. !

BASIC MATHEMATICAL PROPERTIES
Basic questions about solutions to dynamical systems con-
cern existence, uniqueness, and dependence on initial con-
ditions and other parameters. Existence and uniqueness 
questions for hybrid systems are addressed in “Existence, 
Uniqueness, and Other Well-Posedness Issues.” The depen-
dence of solutions on initial conditions, and compactness of 
the space of solutions to hybrid systems, are essential tools 
for developing a stability theory for hybrid systems. These 
tools depend on the concept of graphical convergence of 
hybrid arcs. 

3
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1

C

D

x1

x2

FIGURE 11 Data for the hybrid system in Example 2. The 
jump set D5 5x [ R 

2 : x1 # x2 # 3 6  is the shaded re-
gion. The flow set C5R 

2   \   D  is the complement of the 
jump set D. The flow map is f  (x ) 5 (21, 1 )  for all x [ C;  
hence solutions flow, when in C , with velocity (21, 1 ) .  
The jump map is g (x ) 5 (2x  1

2, 0 ), where x5 1x1, x 2 2 ;  
hence solutions jump from points x [ D  to (2x 1  

2 , 0 ). A solution 
that starts in C  with x2 $ 3  or with x1 1 x 2 $ 6  flows and never 
jumps. Otherwise, a solution starting in C  flows toward D , reaches 
D  on the line x1 5 x2 , and then jumps to a point on the nonnegative 
x1 -axis. A solution that starts in D  jumps to a point on the non-
negative x1 -axis. 
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The main results of this section are proven in [26]. 
Closely related work includes [17], regarding compact-
ness of the solution space, and [82], [9], and [12], regarding 
the dependence of solutions on initial conditions.

Basic Assumptions
The Basic Assumptions are the following three conditions 
on the data 1C, F, D, G 2  of a hybrid system: 
 A1) C and D are closed sets in Rn. 
 A2)  F: Rn SS Rn is an outer semicontinuous set-valued 

mapping, locally bounded on C, and such that F 1x 2  
is nonempty and convex for each x [ C. 

 A3)  G: Rn SS Rn is an outer semicontinuous set-valued 
mapping, locally bounded on D, and such that G 1x 2  
is nonempty for each x [ D.

A set-valued mapping F: Rn SS Rn is outer semicontinu-
ous if its graph 5 1x, y 2   :  x [ Rn,  y [ F 1x 2 6 ( R2n is closed. 
In terms of set convergence (see “Set Convergence”), F is 
outer semicontinuous if and only if, for each x [ Rn and 
each sequence xi S x, the outer limit lim supiS` F 1xi 2  is 
contained in F 1x 2 . The mapping F is locally bounded on a set 
C if, for each compact set K ( C, F 1K 2  is bounded. If F is 
locally bounded and F 1x 2  is closed for each x [ Rn, then 
F is outer semicontinuous if and only if, for each x and 
e . 0, there exists d . 0 such that F 1x1dB 2 ( F 1x 2 1 eB. 
A continuous function f : C S Rn, where C is closed, can be 
viewed as a set-valued mapping whose values on C consist 
of one point and are the empty set outside of C. Then, f  is 
locally bounded on C and outer semicontinuous. 

The Basic Assumptions combine what is typically as-
sumed, in continuous- and in discrete-time systems, to 
obtain the continuous- and discrete-time versions of the 
results we state  below for hybrid systems. “Robustness 
and Generalized Solutions” provides further motivation 
for introducing these assumptions. 

Graphical Convergence and Sequential 
Compactness of the Space of Solutions
Solutions to differential equations and inclusions are 
continuous functions parameterized by t [ R$0, and, 
thus, uniform distance and uniform convergence are 
adequate tools for analyzing them. To analyze solutions 
to hybrid systems, the more elaborate yet intuitive con-
cepts of graphical distance and graphical convergence 
are needed. Before discussing these concepts, we briefly 
illustrate  difficulties in using uniform distance for dis-
continuous functions. 

Example 3: Bouncing Ball and the Uniform 
Distance Between Solutions 
Consider the hybrid system with state x [ R2 and data 

C J 5x : x1 $ 06,  f 1x 2 J c x2

2g
d   for all x [ C,

D J 5x : x15 0, x2 # 06,  g 1x 2 J 2rx   for all x [ D,  

which is the bouncing ball system considered in Example 
S4 of “Existence, Uniqueness, and Other Well-Posedness 
 Issues.” We use g5 1 and r5 1/2 in the calculations of 
this example. 

Suppose that we abandon hybrid time domains and 
view the trajectories of the bouncing ball system as piece-
wise continuous functions parameterized by t only. For 
example, given d [ 30, 1 2 , the velocity resulting from drop-
ping the ball from height 11d with initial velocity zero is 
given on the interval t [ 30, 2 4 by 

 x2
d 1t 2 5 e 2 t, t [ 30, "2 111d 2 2 ,

2 t1 3"111d 2/2, t [ 3"2 111d 2 , 2 4.
See Figure 14. The uniform, that is, L`, distance between the 
velocities of two balls, one dropped from height 1 and the 
other from 11d with d . 0, is given by 

 sup
t[ 30, 24 0 x2

0 1t 2 2 x2
d 1t 2 0 5 3"2/2

and does not decrease to zero as d decreases to zero. In par-
ticular, the velocity of a ball dropped from height 11d does 
not converge uniformly, as d decreases to zero, to the veloc-
ity of the ball dropped from height one. In other words, the 
velocity of the ball does not depend continuously on initial 
conditions, when uniform distance is used. On the intuitive 
level though, velocities and in fact the whole trajectories of 
balls dropped from nearby initial conditions appear close to 
one another. !

FIGURE 12 Flow and jump sets for the bouncing ball system in 
Example 3. The state x1, represented on the vertical axis, is the 
height of the ball. The state x2, represented on the horizontal axis, 
is the velocity of the ball. The flow set C is the closed upper half-
plane. The flow map is shown at two points on the x2-axis. Flow 
is possible from the point where the flow map is directed into the 
flow set but is not possible from the point where the flow map is 
directed out of the flow set. At the latter point, the flow map and 
the tangent cone to the flow set do not intersect, which makes 
flow impossible. Since the jump set D contains the latter point, a 
jump, that is, a bounce of the ball, is possible.

C

D

f(x)

f(x)

x1

x2
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The term “well-posed” for a mathematical problem usually im-
plies that a solution exists, is unique, and depends continu-

ously on the data of the problem. For hybrid dynamical systems, 
there are reasons to consider models that do not have solutions 
from some initial conditions, that do not have unique solutions, 
and that exhibit only a semicontinuous dependence on the data 
of the problem. Issues related to semicontinuous dependence 
on data are discussed in the main text. Here we discuss issues 
related to existence and uniqueness. 

EXISTENCE OF SOLUTIONS AND BEHAVIOR 
OF MAXIMAL SOLUTIONS
At a point on the boundary of the fl ow set, if the fl ow map points 
out of the fl ow set then the hybrid system can fail to have a non-
trivial solution, that is, a solution x such that dom x contains at 
least one point different from (0, 0). In the main text, we consider 
systems where existence of a nontrivial solution can fail at some 
points since this fl exibility can be helpful in stability analysis. In-
deed, for system (15), there are points on the boundary of Ci  that 
do not admit a nontrivial solution. Nevertheless, the behavior of 
the nontrivial solutions to (15) are used to draw stability conclu-
sions about mode-switching control for a disk drive system. For 
a further discussion of the role of existence in stability analysis, 
see “Why ‘Pre’-Asymptotic Stability?”

To establish the existence of solutions, the following theo-
rem points out that the existence of nontrivial solutions from a 
point j [ C c D  amounts to the existence of a discrete-time 
nontrivial solution or a continuous-time nontrivial solution. 

Proposition S2
Suppose that H satisfi es the Basic Assumptions and that 
j [ Rn  is such that either j [ D  or there exists a nontrivial 
solution z  to z

#
[ F(z ) , that is, an absolutely continuous func-

tion z : 30, e 4 S Rn  with e . 0 satisfying z
#
( t ) [ F(z ( t ) )  for 

almost all t [ 30, e 4 , such that z (0 ) 5j  and z ( t ) [ C  for all 
t [ (0, e 4 . Then there exists a nontrivial solution x to H, with 
x (0, 0 ) 5j . 

Indeed, if j [ D , then G(j )  is nonempty and x (0, 0 ) 5j , 
x (0, 1 ) [ G(j )  provides a nontrivial solution to H with 

dom x5 10, 0 2 c 10, 1 2 . If there exists a nontrivial solution z 
to z

#
[ F(z ) , as described in the assumption of Proposition 

S2, then x ( t, 0 ) 5 z ( t )  provides a nontrivial solution to H with 
dom x5 30, e 4 3 506 . 

Viability theory for differential inclusions provides sufficient 
conditions on F and C for flowing solutions to exist. One simple 
condition involves tangent cones to the set C at points near 
j. If C is closed, j [ C , and there exists a neighborhood U 
of j  such that, for each h [ U d C , F(h ) d TC(h ) 2 [ , 
then there exist e . 0 and z : 30, e 4 S Rn  such that z (0 ) 5j , 
z
#
( t ) [ F(z ( t ) ) , and z ( t ) [ C  for almost all t [ (0, e 4 . For 

 details, see [S16, Prop. 3.4.2]. Figure S5 depicts a flow map F 
and the tangent cone to a given set C at several points j [ C . 
Additional discussion about existence of solutions to hybrid 
systems appears in [S17] and [51]. 

Existence of nontrivial solutions from each initial condition in 
C c D  has bearing on the structure of maximal solutions. 

Theorem S3
Suppose that H satisfi es the Basic Assumptions and, for every 
j [ C c D , there exists a nontrivial solution to H starting from 
j . Let x be a maximal solution to H. Then exactly one of of the 
following three cases holds: 

xa)  is complete.
x b) blows up in finite (hybrid) time. In other words, 
J  =  max{j : there exists t such that (t, j) [ domx} and 
T5 sup5t : ( t, J ) [ dom x6  are both finite, the interval 5t : ( t, J ) [ dom x6  has nonempty interior, is open to the 
right so that (T, J ) o dom x , and |x ( t, J ) | S `  when 
t S T .
x c) eventually jumps out of C c D . In other words, 
(T, J ) [ dom x  and x 1T, J 2 o C c D , where T and J 
defined in (b) are finite.

Note the lack of symmetry between continuous time and dis-
crete time in b) and c) above. Finite-time blowup of a solution 
to a hybrid system cannot result from jumping, while a solution 
ending up outside C c D  cannot result from flowing. Conse-
quently, no solutions can leave C c D  when G 1D 2 ( C c D . 
Finite-time blowup is excluded when, for example, C is  bounded 

Existence, Uniqueness, and Other Well-Posedness Issues

We now consider the concept of graphical conver-
gence of hybrid arcs along with the related concept of 
distance, which focus not just on the values of the hy-
brid arcs but on their graphs. One benefit of this ap-
proach is that  different hybrid time domains can be 
handled easily. Note that bouncing balls dropped from 
different initial heights lead to different hybrid time 
domains of the hybrid arcs representing their heights 
and velocities. For example, the hybrid time domain of 
the trajectory of the bouncing ball dropped from height 
11d, where d [ 30, 1 2 , depends on d since the time at 

which the jump occurs depends on the initial height. 
In fact, for t # 2, the hybrid time domain is given by 30, "2 111d 2 4 3 506 h 3"2 111d 2 , 2 4 3 516 . 

The graph of a hybrid arc x is the set 

 gph x5 5 1t, j, j 2  : 1t, j 2 [ dom x, j 5 x 1t, j 2 6.
The sequence 5xi6i51

`  of hybrid arcs converges graphically 
if the sequence 5gph xi6i51

`  of graphs converges in the 
sense of set convergence; see “Set Convergence.” The 
graphical limit of a graphically convergent sequence 
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or there exists c [ R$0 such that, for each x [ C  and each 
f [ F(x ) , |f | # c ( |x|1 1 ) . 

Example S4: Bouncing Ball and Existence of Solutions 
Consider the hybrid system with state x [ R2 and data 

 C J 5x : x1 $ 06,    f (x ) J  c x2

2g
d    for  all x [ C, 

 D J 5x : x15 0, x2 # 06,   g (x ) J 2rx   for  all x [ D,  

where r [ 30, 1 )  is the restitution coeffi cient and g . 0 is the 
gravity constant. This data models a ball bouncing on a fl oor. 
The state x1 corresponds to height above the fl oor and x2 corre-
sponds to vertical velocity. Figure 12 depicts the fl ow and jump 
sets as well as the fl ow map at two points. The Basic Assump-
tions are satisfi ed. To verify suffi cient conditions for the existence 
of nontrivial solutions from each point in C c D , it is enough to 
show that f (j ) [ TC(j )  for each j [ C \ D . For all j [ C  such 
that j1 . 0, TC(j ) 5 R2. Consequently, for j [ C \ D  with 
j1 . 0, f (j ) [ TC(j )  trivially holds. For all j [ C  with j15 0, 
TC(j ) 5 R$0 3 R , that is, the tangent cone is the right-half 
plane. For j [ C \ D  with j15 0 we also have j2 . 0, and 
consequently f (j ) [ TC(j )  holds. In summary, the assump-
tion of Proposition S2 holds for every point j [ C c D , and 
nontrivial solutions to the hybrid system exist from each such 
point. Note though that f (j ) o TC(j )  for j [ C d D . 

Additional arguments are needed to show that all maximal so-
lutions are complete. Since g 1D 2 ( C c D , solutions do not jump 
out of C c D . Additional arguments, carried out when Example 
S4 is revisited in the section “Asymptotic Stability,” show that all 
solutions are bounded and, hence, they do not blow up in finite 
time. Consequently, all maximal solutions are complete. 

Solutions to the bouncing ball model exhibit Zeno behavior, 
as discussed in “Zeno Solutions.” Simulations for the model are 
given in “Simulation in Matlab/Simulink.” !

UNIQUENESS OF SOLUTIONS
In dynamical systems, nonunique solutions can arise. One 
physically-motivated model that exhibits nonunique solutions is 

the differential equation corresponding the reverse-time evolu-
tion of a leaky bucket [S21, Example 4.2.1]. 

Nonuniqueness can occur in mathematical models that are 
designed to generate all possible solutions that meet certain 
conditions. For example, all Lipschitz continuous functions with 
Lipschitz constant equal to 1 are generated by the differential 
inclusion x

#
[ 3 2 1, 1 4  where x [ R.  

Additionally, consider a nonlinear control system x
#
5 f (x, u ) , 

where f is Lipschitz continuous and u5k(x )  is a possibly 
discontinuous feedback. The family of locally absolutely con-
tinuous functions that arise as the limit of a sequence of solu-
tions xi  to x

#
i5 f (xi, k(xi1ei) ) , xi(0 ) 5 x0 with ei  measurable 

and limiS`supt$0|ei( t ) |5 0 is equivalent to the family of solu-
tions to the differential inclusion x

#
[ F(x ) , x (0 ) 5 x0 where 

F(x )5 d d.0conf (x, k(x1dB) )  [S20]. The signals ei  can 
be associated with arbitrarily small measurement noise in the 
control system. A version of this result for hybrid systems is 

FIGURE S5 A flow map F and the tangent cone to a set C rep-
resented at several points j [ C . Directions in the flow map, 
single-valued at j1, j3 and set-valued at j2, are shown in red. 
Tangent cones are represented in gray, sample directions in the 
tangent cones are in black. At points in the interior of C, such 
as j1, the tangent cone is the entire space. At j1 and j2, the 
intersection between the flow map and the tangent cone is non-
empty, whereas at j3 this intersection is empty. 
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of hybrid arcs 5xi6i51
` , defined as the set-valued map-

ping whose graph is the limit of graphs of arcs xi, 
need not be a hybrid arc. However, if the graphically 
convergent sequence is locally bounded and consists 
of solutions to a hybrid system that satisfies the Ba-
sic Assumptions, then the graphical limit is always a 
hybrid arc, and in fact, a solution to the hybrid sys-
tem. The following result, given in [69, Thm. 5.36] and 
[26, Lem. 4.3], states the sequential compactness of 
the space of solutions to a hybrid system that satisfies 
the Basic Assumptions. 

Theorem 4 
Let 5xi6i51

`  be a sequence of solutions to a hybrid system 
H meeting the Basic Assumptions. Suppose that the se-
quence 5xi6i51

`  is locally uniformly bounded in the sense 
that, for each t . 0, there exists a compact set Kt ( Rn 
such that, for each i5 1, 2, c and each 1t, j 2 [ dom xi 
with t1 j # t, it follows that xi 1t, j 2 [ Kt. Then the se-
quence 5xi6i51

`  has a graphically convergent subsequence; 
moreover, if the sequence 5xi6i51

`  is graphically conver-
gent, then its graphical limit is a hybrid arc that is a solu-
tion to the hybrid system H. 
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discussed in “Robustness and Generalized Solutions.” The so-
lutions to x

#
[ F(x ) , x (0 ) 5 x0  can be nonunique. For exam-

ple, for a system with x [ R , u [ R , f (x, u ) 5 u , k (x ) 5 1 for 
x $ 0, and k(x ) 5 2 1 for x , 0, we get F(0 )5 321, 14 , 
F(x ) 5 1 for x . 0, and F(x )5 21 for x , 0. Thus, for x05 0, 
there are multiple solutions. One solution is x ( t ) 5 0 for all t $ 0. 
Additional solutions are x ( t ) 5 0 for t [ 30, t 4 , x ( t ) 5 ( t2 t )  
for t . t $ 0 or x ( t ) 5 2( t2 t )  for t . t $ 0.

Nonunique solutions arise when developing a model for 
switched systems that generates all solutions under arbitrary 
switching among a finite set of locally Lipschitz vector fields. 
This set of solutions is equivalent to the set of solutions to a 
differential inclusion where the set-valued right-hand side at a 
point is equal to the union of the vector fields at that point. See 
[S18, Chapter 4]. For this differential inclusion, solutions are 
not unique. Each vector field produces a solution. Additional 
solutions are produced by following one vector field for some 
amount of time, switching to a different vector field for some 
amount of time, and so on. 

A similar situation arises when modeling switched systems un-
der a restricted class of switching signals. In this case, the switched 
system can be modeled by an autonomous hybrid system that pro-
duces all of the possible solutions produced by switching signals 
that belong to the class. In this setup, for each initial condition of 
the hybrid system, there are many solutions, each generated by a 
particular switching signal. See “Switching Systems.” 

Similarly, when addressing networked control systems, an 
autonomous hybrid model is used that generates all solutions 
that can occur for a class of transmission time sequences. See 
Example 27.

Sufficient conditions for uniqueness can be invoked, if de-
sired. Several sufficient conditions for uniqueness of solutions 
to ordinary differential equations are given in the literature. The 
simplest condition is that the differential equation’s vector field 
is locally Lipschitz continuous. Relaxed conditions also exist. 
See [S19] for further discussion. 

The following result characterizes uniqueness of solutions 
to hybrid systems. Formally, uniqueness of solutions holds 

The first conclusion of Theorem 4 is a property of set 
convergence. The second conclusion is specific to the 
hybrid system setting. In summary, Theorem 4 states 
that, from each locally uniformly bounded sequence 
of solutions to a hybrid system that satisfies the Basic 
 Assumptions, we can extract a graphically convergent 
subsequence whose graphical limit is a solution to the 
hybrid system. Consequences of Theorem 4 for asymp-
totic stability in hybrid systems are discussed in the “As-
ymptotic Stability” section. 

Graphical convergence of hybrid arcs to a hybrid arc 
has an equivalent pointwise description. Consider a se-
quence 5xi6i51

`  of hybrid arcs and a hybrid arc x. Then 5xi6i51
`  

converges graphically to x if and only if the following two 
conditions hold: 

i) For every sequence of points 1ti, j 2 [ dom xi such that 
the sequences 5ti6i51

`  and 5xi 1ti, j 2 6i51
`  are convergent, 

it follows that 1t, j 2 [ dom x, where t5 limiS`ti and 
x 1t, j 2 5 limiS` xi 1ti, j 2 . 

ii) For every 1t, j 2 [ dom x there exists a sequence 5 1ti, j 2 6i51
` , where 1ti, j 2 [ dom xi, such that 

t5 limiS` ti and x 1t, j 2 5 limiS` xi 1ti, j 2 . 
Figure 13 depicts several solutions from a graphically 

convergent sequence of solutions to the bouncing ball sys-
tem in Example 3. 

Dependence of Solutions on Initial Conditions
One of the consequences of Theorem 4 is the semicontinu-
ous dependence of solutions to a hybrid system on initial 
conditions. To state this result rigorously, in Theorem 5, 
we define a concept of distance between hybrid arcs that is 
closely related to graphical convergence. 

Given t $ 0 and e . 0, the hybrid arcs x and y are 1t, e 2 -
close if the following conditions are satisfied: 
 a)  For each 1t, j 2 [  dom x with t1 j # t there exists 

s [ R$0 such that 1s, j 2 [  dom y, |t2 s| , e, and 

 |x 1t, j 2 2 y 1s, j 2| , e.

 b)  For each 1t, j 2 [  dom y with t1 j # t there exists 
s [ R$0 such that 1s, j 2 [  dom x, |t2 s| , e, and 

 |y 1t, j 2 2 x 1s, j 2| , e.

The concept of 1t, e 2 -closeness provides an equivalent 
characterization of graphical convergence of hybrid arcs. 
Consider a locally uniformly bounded sequence of hybrid 
arcs 5xi6i51

`  and a hybrid arc x. Then the sequence 5xi6i51
`  

converges graphically to x if and only if, for every t $ 0 
and e . 0, there exists i0 such that, for all i . i0, the hybrid 
arcs xi and x are 1t, e 2 -close. 

Equipped with the concept of 1t, e 2 -closeness, we again 
revisit Example 3. 

Example 3 Revisited: Bouncing Ball and 1t, e 2 -Closeness
Consider the bouncing ball model with g5 1 and r5 1/2. 
Given d [ 30, 1 2 , the hybrid arc representing the velocity of 
the ball dropped from height 11d with velocity zero, for 
times t # 2, is given by 

x2
d 1t, j 2 5 e 2 t, t [ 30, "2 111d 2 4,  j5 0, 

2 t1 3"111d 2/2, t [ 3"2 111d 2 , 2 4,  j5 1.
 

Consider the hybrid arcs, x2
0 and x2

d, where d [ 10, 1 2 .
These arcs are 1t, e 2 -close, with any t $ 0 and 
e 5 3"2 1"11d2 1 2/2. To show this, it is sufficient to 
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for the hybrid system H if, for any two maximal solutions x1 
and x2 to H, if x1(0, 0 )5 x2(0, 0 ) , then dom x15 dom x2 and 
x1( t, j ) 5 x2( t, j )  for all ( t, j ) [ dom x1. 

Proposition S5
Uniqueness of solutions holds for a hybrid system with 
data (C, F, D, G) if and only if the following conditions hold: 
 1)  For each initial point j [ C  there exists a unique maxi-

mal solution to the differential inclusion z
#
( t ) [ F(z ( t ) )  

satisfying z (0 ) 5j  and z ( t ) [ C . 
 2) For each initial point j [ D , G(j )  is a singleton. 
 3)  For each initial point j [ C d D , there are no nontrivial 

solutions to z
#
( t ) [ F(z ( t ) )  satisfying z (0 ) 5j  and 

z ( t ) [ C .
The first condition is ensured when F is a locally Lipschitz 

 continuous function but can hold when F is set valued. In con-
trast, set-valuedness of G at a point in D immediately leads 
to non-unique solutions. Hence, the second condition cannot 
be weakened. The third condition is ensured when for each 

j [ C d D , TC(j ) d F(j )5[ , where TC(j )  denotes the 
tangent cone to C at j . This condition indicates that, roughly 
speaking, the vector field given by F should point to the out-
side of C at points in C d D . 

The bouncing ball model in Example S4 satisfies the three 
conditions of Proposition S5 and thus generates unique solu-
tions from all initial conditions. 
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consider t 5 3. Indeed, since we are considering arcs with 
domains restricted to 1t, j 2  such that t1 j # 3, 13, e 2 -close-
ness implies 1t, e 2 -closeness for all t $ 0. 

To verify condition a) of 1t, e 2 -closeness, note that, for 
each 1t, 0 2 [ dom x2

0 with t # 3, we have 1t, 0 2 [ dom x2
d 

and x2
0 1t, 0 2 5 x2

d 1t, 0 2 . In practical terms, the velocities 
of the balls are the same until the ball dropped from
the lower height bounces. For each 1t, 1 2 [ dom x2

0 with 
t # 2, that is, with t1 1 # 3, there exists 1s, 1 2 [ dom x2

d

with |t2 s| #"2 111d 2 2"2 and |x2
0 1t, j 2 2 x2

d 1s, j 2| # 

3"2 1"11d2 1 2/2. In fact, for t #"2 111d 2 , we can 
take s5"2 111d 2 , while, for the remaining t’s, we can 
take s5 t. Consequently, for each 1t, j 2 [  dom x2

0 with 
t1 j # t5 3 there exists s $ 0 such that 1s, j 2 [  dom x2

d, 
|t2 s| , e and |x 1t, j 2 2 y 1s, j 2| , e, where e 5  3"2 
1"11d2 1 2/2. A similar calculation can be carried out 
for condition b) of 1t, e 2 -closeness. 

Thanks to the equivalent character ization of 
graphical convergence in terms of 1t, e 2 -closeness, the 
1t, 3"2 1"11d2 1 2/2 2-closeness of x2

0 and x2
d, for each 

t $ 0, implies that x2
d converge graphically, as d S 0, to x2

0. !

For the bouncing ball, whose maximal solution is unique 
for each initial condition, we can establish that the arc x2

d de-
pends continuously on d at zero, for an appropriately defined 
concept of continuous dependence. In the absence of unique-
ness of solutions, continuous dependence cannot be expected. 
Continuous dependence fails in simpler settings, too. For the 
differential equation x# 5 2"|x|, solutions 1t1"d 2 2 from 
initial points x 10 2 5d . 0 converge uniformly on compact 
time intervals to t2, as d S 0. But from the initial point zero, 
there also  exists a solution, identically equal to zero, which 

is not a limit of any sequence of solutions from positive ini-
tial points. This simple setting already illustrates what outer 
 semicontinuous dependence on initial conditions is, namely, 

0
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FIGURE 13 The height x1 of solutions to the bouncing ball system in 
Example 3. The height of three solutions with nonzero initial height 
and velocity given by (10, 5), (5, 2), and (0.1, 0.5), are shown in 
blue. The solution from (0, 0), denoted in black with  marks, is a 
solution that jumps and does not flow. Initial conditions closer to the 
origin result in the blue graphs that more closely resemble the black 
graph. In other words, solutions with initial conditions close to (0, 0) 
are graphically close to the solution from (0, 0).
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that each solution from the initial point d . 0 close to zero is 
close to some solution from zero. In the language of sequences, 
the limit of a sequence of solutions from initial points close to 
zero is a solution from zero, even though some other solutions 
from zero are not limits of any solutions from nearby initial 
points. We stress here, again, that continuous dependence on 
initial points is not needed to develop fundamental stability 
theory results, such as converse Lyapunov theorems and in-
variance  principles. 

In a hybrid system, even the domains of solutions with 
close initial points can differ significantly. An example 
 illustrating this phenomenon is the system on R with 
C5R$0, f 1x 2 52x, D5 12`, 0 4, and g 1x 2 5 x/2. For all 
t . e . 0, the solution x 1t, 0 2 5 0 for all t $ 0, from the 
initial point 0, is not 1t, e 2 -close to any of the solutions 
y 10, j 2 5 2d/2j, j5 1, 2, c, independently of how small 
d . 0 is. Note, however, that the solutions y 10, j 2 5 2d/2j, 
j5 1, 2, c converge to another solution from zero, namely 
z 10, j 2 5 0, j5 1, 2, c. 

The following result, proven in [26, Cor. 4.8], concerns 
the outer semicontinuous dependence of solutions to hy-
brid systems on initial conditions. 

Theorem 5
Suppose that the hybrid system H meets the Basic Assump-
tions and j [ Rn is such that each maximal solution to H 
from j is either complete or bounded. Then, for every t $ 0 
and e . 0, there exists d . 0 such that, for each solution xd 
to H with |xd 10, 0 2 2j| # d, there exists a solution x to H 
with x 10, 0 2 5j such that xd and x are 1t, e 2 -close. 

Additional Consequences 
of Sequential Compactness
Sequential compactness of the space of solutions of a hy-
brid system, stated in Theorem 4, results in uniformity of 

various properties. We illustrate this fact with a property 
related to the lack of complete solutions that jump but do 
not flow. The result below, and the phrase  “uniformly 
non-Zeno,” are taken from [17]. See “Zeno Solutions” for 
a further discussion of the Zeno phenomenon. 

Proposition 6 
Consider the hybrid system H satisfying the Basic Assump-
tions, and a compact set K ( Rn that is forward invariant, in 
other words, such that all solutions x to H with x 10, 0 2 [ K 
satisfy x 1t, j 2 [ K for all 1t, j 2 [ dom x. Then, exactly one of 
the following conditions is satisfied: 

There exists a complete solution a) x to H with 
x 10, 0 2 [ K and dom x5 506 3 N.
The set of all solutions with initial points in b) K is uni-
formly non-Zeno, that is, there exist T . 0 and J [ N 
such that, for each solution x to H with x 10, 0 2 [ K, 
each 1t, j 2 , 1t r, j r 2 [ dom x with |t2 t r| # T satisfies 
|j2 j r| # J.

For illustration purposes, we outline a proof. The 
conditions a) and b) are mutually exclusive. Negating b) 
yields a sequence of solutions 5xi6i51

` , with xi 10, 0 2 [ K, 
and, for each i5 1, 2, c , 1ti, ji 2 , 1ti r, ji r 2 [ dom xi  with 
|ti2 ti r| # 1/i  and |ji2 ji r| . i . Without loss of gen-
erality, we can assume that ti # ti r  and ji , ji r , for all 
i5 1, 2, c . Define a sequence of hybrid arcs yi by 
yi 1t, j 2 5 xi 1t1 ti, j1 ji 2 , which implicitly defines dom yi to 
be the tail of dom xi. Forward invariance of K implies that, 
for every i, yi 1t, j 2 [ K for all 1t, j 2 [ dom yi . Thus, the se-
quence 5yi6i51

`  is locally uniformly bounded in the sense of 
Theorem 4. Part a) of that theorem implies that there exists 
a graphically convergent subsequence of the sequence yi. 
Part b) implies that the graphical limit of the subsequence, 
denoted y, is a solution to H. Clearly, y 10, 0 2 [ K. It re-
mains to conclude that y is complete and never flows. This 

conclusion comes out from the fact that 
the point 1ti r2 ti, ji r2 ji 2  is an element of 
dom yi, which says that yi jumps at least i 
times in at most 1/i time units, and from 
the definition of graphical  convergence. 

Similar, yet even simpler arguments, 
are used in the following result to estab-
lish the compactness of reachable sets. 

Proposition 7 [26, Cor. 4.7]
Suppose that the hybrid system H satisfies 
the Basic Assumptions. Consider a com-
pact set K such that every solution to H 
starting in K is either complete or bound-
ed, and m . 0. Then, the reachable set 

R#m 1K 2 : 5 5x 1t, j 2  | x 10, 0 2 [ K,  
 1t, j 2 [ dom x, t1 j # m6

is compact. 
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FIGURE 14 Components x2
0, x2

d  of solutions from “Example 3 Revisited,” representing 
the velocities of bouncing balls dropped from heights 1 and 1 1d , respectively. (a) 
Velocities parameterized by t. The velocities are not close in the uniform distance 
since their difference, at times after the first ball bounces and before the second ball 
bounces, is large. (b) Velocities on hybrid time domains. The shaded neighborhoods 
of their graphs indicate that the velocities are graphically close. 
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Outer semicontinuous dependence of solutions to a hy-
brid system on initial conditions, stated in Theorem 5, can 
be generalized to allow state perturbations of the hybrid 
system. Given a hybrid system H with state x [ Rn, a con-
tinuous function s: Rn S R$0, and d $ 0, consider a hybrid 
system Hds with the state x [ Rn and data 

 Cds J 5x: 1x1ds 1x 2B 2 d C 2 [6,   (8)
 Fds 1x 2 J con F 1 1x1ds 1x 2B 2 d C 2 1ds 1x 2B   
  for all x [ Cds,  (9)
           Dds J 5x: 1x1ds 1x 2B 2 d D 2 [6,   (10)
 Gds 1x 2 J 5v: v [ g1ds 1g 2B,  g [ G 1 1x1ds 1x 2B 2 d D 2 6     

  for all x [ Dds. (11)

Perturbations, of the system H, of this kind are used in 
the analysis of robustness of asymptotic stability. Fig-
ure 15 illustrates the idea behind perturbations of the 
sets C and D. 

Theorem 8 [26, Corollary 5.5]
Suppose that the hybrid system H satisfies the Basic As-
sumptions and j [ Rn is such that each maximal solution to 
H from j is either complete or bounded. Let s : Rn S R$0 
be a continuous function. Then, for every t $ 0 and e . 0, 
there exists d . 0 such that, for each solution xd to Hds 
with |xd 10, 0 2 2j| # d, there exists a solution x to H with 
x 10, 0 2 5j such that xd and x are 1t, e 2 -close. 

ASYMPTOTIC STABILITY
This section addresses asymptotic stability in hybrid 
 dynamical systems, including basic definitions and equiva-
lent characterizations of asymptotic stability. Examples are 
provided to illustrate the main concepts. Some of the defini-
tions and results have a formulation that is slightly differ-
ent from classical stability theory for differential equations. 
This difference is mainly due to the fact that existence of 
solutions is a more subtle issue for hybrid systems than it is 
for classical systems. See “Existence, Uniqueness, and Other 
Well-Posedness Issues.” Otherwise, the stability theory re-
sults that are available for hybrid systems typically parallel 
the results that are available for classical systems. 

Defi nition and Examples
As discussed in “Motivating Stability of Sets,” the solu-
tions of a dynamical system sometimes converge to a set 

rather than to an equilibrium point. Thus, we study as-
ymptotic stability of sets. The scope is limited to compact 
sets for simplicity. 

Roughly speaking, a compact set A is asymptotically stable 
if solutions that start close to A stay close to A, and complete 
solutions that start close to A converge to A. We now make 
this concept precise. A compact set A is stable for H if for each 
e . 0 there exists d . 0 such that |x 10, 0 2|A # d implies 
|x 1t, j 2|A # e for all solutions x to H and all 1t, j 2 [  dom x. 
The notation |x|A5min5|x2 y|: y [ A6  indicates the 
distance of the vector x to the set A. If A is the origin then 
|x|A5 |x|. A compact set A is pre-attractive if there exists a 
neighborhood of A from which each solution is bounded and 
the complete solutions converge to A, that is, |x 1t, j 2|A S 0 
as t1 j S `, where 1t, j 2 [  dom x . The prefix “pre-” is used 
since it is not a requirement that maximal solutions start-
ing near A be complete. See “Why ‘Pre’-Asymptotic Stabil-
ity?” for additional reasons to consider asymptotic stability 
without insisting on completeness of solutions. A compact set 
A is pre-asymptotically stable if it is stable and pre-attractive. 

For a pre-asymptotically stable compact set A ( Rn, its 
basin of pre-attraction is the set of points in Rn from which 
each solution is bounded and the complete solutions 
converge to A. By definition, the basin of pre-attraction 
contains a neighborhood of A. In addition, each point in 
Rn\ 1C h D 2  belongs to the basin of pre-attraction since no 
solution starts at a point in Rn \ 1C h D 2 . If the basin of 
pre-attraction is Rn then the set A is globally pre-asymptot-
ically stable. We drop “pre” when all solutions starting in 
the basin of pre- attraction are complete. 

This article is a tutorial on modeling the dynamics of hybrid 
systems, on the elements of stability theory for hybrid systems, 

and on the basics of hybrid control.

SS
Spσ

x

pσ (x)

FIGURE 15 Enlargement of a set S due to a state-dependent per-
turbation of size ps. The perturbed set Sps contains all points x 
with Euclidean distance from the unperturbed set S no larger than 
ps 1x 2 .
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Example 9: A Planar System
Consider the hybrid system with state x [ R2 and data 

C J 5x: x1 $ 06,  f 1x 2 J c a v

2v a
d x   for all x [  C,

D J 5x: x15 0, x2 # 06,   g 1x 2 J 2gx  for all x [ D,

where g . 0, v . 0, and a [ R. During flows, a solution 
rotates in the clockwise direction through the set C until 
reaching the negative x2-axis. The maximum amount of 
time spent in C before a jump occurs is p/v units of time. 
The sign of a determines whether the norm of a solution 
increases or decreases during flows. At points on the nega-
tive x2-axis, a solution jumps to the positive x2-axis. The 

sign of g2 1 determines whether the norm of a  solution 
increases or decreases during jumps. Figure 16 illustrates 
different possibilities. If exp 1ap/v 2g , 1 then the norm of 
a solution decreases over one cycle from the positive x2-axis 
and back again. In this case, each solution x that starts close 
to the origin remains close to the origin and tends toward 
the origin as t1 j S `, where 1t, j 2 [  dom x. Thus, the ori-
gin is globally asymptotically stable. !

Example 1 Revisited: Dual-Mode 
Control for Disk Drives 
We start with a preliminary observation about a hybrid 
system that has no discrete-time dynamics and has the 
continuous-time dynamics 

Set Convergence

The concept of convergence of sets, 
as well as many other elements of 

set-valued analysis, are important ingre-
dients of modern analysis. For example, 
in optimization and optimal control, set 
convergence helps in the study of how 
sets of optimal solutions or optimal con-
trols, when these solutions or controls 
are not unique, depend on parameters or 
initial conditions. The brief exposition of 
set convergence given below follows the 
terminology and defi nitions of [69]. 

Let 5Si6 i51
`  be a sequence of subsets 

of Rn . The outer limit of this sequence, 
denoted lim supiS` 

Si , is the set of all 
accumulation points of sequences of points xi [ Si ; more pre-
cisely, it is the set of all points x [ Rn  or which there exists 
a sequence of points xk , k5 1, 2, c , and a subsequence 5Sik

6k51
`  of the sequence 5Si6 i51

`  such that xk [ Sik  and 
xk S x  as k S `.  The inner limit of this sequence, denoted 
lim intiS` 

Si , is the set of all points x [ Rn  for which there exists 
a sequence of points xi [ Si , i5 1, 2, c , such that xi S x  as 
i S `.  The limit of the sequence 5Si6 i51

` , denoted lim iS` 
Si,  

exists if the inner and outer limits are equal, in which case 
limiS` Si5 lim supiS` Si5 lim infiS` Si .

The outer and inner limit always exist, but these limits may 
be empty. Furthermore, the outer limit is nonempty when the 
sequence Si  does not escapes to infinity, in the sense that, for 
each r . 0, there exists ir [ N  such that, for all i . ir , the 
 intersection of Si  with a ball of radius r is empty. Finally, the 
 inner and outer limits—and thus the limit, if it exists—are closed, 
independently of whether or not each of the Si s is closed. 

Some basic examples of set convergence are the following: 
If each a) Si  is a singleton, that is, Si5 5si6 , where si [ Rn,  
then the outer limit of the sequence 5Si6 i51

`  is the set of 
 accumulation points of the sequence si ; the inner limit is 

nonempty if and only if the sequence si  is convergent, in 
which case lim infiS` Si5 limiS` Si5 limiS` si.
Let b) 5ri6 i51

`  be a sequence of nonnegative numbers. For 
the sequence of closed balls of radius ri , Si5 ri B , it fol-
lows that lim supiS` Si5 r  B , where r  is the upper limit 
of the sequence 5ri6 i51

` , and lim infiS` Si5 r B , where r  
is the lower limit of the sequence 5ri6 i51

` . When r5 ` , 
r B  corresponds to all of Rn . 
Let c) Si5 5 ( t, t/i )  : t [ R6 , in other words, let Si  be the 
graph of the linear function t A t/i . Then the sequence 5Si6 i51

`  is convergent, and the limit is the graph of the 
function tA0 defined on R . 
Let d) Si5 5 ( t, ti)  : t [ 30, 1 4 6 , in other words, let Si  be the 
graph of the function t  At i  on 30, 1 4 . Then the sequence 5Si6 i51

`  is convergent, and the limit S has the reflected 
L shape, that is, S5 1 30, 1 4 3 506 2 c 1 516 3 30, 1 4 2 . 
 Figure S6 shows Si  and S.

Example c) suggests that a sequence 5Si6 i51
`  of sets can 

converge to S even though the Hausdorff distance between Si  
and S is infinite for all i5 1, 2, c . The Hausdorff distance 
can be used to characterize set convergence of bounded 

0

1 1

0

S

Si

i

tt 11

FIGURE S6 A sequence of sets Si  converging to the reflected L-shaped set S . Equiva-
lently, the sequence of functions with graphs given by Si s converges graphically to a 
set-valued mapping with graph given by S .
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 p# 5 v,  v# 5k 1p, v, p* 2 ,   1p, v 2 [ C. (12) 

Assume that if C5R2 then the point 1p*, 0 2  is locally asymp-
totically stable with basin of attraction B . Now let C ( B  and 
notice that this choice  eliminates each solution of (12) with 
C5R2 that does not start in B . It follows, for the system (12) 
with C ( B , that the point 1p*, 0 2  is globally pre-asymptoti-
cally stable. A generalization of this observation appears in 
Theorem S10 of “Why ‘Pre’-Asymptotic Stability?” 

Now consider the hybrid system from Example 1, with 
state x5 1p, v, q 2  satisfying 

 p# 5 v,  v# 5kq 1p, v, p* 2 ,  q# 5 0,  1p, v 2 [ Cq,   (13) 
 p1 5 p,  v1 5 v,  q1 5 32 q,  1p, v 2 [ Dq.  (14) 

According to the assumptions of Example 1 and the conclu-
sions drawn above about the system (12), for each i [ 51, 26 
the point 1p*, 0 2  is globally pre-asymptotically stable for the 
system 

 p# 5 v,  v# 5ki 1p, v, p* 2  1p, v 2 [ Ci. (15) 

Moreover, each solution of (15) with i5 2 that starts in D1, 
which contains a neighborhood of 1p*, 0 2  and is contained 
in C2, does not reach the boundary of C2. Also, C15R

2\ D1 
and D25R

2\ C2. 
Global asymptotic stability of the point 1p*, 0, 2 2  for the 

system (13), (14) then follows from the global pre-asymptotic 
stability of 1p*, 0 2  for (15) with i [ 51, 26 together with the 

sequences of sets. More precisely, a 
uniformly bounded  sequence 5Si6 i51

`  of 
closed sets converges to a closed set S 
if and only if the Hausdorff distance be-
tween S and Si   converges to zero. 

Examples c) and d) also illustrate 
the concept of graphical convergence 
of functions or set-valued mappings. A 
sequence 5Fi6 i51

`  of set-valued map-
pings F : Rm SS Rn  converges graphically to F : Rm SS Rn  if 
the sequence of graphs of Fi s, which are subsets of Rm1n , 
converges to the graph of F,  in the sense of set con-
vergence. In c), the sequence of functions t A t/i  con-
verges graphically, and pointwise, to the function t A 0. 
In d), the sequence of functions t At 

i  on 30, 1 4  converges 
graphically not to a function but to a set-valued mapping. 
More precisely, the graphical limit of functions t At 

i  on 30, 1 4  
is equal to zero for t [ 30, 1 2  and 30, 1 4  for t5 1, as can be 
seen in Figure S6. Note that the sequence of functions t At 

i  
on 30, 1 4  converges pointwise to the function that is equal to 
zero for t [ 30, 1 2  and equal to one at t5 1; however, this 
convergence is not uniform on 30, 1 4 . 

A natural example of the outer limit of a sequence of sets 
is provided by omega limits of solutions to dynamical sys-
tems. To illustrate omega limits in a continuous time setting, let 
x : R$0 S Rn  be a function. Although x may be a solution to a 
differential equation, continuity properties of x are irrelevant for 
the following discussion. The omega limit of x, denoted v 1x 2 , 
is the set of all points j [ Rn  for which there exists a sequence 
5ti6 i51

`  with ti S `  such that x 1 ti 2 S j . Then 

 v 1x 2 5 lim sup
iS`  

Si  

where Si5 5x ( t )  :  t $ i6 . See Figure S7. Since the sequence 
Si  is nonincreasing, the outer limit is in fact the limit. A property 
of set limits, as noted above, implies that v 1x 2  is closed. Another 

property implies that if |x ( t ) |  does not diverge to infi nity then 
v 1x 2  is nonempty. In fact, properties of set convergence imply 
that if x  is bounded, then v 1x 2  is nonempty and compact and x  
converges to v 1x 2 . The convergence of x  to v 1x 2  follows from 
the following property [69, Thm. 4.10] of set convergence: given 
a sequence of sets 5Si6 i51

`  and a closed set S , limiS` Si5S  if 
and only if, for all e . 0 and r . 0, there exists i0 [ N  such 
that, for all i . i0, 

 S d rB ( Si1 eB,   Si d rB ( S1 eB.  (S5)

The second inclusion (S5), with r  such that x 1 t 2 [ rB  for all 
t [ R$0, implies that x  converges to v 1x 2 . The characteriza-
tion of set convergence in (5) is behind the relationship between 
graphical convergence of hybrid arcs and the concept of 1t, e 2 -
closeness between hybrid arcs, as used in the “Basic Math-
ematical Properties” section. 

For references using set-valued analysis in dynamical sys-
tems, in particular, in differential inclusions, see [S22], [S16], 
and [S24]; for relevance to optimal control, see [S23]. 

REFERENCES
[S22] J.-P. Aubin and A. Cellina, Differential Inclusions. New York: 
Springer-Verlag, 1984.
[S23] F. H. Clarke, Optimization and Nonsmooth Analysis. Philadelphia: 
SIAM, 1990.
[S24] G. V. Smirnov, Introduction to the Theory of Differential Inclusions, 
vol. 41, Graduate Studies in Mathematics. Providence, RI: American 
Mathematical Society, 2002.

FIGURE S7 A solution to a differential equation approaching a periodic solution that 
covers a circle. The circle is the omega-limit of the solution. Tails of the solution con-
verge, in the sense of set convergence, to the circle.
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fact that the maximum number of jumps a solution of the 
system (13), (14) experiences is two. To see the latter prop-
erty, note that if there is more than one jump for a solution 
x of (13), (14) then one of the first two jumps must be from 
q5 1 to q5 2. At this jump, we must have 1p, v 2 [ D1 and, 
since p and v do not change during a jump, 1p, v 2 [ D1 after 
the jump. Since a solution of (15) with i5 2 that starts in D1 
does not reach D2, the solution x of (13), (14) does not jump 
again after a jump from q5 1 to q5 2. 

The principle behind this asymptotic stability result 
is generalized in the section “Stability Analysis Through 
Limited Events.” !

Example 2 Revisited: Asymptotic Stability 
Consider the hybrid system in Example 2. We study as-
ymptotic stability of the origin. The origin is not globally 
asymptotically stable since the solution starting at 12, 0 2  
does not converge to the origin. On the other hand, the so-
lution starting at 11, 0 2  satisfies |x 1t, j 2| # |x 10, 0 2| for all 1t, j 2 [  dom x and lim

t1jS`
|x 1 t, j 2|5 0. More generally, con-

structing solutions as in Example 2, it follows that the origin 
is asymptotically stable with basin of attraction given by 

 5x [ C: x2 , 3,  x11 x2 [ 1 2 2, 2 2 6h
 5x [ D: x1 [ 1 2 1, 1 2 6. !

A consequence of Theorem 4 appears in Theorem 10, 
which states that pre-asymptotic stability of a compact set is 
implied by forward invariance, as defined in Proposition 6, 
together with uniform pre-attractivity. A compact set A is uni-
formly pre-attractive from a set K if for each e . 0 there exists 
T . 0 such that x 10, 0 2 [ K, 1t, j 2 [  dom x, and t1 j $ T 
imply |x 1t, j 2|A # e. The next section  establishes the implica-
tion that is opposite to the one stated in  Theorem 10. 

Theorem 10 [26, Prop. 6.1]
For a hybrid system H satisfying the Ba-
sic Assumptions, if the compact set A is 
forward invariant and uniformly pre-at-
tractive from a compact set containing a 
neighborhood of A, then the set A is pre-
asymptotically stable. 

Example 11: An Impulsive 
Observer with Finite-Time Convergence 
This example comes from [67], which ad-
dresses impulsive observers for linear sys-
tems. Consider a linear, continuous-time 
system j

#
5 Fj 1 v , where j belongs to 

a compact set K1 ( Rn and v belongs to a 
compact, convex set K2 ( Rn. Let H [ Rr3n 
and assume we have measurements of the 
output vector Hj and the input vector v. 
The pair 1H, F 2  is observable if j

#
5 Fj  and 

Hj 1t 2 ; 0 imply j 1t 2 ; 0. This prop-
erty enables assigning the spectra of the matrix F2 LH 
arbitrarily through the matrix L. In particular, a classical 
dynamical system with state ĵ  can be constructed so that 
j 1t 2 2 ĵ 1t 2  approaches zero as t S `. Such a dynamical sys-
tem is called an observer. A classical observer has the form 
ĵ
#
5 1F2 LH 2 ĵ 1 LHj 1 v , where L is chosen so that F2 LH 

is Hurwitz, meaning that each eigenvalue of F2 LH has 
negative real part. This choice gives the observation error 
equation e# 5 1F2 LH 2e, where e: 5 j2 ĵ . Since F2 LH is 
Hurwitz, the error e converges to zero exponentially. 

We consider a hybrid observer that reconstructs the 
state j in finite time. The first thing to note is that the 
observability of the pair 1H, F 2  permits finding matri-
ces L1 and L2 such that, for almost all d . 0, the matrix 
I2 exp 1 1F2 L2H 2d 2exp 1 2 1F2 L1H 2d 2  is invertible [67, 
Remark 1]. Define Fi J F2 LiH  and henceforth assume 
that d . 0, L1 and L2 are such that I2 exp 1F2d 2  exp 12F1d 2  
is invertible. 

Consider a hybrid system with state x5 1j, ĵ1, ĵ2, t 2 ,  
flow set C J K1 3 Rn 3 Rn 3 30, d 4 , jump set 
D J K1 3 Rn 3 Rn 3 5d6 , flow map 

 F 1x 2 5 µ ≥
Fj 1 v

F1ĵ11 1F2 F1 2j 1 v
F2ĵ21 1F2 F2 2j 1 v

1

¥ : v [ K2 ∂ ,  

and jump map 

 G 1x 2 5 ≥
j

G1ĵ11G2ĵ2

G1ĵ11G2ĵ2

0

¥ , 

where 

x2

x1 x1

x2

C

D

x (0, 0) x (0, 0)

(a)

C

D

(b)

FIGURE 16 Flow and jump sets for the hybrid system in Example 9, with typical solu-
tions to the system. Solutions flow clockwise in the right-half plane and jump when x1  
is zero and x2  is nonpositive. In (a), the norm of the solution increases during flows 
and decreases at jumps. In (b), the norm decreases during flows and increases at 
jumps. In both cases, the origin is globally asymptotically stable.
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 3G1 G2 4 J 1I2 exp 1F2d 2  exp 12F1d 2 221 

 3  3 2 exp 1F2d 2exp 12F1d 2 I 4.  

This hybrid system contains two different continuous-time 
observers, of the form ji

^
#
5 1F2 Li H 2 ji

^ 1 Li Hj 1 v , the 
states of which make jumps every d seconds according to 
the rule specified by the jump map. 

We show that the compact set A J 5 1j, ĵ1, ĵ2 2 [
K1 3 Rn 3 Rn: j 5 ĵ15 ĵ26 3 30, d 4  is globally asymp-
totically stable using Theorem 10. The set A is forward 
invariant since G 1A d D 2 ( A and, during flows, the 
errors ei J j 2 ĵi  satisfy e# i5 Fiei. Moreover, the set 
A is globally uniformly attractive. In particular, 1t, j 2 [  dom x and t $ 2d imply j $ 2 and x 1t, j 2 [ A. 
The condition on j follows from the nature of the data 
of the hybrid system. The condition x 1t, j 2 [ A follows 
from the fact that, when there exists w such that j, ĵ1 , 
and ĵ2  satisfy 

 ĵ15 j1 exp 1F1d 2w,   ĵ25 j1 exp 1F2d 2w,  

the jump map sends the state to A. The given relations 
are satisfied after one jump followed by a flow interval of 
length d. In this case, w is equal to the difference between 
j and ĵ1 immediately after the jump. We conclude from 
Theorem 10 that the set A is globally asymptotically stable. 
Moreover, the analysis above shows that the convergence to 
A is in finite time t # 2d. !

Equivalence with Uniform Asymptotic Stability
In this section, we describe uniform pre-asymptotic sta-
bility on compact subsets of the basin of pre- attraction 
and point out that this property is equivalent to pre-
 asymptotic stability. The first step in stating this char-
acterization is to make an observation about the 
basin of pre-attraction that extends classical results [42, 
pp. 69–71] for differential and difference equations to the 
hybrid setting. This result, and all of the subsequent re-
sults in this section, depend on Theorem 4. 

Theorem 12 [26, Prop. 6.4], [14, Thm. 3.14]
For a hybrid system H satisfying the Basic Assumptions, the 
basin of pre-attraction for a compact, pre- asymptotically 
stable set A is an open, forward invariant set containing a 
neighborhood of A. 

This theorem helps in developing some concepts used to 
express the fact that pre-asymptotic stability is equivalent 
to uniform pre-asymptotic stability on compact  subsets of 
the basin of pre-attraction. In that direction, the next result 
states that excursions away from and convergence toward 
a pre-asymptotically stable compact set are uniform over 
compact subsets of the basin of pre-attraction. 

Theorem 13 [26, Prop. 6.3]
For a hybrid system H satisfying the Basic Assumptions, let 
the compact set A be pre-asymptotically stable with basin of 
pre-attraction BA. For each compact set K0 ( BA, the compact 
set A is uniformly pre- attractive from K0, and there exists a 
compact set K1 ( BA such that solutions starting in K0 satisfy 
x 1t, j 2 [ K1 for all 1t, j 2 [ dom x. 

The properties established in Theorem 13, of uniform 
overshoot and uniform convergence from compact sub-
sets of the basin of pre-attraction, can be expressed in 
terms of a single bound on solutions starting in the ba-
sin of pre-attraction. To that end, let A be compact and 
let O be an open set containing A. A continuous func-
tion v   : O S R$0  is called a proper indicator for A on O if 
v 1x 2 5 0 if and only if x [ A, and also v 1xi 2  tends to infin-
ity when xi tends to infinity or tends to the boundary of O. 
Every open set O and compact set A ( O admit a proper 
indicator. Thus, using Theorem 12, for each pre-asymp-
totically stable set A there exists a proper indicator for A 
on its basin of pre-attraction. The function v   : Rn S R$0 
defined by v 1x 2  J |x|A  for all x [ Rn is a proper indi-
cator for A on Rn. For a general open set O, it is always 
possible to take v 1x 2 5 |x|A for x sufficiently close to A. 
The concept of a proper indicator function first appears 
in conjunction with stability theory in [42]. A typical for-
mula for a proper indicator is given in that work and in 
[39, (C.14)]. A sublevel set of a proper indicator on O is a 
compact subset of  O. 

A function b  : R$0 3 R$0 S R$0 belongs to class-KL if 
it is continuous; for each s $ 0, r A b(r, s )  is nondecreas-
ing and zero at zero; and, for each r $ 0, s A b(r, s )  is 
nonincreasing and tends to zero when s tends to infinity. 
Class-KL functions are featured prominently in [31] and 
have become familiar to the nonlinear systems and control 
community through their use in the input-to-state stability 
property [76]. The next result is a generalization to hybrid 
systems of a result contained in [42] for continuous differ-
ential equations. 

Many engineering systems experience impacts; walking 
and jumping robots, juggling systems, billiards, 

and a bouncing ball are examples.
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When designing control systems, engineers must ensure 
that the closed-loop behavior is robust to reasonable lev-

els of measurement noise, plant uncertainty, and environmental 
 disturbances. 

For linear systems, eigenvalues of matrices change continu-
ously with parameters, and asymptotic stability of an equilibrium 
point is an open-set condition on eigenvalues. It follows that suf-
ficiently small perturbations to the system matrices do not change 
stability properties. Similarly, sufficiently small additive disturbanc-
es lead to small excursions from the equilibrium point. 

Classical results for ordinary differential and difference equa-
tions with nonlinear but continuous right-hand sides establish that 
small perturbations to the right-hand side result in small changes 
to the solutions on compact time intervals. This property is de-
scribed for hybrid systems in theorems 5 and 8. If an equilibrium 
point or, more generally, a compact set is asymptotically stable 
for the nominal system, then these compact time intervals can be 
stitched together to establish that sufficiently small disturbances 
lead to small excursions from the asymptotically stable compact 
set. This idea is behind the results in theorems 15 and 17. This 
behavior is the essence of the total stability property described in 
[31, Sec. 56], and also contained in the local version of the input-
to-state stability property [76]. 

For differential equations and difference equations with a 
discontinuous right-hand side, asymptotic stability of a com-
pact set is not necessarily robust to arbitrary small perturba-

tions [S26], [S27], [S25]. The lack of robustness motivates 
generalized notions of solutions. For differential equations, 
[S20] establishes the connection between the generalized 
notion of solution in [S26], expressed in terms of small state 
perturbations, and the generalized notion of solution given in 
[S28], expressed in terms of set-valued dynamics. The set-val-
ued dynamics arise when a discontinuous right-hand side of a 
differential, or difference, equation is converted into an inclu-
sion. The resulting system is the regularization of the original 
system, that is, it is a regularized system. 

The conversion of a differential, or difference, equation 
with a discontinuous right-hand side to an inclusion is done 
by considering a closure of the graph of the discontinuous 
right-hand side and, in the differential equation case, by tak-
ing the convex hull of the values of the right-hand side. For 
an illustration, see Figure S8. The price paid for such a con-
version is the introduction of additional solutions, some of 
which may not behave well. However, these extra solutions 
are meaningful since they arise from arbitrarily small state 
perturbations that converge to zero asymptotically. More-
over, asymptotic stability in the original, possibly discontinu-
ous, system is robust if and only if asymptotic stability holds 
for the regularized system. 

Anticipating that a similar result holds for hybrid systems 
and desiring robustness in asymptotically stable hybrid sys-
tems, we consider the stability properties of regularized sys-

tems. Following the lead of discontinuous 
continuous-time and discrete-time sys-
tems, we convert discontinuous flow and 
jump equations to inclusions. Interpreting 
these inclusions as closure operations 
on the discontinuous flow map and jump 
map as Figure S8 indicates, we also take 
the closures of the flow and jump sets. 
As for continuous- and discrete-time sys-
tems, these operations may introduce 
new solutions. However, the regularized 
hybrid system satisfies the Basic As-
sumptions, and therefore, the results of 
the main text are applicable. In particular, 
if the regularized system has an asymp-
totically stable compact set A, then A 
is robustly asymptotically stable for the 
regularized system, and consequently, A 
is robustly asymptotically stable for the 
original system. 

Example S6: A Frictionless Ball 
and Two Rooms Separated by 
a Zero-Width Wall 
Consider a particle that moves, with no 
friction, in one of two rooms separated by 

Robustness and Generalized Solutions

f (x)

x x0

1

2

x x

(a)

F1(x)

0

1

2

(b)

xx

F2(x)

0

1

2

(c)

FIGURE S8 Regularization of a discontinuous function. (a) The function f : R S R  has a 
discontinuity at x5 x * . (b) The set-valued mapping F1 : R SS R  is the mapping whose 
graph is the closure of the graph of f . Therefore, F1 1x* 2  is the set 51, 26 . (c) The set-
valued mapping F2 : R SS R  is the mapping obtained by taking the convex hull of the 
values of the mapping in (b), at each x [ R . Therefore, F2 1x* 2  is the interval 31, 2 4 . 
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a thin wall. A hybrid system describing this situation has the 
state variable x5 1j, q 2 [ R2 and data 

       C5 ( 321, 1 4\506 ) 3 521, 16, 
 F(x ) 5 (q, 0 )  for  all x [ C, 
      D5 5 (21, 21 ) 6  h  ( 506 3 521, 16 )  h  5 (1, 1 ) 6, 
G(x ) 5 (j, 2q )  for  all x [ D .

 

That is, the particle, whose position is denoted by j  and veloc-
ity by q , moves with speed one in the interval 321, 0 4  or 30, 1 4,  
and experiences a reversal of the velocity when at any of the 
boundary points: 21, 0, or 1. 

Each of the sets 321, 0 4 3 521, 16  and 30, 1 4 3 521, 16  is 
forward invariant. (When the solution definition is modified so 
that multiple jumps at the same ordinary time instant are not al-
lowed and the flow constraint is relaxed to x 1 t, j 2 [ C  for all t  in 
the interior of Ij , each maximal solution is complete and its time 
domain is unbounded in the ordinary time direction.) However, 
this forward invariance behavior is not robust, even approxi-
mately, to an arbitrarily small inflation of the set C . In particular, 
when C  is changed to C5 321, 1 4 3 521, 16 , there exist solu-
tions starting from x5 11, 21 2  that reach x5 121, 21 2  in two 
time units. 

At least two ways can be used to induce the desired be-
havior while using closed flow and jump sets. One natural ap-
proach can be interpreted as thickening the wall between the 
two rooms. In particular, letting e [ 10, 1 2 , the data 

       C5 ( 321, 1 4\ (2e, e) ) 3 521, 16, 
 F(x ) 5 (q, 0 )  for  all x [ C, 
      D5 5 (21, 21 ) 6  h  5 (2e, 1 ) 6  h  5 (e, 21 ) 6  h  5 (1, 1 ) 6, 
G(x ) 5 (j, 2q )  for  all x [ D, 

 

results in solutions, as defi ned in the main text, rendering each 
of the sets 321, 2e 4 3 521, 16  and 3e, 1 4 3 521, 16  robustly 
forward invariant. 

When we insist on a wall of zero width, an extra state vari-
able should be added that gives the system information about 
how it arrived at the point 10, q 2 , whether from the room on the 
left or the one on the right. For example, we can consider the 
hybrid system with state 1j, q, r 2 [ R3 with data 

      C5 5 1j, q, r 2 [ 321, 1 4 3 521, 16 3 521, 16  : jr $ 06, 
 F 1x 2 5 1q, 0, 0 2  for  all x [ C, 

      D5 5 121, 21, 21 2 6  h  5 11, 1, 1 2 6
                 h  5 10, 1, 21 2 6  h  5 10, 21, 1 2 6, 
 G 1x 2 5 1j, 2q, r 2  for  all x [ D.

 

The hybrid system with this data is such that the set C  is for-
ward invariant. In particular, since r  is constant and belongs to 
the set 521, 16 , the state j  cannot change sign. !

The next example is discussed in [14]. 

Example S7: Asymptotic Stability 
Without Robustness 
Consider the hybrid system with data 

 C5 30, 1 4, F(x ) 5 2 x   for  all  x [ C, 
 D5 (1, 2 4,  G(x ) 5 1   for  all x [ D.

Solutions that start in 11, 2 4  jump to one and then, not being 
in the jump set D , fl ow according to the differential equation 
x# 5 2 x  toward the origin. The origin is thus globally asymp-
totically stable. But notice that when the jump map is replaced 
by G 1x 2 5 11 e , where e . 0, the point x5 11 e  is an equilib-
rium. In this sense, the global asymptotic stability of the origin 
is not robust. This lack of robustness can be seen in the regu-
larized system 1C, F, D, G 2 , which exhibits a countable num-
ber of solutions from the initial condition x5 1. These solutions 
remain at the value 1 for n  jumps, where n  is any nonnegative 
integer, and then fl ow toward the origin. One additional solu-
tion remains at one through an infi nite number of jumps. This 
behavior is depicted in Figure S9.

Example S8: Robust Asymptotic Stability
Consider the hybrid system with state x5 1j, q 2 [ R2, data 

 C  J 5 (j, q ) [ R 3 52 1, 16   : 2jq $ 2 16,
 F(j, q )  J c 2 j1 q

0
d    for  all (j, q ) [ C,

 D  J 5 (j, q ) [ R 3 52 1, 16  : 2jq , 2 16,
 G 1j, q 2  J c j

2q
d    for  all 1j, q 2 [ D.  

This system can be associated with a hybrid control algorithm 
for the continuous-time, linear system 

#
j
#
5 u , which uses an 

internal state q [ 521, 16  and aims to globally asymptotically 
stabilize the two point set A J 5 121, 21 2 , 11, 1 2 6 . This set 
is globally asymptotically stable since A  is contained in C , 
the fl ow stabilizes the point j 5 q , A  is disjoint from D , the 
quantity 2jq  increases along fl ows when it has the value 2 1, 
and jumps from D  are mapped to points in C . Note, however, 
that the jump set D  is not closed. Consider the effect of clos-
ing D . For the hybrid system with data 1C, F, D, G 2 , solutions 
starting from points where 2x1x2521 are no longer unique. 
From such points, fl owing is possible, as is a single jump fol-
lowed by fl ow. Nevertheless, the set A  is still globally asymp-
totically stable for 1C, F, D, G 2 . Thus, the asymptotic stability 
of A  in the original system is robust. The lack of unique solu-
tions in the regularized system can be associated with the fact 
that very different solutions arise when starting from 2jq5 2 1 
and  considering arbitrarily small measurement noise on the 
state j  in the closed-loop control system. !
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Theorem 14 [26, Thm. 6.5], [14, Prop. 7.3]
For a hybrid system H satisfying the Basic Assumptions, 
if the compact set A is pre-asymptotically stable with 
basin of pre-attraction given by BA then, for each func-
tion v that is a proper indicator for A on BA, there exists 
b [ KL such that each solution x starting in BA satisfies 
v 1x 1t, j 2 2 # b 1v 1x 10, 0 2 2 , t1 j 2  for all 1t, j 2 [ dom x. 

Theorem 14 contains the result in Theorem 13 that 
excursions away from and convergence toward a pre-
asymptotically stable compact set are uniform over com-
pact subsets of the basin of pre-attraction. In other words, 
pre-asymptotic stability for compact sets is equivalent 
to uniform pre-asymptotic stability, which sometimes is 
called KL-stability. Thus, when we provide sufficient con-
ditions for pre-asymptotic stability, we in fact give suffi-
cient conditions for KL-stability. 

When discussing global pre-asymptotic stability, where 
BA5R

n, we can use v 1x 2 5 |x|A. Thus, for global pre-
asymptotic stability, the bound in Theorem 14 becomes 
|x 1t, j 2|A # b 1|x 10, 0 2|A, t1 j 2  for all 1t, j 2 [ dom x. 
When v 1x 2 5 |x|A and b(s, r ) 5gs exp(2lr )  for some 
positive real numbers g and l, the set A is globally pre-
exponentially stable. 

Robustness
A feature of hybrid systems satisfying the Basic Assump-
tions is that pre-asymptotic stability is robust. 

One way to characterize the robustness of pre-asymp-
totic stability of a compact set A is to study the effect of 
state-dependent perturbations on the hybrid system data 

and show that, when the perturbations are small enough, 
the pre-asymptotic stability of A and the basin of pre-
attraction are preserved, as in Theorem 15. Typically, 
these state-dependent perturbations must decrease in size 
as the state approaches the pre-asymptotically stable set 
and also as the state approaches the boundary of the basin 
of pre-attraction. 

Another way to characterize robustness is to consider 
constant perturbation levels and show that these pertur-
bations lead to “practical” pre-asymptotic stability from 
arbitrarily large subsets of the basin of attraction, as in 
Theorem 17. 

In some cases the nominal system can tolerate state-
dependent perturbations that grow without bound when 
the state grows unbounded. These systems are closely re-
lated to hybrid systems having inputs and possessing the 
input-to-state stability (ISS) property [76]. ISS for hybrid dy-
namical systems is studied in [13]. 

For a given hybrid system H with data 1C, F, D, G 2  and a 
continuous function s  : Rn S R$0, we define the s-pertur-
bation Hs of H through the data 

 Cs J 5x : (x1s(x )B ) d C 2 [6,  (16)

 Fs(x ) J conF( (x1s(x )B ) d C ) 1s(x )B  

 for all x [ Cs,  (17)

 Ds J 5x  : (x1s(x )B ) d D 2 [6,  (18)

 Gs 1x 2 J 5v : v [ g1s 1g 2B,
 g [ G 1 1x1s 1x 2B 2  x  D 2 6 
 for all x [ Ds. (19)

A mathematical description of the phenomenon displayed in 
examples S6 and S7 is summarized as follows. Consider a hybrid 
system for which the data 1C, f, D, g 2  do not meet all of the Basic 
Assumptions. That is, the flow set C  is possibly not closed, the flow 
map f : C S Rn  is possibly not continuous, the jump set D  is possibly 
not closed, and the jump map g : D S Rn  is possibly not continuous. 
Single-valued mappings f  and g  are considered here for simplicity; a 
more general result involving set-valued mappings is possible. 

We consider two notions of generalized solutions to hy-
brid systems. One notion uses a hybrid system with the data 
1C, F, D, G 2 , which is obtained from the data 1C, f, D, g 2  by 
taking the closures of C  and D  and defining 

 F(x ) 5 t
d.0

con f ( (x1dB) d C)     for  all  x [ C,   (S6) 

 G(x ) 5 t
d.0

g ( (x1dB) d D)     for  all  x [ D.  (S7) 

The mapping G  defi ned in (S7) is the mapping whose graph is the 
closure of the graph of the function g . When the function f  is locally 
bounded, the mapping F  in (S6) is obtained by fi rst considering 
the closure of the graph of f  and then taking the pointwise convex 
hull. Figure S8 illustrates these two constructions. An alternative 
interpretation of 1C, F, D, G 2  is that it represents the smallest set 
of data that meets the Basic Assumptions and contains the data 
1C, f, D, g 2 . The other notion of generalized solutions considers 
the effects of vanishing perturbations on the state. More precisely, it 
considers the graphical limits of sequences of solutions generated 
with state perturbations, as the perturbation size decreases to zero. 
The two notions of  generalized solutions turn out to be equivalent, 
as the following result states. 

]] ] xx−1 0 x∈

C = [0, 1] D = (1, 2]

1 2

FIGURE S9 The effect of state perturbations in Example S7 show-
ing that the global asymptotic stability of the origin is not robust. 
The solution x  starts in 12`, 1 2  and flows according to the differ-
ential equation x# 52x  toward the origin. The solution xe  starts at 
xe 10, 0 2 5 1 and is obtained under the presence of a perturbation 
e  of size e . The perturbation is such that xe 1 t, j 2 1 e 1 t, j 2 [ D  for 
all 1 t, j 2 [ dom xe . Hence, as denoted with dotted line, the solu-
tion xe  jumps from 1 to 1 infinitely many times, indicating that the 
origin is not robustly asymptotically stable to small perturbations.
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These definitions match the definitions (8)–(11) with 
d 5 1. Figure 15 illustrates the idea behind perturbations of 
the sets C and D. Note that C ( Cs, D ( Ds, F 1x 2 ( Fs 1x 2  for 
all x [ C and G 1x 2 ( Gs 1x 2  for all x [ D. Since the data of 
Hs contain the data of H, the solutions of H are also solu-
tions to Hs. On the other hand, Hs typically exhibits solu-
tions that are not solutions to H. 

The extra solutions of Hs can be linked to solutions 
that arise due to parameter variations, measurement 
noise in control systems, and external disturbances. For 
a link to solutions that arise from parameter variations, 
see Example 18. For the case of external disturbances 
d that are bounded in norm by a value M . 0, observe 
that the solutions of x# 5 F 1x 2 1 d are contained in the 
set of solutions of x# [ F 1x 2 1MB and, taking s 1x 2 5M 
for all x, F 1x 2 1MB ( Fs 1x 2 . The same link between ex-
ternal disturbances and system perturbations holds for 
x1 5G 1x 2 1 d. 

Now consider the case of measurement noise in a hybrid 
control system of the form discussed in the section “Hybrid 
Controllers for Nonlinear Systems, ” given as 

 
xp
#
5 fp (xp, kc(xp1 e, xc) )

xc
#
5 fc(xp1 e, xc) r  (xp1 e, xc) [ C,   (20) 

 
x1p 5 xp

x1c [ Gc(xp1 e, xc) r  (xp1 e, xc) [ D,   (21) 

where e represents measurement noise, assumed to be 
bounded in norm by M . 0. When the function fp is con-

tinuous, there exists a continuous function s| such that 
s| 10, x 2 5 0 for all x [ Rn1m and, for all e [ Rn satisfying 
|e| # M and all x5 1xp, xc 2 [ Rn1m, 

 |fp 1xp, kc 1xp1 e, xc 2 2 2 fp 1xp1 e, kc 1xp1 e, xc 2 2|
                           #  s| (M, x ) .  

In this case, the hybrid control system (20)–(21) can be writ-
ten as 

 
x# 5 F(x1 d1 ) 1 d2, x1 d1 [ C, 

x1 [ G (x1 d1 ) ,            x1 d1 [ D, 
 

where F and G are defined in (6) and (7), respectively, 
|d1| # M, and |d2| #  s| 1M, x 2 . Therefore, the solutions of 
the hybrid control system (20)–(21) are contained in the solu-
tions of 1Cs, Fs, Ds, Gs 2  where s(x )  :5max5M,  s| (M, x ) 6  
for all x [ Rn1m. 

The mappings Fs and Gs may be set valued at points 
x where s 1x 2 . 0, even when F and G are single-valued 
mappings. Also, when x [ C d D and s 1x 2 . 0, the point 
x belongs to the interior of both Cs and Ds. Thus, at such 
points, the system Hs has solutions that initially flow and 
also solutions that initially jump. 

For a hybrid system H having a compact set A that is pre-
asymptotically stable with basin of pre-attraction BA, Theo-
rem 15 below asserts the existence of a continuous function 
s that is positive on BA\A so that, for the hybrid system Hs, 
the compact set A is pre-asymptotically stable with basin 
of pre-attraction BA. In other words, pre-asymptotic stability

Theorem S9 [S29, Thm. 3.1, Rem. 5.4]
Suppose that the functions f, g : Rn S Rn  are locally bounded 
on Rn . Let x : dom x S Rn  be a hybrid arc such that dom x  is 
compact. Then, the following statements are equivalent: 

xa)  is a solution to the hybrid system 1C, F, D, G 2 ; 
there exist hybrid arcs b) xi  and functions ei  

: dom xi S Rn, 
i [ 51, 2, c6 , such that limiS` xi 10, 0 2 5 x 10, 0 2 ,
the sequence 5xi6 i51

`  converges graphically to x , 
limiS` sup1t, j2[dom xi

 |ei 1 t, j 2 |5 0 , and, for ever y 
i [ 51, 2, c6  the following hold: 
– For each fixed j , t Aei 

1 t, j 2  is measurable. 
–  For all j [ N such that Ii, j  J 5t : 1 t, j 2 [ dom xi6 has 

nonempty interior, 

 x
#
i  
1 t, j 2  5  f 1xi 1 t, j 2 1 ei 1 t, j 2 2     for almost all t [ Ii, j, 

 xi 1 t, j 2 1 ei 1 t, j 2  [  C     for almost all t [ 3minIi, j, supIi, j 2 . 
– For all 1 t, j 2 [ dom xi  such that 1 t, j1 1 2 [ dom xi , 

 xi 
1 t, j1 1 2 5 gi 1xi 1 t, j 2 1 ei 1 t, j 2 2 ,

 xi 1 t, j 2 1 ei 1 t, j 2 [ D. 

A result corresponding to Theorem S9 is given in [S25, 
Thm. 3.2] for hybrid systems for which the perturbations ei  
enter the closed-loop system through feedback, and do not 
affect all of the dynamics. This result considers equations 
x# i5 f r 1xi, uc 2 , xi

1 5 g r 1xi, ud 2  in (b) above with state-feedback 
laws uc5 kc 1xi1 ei 2  and ud5 kd 1xi1 ei 2 , and poses stronger 
continuity assumptions on the functions f r  and g r, but allows 
the functions kc  and kd  to be discontinuous. 
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Motivating Stability of Sets

Intuition built on the theory of linear systems conditions us to 
think of asymptotic stability as a property of an equilibrium 

point. However, it is also natural to consider the asymptotic 
stability of a set. Conceptually, set stability places many ap-
parently different phenomena under one umbrella. Set stability 
is needed for systems that include timers, counters, and other 
discrete states that do not converge. In addition, set stability is 
helpful for characterizing systems that exhibit complicated as-
ymptotic behavior. 

Asymptotic stability of a set is defined in the main text. 
Roughly speaking, a set is globally asymptotically stable if each 
solution that starts close to the set remains close to the set, 
each solution is bounded, and each solution with an unbounded 
time domain converges to the set. 

To illustrate set stability, we consider a linear, sampled-data 
control system. We group the plant state, hold state, and con-
troller state into the state j [ Rn . Between sampling events, 
the state j  evolves according to a closed-loop, linear differen-
tial equation 

.
j
#
5 Fj  for some matrix F . For each state com-

ponent that remains constant between sampling events, the 
corresponding row of F  is filled with zeros. At sampling events, 
the state j  is updated according to the equation j1 5 Jj  for 
some matrix J . For each state component that does not change 
at sampling events, the corresponding row of J  is filled with 
zeros except for a one in the appropriate column. The interac-
tion between the continuous evolution 

.
j
#
5 F j  and the discrete 

evolution j1 5 J j  is scheduled by a timer state t  that evolves 
 according to t# 5 1 between sampling events and is reset to zero 
at sampling events. Sampling events occur whenever the timer 
state reaches the value T . 0, which denotes the sampling pe-
riod of the system. Thus, the sampled-data control system can 
be written as a hybrid system with state x5 1j, t 2  satisfying 

 
.
j
#
5 Fj

t
#
5 1

f   x [ C J Rn 3 30, T 4, 
 

j1 5 Jj

t1 5 0
f   x [ D J Rn 3 5T6. 

The matrices F  and J  are designed so that j  converges to 
zero. However, the timer state t  does not converge. Letting 
t0 [ 30, T 4  denote the initial value of t , the solution satis-
fies t ( t, j ) 5 t2 (  jT2t0)  for all positive integers j  and all 
t [ 3 jT2t0, ( j1 1 )T2t0 4.  Consequently, t  revisits every point 
in the interval 30, T 4 . For this reason, the hybrid system does 
not possess an asymptotically stable equilibrium point. On the 
other hand, the compact set A J 506 3 30, T 4  is globally 

 asymptotically stable. In particular, each solution to the hybrid 
system converges to the compact set A . This property cap-
tures the fact that the state j  converges to zero. 

As another example of set stability, consider a system switch-
ing among a family of asymptotically stable linear systems under 
an average dwell-time constraint, as discussed in “Switching 
Systems.” The corresponding hybrid system has the form 

 
j
#
5 F q  j

q
#
5 0

t
#
[ 30, d 4 6  C J Rn 3 Q 3 30, N 4, 

 
j1 5 j

q1 [ Q

t1 5 t2 1
6  D J Rn 3 Q 3 31, N 4,   

where Q ( R  is compact and the eigenvalues of Fq  have negative 
real part for each q [ Q . When the average dwell-time param-
eter d . 0 is small enough, the compact set 506 3 Q 3 30, N 4  
is asymptotically stable. In particular, the state j  converges to 
zero. The states q  and t  may or may not converge, depending 
on the particular solution considered. 

In some situations, hybrid systems admit complicated, 
 asymptotically stable compact sets that can be characterized 
through the concept of an V -limit set [S33]. V -limit sets are 
exploited for nonlinear control design, for example for nonlin-
ear output regulation [S30]. Results pertaining to V -limit sets 
for hybrid systems are given in [S32] and [S31]. In [S32, Cor. 
3] and [S31, Thm. 1], conditions are given under which the V
-limit set is an asymptotically stable compact set. In particular, 
suppose there exist T . 0 and compact sets K0 and KT , with 
KT  contained in the interior of K0, such that each solution x  
starting in K0 is bounded and, for all 1 t, j 2 [ dom x  satisfying 
t1 j $ T , we have x 1 t, j 2 [ KT . Then, either the V -limit set 
from K0 is empty or it is the smallest compact, asymptotically 
stable set contained in KT . 
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and the corresponding basin of pre-attraction are preserved 
under the perturbation s. This result provides a key step in 
the proof of the existence of a smooth Lyapunov function for 
a hybrid system with a pre-asymptotically stable compact set. 
For more information, see “Converse Lyapunov Theorems.”

Theorem 15 [14, Theorem 7.9]
For the hybrid system H satisfying the Basic Assumptions, 
suppose that a compact set A ( Rn is pre-asymptotically 
stable with basin of pre-attraction BA. Then there exists a 
continuous function s  : Rn S R$0 satisfying s 1x 2 . 0 for 
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all x [ BA\A such that, for the hybrid system Hs, the com-
pact set A is pre-asymptotically stable with basin of pre-
attraction BA. 

The idea in the next example is related to Lebesgue sam-
pling presented in [3] and to the ideas in [80] used for con-
trol in the presence of communication or power constraints. 
The idea exploits the robustness described in Theorem 15, 
but for the special case of classical systems, to explain the 
asymptotic stability induced by a particular hybrid control 
strategy. 

Example 16: Control Through 
Event-Based Hold Updates
Consider the continuous-time, nonlinear control system 
j
#
5 f(j, u) , 1j, u 2 [ Rn 3 Rm, with the continuous state 

feedback k  : Rn S Rm  that stabilizes a compact set A with 
basin of attraction BA ( Rn. Suppose the feedback is imple-
mented by keeping the control value constant until an event 
triggers a change in the control value. The trigger comes 

from sensing that the state deviates from the state used to 
compute the control value by an amount that is significant 
enough to warrant a change in the input value. This amount 
is determined by a continuous function s1 : Rn S R$0 re-
lated to the function s in Theorem 15. 

The closed-loop system can be modeled as a hybrid sys-
tem with the data 

 C J 5x [ R2n  : |x12 x2| # s1 (x1 ) 6, 
 F 1x 2 J c f (x1, k(x2 

))
0

d  for all x [ C, 

 D J 5x [ R2n  :|x12 x2| $ s1 (x1 ) 6, 
 G 1x 2 J cx1

x1
d   for all x [ D,    

where s1 is specified as follows. Let s  :  Rn S R$0 satisfy 
the conditions of Theorem 15 for the (classical) system 

Why “Pre”-Asymptotic Stability?

In engineered hybrid systems, it is reasonable to insist that 
each maximal solution that starts suffi ciently near an asymp-

totically stable set has an unbounded time domain. Recall that 
a solution with an unbounded time domain is called a complete 
solution. However, a complete solution does not necessarily 
have a time domain that is unbounded in the t  direction; see 
“Zeno Solutions” for more information on systems with complete 
solutions having domains that are bounded in the t  direction. 

The definition of global asymptotic stability used in the main 
text, which we call global pre-asymptotic stability, does not stip-
ulate completeness of each maximal solution. A compact set A  
is globally pre-asymptotically stable if each solution that starts 
close to A  remains close to A , each solution is bounded, and 
each complete solution converges to A . Thus, solutions do not 
need to be complete, but complete solutions must converge to 
A . A set is globally asymptotically stable when it is globally pre-
asymptotically stable and all solutions are complete. 

Completeness of solutions is not required in the pre-asymp-
totic stability definition as a matter of convenience. For example, 
since completeness does not need to be verified, sufficient con-
ditions for pre-asymptotic stability are simpler than they would 
be otherwise. When completeness is important, it can be es-
tablished by verifying pre-asymptotic stability together with local 
existence of solutions. 

Conceptually, pre-asymptotic stability offers advantages 
over asymptotic stability. On the one hand, pre-asymptotic sta-
bility is all that is needed for the existence of smooth Lyapunov 
functions. See “Converse Lyapunov Theorems” for more details. 
Pre-asymptotic stability also makes it easy to express local pre-
asymptotic stability in terms of global pre-asymptotic stability, as 
in the next theorem [14], by considering a reduced system that is 
contained in the original system. The system 1C(, F(, D(, G( 2  

is contained in the system 1C, F, D, G 2  if C( ( C , F( 1x 2 ( F 1x 2  
for all x [ C( , D( ( D  and G( 1x 2 ( G 1x 2  for all x [ D( . Com-
pleteness of solutions for 1C, F, D, G 2  does not guarantee com-
pleteness of solutions for 1C(, F(, D(, G( 2 . 
Theorem S10
Suppose that, for the hybrid system 1C, F, D, G 2 , the compact 
set A  is pre-asymptotically stable with basin of pre-attraction 
BA . Then, for each hybrid system 1C(, F(, D(, G( 2  that is con-
tained in 1C, F, D, G 2 , the set A  is pre-asymptotically stable 
with basin of pre-attraction containing BA . In particular, if there 
exists a compact set K ( BA  such that C(cD( ( K , then the set 
A  is globally pre-asymptotically stable for 1C(, F(, D(, G( 2 .

One particular application of Theorem S10 says that if the 
 hybrid system H  has the compact set A  pre-asymptotically 
stable, then so does the hybrid system that uses only the contin-
uous-time data 1C, F 2  and so does the hybrid system that uses 
only the discrete-time data 1D, G 2 . The converse of this asser-
tion holds only when the separate systems admit a common 
 Lyapunov function. See “Converse Lyapunov Theorems” for 
more details. 

It is reasonable to question the utility of studying systems for 
which no solutions are complete. One motivation comes from 
the results discussed in the section “Hybrid Feedback Control 
Based on Limited Events”, where it is established that pre-
asymptotic stability of a compact set for a system with events 
inhibited implies pre-asymptotic stability of the compact set for 
the system with events allowed as long as events are not too 
frequent. In this statement, pre-asymptotic stability is useful 
since the system with inhibited events may not exhibit complete 
solutions, whereas the system with events allowed may exhibit 
complete solutions. 
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j
#
5  F| 1j 2 J f 1j, k 1j 2 2 . Take s1 : Rn S R$0 to be continu-

ous, positive on BA\A , zero on A, such that s1 1x1 2 # s 1x1 2  
for all x1 [ BA, and 

 |f 1x1, k 1x2 2 2 2 f 1x2, k 1x2 2 2| # s 1x1 2
            for all x1 [ BA,  x2 [ x11s1 1x1 2B. 

For all x [ C, it follows that 

f(x1, k(x2 ) ) 5 f(x2, k(x2 ) ) 1 f(x1, k(x2 ) ) 2 f(x2, k(x2 ) )  

 [ con F| 1x11s 1x1 2B 2 1s 1x1 2B .

The jumps do not change x1. Thus, according to Theorem 
15, x1 stays close to A and converges to A whenever the 
solution has a hybrid time domain that is unbounded in 
the t direction. For such solutions, x2 also stays close to 
A and converges to A. For solutions with a hybrid time 
 domain bounded in the t direction, notice that when x [ D 
but x1 o A, it follows that G 1x 2 o D. Thus, the only way 
that a solution can have a domain bounded in the t direc-
tion is if x1 converges to A. Whenever x1 converges to A, so 

does x2. It thus follows for the closed-loop system that the 
set A 3 A is asymptotically stable with basin of attraction 
BA 3 Rn. ! 

For problems where the size of the perturbations does 
not become arbitrarily small as the state approaches the set 
A or the boundary of the basin of pre-attraction, the follow-
ing theorem is relevant. 

Theorem 17 [26, Theorem 6.6]
For a hybrid system H satisfying the Basic Assump-
tions, suppose that a compact set A is pre-asymptotical-
ly stable with basin of pre-attraction BA. In particular, 
suppose that there exist b [ KL and a proper indica-
tor function v  for A on BA such that, for all solutions 
starting in BA, 

 v 1x 1t, j 2 2 # b 1v 1x 10, 0 2 2 , t1 j 2   for all 1t, j 2 [ dom x.

Then, for each e . 0 and compact set K ( BA, there exists 
d . 0 such that, with the function s defined as s 1x 2 5d for 
all x [ Rn, each solution to the hybrid system Hs starting 
in K satisfies 

Converse Lyapunov Theorems

Despite the Lyapunov-based suffi cient conditions for pre-
 asymptotic stability given by Theorem 32 and [6, 19, 90], it 

is a mistake to conclude that Lyapunov functions do not exist for 
asymptotically stable hybrid systems. Early results on the exis-
tence of Lyapunov functions for hybrid systems can be found in 
[90]. More recently, [14] establishes that a hybrid system with a 
pre-asymptotically stable compact set admits a smooth (C ` )  
Lyapunov function as long as the hybrid system satisfi es the 
Basic Assumptions. Converse theorems of this type are typical-
ly established theoretically, constructing smooth Lyapunov func-
tions from the system’s solutions, which are not usually available 
explicitly. Thus, converse theorems are of limited help in con-
structing Lyapunov functions. Nevertheless, converse theorems 
justify searching for Lyapunov functions that can be constructed 
without knowledge of the system’s trajectories. 

Converse theorems also play a role in establishing stabili-
zation results for nonlinear control systems. For example, early 
results [S40, Theorem 4] and [S34, Theorem 2.1] on backstep-
ping, that is, proving that smooth stabilizability is not destroyed 
by adding an integrator, construct a stabilizing feedback by 
using the gradient of a Lyapunov function whose existence is 
guaranteed by a converse theorem. Also, the result in [76] show-
ing that smooth stabilization implies coprime factorization, that 
is, input-to-state stabilization with respect to disturbances that 
add to the control variable, exploits a converse Lyapunov theo-
rem. Similar results apply for hybrid systems. For example, in 
[14] converse theorems are developed and used to show that 
smooth stabilization with logic-based feedback implies smooth, 

logic-based input-to-state stabilization with respect to matched 
disturbances. Converse Lyapunov theorems can also be used 
to establish various forms of robustness, including robustness 
to small, persistent perturbations. 

The converse theorems for hybrid systems given in [14] draw 
heavily from the literature on converse theorems for continuous-
time and discrete-time systems. We recount some of the major 
milestones in the development of converse Lyapunov theorems 
for time-invariant, finite-dimensional dynamical systems having 
compact, asymptotically stable sets. 

In his 1892 Ph.D. dissertation, in particular [S38, Section 20, 
Theorem II], Lyapunov provides the first contribution to converse 
theorems, where he addresses asymptotically stable linear sys-
tems. Generalizations of this result to nonlinear systems did not 
appear until the 1940s and 1950s. For example, the 1949 paper 
[S39] provides a converse Lyapunov theorem for time-invariant, 
continuously differentiable systems having a locally asymptoti-
cally stable equilibrium. 

Essentially all of the converse Lyapunov theorems until [42] 
pertain only to dynamical systems with unique solutions. In con-
trast, [42] establishes the first converse Lyapunov theorems for 
differential equations with continuous right-hand side without as-
suming uniqueness of solutions. This extension is significant in 
anticipation of hybrid systems where nonuniqueness of  solutions 
is not uncommon. The contribution of [42] to the development of 
converse theorems is immense; it appears to be the first work 
that relies explicitly on robustness and advanced smoothing tech-
niques to establish the existence of smooth Lyapunov functions. 
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 v 1x 1t, j 2 2 # b 1v 1x 10, 0 2 2 , t1 j 2 1 e   for all 1 t, j 2 [ dom x. 
 (22) 

The property concluded in Theorem 17 is referred to as 
either semiglobal, practical robustness to persistent pertur-
bations or semiglobal, practical pre-asymptotic stability. 
“Semiglobal” refers to the fact that the bound (22) can be 
achieved from an arbitrary, compact subset of the basin of 
pre-attraction. “Practical” refers to the fact that the value of 
e in (22) can be made arbitrarily small. 

We now discuss two applications of Theorem 17. An 
additional application can be found in “Zeno Solutions,” 
where temporal regularization is discussed. 

Example 18: Hybrid Control with Slowly 
Varying Parameters 
Consider the parameterized nonlinear control system 
j
#
5 F1 (j, p, u) , j [ Rn1, where, for now, p represents a 

constant parameter taking values in a compact set P ( Rn2. 
Consider also a dynamic, hybrid controller with state 
h [ Rn3 perhaps consisting of timers, discrete states, and 
continuous states, designed under the assumption that 

p is constant. The resulting hybrid closed-loop system 
with state x5 1j, p, h 2  has the data 1C, F, D, G 2 , where 
x# [ F 1x 2  implies p# 5 0, x1 [ G 1x 2  implies p1 5 p, and 
C h D ( Rn1 3 P 3 Rn3 . Moreover, suppose that the com-
pact set A ( Rn1 3 P 3 Rn3 is asymptotically stable. We now 
consider what happens when p can vary, slowly during 
flows and with small changes during jumps. Such varia-
tions are captured within the modeling of perturbations 
in (16)–(19) with s(x ) ; s# . 0 since x# [ Fs 1x 2  implies 
p# [ s#B  and x1 [ Gs 1x 2  implies p1 [ p1s#B . Hence, 
we conclude with the help of Theorem 17 that the pre-
asymptotic stability of the compact set A is semiglobally, 
practically robust to small parameter variations. Similar 
results for differential equations are pointed out in [40] 
using results from [37]. ! 

The following corollary of Theorem 17 is a reduction 
result that is related to results for continuous-and discrete-
time nonlinear systems in [38] and [28], respectively. 

Corollary 19
Consider a hybrid system H5 1C, F, D, G 2   satisfying the 
Basic Assumptions. If the compact set A1 is  globally 

The converse theorem of [S41] is noteworthy for its smoothing 
technique, which is adopted in more recent converse results. We 
emphasize that continuously differentiable Lyapunov functions are 
needed to establish robustness in a straightforward manner, yet 
establishing the existence of continuously differentiable Lyapunov 
functions is challenging for systems with nonunique solutions. 

Continuing down the path of systems with nonunique solutions, 
in the context of the input-to-state stability property, the work in [S37] 
establishes a converse Lyapunov theorem for locally Lipschitz dif-
ferential inclusions, establishing smoothness of the Lyapunov func-
tion. This work is extended in [S36] to differential inclusions satisfy-
ing assumption (A2) of the Basic Assumptions with C5Rn. The 
approach of [S36] again emphasizes the fundamental link between 
robustness and smoothness of the Lyapunov function. 

The results in [14] draw heavily on earlier smoothing tech-
niques, especially the smoothing techniques of [S36] adapted 
to discrete-time inclusions, as in [S27]. Here we state a simple 
version of a converse Lyapunov theorem in [14]. 

Theorem S11 [14, Thm. 3.14]
For the hybrid system H5 (C, F, D, G)  satisfying the Basic 
Assumptions, if the compact set A  is globally pre-asymptoti-
cally stable, then there exist a C `  function V : Rn S R$0 and 
a1, a2 [ K`  such that 

 a1 1 |x|A 2 # V 1x 2 # a2 1 |x|A 2   for  all x [ Rn, 

and 

 
8=V 1x 2 , f 9 # 2 V 1x 2   for  all  x [ C,  f [ F 1x 2 , 
         V 1g 2 # V 1x 2

2
   for  all x [ D,  g [ G 1x 2 .

 

Extensions of this result to more general asymptotic stability 
notions are given in [S35]. A version for local pre-asymptotic 
stability is given in [14], which also specializes Theorem S11 
to the case of hybrid systems with discrete states and gives a 
Lyapunov-based proof of robustness to various sources of per-
turbations, including slowly varying parameters. 
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pre-asymptotically stable for H and the  compact 
set A2 ( A1 is globally pre-asymptotically stable for 
H|A1

J 1C d A1, F, D d A1, G d A1 2 , then A2 is globally 
pre-asymptotically stable for H. 

Corollary 19 follows from Theorem 17 since solutions that 
start close to A2 start close to A1 and thus stay close to A1. 
Thus the solutions of H are contained in a small perturbation 
of H|A1

. Moreover, these perturbations vanish with time since 
A1 is assumed to be globally pre-asymptotically stable. 

Corollary 19 can be applied to analyze cascaded systems 
[75]. For example, consider the classical system with state 
x5 1x1, x2 2  and dynamics 

 
x# 1 5 f1 (x1, x2 )
x# 2 5 f2 (x2 ) r 5 F(x ) ,  (23) 

where the functions f1 and f2 are continuous, the origin of 
x# 25 f2 1x2 2  is globally asymptotically stable, and the origin 
of x# 15 f1 1x1, 0 2  is globally asymptotically stable. For the 
system 

 x# 5 F 1x 2 ,  x [ C5MB 3 MB,  M . 0,  (24) 

it follows that the compact set A15MB 3 506 is globally 
pre-asymptotically stable and that the system x# 5 F 1x 2 , 
x [ C d A1 has the compact set A25 5 10, 0 2 6 globally pre-
asymptotically stable. We conclude from Corollary 19 that 
the origin of the system (24) is globally pre-asymptotically 
stable. This conclusion means that, for the original system 
(23), the origin is asymptotically stable. Moreover, since M 
is arbitrary in (24), the basin of attraction for the origin for 
the system (23) contains the set of initial conditions from 
which each solution of (23) is bounded. 

STABILITY ANALYSIS USING LYAPUNOV FUNCTIONS
Lyapunov functions are familiar to most control engineers. 
These functions provide a way of establishing asymptotic 
stability without having to construct the system’s solutions 
explicitly, a daunting task for almost anything other than a 
linear system. Sufficient Lyapunov conditions for asymp-
totic stability are well known for both continuous- and 
discrete-time systems. These conditions amount to finding 
a nonnegative-valued function that is strictly decreasing 
along solutions. In the case of a smooth Lyapunov function 
for a continuous-time system, the decrease condition can be 
verified from negative definiteness of the inner product of 
the Lyapunov function’s gradient and the vector field that 
generates solutions. The standard Lyapunov-based suffi-
cient conditions for asymptotic stability are covered in the 
version below for hybrid dynamical systems; see also [72, 
Cor. 7.7]. First, we give a definition. 

Given the hybrid system H with data 1C, F, D, G 2  and 
the compact set A ( Rn, the function V  :  dom V S R  is a 
 Lyapunov-function candidate for 1H, A 2  if i) V is continu-
ous and nonnegative on (C h D )\ A ( dom V , ii ) V is 

continuously differentiable on an open set O satisfying 
C\ A ( O ( dom V, and iii) 

 lim5xSA,  x[dom Vd (C h D)6V (x ) 5 0. 

Conditions i) and iii) hold when dom V contains AhChD, 
V is continuous and nonnegative on its domain, and 
V 1z 2 5 0 for all x [ A. These conditions are typical of 
Lyapunov-function candidates for discrete-time sys-
tems. Condition ii) holds when V is continuously differ-
entiable on an open set containing C\A , which is typical 
of Lyapunov-function candidates for continuous-time 
systems. We impose continuous differentiability for 
simplicity, but it is possible to work with less regular 
Lyapunov functions and their generalized derivatives. 
When x5 1j, q 2 [ Rn 3 Q, where Q is a discrete set, it is 
natural to define V only on Rn 3 Q. To satisfy condition 
ii), the definition of V can be extended to a neighborhood 
of Rn 3 Q, with V 1j, q 2 5V 1j, q0 2  for all q near q0 [ Q. 

We now state a hybrid Lyapunov theorem. 

Theorem 20
Consider the hybrid system H5 1C, F, D, G 2  satisfying the 
Basic Assumptions and the compact set A ( Rn satisfying 
G 1A d D 2 ( A. If there exists a Lyapunov-function candi-
date V for 1H, A 2  such that 

 
       8=V 1x 2 , f 9 , 0    for all x [ C\A, f [ F 1x 2 ,

V 1g 2 2V 1x 2 , 0    for all x [ D\A, g[ G 1x 2\A,  
   

then the set A is pre-asymptotically stable and the basin 
of pre-attraction contains every forward invariant, com-
pact set. 

A consequence of Theorem 20 is that the compact 
set A is globally pre-asymptotically stable if C h D  
is compact or the sublevel sets of V|dom V d  (C h D)  are 
compact. A sublevel set of V|dom V d  (C h D)  is the set 5x [ dom V d (C h D )  : V (x ) # c6 , where c $ 0. 

Theorem 20 encompasses classical Lyapunov theo-
rems, both for continuous- and discrete-time systems. For 
example, consider the case where F is a continuous func-
tion, and suppose there exist a continuously differentiable, 
positive semidefinite function V and a compact neighbor-
hood C of the origin such that 8=V 1x 2 , F 1x 2 9 , 0 for all 
x [ C\506 . According to Theorem 20, the origin of x# 5 F 1x 2 , 
x [ C, is globally pre-asymptotically stable. Then, since C 
contains a neighborhood of the origin, it follows that the 
origin is asymptotically stable for x# 5 F 1x 2 . This conclu-
sion parallels the conclusion of [39, Thm. 4.1]. Similarly, for 
the case where G is a continuous, single-valued mapping, 
if G 10 2 5 0 and there exist a continuous, positive semidefi-
nite function V and a compact neighborhood D of the ori-
gin such that V 1G 1x 2 2 , V 1x 2  for all x [ D\506 , then the 
origin of x1 5G 1x 2  is asymptotically stable. 

The following examples illustrate the use of Theorem 20. 
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Example 2 Revisited: Lyapunov Analysis 
Consider the hybrid model in Example 2. Note that g 10 2 5 0. 
Now consider the piecewise quadratic Lyapunov-function 
candidate 

 V 1x 2 5 µ
max52x1

2, x2
26,  for all x1 $ 0,  x2 $ 0, 

max5x1
2, 2x2

26,  for all x1 # 0,  x2 # 0, 
2x1

21 2x2
2,  for all x1 $ 0, x2 # 0, 

x1
21 x2

2,  for all x1 # 0, x2 $ 0, 

where dom V5R2. The function V is continuous on its 
domain, and the sublevel sets of V are compact. Define 
C(5 5x [ C : x2 # c6  where c [ 10, 3 2 , and note that 
x [ C(\506 implies that x1 $ x2. It follows that V is 
continuously differentiable on an open set containing 
C(\506. Then, through routine calculations, we obtain 8=V 1x 2 , f 1x 2 9 , 0 for all C(\A. Next define D(5 5x [ D :  
|x1| # d6  where d [ 10, "1/6 2 . Then, for x [ D(\506 
such that g 1x 2 2 0, we obtain V 1g 1x 2 2 # 2 12x1

2 2 2 # 
6d2x1

2 , x1
2 # V 1x 2 . These calculations and Theorem 20 

establish that the origin of the system 1C(, f, D(, g 2  is 
globally pre-asymptotically stable. Since there exists 
a neighborhood K of the origin such that C d K ( C( 
and D d K ( D(, the origin is pre-asymptotically sta-
ble for the system 1C, f, D, g 2 . Since C h D5R2, non-
trivial solutions exist from each initial point in C h D , 
and consequently, bounded maximal solutions are com-
plete. Thus, the origin is asymptotically stable for the sys-
tem 1C, f, D, g 2 . ! 

Example 3 Revisited: Lyapunov Analysis of 
the Bouncing Ball System 
For the hybrid bouncing ball model of Example 3, we estab-
lish global asymptotic stability of the origin using Theorem 
20. First note that g 10 2 5 0. Now consider the Lyapunov-
function candidate 

 V 1x 2 5 x21 kÅ
1
2

x2
21gx1 

where k ."2 111r 2/ 112r 2  and dom V5 5x [ R2 :  
(1/2) x2

21gx1 $ 06 . This choice for V is motivated by 
the ideas in [45]. We obtain 8=V 1x 2 , f 1x 2 95 2g , 0  for 
all  x [ C\506  and, since x [ D\506 implies x15 0 and 
x2 2 0, it follows that 

 

V 1g 1x 2 2 5 2rx21 kÅ
1
2
r2x2

2

                # ra11
k

"2
b|x2|

                , a2 11
k

"2
b|x2|  for  all  x [ D\506

                # V 1x 2.

 

It now follows from Theorem 20 that the origin is glob-
ally pre-asymptotically stable. Since the sublevel sets of 
V|dom V d  (C h D)  are compact, the origin is globally pre-
asymptotically stable. It also can be shown that nontrivial 
solutions exist from each point in C h D . See “Existence, 
Uniqueness, and Other Well-Posedness Issues.” Therefore, 
the origin is globally asymptotically stable. !

Example 9 Revisited: Lyapunov 
Analysis of a Planar System
For the system in Example 9, assume exp 1ap/v 2g , 1. 
Let a* satisfy ec J a*2a . 0 and ed J 12 exp
(2a*p/v )g 2 . 0. Then consider the Lyapunov-function 
candidate V 1x 2  J exp(2a* T (x ) )|x|2, where T is a con-
tinuously differentia ble function on an open set containing 
C\ 10, 0 2 6 and, for all x [ C, is equal to the time required to 
go from x to D. Equivalently, for x [ C, T 1x 2  is equal to v21 
times the angle of x in the counterclockwise direction with 
the angle equal to zero on the negative x2 -axis and equal 
to p on the positive x2 -axis. The function V is continuous 
and continuously differentiable on an open set containing 
C\5 10, 0 2 6. Moreover, the sublevel sets of V|dom Vd 1ChD2 are 
compact. The function T satisfies 8=T 1x 2 , f 1x 2 95 2 1 for all 
x [ C\5 (0, 0) 6 . Also note that 8=|x|2, f 1x 2 95 2a|x|2 for all 
x [ C. It follows that 

 8=V (x ) , f(x ) 9522a* V (x ) 1 2aV (x )  

 5 2 2ecV1x2 for all x [ C\5 10, 0 2 6.  
In addition, 

 V (g (x ) ) 5 exp(2a*p/v )g 2|x|2 # (12 ed )|x|2

  5 112 ed 2V 1x 2 for all x [ D.

It follows from Theorem 20 that the origin is globally as-
ymptotically stable. In fact, the origin is globally exponen-
tially stable since V 1x 1t, j 2 2 # exp 1 2l 1t1 j 2 2V 1x 10, 0 2 2 , 
where l5min52ec, 2 ln 112 ed 2 6, for all solutions x and all 1t, j 2 [ dom x, and |x|2 # V 1x 2 # exp 12a*p/v 2|x|2 for 
all x [ C h D . ! 

Example 21: A Bounded-Rate Hybrid System
This example is based on [36, Ex. 1]. Consider the hybrid 
system with data 1C, F, D, G 2 , where D5 506, G 10 2 5 0, 
C5R$0

3 , and 

 F5 con• f1 J £
100
2 90

1
§ ,    f2 J £

2 90
100
2 90

§ ,   f3 J £
1
2 90
100

§ ,  

  f4 J £
1

50
2 90

§ ,   f5  J £
2 90
50
1

§ s. 
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Consider the Lyapunov-function candidate V 1x 2 5 x11

1.5x21 x3, for which the sublevel sets of V|dom Vd 1ChD2 
are compact. It is easy to verify, for each of the vectors 
fi, i5 1, c, 5, that 8=V 1x 2 , fi9 , 0. Then it is a simple 
calculation to verify that 8=V (x ) , f  9 , 0 for all f [ F. It 
follows from Theorem 20 that the origin is globally pre-
asymptotically stable. In fact, the “pre” can be dropped 
since, for each initial point in C h D, there exists a non-
trivial solution, and consequently, all maximal solutions 
to the hybrid system are complete. Indeed, for each x 2 0 
on the boundary of C there exists f [ F along which 
flow in C is possible. In fact, for each x 2 0 there exists 
i [ 51, c, 56 such that fi [ TC (z )  for all z [ C near x. 
See “Existence, Uniqueness, and Other Well-Posedness 
Issues” for details. Existence of nontrivial solutions also 
holds when defining F to be the convex hull of the vec-
tors fi, i5 1, 2, 3 , which corresponds to the system con-
sidered in [36, Ex. 1], but it cannot be verified by using 
only the three generating vectors at the nonzero points 10, 0, x3 2  and 1x1, 0, 0 2 . ! 

The next example demonstrates that a Lyapunov func-
tion can be zero at points outside of A. 

Example 22: Lyapunov Function Can 
Be Zero at Points Outside of A
Consider the hybrid system with state x [ R2 and data 

 C J R$0
2 , f 1x 2 J c x1

21 x2
2

2 x1
22 x2

2 d   for all x [ C,

 D J 5x [ R$0
2     : x25 06,  G 1x 2 J 0  for all x [ D.

We establish pre-asymptotic stability of A5 506. Consider 
the function V : R2 S R defined as V 1x 2  J x2, which is a 
 Lyapunov-function candidate for 1H, A 2 . Note that V is 
zero on D and satisfies 

 8=V 1x 2 ,  f 1x 2 95 2 x1
22 x2

2 , 0   for all x [ C\ A. 

In addition, the set G 1x 2\A is empty. Thus, the origin 
is pre-asymptotically stable according to Theorem 20. 
In fact, global pre-asymptotic stability follows from 
the fact that the compact sets 5x [ C h D : x11 x2 # c6 , 
where c . 0,  cover C h D , and each one is forward 
invariant. ! 

STABILITY ANALYSIS USING LYAPUNOV-LIKE 
FUNCTIONS AND AN INVARIANCE PRINCIPLE
Pre-asymptotically stable compact sets always admit 
Lyapunov functions. See “Converse Lyapunov Theo-
rems.” Nevertheless, it can be challenging to construct a 
Lyapunov function even for systems that are not hybrid. 
This fact inspires the development of relaxed, Lyapunov-
based conditions for asymptotic stability. Perhaps the 
most well-known result in this direction is the Barbasin-

Krasovskii theorem [5]. This result guarantees asymptotic 
stability when the Lyapunov function is not increasing 
along solutions and the only value of the Lyapunov func-
tion that can be constant along solutions is a value of the 
Lyapunov function taken only on the set A. It is a special-
ization to asymptotic stability questions of the invariance 
principle [46], [47]. The next result, which can be called 
a hybrid Barbasin-Krasovskii-LaSalle theorem, is  essentially 
contained in [72, Thm. 7.6] and combines the idea of the 
Barbasin-Krasovskii theorem with the invariance principle 
for hybrid systems. For more information on the invariance 
principle, see “Invariance.”  

For m [ R and a function V : dom V S R let LV 1m 2 J5x [ dom V : V 1x 2 5m6.
Theorem 23
Consider a hybrid system H5 1C, F, D, G 2  satisfying 
the Basic Assumptions and a compact set A ( Rn satisfy-
ing G 1D d A 2 ( A. If there exists a  Lyapunov-function 
candidate V for 1H, A 2  that is positive on (C h D )\A  
and  satisfies 

 
     8=V 1x 2 , f  9 # 0    for all x [ C\A,  f [ F 1x 2 , 
V 1g 2 2V 1x 2 # 0    for all x [ D\A,  g[ G 1x 2\A

then the set A is stable. If furthermore there exists a com-
pact neighborhood K of A such that, for each m . 0, no 
complete solution to H remains in LV 1m 2 d K, then the set 
A is pre-asymptotically stable. In this case, the basin of pre-
attraction contains every compact set contained in K that is 
forward invariant. 

A consequence of Theorem 23 is that A is globally pre-
asymptotically stable if K can be taken to be arbitrarily large 
and C h D is compact or the sublevel sets of V|dom V d  1C h D2 
are compact. 

Realizing the full potential of Theorem 23 hinges on 
detecting whether H has complete solutions in LV 1m 2 d K. 
This property can be assessed by focusing on a hybrid 
system that is contained in the original hybrid system. 
For a vector v [ Rn, let v' J 5w [ Rn  : 8v, w95 06 . For each 
m . 0, define 

 Fm 1x 2  J F 1x 2 d =V 1x 2' for all x [ C d LV 1m 2 ,  (25)
 Gm 1x 2 J G 1x 2 d LV 1m 2     for all x [ D d LV 1m 2 ,   (26)
 Cm J dom Fm,  (27)
 Dm J dom Gm d (dom Fmh Gm (dom Gm ) ) .  (28) 

Ruling out complete solutions to H that remain in LV 1m 2 d K 
is equivalent to ruling out complete solutions to the hybrid 
system Hm, K J 1Cm d K, Fm, Dm d K, Gm d K 2 . 

Sometimes the absence of complete solutions to the 
system Hm, K can be verified by inspection. Otherwise, we 
may try to use an auxiliary function W, which does not 
need to be sign definite, to rule out complete solutions to 
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Hm, K. When this auxiliary function is always decreas-
ing along solutions to Hm, K, the system Hm, K cannot have 
 complete solutions since 1Cmh Dm 2 d K is compact for 
each m . 0 and each compact set K. More generally, Prop-
osition 24 below can be applied iteratively to reduce the 
size of the flow and jump sets in an attempt to make them 
empty eventually, thereby ruling out complete solutions. 
This result is another consequence of the general invari-
ance principle discussed in “Invariance.”  

Proposition 24
Consider the hybrid system H J 1C, F, D, G 2  satisfying the 
Basic Assumptions, and assume that C h D is compact. Let 
W be continuously differentiable on an open set containing 
C and continuous on D. Suppose 

 
      8=W 1x 2 , f  9 # 0  for all x [ C, f [ F 1x 2 , 
W 1g 2 2W 1x 2 # 0  for all x [ D, g [ G 1x 2 d 1C h D 2 .  

For each n [ W 1dom W d 1ChD 2 2 , define 

 Fn 1x 2 J F 1x 2 d =W 1x 2'  for all x [ C d LW 1n 2 ,
 Gn 1x 2 J G 1x 2 d LW 1n 2     for all x [ D d LW 1n 2 ,
 Cn J dom Fn,
 Dn J dom Gn d (dom Fn h Gn(dom Gn) ) . 

Then the hybrid system H has complete solutions if 
and only if there exists n [ W (dom W d (C h D ) )  such 
that the hybrid system Hn J 1Cn, Fn, Dn, Gn 2  has complete 
solutions. 

Whenever 8=W (x ) , f  9 , 0 for all x [ C,  f [ F 1x 2 , and 
W 1g 2 2W 1x 2 , 0 for all x [ D,  g [ G (x ) d (C h D ) , 
it follows that Cn and Dn are empty and thus Hn has no 
complete solutions. Typically, Cn and Dn have fewer 
points than C and D, and so it may be easier to establish 
that Hn has no complete solutions than to establish that H 
has no complete solutions. The combination of Theorem 
23 with a repeated application of Proposition 24 is the 
idea behind Matrosov’s theorem for time-invariant hy-
brid systems, as presented in [74]. The original Matrosov 
theorem, conceived for time-varying systems, appears 
in [53]. Matrosov theorems reach their full potency for 
time-varying systems, where invariance principles typi-
cally do not hold. Refinements of Matrosov’s original 
idea have appeared over the years. See [60] and [50] and 
the references therein. A version for time-varying hybrid 
systems appears in [52]. 

We illustrate Theorem 23 with several examples. 

Example 3 Revisited: Lyapunov Analysis with 
the Invariance Principle. 
Consider the hybrid model of a bouncing ball in Ex-
ample 3. We establish global asymptotic stability of 
the origin. Let A be the origin in R2. The condition 
g 1D d A 2 ( A holds. Consider a Lyapunov-function 
candidate V : R2 S R given by V (x ) 5gx11 (1/2)x2

2 . 
The sublevel sets of V|C h D are compact, and V satisfies 

 8=V 1x 2 , f 1x 2 95gx22gx25 0   for all x [ C 

and 

 V 1g 1x 2 2 5 1
2
r2x2

2 ,
1
2

x2
25V 1x 2   for all x [ D\A. 

The set Dm  defined in (25)–(28) is empty for each m . 0 
since dom Gm is empty for each m . 0. Thus, A is globally 
 asymptotically stable as long as there are no complete solu-
tions that flow only and keep V equal to a positive constant. 
It may be possible to see by inspection that no solutions 
of this type exist. Otherwise, consider using the idea in 
Proposition 24 to rule out complete solutions to Hm, m . 0, 
that only flow. 

Next, applying Proposition 24 with C J 5x [ R2 :  x1 $ 0, 
V (x ) 5m6 , D given by the empty set, and W1 1x 2 5 x2, 
we obtain 

 8=W1 1x 2 , f 1x 2 95 2g , 0   for all x [ C. 

The set Cn in Proposition 24 is empty for all n, and thus 
complete solutions that only flow are ruled out. It 
follows from Theorem 23 that the set A is globally asymp-
totically stable. ! 

Example 25: Interacting Fireflies. 
Consider the firefly model given earlier with two fireflies, 
and suppose each flow map is equal to a constant f . 0. 
This choice results in a hybrid system H with x [ R2 and 
the data 

 C J 30, 1 4 3 30, 1 4,   F 1x 2 J c  

f
f

 d   for all x [ C, 

 D J 5x [ C : max5x1, x26 5 16,
 G 1x 2 J cg 1 111 e 2x1 2

g 1 111 e 2x2 2 d   for all x [ D, 

Hybrid dynamical systems can model a variety of 
closed-loop feedback control systems.
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Invariance

The invariance principle has played a fundamental role over 
the years as a tool for establishing asymptotic stability in 

nonlinear control algorithms. Prime examples include the Jurd-
jevic-Quinn approach to nonlinear control design [S45], [S47] 
as well as general passivity-based control [S42], [S48]. 

The invariance principle transcends stability analysis by 
characterizing the nature of the sets to which a bounded so-
lution to a dynamical system converges. The basic invari-
ance principle for dynamical systems with unique solutions 
is due to LaSalle [47], [S46]. It has been extended to sys-
tems with possibly nonunique solutions, in particular, differ-
ential inclusions, as well as integral and differential versions 
with nonsmooth functions [S49]. A version of the invariance 
principle for hybrid systems with unique solutions and con-
tinuous dependence on initial conditions appears in [51]. An 
invariance principle for left-continuous dynamical systems 
having unique solutions and quasi-continuous dependence 
on initial conditions is given in [S43]. An invariance principle 
for switched systems is given in [S3] and [S44]. The results 
quoted below are from [72], which contains results analo-
gous to those in [S49] but for hybrid dynamical systems. 

Lemma S12 
Suppose that the hybrid system H  satisfi es the Basic Assump-
tions, and let x  :  dom x S Rn  be a complete and bounded solu-
tion to H . Then the omega-limit of x , that is, the set 

v (x )  5  5z [ Rn    :   there exists ( ti, ji) [  dom x  there exists
  ti1 ji S `,  x ( ti, ji) S z6, 
is nonempty, compact, and weakly invariant in the sense that 
the following conditions are satisfi ed: 
 i)  v 1x 2  is weakly forward invariant, that is, for each z [ v 1x 2  

there exists a complete solution y  to H  such that 
y 10, 0 2 5 z  and y 1 t, j 2 [ v 1x 2  for all 1 t, j 2 [ dom y . 

 ii)  v 1x 2  is weakly backward invariant, that is, for each 
z [ v 1x 2  and each m . 0, there exists a solution y  to H  
such that y 1 t, j 2 [ v 1x 2  for all 1 t, j 2 [ dom y  and such that 
y 1 tz, jz 2 5 z  for some 1 tz, jz 2 [ dom y  with tz1 jz . m .

Furthermore, the distance from x 1 t, j 2  to v 1x 2  decreases to 
zero as t1 j S ` , and, in fact, v 1x 2  is the smallest closed set 
with this property. 

Theorem S13 [72, Thm. 4.3]
Suppose that the hybrid system H5 1C, F, D, G 2  satisfi es the 
Basic Assumptions. Let V  : Rn S R  be continuously differen-
tiable on an open set containing C , continuous on C c D , and 
satisfy 

uC(x ) # 0 for all x [ C, where  uC(x )  J maxf[F(x) 8=V(x ) , f9,
uD(x ) # 0 for all x [ D, where  uD(x )  J maxg[G(x)V(g )2V(x ) .  

Then, there exists r [ R  such that each complete and bounded 
solution x  to H  converges to the largest weakly invariant sub-
set of the set 

 5z : V 1z 2 5 r6 d 1uC
21 10 2 h 1uD

21 10 2 d G 1uD
21 10 2 2 2 2 ,  (S8) 

where uC
21 10 2  :5 5z [ C  : uC 1z 2 5 06  and uD

21 10 2  :5 5z [ D : 
uD(z ) 5 06 . 

Further information on a particular complete and bounded 
solution x  may lead to more precise descriptions of the set 
to which x  converges. For example, if x  is Zeno (see “Zeno 
Solutions”) then both forward and backward weak invariance 
of v 1x 2  can be verified by a complete solution to H  that never 
flows, and, moreover, we can limit our attention to weakly in-
variant subsets of 

 5z [ D : uD 1z 2 5 06 d G 1 5z [ D : uD 1z 2 5 06 2 .  
On the other hand, if there exists t . 0 such that all jumps of x  
are separated by at least an amount of time t , then we can limit 
our attention to weakly invariant subsets of 

 5z [ C : uC 1z 2 5 06.  
Example 14: Illustration of the Invariance Principle.
Consider the hybrid system in the plane with data 

 C J 5x [ R2 : x2 $ 06,  F(x ) J c2x2

   x1
d for all x [ C, 

 D J 5x [ R2 : x2 # 06,  G(x ) J c2x2

   x1
d for  all x [ D.  

Solutions flow in the counterclockwise direction when in 
the closed upper-half plane. From the closed lower-half 
plane, which is where solutions are allowed to jump, solu-
tions undergo an  instantaneous rotation of p/2 , also in 

where e . 0, g 1s 2 5 s when s , 1, g 1s 2 5 0 when s . 1 and 
g 1s 2 5 50, 16 when s5 1. 

Note that the compact set A J 5x [ C : x15 x26  rep-
resents synchronized flashing. We establish asymptotic 
stability A and characterize the basin of attraction. 

Define k J e/ 121 e 2  and consider the Lyapunov-func-
tion candidate 

 V (x ) J min 5|x12 x2|, 11 k2 |x12 x2|6.

This function is continuously differentiable on the open set 
X\A, where 

 
X J 5x [ R2 : V (x ) , (11 k ) /25 (11 e ) / (21 e ) 6
5 5x [ R2 : |x12 x2| 2 (11 e ) / (21 e ) 6.             

Let n*5 111 e 2/ 121 e 2 , let n [ 10, n* 2 , Kn 5 5x [ C h D:
V 1x 2 # n6, and define C(5C d Kn and D(5D d Kn. Since V 
is a function of only x12 x2 and F1 1x 2 5 F2 1x 2 , it follows that 
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the counterclockwise direction. We analyze the asymptotic 
behavior of the complete solution x  with x 10, 0 2 5 11, 0 2 . 
A natural function V  to consider is V 1x 2 5 |x|2 . Then, 
uC 1x 2 5 0  for all x [ C  and uD 1x 2 5 0  for all x [ D . Since F  
and G  are single-valued maps, this property is enough to 
conclude that V 1x 1 t, j 2 2 5V 1x 10, 0 2 2 5 1  for all 1 t, j 2 [ dom x , 
and, in particular, that x  is bounded. Now note that the set 
of all z [ C  such that uC 1z 2 5 0  is the whole set C , similar-
ly, the set of all z [ D  such that uD 1z 2 5 0  is the whole set 
D . Furthermore, the set G 1uD

21 10 2 2 5G 1 5z [ D : uD 1z 2 5 06 2  
is the closed right-half plane. Hence, Theorem S13 
implies that x  converges to the largest weakly invariant 
subset of 

 S5 5z [ R2 : |z|5 1,  z1 $ 0  or  z2 $ 06.  
This subset turns out to be 

 Sinv5 5z [ R2 : |z|5 1,  z2 $ 06  h  (0, 21 ) .  

As Figure S10 depicts, S 
inv  is also exactly the range of the 

periodic solution x  and thus its omega-limit. Indeed, we have 
x 1 t, j 2 5 1cost, sint 2  for t [ 30, p 4 , x 1p, 1 2 5 10, 21 2 , and 
x 1 t, j 2 5 x 1 t2p, j2 2 2  for t $ p , j $ 2. In particular, S 

inv  is the 
smallest closed set to which x  converges. 

Note that asserting that the periodic solution x  converges 
to S 

inv  is possible only by considering both weak forward and 
backward invariance. Indeed, the largest weakly forward invari-
ant subset of S  is S  itself. ! 

In the conclusion of Theorem S13 we can equivalently con-
sider the largest weakly invariant subset of 

 5z  : V 1z 2 5 r6 d 1uC
21 10 2 huD

21 10 2 2 .  
This set has a simpler description but is usually larger than the set 
used in Theorem S13. More extensive investigation using invariance 
properties is then needed to obtain the same set to which solutions 
converge. If the term G 1uD

21 10 2 2  in (S8) were to be omitted when 
applying Theorem S13 to the hybrid system in Example 14, then the 
set S  would be larger. In particular, S  would be the whole unit circle. 
Nevertheless, considering forward and backward weak invariance 
leads to the same  invariant subset S 

inv. 
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FIGURE S10 A solution to the hybrid system in Example S14. 
All solutions to this system flow in the counterclockwise di-
rection when in the closed upper-half plane. From the closed 
lower-half plane, all solutions jump and undergo a rotation by 
p/2, also in the counterclockwise direction. An application 
of Theorem S13 indicates that all solutions converge to the 
set S 

inv5 5z [ R2 : |z|5 1,  z2 $ 06 c 10, 21 2 . This set co-
incides with the range of the solution that starts flowing from 
x 10, 0 2 5 11, 0 2 .

x2

x1

 8=V 1x 2 , F 1x 2 95 0   for all x [ C(\A.

Now consider x [ D(. By symmetry, without loss of gen-
erality we can consider x5 11, x2 2 , where x2 [ 30, 1 4\51/ 121 e 2 6. We obtain 

 V 1x 2 5min512 x2, k1 x26,
V 1G 1x 2 2 5min 5g 1 111 e 2x2 2 , 11 k2 g 1 111 e 2x2 2 6. 

When g 1 111 e 2x2 2 5 0, it follows that V 1G 1x 2 2 5 0. 
Now  consider the case where g 1 111 e 2x2 2 5 111 e 2x2. 
There are two possibilities, namely, x2 , 1/ 121 e 2  and 
x2 . 1/ 121 e 2 . In the first situation, 

 V 1x 2 5 k1 x2 . 111 e 2x2 $ V 1G 1x 2 2 . 
In the second situation, V 1x 2 5 12 x2 . 11 k2 111 e 2x2 $  
V 1G 1x 2 2 . It now follows from Theorem 23 that the set 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



68 IEEE CONTROL SYSTEMS MAGAZINE » APRIL 2009

A is globally pre-asymptotically stable for the system 1C(, F, D(, G 2 . To see this fact, note that the calculations 
above imply that the set dom Gm, and thus also Dm, used 
in (25)–(28) are empty for each m . 0. Furthermore, com-
plete solutions that only flow are impossible. This fact can 
be seen by inspection or by applying Proposition 24 with 
W 1x 2 5 2 x12 x2. 

Since n [ 10, n* 2  used in the definitions of C( and D( is 
arbitrary, and the sets Kn are compact and forward invari-
ant, the basin of attraction of A for the system 1C, F, D, G 2  
contains X. In fact, solutions starting from the condition 
|x12 x2|5 111 e 2/ 121 e 2  do not converge to A. This be-
havior can be seen by noting that V 1G 1x 2 2 5V 1x 2  when x15 1 
and |x12 x2|5 111 e 2/ 121 e 2 . It then follows that X is the 
basin of attraction for A for the system 1C, F, D, G 2 . ! 

The final two illustrations of Theorem 23 address stabil-
ity analysis for general classes of systems where sampling 
is involved. The first application pertains to classical sam-
pled-data systems. The second application covers nonlin-
ear networked control systems, which are becoming more 
prevalent due to the ubiquity of computers and communi-
cation networks. 

Example 26: Absolute Stability for Sampled-Data Systems
In this example we study the absolute stability of periodic 
jump linear systems, including sampled-data systems. Ab-
solute stability refers to asymptotic stability in the presence 
of arbitrary time-varying, sector-bounded nonlinearities 
[39, Sec. 7.1]. It is possible to model sector-bounded nonlin-
earities through a differential inclusion. 

Consider the class of hybrid systems with state x [ Rn11, 
decomposed as x5 1j, t 2 , where j [ Rn, and data 

 C J  5x : t [ 30, T 4 6,
 F(x ) J e cAj 1 Bw

1
d ,  w: c j

w
d^ cM1 M3

M3
^ M2

d c j
w
d # 0 f

 for  all x [ C, 
 D J 5x : t 5 T6, 
 G (x ) J e c Jj 1 Lw

0
d ,  w: c j

w
d^ c N1 N3

N3
^ N2

d c j
w
d # 0 f

 for all x [ D,  

where M1, M2, N1, and N2 are symmetric. We assume that 
the eigenvalues of M1 and N1, which are real, are nonnega-
tive; in other words, M1 and N1 are positive-semidefinite 
matrices. The matrices M2 and N2 are positive definite, 
meaning that their eigenvalues are positive. These condi-
tions guarantee that the Basic Assumptions hold. The state 
t corresponds to a timer state that forces jumps every T sec-
onds. With w constrained to zero, the system is a simple 
periodic jump linear system with flow equation j

#
5Aj and 

jump equation j1 5 Jj. More generally, w is constrained to 
satisfy a quadratic constraint that is a function of the state 

j, thereby modeling a sampled-data linear control system 
with sector-bounded nonlinearities.

To establish asymptotic stability of the compact set 
A J 5x : j 5 0,  t [ 30, T 4 6, consider a Lyapunov- function 
candidate of the form V 1x 2 J j^P 1t 2j, where P : 30, T 4 S Pn 
and Pn denotes the set of symmetric, positive definite 
matrices. The function P  is chosen to satisfy 

 =P (t ) 5 2A^P (t ) 2 P (t )A1M1

 2 1P 1t 2B2M3 2M2
21 1B^P 1t 2 2M3

^ 2 ,  (29) 

where we assume that P 1T 2 5 P^ 1T 2 . 0 can be chosen to 
guarantee that P 1t 2  exists and is positive definite for all 
t [ 30, T 4. For more on this condition, see below. With this 
choice for V, for all x [ C and f [ F 1x 2 , we obtain 

 8=V 1x 2 , f 95 2j^P 1t 2Bw1j^M1j 2 j
^ 1P 1t 2B2M3 2

 3 M2
21 1B^P 1t 2 2M3

^ 2j
 # 2j^P 1t 2Bw1j^M1j 2 j

^ 1P 1t 2B2M3 2
 3 M2

21 1B^P 1t 2 2M3
^ 2j

   2 c j
w
d^ cM1 M3

M3
^ M2

d c j
w
d . 

Completing squares leads to the conclusion that 

 8=V 1x 2 , f 9 # 0   for all x [ C,  f [ F 1x 2  . 
We now turn to the change in V during jumps. Asymp-

totic stability of the set A follows from Theorem 23 when 
there exists e . 0 such that 

 1j^J^1w^L^ 2P 10 2 1Jj 1 Lw 2 2j^P 1T 2j
 2 c j

w
d^ c N1 N3

N3
^ N2

d c j
w
d # 2 ej^j. (30) 

To check this condition, we need to relate P 10 2  and P 1T 2 . 
The solution to the matrix differential equation (29) can be 
written explicitly by forming the Hamiltonian matrix 

 H5 c A2 BM2
21M3

^ BM2
21B^

M12M3M2
21M3

^ 2 1A2 BM2
21M3

^ 2^ d ,
forming the matrix exponential F 1t 2  J  exp 1 2Ht 2 , parti-
tioning F in the same way that H is partitioned, and verify-
ing that, where P  is defined, 

P 1T2t 2 5 1F21 1t 2 1F22 1t 2P 1T 2 2 1F11 1t 2 1F12 1t 2P 1T 2 221. 

When F11 1t 2  is invertible for all t [ 30, T 4, the quantities 
2F11 1t 221F12 1t 2  and F21 1t 2F11 1t 221 are positive semidefi-
nite for all t [ 30, T 4. Also, defining C J F 1T 2 , X J P 1T 2 , 
and letting S be a matrix satisfying SS^5 2C11

21C12, 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



APRIL 2009 « IEEE CONTROL SYSTEMS MAGAZINE 69

P ( t )  is defined and positive definite for all t [ 30, T 4 when 
X5X^ . 0 and S^XS , I. These conditions on X and S are 
guaranteed by what follows. 

Using the fact that C is symplectic, that is, C^VC 5V, 
where V5 c 0 I

2 I 0
d , the value P 10 2  is related to X through 

the formula 

 P 10 2 5C11
21 3X1XS 1I2 S^XS 221S^X 4C11

2T1C21C11
21.

Substituting for P 10 2  in (30) and using Schur complements, 
it follows that asymptotic stability of the set A is guar-
anteed when F11 1t 2  is invertible for all t [ 30, T 4 and the 
 matrix inequality 

 £
J^

L^

0
§ (C11

21XC11
2^1C21C11

21 ) 3  J L 0 4

 2 £
X1N1 N3 J^C11

21XS
N3
^ N2 L^C11

21XS
S^XC11

2^J S^XC11
2^L 1I2 S^XS 2

§ , 0 (31) 

is satisfied for some X5X^ . 0. ! 

Example 27: Networked Nonlinear Control Systems. 
A wide variety of interesting control problems are associated 
with networked control systems. Stability analysis for some 
of these problems is similar to stability analysis for sampled-
data systems. The primary differences are the following: 

The length of time between updates can be unpre- »
dictable, due to network variability. 
The update rules are often time varying, typically  »
periodic as when using a round-robin protocol, or 
nonlinear, as when using the “try-once-discard” pro-
tocol presented in [89]. These attributes arise from 
communication  constraints that limit how much of 
the state can be updated at a given time. Protocols are 
developed to make a choice about which component 
of the state to update at the current time.

Time-varying update rules can be addressed in the 
framework of sampled-data systems [20]. Uncertain and 
variable update times also can be addressed in the frame-
work of sampled-data systems when we are satisfied with 
a common quadratic Lyapunov function for the various 
discrete-time systems that emerge from the variable update 
times. When we move to nonlinear dynamics and nonlin-
ear updates, it becomes more challenging to exploit exact 
knowledge of the functions that describe the evolution of 
networked control  system. In this situation, a reasonable 
approach is to analyze the closed-loop behavior using 
coarse information about the functions involved. 

Consider the networked control system with state 
x5 1x1, x2, t 2 [ Rn1 3 Rn2 3 R and data 

 C  J 5x5 1x1, x2, t 2   :  t [ 30, T 4 6,

 f 1x 2 5 £
f1 1x1, x2 2
f2 1x1, x2 2

1
§  for all x [ C, 

 D J 5x5 1x1, x2, t 2   :  t 5 T6,
 g 1x 2 5 £

x1

g2 1x1, x2 230, eT 4
§  for all x [ D, 

where e [ 30, 1 2 . The quantity x1 denotes physical states 
in the plants that are being controlled over the communi-
cation network. The quantity x2 denotes states  associated 
with communication. For example, the state x2 may de-
note mismatch between ideal control actions and control 
actions achieved by the network. Uncertainty and vari-
ability in the transmission times are captured by the 
set-valued nature of the update rule for the timer state t, 
which can be updated to any value in the interval 30, eT 4. 
For simplicity, we consider the case where the desired 
steady-state behavior corresponds to 1x1, x2 2 5 10, 0 2 . In a 
more general analysis, both x1 and x2 may contain states 
that don’t tend to zero. 

The function g2 addresses the communication protocol 
used to update x2 at transmission times. We are considering 
time-invariant protocols here, since g2 does not depend on 
time. However, all of the ideas below extend to the time-
varying, periodic case. 

We assume there exist continuous functions f1 and f2 
that are zero at zero and positive otherwise, positive num-
bers e, k11, k12, k21, k22, and k3, and continuously differen-
tiable functions V1, V2 that are zero at zero and positive 
otherwise, with compact sublevel sets, such that 

 8=V1 1x1 2 , f1 1x1, x2 2 9 # 2 1e 1 k11 2f1 1x1 2 21 k12f1 1x1 2f 1x2 2 , 
 (32)

 8=V2 1x2 2 , f2 1x1, x2 2 9 # k21f 1x1 2f 1x2 2 1 k22f2 1x2 2 2,  (33)

           max  5k3f (x2 ) 2, l22V2 (g2 (x1, x2 ) ) 6 # V2 (x2 ) . (34) 

Possible choices for the functions f1 and f2 include the 
Euclidean norms of the arguments. Condition (32) in-
cludes the assumption that the origin is globally asymp-
totically stable in the case of perfect communication, 
that is, x2 ; 0. Condition (34) includes the assumption 
that the communication protocol, which is determined 
by the function g2, makes x25 0 asymptotically stable 
when the protocol dynamics are disconnected from the 
continuous-time  dynamics. Condition (33) is a coupling 
condition between (32) and (34) that bounds the growth 
of x2 during flows. 

Now consider the Lyapunov-function candidate 
V 1x 2 J V1 1x1 2 1 p 1t 2V2 1x2 2 ,  where p : 30, T 4 S R.0 satisfies
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 =p 1t 2 5 2
1

k3k11
ck22k11p 1t 2 1 1

4
1k121 p 1t 2k21 2 2 d ,  (35) 

and we assume that p 1T 2 . 0 can be chosen so that p  is de-
fined on 30, T 4. This choice is similar to the Lyapunov func-
tion considered in [15]. We obtain 

 8=V 1x 2 , f 1x 2 9 # 2 1k111 e 2f1 1x1 2 21 k12f1 1x1 2f2 1x2 2
 1 p 1t 2 3k21f1 1x1 2f2 1x2 2 1 k22f2 1x2 2 2 4
 2

1
k3k11

ck22k11p 1t 2 1 1
4
1k121 p 1t 2k21 2 2 d

 3 k3f2 1x2 2 2
 5 cf1 1x1 2

f2 1x2 2 d
^

 ≥
2 1k111 e 2 1

2
1k121 p 1t 2k21 2

1
2
1k121 p 1t 2k21 2 2

1
4k11

1k121 p 1t 2k21 2 2
¥  cf1 1x1 2
f2 1x2 2 d

 # 2 ef1 1x1 2 2 # 0. 

We now turn to the change in V due to jumps. Since 
p 10 2 $ p 1t 2  for all t [ 30, eT 4, we also have 

 V 1g 1x 2 2  #  V1 1x1 2 1 p 10 2V2 1g 1x1, x2 2 2
 #  V1 1x1 2 1 p 10 2l2V2 1x2 2 . 
When p 1T 2  can be chosen so that p 10 2l2 , p 1T 2 , global 
 asymptotic stability of the set 

 A J 5x: x15 0, x25 0,  t [ 30, T 4 6
follows from Theorem 23. Indeed, points in the set dom Fm 
used in (25) must have x15 0, while points in the set dom Gm 
used in (26) must have x25 0, and thus points in the set 
Gm 1dom Gm 2  must have x25 0. In turn, points in the set 
Dm defined in (28) must have x15 0, x25 0, and V 1x 2 5m. 
Since this is impossible for m . 0, Dm is empty for m . 0. 
Therefore, to rule out complete solutions for Hm we just need to 
rule out solutions that only flow. These solutions are ruled out 
by t# 5 1 and the fact that Cm bounded in the t direction. 

Now we must relate p 10 2  to p 1T 2 . As in the sampled-data 
problem, the solution to the differential equation (35) can 
be written explicitly by forming the Hamiltonian matrix 

 H J ≥
2

k22

2k3
2

k21k22

k3k11

k21
2

4k3k11

2
k12

2

4k3k11

k22

2k3
1

k21k22

k3k11

¥

and the corresponding matrix exponential F 1t 2 5 exp 12Ht 2 , 
and verifying 

 p 1T2 t 2 5 1f21 1t 2 1f22 1t 2p 1T 2 2 1f11 1t 2 1f12 1t 2p 1T 2 221

 for all  t [ 30, T 4.

When f11 1t 2 . 0 for all t [ 30, T 4 , the quantities f21 1t 2  
and 2f12 1t 2  are nonnegative for all t [ 30, T 4 . When, 
in addition, p 1T 2 . 0 and 2 p 1T 2f12 1T 2/f11 1T 2 , 1, the 
quantity p 1t 2  is defined for all t [ 30, T 4 . Then, with the 
definitions C J F 1T 2 , s J"2c12/c11, r J"c21/c11, 
and q :5 p (T ) , it follows that 

 p 10 2 5 r21 3q1 112 s2q 221s2q2 4/c11
2 . 

In turn, the stability condition p 10 2l2 , p 1T 2  is guaranteed 
by the conditions that f11 1t 2 . 0 for all t [ 30, T 4 and 

 £
l2ar21

q

c11
2 b 2 q lsq/c11

lsq/c11 2 11 s2q
§ , 0,   0 , q. 

These conditions on q are feasible for T sufficiently small 
since l , 1, and r and s tend to zero and c11 tends to one as 
T tends to zero. !

LYAPUNOV-BASED HYBRID FEEDBACK CONTROL
In a control system, part of the data of the system is free to 
be designed. Sensors are used to measure state variables, 
and actuators are used to affect the system’s behavior, re-
sulting in a closed-loop dynamical system. When the de-
sign specifies regions in the state space where flowing and 
jumping, respectively, are allowed, it yields hybrid feed-
back control. In this case, the closed-loop system is a hybrid 
dynamical system. Since a typical goal of feedback control 
is asymptotic stability, construction of the hybrid control 
algorithm is guided by stability analysis tools for hybrid 
dynamical systems. In this section, we use several exam-
ples to illustrate how Lyapunov-based analysis tools, espe-
cially the Barbasin-Krasovskii-LaSalle theorem, are used to 
derive hybrid feedback control laws. In the examples below, 
the asymptotic stability induced by feedback is robust in 
the sense of theorems 15 and 17. This robustness is achieved 
by insisting on regularity of the data of the control laws 
so that the resulting closed loop hybrid systems satisfy the 
Basic Assumptions. 

Example 25 Revisited: Impulsive Clock 
Synchronization Based on the Firefly Model
The synchronicity analysis in Example 25 for a network 
of fireflies can be thought of as a synchronization control 
problem where the impulsive control law ui5 exi in the 
jump equation xi

1 5 g 1xi1 ui 2  is chosen to make Theorem 
23 applicable, establishing almost global synchronization. 
Global synchronization can be achieved for two fireflies 
by redesigning ui. Indeed, letting k [ 10, 1 2  and picking 
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ui5 0 when xi , 112 k 2/2 and ui5 2k when xi . 112 k 2/2 
results in global synchronization. This property is estab-
lished using the same Lyapunov-function candidate used 
in Example 25.

Example 26 Revisited: Sampled-Data 
Feedback Control Design
The design of a linear sampled-data feedback controller 
can be carried out based on the analysis in Example 26. 
The matrix M in Example 26 is used to indicate a desired 
dissipation inequality for the closed-loop system or a de-
sired stability robustness margin, while the matrices L 
and N are typically zero. In this case, using the defini-
tions of S and C  given in Example 26, the matrix inequal-
ity (31) reduces to 

 c J^ 1C11
21XC11

2^1C21C11
21 2  J2X J^C11

21XS
S^XC11

2^J 2 I1 S^XS
d , 0. (36)

In turn, the matrix J decomposes as J5G1HUK, where 
G, H, and K are fixed and U is a design parameter corre-
sponding to feedback gains. Then feasibility of the matrix 
inequality (36) in the parameters U and X5X^ . 0 can be 
identified with a synthesis problem for the discrete-time 
system 

 
j1 5 C11

2^ 1G1HUK 2j 1 Sw, 
y 5 Y 1G1HUK 2j, 

where Y^Y5C21C11
21. Recall that the matrix C21C11

21 is 
guaranteed to be positive semidefinite as long as F11 1t 2  
is invertible for all t [ 30, T 4 . The synthesis problem cor-
responds to picking the parameter U to ensure that the 
,2-gain from the disturbance w to the output y is less than 
one, as certified by the energy function V 1j 2 5j^Xj through 
the condition V 1x1 2 2V 1x 2 # 2 e|j|22 |y|21 |w|2 for 
some e . 0. 

When the parameters G, H, and K correspond to state 
feedback or full-order output feedback, the above synthe-
sis problem can be cast as a convex optimization problem 
in the form of a linear matrix inequality [22]. Generaliza-
tions of this sampled-data control approach are developed 
for  multirate sampled-data systems in [44] based on time-
varying lifting. The approach discussed above, which is 

 expressed directly in terms of a Lyapunov analysis and thus 
avoids lifting, is reminiscent of the approach to sampled-
data control taken in [79] and [85].

Example 28: Resetting Nonlinear Control
This example is based on [11], [29], and [30]. Consider 
the nonlinear control system j

#
5 f 1j, u 2 , where j [ Rn 

and f  is continuous, together with the dynamic control-
ler h# 5f 1h, j 2 , u5k 1h, j 2 , where h [ Rm and f and 
k are continuous. Let x5 1j, h 2  and, for each x [ Rn1m, 
define F 1x 2 J 1 f 1j, k 1h, j 2 2 , f 1h, j 2 2 . We refer to the 
system x# 5 F 1x 2  as Hc. Let V  be a Lyapunov-function 
candidate for 1Hc, 506 2  that is positive on Rn1m\506  and 
for which the sublevel sets of V  are compact. Moreover, 
suppose 
 R1)  The condition 8=V 1x 2 , F 1x 2 9 # 0 holds for all 

x [ Rn1m. 
We do not assume that the function V satisfies the con-
ditions of Theorem 23 for the system Hc. Instead, global 
asymptotic stability of the origin is achieved by resetting 
the controller state h so that V decreases at jumps. To that 
end, suppose that 
 R2)  For each j [ Rn there exists h* [ Rm such that 

V 1j, h* 2 , V 1j, h 2  for all h 2 h*. 
Since V is continuous and its sublevel sets are compact, 
the function jAh* 1j 2  is continuous. Since V 1x 2  is positive 
when x 2 0, h* 10 2 5 0. As in [29] and [30], the hybrid con-
troller resets h to h* 1j 2  when 1j, h 2  belong to the jump set 
D. We suppose that 
 R3)  The set D ( Rn1m is closed, intersects the set 5 1j, h 2  : h5 h * 1j 2 6  only at the origin, and, for each 

c . 0, there does not exist a complete solution to 

 x# 5 F 1x 2  x [ 1Rn1m\D 2 d LV 1c 2 , 
 where LV 1c 2  denotes the c-level set of V. 
Under conditions R1), R2), and R3), it follows from Theorem 
23 with the Lyapunov-function candidate V  that the hybrid 
resetting controller

 
u 5 k(h, j )
h
#
5 f (h, j ) f   (j, h ) [ Rn1m \ D,

  h1 5   h * (j )            1j, h 2 [ D

Some asymptotically controllable nonlinear control systems 
cannot be robustly stabilized to a point using classical, time-invariant 

state feedback ... hybrid feedback, and supervisory control in 
particular, makes robust stabilization possible.
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Zeno Solutions

Zeno of Elea would have liked hybrid systems. According to 
Aristotle [S59] with embellishment from Simplicius [S57] and 

the authors of this article, Zeno was the ancient Greek philoso-
pher whose Tortoise bested the swift Achilles in a battle of wits 
by appealing to hybrid systems theory. Here is our version of 
the encounter, a modern paraphrase of  Zeno’s paradox. 

Tortoise: Hey, Achilles, how about a race? 
Achilles: Are you kidding me? I’ll trounce you! 
Tortoise: Well, for sure, I need a head start... 
Achilles: And how much of a head start would you like? 
Tortoise: Doesn’t matter. Any will do. 
Achilles: And why is that? 
Tortoise: Because this will be a hybrid race. 
Achilles: What do you mean by that? 
Tortoise: Well, Achilles, as you try to catch me, I want you to 

keep track of where I have been. This will help you see that you 
are catching up to me. Note where I start. When you reach that 
point, note where I am again. Keep doing this until you pass me! 
Surely, your brain can handle this, can’t it Achilles? 

Achilles: So, the race is hybrid because, while my feet are 
running a race I can win, my mind is racing without end? You 
know, I just felt a twinge in a tendon near my ankle. Do you think 
we can postpone this race for a couple of millennia? 

Achilles would overtake the Tortoise and win if the race de-
pended only on Achilles’ feet. However, the Tortoise’s ground 
rules require Achilles’ mind to be involved as well. The mental 
task that the Tortoise gives to Achilles prevents Achilles from 
catching the Tortoise. Indeed, no matter how many steps of the 
mental assignment that Achilles completes, he will still trail the 
Tortoise physically. 

In modern terms, here is the hybrid model that the Tortoise 
suggests. Let t [ R denote the position of the Tortoise, which is 
initialized to zero as a reference point. Let a [ R denote the posi-
tion of Achilles. Due to the Tortoise’s head start, a is  initialized to 
a negative value. The speed of the Tortoise is normalized to one, 
whereas the speed of Achilles, for sake of convenience, is taken to 
be two. If this description were the complete model, Achilles would 
reach the Tortoise at a time proportional to the initial separation be-
tween the Tortoise and Achilles, and then Achilles would continue 
past the Tortoise to victory. But this point is where the Tortoise gets 
clever. He gives Achilles the following instructions: “Note where I 

start. When you reach that point, note where I am again. Keep do-
ing this until you pass me (... if you ever do)!” 

To adhere to the Tortoise’s ground rules, Achilles needs a state 
variable r that keeps track of the Tortoise’s most recently observed 
position. Specifically, each time Achilles reaches r, he must up-
date the value of r to be the Tortoise’s current position. Thus, we 
have a hybrid system with the state x5 1a, t, r 2  and data 

 C J 5x [ R3 : a # r # t6,    f (x ) J £
2
1
0
§  for all  x [ C, 

 D J 5x [ R3 : a5 r # t6,   g (x ) J £
a

t

t

§  for all  x [ D.  

We call this system the Achilles. Achilles’ initial goal is to reach 
the set A J 5x [ R3 : a5 r5 t6 , but he is observant enough to 
see that he cannot reach this goal. Indeed, Achilles cannot reach 
A by fl owing, since then it would be possible to follow his fl owing 
trajectory backward from a point in A to a point outside of A while 
remaining in C . However, no solution of the equation x# 5 2 f 1x 2, 
x [ C  can start in A and leave A. In fact, satisfying x# 5 2 f 1x 2  
from any initial condition in A immediately would force t , r, that 
is, the Tortoise is behind Achilles’ most recent observation of the 
Tortoise’s location, which is outside of C . Also, Achilles cannot 
reach A by jumping to it. Indeed, being in D  but not in A means 
that a5 r , t. The value of the state after a jump would satisfy 
a , r5 t, which is neither in A nor D . 

It is no consolation for Achilles that the set A  is glob-
ally asymptotically stable for the Achilles system. This fact 
can be established using the Lyapunov-function candidate 
V 1x 2 J 2 1x22 x1 2 1 x22 x3, which is zero on A , positive oth-
erwise, and such that the sublevel sets of V |dom V d  1C h D2  are 
compact. The function V  satisfies 8=V 1x 2 , f 1x 2 95 2 1 for all 
x [ C , and V 1g 1x 2 2 # 12/3 2V 1x 2  for all x [ D . 

Neither is it a consolation for Achilles that the ordinary time t  
used to approach A is bounded, a property that can be established 
by integrating the derivative of V  along flows of the solution to the 
Achilles system. Figure S11 shows typical hybrid time domains for 
solutions to the Achilles system. The hybrid time domain in Fig-
ure S11(a) occurs for solutions starting in 1C c D 2  \ A. The hybrid 
time domain in Figure S11(b) occurs for solutions starting in A. 

globally asymptotically stabilizes the origin of the closed-loop 
system. Indeed, by construction, the Lyapunov- function can-
didate V decreases at jumps that occur at points other than 
the origin, does not increase during flows, and no complete, 
flowing solution keeps V equal to a nonzero constant. 

Regarding condition R3), consider the case in which 
V 1x 2 5V1 1j 2 1V2 1x 2 , where V1 1j 2 . 0 for j 2 0, V2 1x 2 $ 0 
for all x [ Rn1m, and V2 1x 2 5 0 if and only if x5 1j, h 2  sat-
isfies h5 h* 1j 2 . This case is presented in [29] and [30]. In 
this situation, let 

D J 5x5 (j, h )  : V2 (x ) $ r(V1 (j ) ) ,  8=V2 (x ) , F(x ) 9 # 06
 (37)

for some continuous, nondecreasing function r : R$0 S R$0 
that is zero at zero and positive otherwise. The set D de-
fined by (37) enables resets when h has moved from h* 1j 2  
and V2 1x 2  is not increasing along a solution. Since the set 
D is closed and intersects the set 5 1j, h 2  : h5 h * 1j 2 6, it fol-
lows that R3) reduces to the condition 
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The bouncing ball model discussed in the main text is a 
physically based model that exhibits similar behavior, as illus-
trated in Figure S16. 

In honor of Zeno and his Tortoise, sets A  as in the Achil-
les system or the bouncing ball are often called Zeno attrac-
tors. Researchers have investigated sufficient conditions [36], 
[S50], [S51], and necessary conditions [45] for the existence of 
Zeno equilibria and have also grappled with the question of how 
to continue solutions past their “Zeno times.” See, for example, 
[S52] and [18]. Some recent contributions to the characteriza-
tion of Zeno equilibria can be found in [S54] and [S55]. 

Stabilizing hybrid feedback can induce Zeno equilibria or, more 
generally, solutions having a hybrid time domain bounded in the 
ordinary time direction. Such solutions sometimes exist in reset 
control systems [S53], [S58]. When asymptotically stable Zeno 
equilibria are induced by hybrid control, the equilibria can be made 
non-Zeno by introducing temporal regularization into the control 
algorithm. This operation can be carried out while preserving as-
ymptotic stability in a practical sense. Results of this type, which 
follow from the robustness results discussed in the main text, are 
presented in [26]. Temporal regularization also appears in [S56]. 

The behavior of hybrid systems is rich and sometimes unexpect-
ed. Solutions with domains bounded in the ordinary time direction, 
including Zeno solutions, are a fascinating example of this behavior. 
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FIGURE S11 Hybrid time domains associated to two solutions 
of the Achilles system. (a) The hybrid time domain for a solu-
tion starting from the condition a , t  and r [ 3a, t 4 . The hybrid 
time domain is unbounded in the j  direction and bounded in 
the t  direction by the Zeno time, which is denoted by tZ . Solu-
tions with domains of this type are called Zeno solutions. (b) 
The hybrid time domain for a solution starting from the condition 
a5 r5 t . Its domain dom x  is a subset of 506 3 N . Solutions 
with domains of this type are called discrete solutions.
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R3’)  For each c . 0 and c2 . 0, there are no complete solu-
tions to the systems 

 x# 5 F 1x 2 ,  x [ 5x5 1j, h 2 [ LV 1c 2  : V2 1x 2 # r 1V1 1j 2 2 6
 and

 x# 5 F(x ) ,   
x [ 5x5 1j, h 2 [ LV 1c 2 d LV2

1c2 2  : V2 1x 2 $ r 1V1 1j 2 2 6.
The fact that R3’) implies R3) follows from Propo-
sition 24 with W J 2V2 and the fact that the set 

5x5 1j, h 2 :V2 1x 2 $ r 1V1 1j 2 2 6  is forward invariant for 
the system

 x# 5 F 1x 2 ,   x [ 5x [ LV 1c 2  : 8=V2 1x 2 , F 1x 2 9 $ 06.
Finally, note that when the set D satisfies R3), condition 

R3) is also satisfied for any closed set that contains D and 
does not intersect 5 1j, h 2  : h5 h * 1j 2 6 except at the origin. 
So, for example, jumps might be enabled when x  belongs 
to the set D defined in (37) and also when x belongs to 
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the set 5x5 1j, h 2  : V2 1x 2 $ V1 1j 2 6. This observation is 
related to the thermodynamic stabilization technique 
described in [29] and [30]. !

STABILITY ANALYSIS THROUGH LIMITED EVENTS

Background and Defi nitions
The concepts of average dwell-time switching [34] and mul-
tiple Lyapunov functions [6], [19], which are applicable to 
switched systems, extend to hybrid systems. These results 
for switching systems are based on how frequently  switches 
occur or on the value of a Lyapunov function when switches 
occur. A switch between systems can be generalized to the 
occurrence of an event in a hybrid system, where an event is 
a particular type of jump. For example, in a networked con-
trol system, an event might correspond to a packet dropout, 
which can be modeled as a jump that is different from a 
jump that corresponds to successful communication. For 
more details, see “Example 27 Revisited.”  As another ex-
ample, in a multimodal sampled-data controller, a timer 
state jump, which captures the sampled-data nature of the 
system, would typically not count as an event, whereas a 
jump corresponding to a change in the mode may corre-
spond to an event. See Example 29. 

We discuss below when pre-asymptotic stability of 
a compact set for a hybrid system can be deduced from 
pre-asymptotic stability of the set for the system with its 
events removed. 

Events are defined by an event indicator, which is an 
outer semicontinuous set-valued mapping E : Rn 3 Rn SS

506 . An event is a pair 1g, x 2  such that E 1g, x 2  is empty. The 
number of events experienced by a hybrid arc x is given 
by the cardinality of the set 

 5  j : for  some  t $ 0,  1t, j 2 , 1t, j1 1 2 [ dom x,
  E 1x 1t, j1 1 2 , x 1t, j 2 2 5[6.
Example 27 Revisited: Networked Control 
Systems with Transmission Dropouts
Consider a networked control system with the pos-
sibility of communication dropouts, modeled by the 
hybrid system with data C J Rn11n2 3 30, T 4 3 50, 16, 
D J Rn11n2 3 5T6 3 50, 16, 

 F 1x 2 J  ≥
F1 1x1, x2 2
F2 1x1, x2 2

1
0

¥    for all x [ C, 

 G (x ) J µ ≥
x1

g4G2 (x1, x2 ) 1 (12 g4 )x230, eT 4
g4

¥  : g4 [ 50, 16 ∂

 for all x [ D,  

where e [ 30, 1 2 , g45 1 corresponds to successful trans-
mission and g45 0 corresponds to unsuccessful transmis-
sion. If we associate events with unsuccessful transmission 
then the event indicator is given by E 1g, x 2 5 0 when g45 1 
and E 1g, x 2 5[ otherwise. Solutions that do not experi-
ence events behave like the networked control systems 
analyzed in Example 27. !

Example 29: Mode Transitions as Events 
Consider a hybrid system with state x5 1j, q 2 [ Rn 3 R, 
and data 1C, F, D, G 2 , where C h D ( Rn 3 Q and Q is 
a finite set. Suppose we want to identify jumps that 
change the value of q as events. For x5 1j, q 2 [ D and 1gj, gq 2 [ G 1x 2 , we let E 1g, x 2 5 0 if gq5 q, and we let 
E 1g, x 2 5[  otherwise. 

A refinement is to associate events with jumps that 
change the mode q only when the state is outside of a target 
compact set A 3 Q. In this case, we let E 1g, x 2 5 0 if gq5 q 
or x5 1j, q 2 [ A 3 Q. Otherwise, we let E 1g, x 2 5[. !

For a hybrid system H J 1C, F, D, G 2 , the eventless hy-
brid system H0 J 1C, F, D0, G0 2 , with data contained in the 
data of H, is constructed by removing events from 1G, D 2  
through the definitions 

 G0 1x 2 J  G 1x 2 d 5v : E 1v, x 2 5 5066    for all x [ D,  (38)
 D0 J  D d 5x : G0 (x ) 2 [6. (39)

The data of H0 satisfies the Basic Assumptions and the 
 solutions to H0 experience no events.

Example 30: Jumps Out of C h D
For a hybrid system H5 1C, F, D, G 2 , it is possible that 
g o C h D for some x [ D and g [ G 1x 2 . These jumps 
can be inhibited with an event indicator E  satisfying 
E 1g, x 2 5 0 if g [ C h D and E 1g, x 2 5[ otherwise. In this 
case, the definition (38) gives G0 (x ) 5G (x ) d (C h D )  
for each x [ D. Each solution of H experiences no more 
than one event, since a solution cannot be extended from 
a point g o C h D.

According to Theorem 31, the compact set A is globally 
pre-asymptotically stable for the hybrid system 1C, F, D, G 2  
whenever G 1D d A 2 ( A, and A is globally pre-asymptot-
ically stable for the hybrid system 1C, F, D0, G0 2 , where 
G0 (x ) 5G (x ) d (C h D )  for each x [ D and D0 is the set 
of points x [ D for which G0 1x 2 2 [. !

The stability properties of H05 1C, F, D0, G0 2 , with D0 
and G0 defined in (38)–(39), can be used to derive stabil-
ity properties for H5 1C, F, D, G 2  under a variety of condi-
tions. Below, we consider the cases where 1) the solutions of 
H experience a finite number of events or 2) there is a rela-
tionship between the values of a Lyapunov function when 
different events occur. Other results can be formulated that 
involve an average dwell-time requirement on events, like 
for switched systems discussed in “Switching Systems” or 
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that combine dwell-time conditions and Lyapunov condi-
tions, as in [33]. 

Finite Number of Events
An approach used in adaptive supervisory control to estab-
lish convergence properties is to establish that the number 
of switches experienced by a solution is finite [58]. A related 
result for asymptotic stability in hybrid systems is given in 
the next theorem. 

Theorem 31 
Suppose that the hybrid system H5 1C, F, D, G 2  with state 
x [ Rn satisfies the Basic Assumptions. Let the compact 
set A ( Rn satisfy G 1D d A 2 ( A, and assume that A is glob-
ally pre-asymptotically stable for the eventless hybrid system 
H05 1C, F, D0, G0 2 , where D0 and G0 are defined in (38)–(39). 
Also suppose that, for the hybrid system H and each compact 
set K ( Rn, there exists N . 0 such that each solution starting 
in K experiences no more than N events. Then the set A is 
globally pre-asymptotically stable for the system H. 

Theorem 31 is behind the proof of  asymptotic stability 
for the mode-switching controller for the disk drive sys-
tem in Example 1. As shown for “Example 1 Revisited,” 
the origin of the closed-loop system is pre-asymptotical-
ly stable when jumps are eliminated, and when jumps 
are allowed the maximum number of jumps is two. 

An outline of the proof of Theorem 31 is as follows. 
Boundedness of maximal solutions and global pre-
 attractivity of A for H follow from the fact that the num-
ber of events is finite and that the maximal solutions of 
H0 are bounded and the complete ones converge to A. 
Stability can be established by concatenating trajecto-
ries of the system H0, which can include jumps but not 
events, with jumps from G that correspond to events, and 
repeating this process up to N times. In particular, let 
e 5: e0 . 0 be given. Since G 1D d A 2 ( A and G is outer 
semicontinuous and locally bounded, there exists d0 . 0 
such that G 1D d 1A1d0B 2 2 ( A1 e0B. Since A is stable 
for H0, there exists e1 . 0 such that, for each solution 
x1 to H0, |x1 (0, 0)|A # e1 implies |x1 1t, j 2|A # d0 for all 1t, j 2 [ dom x1. Repeating this construction N times and 
letting ej generate ej11 for j [ 50, c, N2 16 , it follows 
that |x1 10, 0 2|A # eN implies |x1 1t, j 2|A # e05 e for all 
 solutions x of HN and all 1t, j 2 [ dom x. 

Multiple Lyapunov Functions
Stability results involving multiple Lyapunov functions [6], 
[19] for switched systems, as well as related results for dis-
continuous dynamical systems in [90] and for differential 

equations in [1], extend to hybrid systems. The stability con-
ditions are expressed in terms of an event indicator E, the 
eventless system with events inhibited, as in (38)–(39), and 
a decomposition of the event indicator into a finite number 
of event types. 

Theorem 32
For a hybrid system H5 1C, F, D, G 2  satisfying the Basic 
Assumptions with an event indicator E, the compact set A 
is globally pre-asymptotically stable if and only if the fol-
lowing conditions are satisfied: 
 1) G (D d A ) ( A ,
 2)  A  is globally pre-asymptotically stable for the system 

without events H0 J 1C, F, D0, G0 2 .
 3)  There exist a function W : C h D S R$0, and class-

K` functions a1, a2, a3, such that

a1 1|x|A 2 # W 1x 2 # a2 1|x|A 2  for all x [ C h D,
            W 1g 2 # a3 1W 1x 2 2 for all x[D,  g[G 1x 2 .

 4)  There exists a positive integer , and outer semicontin-
uous mappings Ei : Rn 3 Rn SS 506 , i5 1, c, ,, such 
that, for each 1v, x 2  satisfying E 1v, x 2 5[, there exists 
i [ 51, c, ,6 satisfying Ei 1v, x 2 5[, and there exists 
a continuous function a4 satisfying 0 , a4 1s 2 , s for 
all s . 0 and such that, for each i [ 51, c, ,6 and 
each solution x, 

W 1x 1t2, j2 2 2 # a4 1W 1x 1t1, j1 2 2 2 , 
  where 1tk, jk 2 [ dom x, k [ 51, 26, t21 j2 . t11 j1, 

are the two smallest elements of dom x satisfying 
Ei 1x 1tk, jk 2 , x 1tk, jk2 1 2 2 5[.

Figure 17 indicates a possible evolution of W 1x 1t, j 2 2 . 
Some jumps, such as the one from 1t2, 1 2  to 1t2, 2 2 , do not 
 correspond to events. When a particular type of event 
occurs twice, the value of W at the second occurrence is 
required to be strictly less than the value of W at the first 
occurrence of the event. In the figure, one type of event is in-
dicated in blue while the other is indicated in red. Blue events 
occur at 1t1, 1 2  and 1t4, 4 2 . Thus, the value of W 1x 1t4, 4 2 2  is 
required to be less than the value of W 1x 1t1, 1 2 2 . 

Consider Theorem 32 in the context of multiple Lyapunov 
functions Vq, where q [ 51, c, ,6, for a switching sys-
tem with state z. We take W 1x 2 J Vq 1z 2 , where x5 1z, q 2 . 
Sometimes it is assumed that Vq does not increase during 
flows [6], although this property is not necessary [90], and 
is not assumed in Theorem 32. For i [ 51, c, ,6, we take 
Ei 1v, x 2 5 0 for switches that turn the state q into a value j 2 i, 
otherwise we take Ei 1v, x 2 5[. Then the third assumption 

Pre-asymptotic stability for compact sets is equivalent to uniform 
pre-asymptotic stability, which is sometimes called KL-stability.
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of Theorem 32 asks that, when comparing W at an event 
where q changes to i to the value of W at the previous event 
where q changes to i, we see a decrease in W. The case of q 
belonging to a compact set can be handled in a similar way 
by generating a finite covering of the compact set, to generate 
a finite number of event indicators Ei, and using extra conti-
nuity properties for the function (z, q)  A Vq(z )  to ensure a 
decrease when an event repeats. 

The necessity in Theorem 32 follows from the results 
discussed in “Converse Lyapunov Theorems,” which 
show that W  can always be taken to be smooth. See 
also [90]. The sufficiency, which doesn’t use continuity 
 properties for W , follows using the same argument used 
for multiple Lyapunov functions in [6]. We sketch the 
idea here. 

For stability, note that due to the first two assumptions 
and Theorem 31, there exists a [ K` such that, for each so-
lution x and each 1t, j 2 [ dom x such that only one event 
has occurred 

 W 1x 1t, j 2 2 # a 1W 1x 10, 0 2 2 2 .
Without loss of generality, we associate the first event with 
the event indicator i5 1, and we use condition 3) of Theorem 
32 to conclude that, for all event times 1tk1

, jk1
2  where event 

i5 1 occurs, that is, E1 (x ( tk1
, jk1

) , x ( tk1
, jk1
2 1) ) 5[, we have 

W 1x 1tk1
, jk1
2 2 # a 1W 1x 10, 0 2 2 2 . We associate the first event 

that is different from events with i5 1 with event indicator 
i5 2 and conclude that, for all event times 1tk2

, jk2
2  at which 

event i5 2 occurs, that is, E2 (x ( tk2
, jk2

) , x ( tk2
, jk2
2 1) ) 5[, 

we have W 1x 1tk2
, jk2
2 2 # a2 1W 1x 10, 0 2 2 2 . Continuing in 

this way, we conclude that, for each solution x and each 1t, j 2 [ dom x

 W 1x 1t, j 2 2 # a, 1W 1x 10, 0 2 2 2 .
With the first assumption of the theorem, 
we conclude that the set A is stable. 

Pre-attractivity is established as fol-
lows. Complete solutions that experience 
a finite number of events converge to A ac-
cording to the first assumption of Theorem 
32. For complete solutions that experience 
an infinite number of events, at least one 
type of event Ei does not cease happening 
and thus, using this i in the third assump-
tion of Theorem 32, W 1x 1t, j 2 2  converges 
to zero, that is, the solution converges 
to A. Thus, the set A is globally pre-
asymptoti cally stable. 

We refer the reader to [6] and [19] for 
examples that illustrate Theorem 32 in the 
context of multiple Lyapunov functions. 
An illustration is also given at the end of 
the next section. 

HYBRID FEEDBACK CONTROL 
BASED ON LIMITED EVENTS
In this section, we illustrate how stability analysis based on 
limited events motivates hybrid control algorithms for the 
nonlinear system (5). The control algorithms have a flow set 
Cc, flow map fc, jump set Dc, jump map Gc, and feedback 
law kc, resulting in a closed-loop hybrid system with data 
given in (6) and (7). 

Supervising a Family of Hybrid Controllers
The literature contains an extensive list of papers on super-
visory control. For example, in the context of discrete-event 
systems see [68], in the setting of adaptive control see [57], 
and for hybrid systems see [41]. 

We discuss the design of a supervisor for a family of hy-
brid controllers H|c, q, where q [ Q J 51, c, k6, each with 
state h [ Rm and data 1C|q, f|q, D

|
q, G
|

q, k
|

q 2 . Classical control-
lers correspond to the special case where C|q5R

n1m, D|q5[, 
and G|q 1x 2 5[ for all x [ Rn1m.

Following [83], a supervisor Hc of these hybrid con-
trollers is specified by indicating closed sets Cq (  C|q and 
Dq (  D|q  in which flowing and jumping, respectively, us-
ing controller q is allowed, and a set Hq ( Rn1m, in which 
switching from controller q to another controller is allowed. 
In addition to the sets Cq, Dq, and Hq, the supervisor speci-
fies a rule for how h and q change when the supervisor 
switches authority from controller q to a different control-
ler. This rule is given through the set-valued mappings 
Jq : Rn 3 Rm SS Rm11, q [ Q. Without loss of generality, we 
take Jq 1xp, h 2 5[ for all 1xp, h 2 o Hq. We also define fq and 
kq to be the restrictions of f|q  and k|q to Cq, and we define Gq 
to be the set-valued mapping that is equal to G|q  on Dq \ Hq 
and is empty otherwise. 

FIGURE 17 The evolution of a candidate function W for Theorem 32 along a trajectory 
of a hybrid system. The blue and red dots indicate different types of events. The blue 
dots, at ( t1, 1 )  and ( t4, 4 ) , denote points v [ G (x )  at which E1 (v, x ) 5[,  whereas 
the red dots, at ( t3, 3 )  and ( t5, 5 ) , denote points v [ G (x )  at which E2 (v, x ) 5[. 
Some jumps, such as the one from ( t2, 1 )  to ( t2, 2 ) , do not correspond to events. 
When a particular type of event occurs twice, the value of W at the second occurrence 
must be less than the value of W at the first occurrence of the event. For example, the 
value of W (x ( t4, 4 ) )  must be less than the value of W (x ( t1, 1 ) ) .

W (x)

t

t1
2

3
4

0
t1 t2 t3 t4 t5
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The hybrid supervisor Hc has state xc5 1h, q 2 , input 
xp [ Rn , and is defined by the data 

 fc(xp, xc)  5  c fq(xp, h )
0

d ,  Cc5 hq[Q(Cq 3 5q6 ) , 

 Gc(xp, xc) 5 cGq(xp, h )
q

d  d  Jq(xp, h ) ,

  Dc5 hq[Q( (Dq h  Hq) 3 5q6 ) ,  (40)

and kc(xp, xc) 5kq(xp, h ) . 
The goal of the supervisor is to achieve global asymptotic 

stability of the set A 3 Q, where A ( Rn1m is compact, while 
satisfying Cc h Dc5U 3 Q, where U ( Rn1m is closed, and 
to have that all maximal solutions starting in Cc h Dc are 
complete. To guarantee that a supervisor can be constructed 
to achieve the goal, as in [83] we assume the following. 

(Supervisor Assumption)
There exist closed sets Cq (  C|q d U and Dq (  D|q d U so 
that the following conditions hold: 
 1)  There exist closed sets Cq (  Cq h Dq such that hq[Q Cq5U. 
 2)  For each q [ Q, the interconnection of the plant (5) 

and the controller Hc, q5 1Cq, fq, Dq, Gq, kq 2 , having 
closed-loop data given in (6), (7), is such that, using 
the definition Fq J h5i[Q, i.q6Ci, the following condi-
tions are satisfied: 
a) The set A is globally pre-asymptotically stable. 
b)  No solution starting in Cq reaches 

U \ (Cq h  Dq h   
Fq)  \  A .

c)  Each maximal solution is either complete or ends 
in Fq h U \ (Cq 

h
 
Dq 
h

 
Fq) .

Condition 2c) is a type of local existence of solutions con-
dition. It is assumed to guarantee that a supervisor can be 
constructed to achieve not only global pre-asymptotic sta-
bility but also that all maximal solutions are complete. 

The combination of conditions 2b) and 2c) imply that 
solutions starting in Cq are either complete or end in A or 
Fq. This property enables building a hybrid supervisor 
to guarantee that each solution experiences no more than 
k1 1 events, where events are defined to be jumps in the 
value of q when (xp, h ) o A . 

The sets involved in the “Supervisor Assumption” for 
the problem of stabilizing the inverted position of a pendu-
lum on a cart are depicted in Figure 20.

Given the sets Cq, Dq, Cq, and Fq from the “Supervisor 
Assumption,” we define the sets Hq and mappings Jq in (40) 
to be 

 Hq5Fq h U \ (Cq h  Dq h  Fq)  (41) 

and in (42), shown at the bottom of the page. By construc-
tion, the mapping Jq is outer semicon tinuous. 

For the closed-loop system, events are defined to be 
jumps from D \ 1A 3 Q 2  that change the value of q. In 
other words, events are jumps that are due to Jq. Due to 
the definition of the map Jq, if a solution experiences one 
event then there is a time where the state (xp, h, q)  satis-
fies 1xp, h 2 [ Cq. Thereafter, due to the “Supervisor As-
sumption,” until the state reaches the set A 3 Q, the index 
q jumps monotonically. Therefore, the number of events 
experienced by a solution will be bounded by k1 1. More-
over, by the “Supervisor Assumption,” the corresponding 
eventless system has the set A 3 Q globally pre-asymptoti-
cally stable. These observations lead to the following corol-
lary of Theorem 31. 

Corollary 33
Under the “Supervisor Assumption” on the family of con-
trollers Hc, q, q [ Q, the closed-loop interconnection of the 
plant (5) and the hybrid supervisor Hc, with data given 
in (40)–(42), satisfies the Basic Assumptions and has the 
 compact set A 3 Q globally asymptotically stable. 

For the disk drive in Example 1 and for additional exam-
ples reported below, the “Supervisor Assumption” holds 
and the supervisory control algorithm indicated in Corol-
lary 33 is used. 

Some asymptotically controllable nonlinear control sys-
tems cannot be robustly stabilized to a point using classical, 
time-invariant state feedback. Examples include systems 
that fail Brockett’s necessary condition for time-invariant, 
continuous stabilization [7], like the nonholonomic mobile 
robot, and other systems that satisfy Brockett’s condition, 
like the system known as Artstein’s circles [2]. The topologi-
cal obstruction to robust stabilization in Artstein’s circles is 
the same one encountered when trying to globally stabilize 
a point on a circle and is related to the issues motivating 
the development of topological complexity in the context of 
motion planning in [21]. We now illustrate how hybrid feed-
back, and supervisory control in particular, makes robust 
stabilization possible.

Jq 1xp, h 2  J e
c 5xc65i [ Q : 1xp, h 2 [ Ci6 d ,   (xp, h ) [ U \ (Cq h   

Dq h   
Fq) ,

 c 5xc65i [ Q : i . q, 1xp, h 2 [ Ci6 d ,   (xp, h ) [ Hq \ (U \ (Cq h   
Dq h   

Fq) ) .  (42)
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Simulation in Matlab/Simulink

Numerous software tools have been developed to simulate 
dynamical systems, including Matlab/Simulink, Modelica 

[S61], Ptolemy [S63], Charon [S60], HYSDEL [S66], and HyVi-
sual [S62]. Hybrid systems H5 1C, f, D, g 2  can be simulated in 
Matlab/Simulink with an implementation such as the one shown 
in Figure S12. This implementation uses the reset capabilities 
of integrator blocks in Matlab/Simulink. 

Four basic blocks are used to input the data 1C, f, D, g 2  of 
the hybrid system H  for simulation by means of Matlab func-
tion blocks. The outputs of these blocks are connected to the 
input of the Integrator System, which integrates the flow map 
and executes the jumps. The Integrator System generates 
both the time variables t  and j  as well as the state trajectory 
x . Additionally, the Integrator System provides the value of the 
state before a jump occurs, which is denoted as x r . The four 
blocks are defined as follows: 

The  » f block uses the user function f.m to compute the 
flow map. Its input is given by the state of the system x , 
and its output is the value of the flow map f . 
The  » C block executes the user function C.m, which codes 
the flow set C . Its input is given by x r . The output of this 
block is set to one if x r  belongs to the set C  and is set 
to zero otherwise. 
The  » g block executes the user function g.m, which con-
tains the jump map information. 
Its input is x r , while its output is 
the value of the jump map g . Its 
output is passed through an IC 
block to specify the initial condi-
tion of the simulation. 
The  » D block evaluates the jump 
condition coded in the user function 
D.m. Its input is given by x r , while 
its output is set to one if x r  belongs 
to D, otherwise is set to zero.

For example, to simulate the bouncing 
ball system in Example 3 with gravity con-
stant g5 9.8, the flow map f  and the flow 
set C  can be coded into the functions f.m 
and C.m, respectively, as  follows: 

function out = f(u)
% state
x1 = u(1);
x2 = u(2);
% flow map
x1dot = x2;
x2dot = –9.8;
out = [x1dot; x2dot]; (S9)

function out = C(u)
% state
x1 = u(1);

x2 = u(2);
% flow condition
if (x1 >= 0)
 out = 1;
else
 out = 0;
end (S10)

The subsystems of the Integrator System, which are de-
picted in Figure S13, are used to compute the flows and jumps. 
These subsystems are the following.

The integrator block, labeled 1/s , is the main block of the 
Integrator System. Its configuration uses the following settings: 
external reset set to “level hold” (setting for Matlab/Simulink 
R2007a and beyond; see [S65] for details about this setting for 
previous Matlab/Simulink versions), initial condition source set 
to “external” and show state port set to “checked.” Simulink’s 
zero-crossing detection algorithm for numerical computations is 
globally disabled.

The CT dynamics subsystem computes the flow map of the 
hybrid system as well as updates the parameters t  and j  dur-
ing flows. Its output is integrated by the integrator block. This 
computation is accomplished by setting the dynamics of the 
integrator block to be   t

# 5 1,  j# 5 0,  x# 5 f 1x 2. 

FIGURE S12 Matlab/Simulink implementation of a hybrid system H5 1C, f, D, g 2 . 
From the output of the Matlab functions, the Integrator System takes the values of the 
flow map f  and jump map g  as well as the indications of whether or not the state be-
longs to the flow set C  and jump set D . The output of the Integrator System consists 
of t , j , and x 1 t, j 2  at every simulation time step. The output x r , which corresponds to 
the value of the state x  before the jump instant, is used in the computations. The initial 
condition for the simulation is specified by x0 in the IC block.
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The Jump Logic subsystem triggers the jumps. Its inputs, 
which are the outputs of the blocks C and D, indicate whether 
the  simulation is in either the flow set or the jump set. With this 
information, the Jump Logic subsystem generates the reset input 
of the integrator block as follows: when the simulation belongs 
only to the flow set, no reset is generated; when the simulation 
belongs only to the jump set, a reset is generated; and when the 
simulation belongs to both sets, a reset is generated depending 
on the value of a flag, which is denoted as priority . 

The Update Logic subsystem updates the value of the simulation 
as well as the pair 1 t, j 2  at jumps. By using the state port of the inte-
grator block, which reports the value of the state of the integrator at 
the exact instant that the reset condition becomes true, the value of 
the simulation is updated by g 1x r 2 . The flow time t  is kept constant 
at jumps, and j  is incremented by one. That is, at jumps the update 
law is t1 5 t r,  j1 5 j r1 1,  x1 5 g 1x r 2 . 

The Stop Logic subsystem stops the simulation under any of 
the following events: 

The flow time is larger than or equal to the maximum flow  »
time, which is specified by the parameter T . 
The jump time is larger than or equal to the maximum  »
number of jumps, which is specified by the parameter J . 
The simulation is neither in  » C  nor in D .

Under any of these events, the output of the logic operator 
connected to the Stop logic becomes one and the simulation is 
stopped. 

The following parameters are used in a simulation: initial con-
dition for x , which is given by x0; simulation horizon for the flows 
and jumps, which are given by T  and J , respectively; and flag 
priority for flows/jumps, where priority5 1 indicates that jumps 
have the highest priority (forced jumps) and priority5 2 indicates 

FIGURE S13 Internal diagram of the Integrator System. The CT dynamics subsystem computes the flow of the hybrid system and 
updates the parameter t . The Jump Logic subsystem triggers the jumps when the state x  belongs to the jump set D . The Update 
Logic subsystem updates the value of the simulation as well as the pair 1 t, j 2  at jumps. The Stop Simulation subsystem stops the 
simulation when either the flow time is larger than or equal to the maximum flow time specified, the jump time is larger than or equal 
to the maximum number of jumps specified, or the simulation is in neither C  nor D .
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FIGURE S14 Alternative implementation in Matlab/Simulink of 
the jump set for the bouncing ball system in Example 3, which 
is given by 5x : x15 0, x2 # 06 . The “Hit Crossing” block detects 
when the state component x1 crosses zero, while the “Compare 
to Zero” block is employed to report when the state component 
x2 satisfies the condition x2 # 0. When the outputs of the “Hit 
Crossing” and “Compare to Zero” blocks are equal to one, a 
jump is triggered. 
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Example 34: Robust Global Asymptotic 
Stabilization of a Point on a Circle 
Consider a plant with state j that is constrained to evolve 
on the unit circle with angular velocity u, where posi-

tive angular velocity corresponds to counter clockwise 
rotation. Moving on the unit circle constrains the ve-
locity vector to be perpendicular to the position vector, 
as generated by rotating the position vector using the 

that flows have the highest priority (forced 
flows). Matlab/Simulink documentation 
recommends using numerical solvers with 
variable step size for simulations of sys-
tems with discontinuities/jumps, such as 
ode45, which is a one-step solver based 
on an explicit Runge-Kutta (4, 5) formula. 
This setting, which is the default, is recom-
mended as a first-try solver [S64]. 

Additionally, this implementation of a 
simulation of a hybrid system 1C, f, D, g 2  
permits replacing the Matlab functions 
that define the data of the hybrid system 
by a Simulink subsystem, and, hence, it 
enables using general purposes blocks 
in Simulink’s library. For instance, this 
implementation permits the use of Simu-
link blocks to detect signal crossings of 
a given threshold with the “Hit Crossing” 
block, as illustrated for the bouncing ball 
example below, and quantizing a signal 
with the “Quantizer” block. 

To simulate the bouncing ball system 
in Example 3 in Matlab/Simulink using 
the implementation in Figure S12, we 
employ the functions f.m and C.m de-
fined in (S9) and (S10) for the flow map 
and flow set, respectively. The jump 
map and jump set are implemented 
with restitution coefficient r5 0.8  in the 
functions g.m and D.m, respectively, as 
follows: 

function out = g(u)
% state
x1 = u(1);
x2 = u(2);
% jump map
x1plus = –0.8*x1;
x2plus = –0.8*x2;
out = [x1plus; x2plus];

function out = D(u)
% state
x1 = u(1);
x2 = u(2);
% jump condition
if (x1 <= 0 && x2 <= 0)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

x 1
x 1

x 2
x 2

t [s]

t [s]

j

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−6
−4
−2

0
2
4
6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−6
−4
−2

0
2
4
6

j

(b)

FIGURE S15 Simulation of the bouncing ball system in Matlab/Simulink for an initial condi-
tion with height x15 1 and vertical velocity x25 0. The maximum flow time is T = 10 s, 
the maximum number of jumps is J5 20, and the flag priority  is set to one, which indi-
cates that priority is given to the jump condition coded in D.m. (a) shows the height of 
the ball, which is denoted by x1, while (b) shows the velocity of the ball, which is denoted 
by x2, projected to the t  axis and to the j  axis of its hybrid time domain. The plots indicate 
that the solution jumps more frequently as the height of the ball approaches zero, which 
occurs when the flow time approaches the Zeno time of the bouncing ball system. For the 
given initial condition and parameters, the Zeno time is given by tZ5 4.066 s. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



APRIL 2009 « IEEE CONTROL SYSTEMS MAGAZINE 81

rotation matrix R 12p/2 2 . The constrained equations of 
motion are 

 j
#
5 uR 12p/2 2j  j [ S1.  

For this system, global asymptotic stabilization of the 
point (1, 0) with a continuous state-feedback law is impos-
sible. Global asymptotic stabilization of this point by dis-
continuous feedback is possible, although the  resulting 

 out = 1;
else
 out = 0; 
end

Note that due to numerical integration error, the condition x15 0 
may never be satisfi ed. Then, solutions obtained from simula-
tions can miss jumps as well as leave the set C c D , causing 
a premature stop of the simula-
tion. To overcome these issues, 
instead of using the jump set in 
Example 4, which is given by 
5x : x15 0, x2 # 06 , the jump 
set D5 5x : x1 # 0, x2 # 06  is 
used. This jump set has no effect 
on solutions starting from the set 
5x : x1 $ 06 . Another alternative 
is to replace the function D.m 
by a Simulink subsystem imple-
menting the condition x15 0 in 
the jump set 5x : x15 0, x2 # 06  
with a Simulink block that is ca-
pable of detecting zero crossings 
of x1 as shown in  Figure S14. 
This implementation uses three 
Simulink blocks, namely, a “Hit 
Crossing” block, a “Compare to 
Zero” block, and an “AND Logi-
cal Operator” block. The last block combines the outputs of the 
fi rst two blocks. The “Hit Crossing” block is used to detect when 
the state component x1 crosses zero. For this purpose, this block 
is required to have enabled Simulink’s zero-crossing detection 
algorithm for numerical computations. Then, when x1 crosses 
zero, this algorithm sets back the simulation step to a time instant 
close enough to the time at which x1 is zero, recomputes the 
state, and sets its output to one. The “Compare to Zero” block is 
used to report when the state component x2 satisfi es the condi-
tion x2 # 0 by setting its output to one. Then, when the outputs 
of the “Hit Crossing” and “Compare to Zero” blocks are equal to 
one, which indicates that x15 0 and x2 # 0 are satisfi ed, a jump 
is reported to the Integrator System. 

Figure S15 depicts the height and velocity of a solution to 
the bouncing ball system projected to the t  axis and j  axis of 
its hybrid time domain. The solution is generated from the initial 
condition 11, 0 2  with maximum flow time T = 10 s, maximum 
number of jumps J5 20, and highest priority for jumps, that is, 
priority5 1. It is easy to verify that the solutions to the bouncing 

ball  system are Zeno and that the Zeno time, which is given by 
tZ5 sup5t : 1 t, j 2 [ dom x6 , is given by 

 tZ 5
x2(0, 0 ) 1"x2(0, 0 )21 2gx1(0, 0 )

g

 1
2r"x2(0, 0 )21 2gx1(0, 0 )

g (12r )
.  

For the initial conditions 
x1 10, 0 2 5 1, x2 10, 0 2 5 0 and 
the parameters g5 9.8 m/s 

2 
and r5 0.8, the simulation 
yields tZ5 4.066 s.  The solu-
tion obtained from the numeri-
cal simulation  indicates that as 
the fl ow time approaches tZ
, the height and velocity of the 
ball as well as the time elapsed 
between jumps approach zero. 
Finally, Figure S16 depicts the 
hybrid arc and hybrid time do-
main for the height component 
of the solution obtained from the 
numerical simulation. 

The Matlab/Simulink files 
for this implementation and the 
functions used for plotting solu-

tions as well as several examples are available online [S65]. 
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time domain is shown in red.
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global closed-loop behavior is not robust to arbitrarily 
small measurement noise. For an explanation, see “Ro-
bustness and Generalized Solutions.” We now describe a 
hybrid controller that achieves robust, global asymptotic 
stabilization of the point (1, 0). 

Consider a hybrid supervisor for classical control-
lers H|q, q [ Q5 51, 26, that are static and are given by 
k|q 1j 2 5jq . The “Supervisor Assumption” is satisfied for 
A5 11, 0 2  and U5S1 by taking D15D25[ and 

C15C1 J 5j [ S1 : j1 # 2 1/36, 
                        C2 J 5j [ S1 : j1 $ 2 2/36, 
                             C2 J 5j [ S1 : j1 $ 2 1/36.

 

Following the prescription of the components of a hybrid 
supervisor in (41) and (42), we get H15C2, H25S

1 \ C25

5j [ S1  : j1 # 22/36 and Jq5 32 q. Then, using the defini-
tion of a supervisory controller in (40), we get a hybrid con-
troller with state xc5 q, data Cc5 (C1 3 516 )  h (C2 3 526 ) , 
fc5 0, Dc5 (H1 3 516 )  h (H2 3 526 ) , Gc5 32 q, and 
kc 1j, q 2 5jq. See Figure 18. 

According to Corollary 33, this controller renders the set 5 11, 0 2 6 3 Q globally asymptotically stable. In fact, it can 
be established that the point 11, 0, 2 2  is globally asymptoti-
cally stable. !

Example 35: Mobile Robot Control
Consider a stabilization problem for the control system 

 
z# 5 jv
j
#
5 uR 12p/2 2jr 1z, j 2 [ R2 3 S1, 

where z [ R2 corresponds to the position of a nonholo-
nomic vehicle, v [ R denotes its ve-
locity, which is treated as a control 
variable, j [ S1 denotes the orientation 
of the vehicle, and u [ R denotes angu-
lar velocity, which is the other control 
variable. The plant state is xp5 1z, j 2 . 
As in Example 34, positive angular ve-
locity corresponds to rotation of j in the 
counterclockwise direction. The control 
objective is to asymptotically stabilize 
the point xp

* 5 10, j* 2 , where j* [ S1. 
We start by picking v52r(z^j ), 
where r is a continuous function satis-
fying sr 1s 2 . 0 for all s 2 0. A discon-
tinuous or set-valued choice for r is also 
possible. The condition sr 1s 2 . 0 for all 
s 2 0 ensures that, during flows, the size 
of z decreases except when z^j 5 0 at 
which points z# 5 0. 

With the vehicle velocity specified, 
what remains is a control system with 
a single input u. Following the ideas 
in Example 34, a hybrid feedback algo-
rithm for u exists that drives j to a given 
point on the unit circle. More generally, 
a comparable hybrid algorithm can be 
developed to track any continuously 
differentiable function, of the plant 

FIGURE 18 Illustration of the hybrid controller, for robust global stabilization of the point 11, 0 2  on a circle S1, in Example 34. The sets C1, C1, H1 and C2, C2, H2 are subsets 
of the circle, contained in the half-planes as indicated by the arrows. These sets define 
the flow and jump sets in modes q5 1 and q5 2, respectively. In mode q5 1, the 
controller drives the state toward the point 10, 2 12  from every point in C1, as indicated 
by the arrows, and the switch to mode q5 2 happens when the state is in H1. In mode 
q5 2, the controller drives the state toward the point 11, 0 2  from every point in C2, as 
indicated by the arrows, and the switch to mode q5 1 happens when the state is in H2. 
This controller results in robust asymptotic stability of 11, 0 2  on the circle. Note that the 
solutions starting from j1 521/3, j2 . 0, q5 1 are not unique. This initialization 
results in one solution that jumps immediately to q5 2 and then flows to 11, 0 2  and 
another solution that flows to j1 521/3, j2 , 0, q5 1 before jumping. Similarly, the 
solutions starting from j1 5 22/3, j2 . 0, q5 2 are not unique.
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With the use of hybrid time domains and the notion of graphical convergence, 
sequential compactness of the space of solutions and semicontinuous 
dependence of solutions on initial conditions and perturbations can be 

established under mild conditions.
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state z and perhaps of extra controller variables, 
that takes values on the unit circle. This task is 
accomplished by adding to the point stabilization 
algorithm an appropriate feedforward signal that 
renders the desired angular profile  invariant. 

Following ideas that are similar to those in [65], 
we consider the supervision of two hybrid control-
lers for the mobile robot system using a hybrid su-
pervisor Hc with data given in (40)–(42). 

The first controller is efficient at bringing the 
position of the robot close to the  desired target 
while the second controller works to simulta-
neously regulate  orientation and position. We 
give the two controllers a common state h [ Rm 
and suppose h takes values in a compact set 
V . The first hybrid controller drives j to 2z/|z|. 
The data of the first controller satisfies 

C|1hD|15 (R2 \ 506 ) 3 S1 3 V.

This specification avoids the singularity in 2z/|z| 
at z5 0. 

The second hybrid controller drives j to 
R 1s 1z 2x1 2j*, where s is a continuously differentia-
ble function that is zero at zero and positive other-
wise, and x1 is a state of the controller satisfying 

 x
#
5vR 1p/2 2x,   x [ S1,  

where v . 0. This controller satisfies C|2 
h  D|25 

R2 3 S1 3 V. This second controller is closely 
 related to time-varying stabilization algorithms that 
have appeared previously in the literature. See, for 
example, [64] and [71]. 

To satisfy the “Supervisor Assumption” for A5 506 35j*6 3 V  and U5R2 3 S1 3 V, we let 0 , e1 , e2 and take 

 
C1 J C|1 d 1 1R2 \ e1B 2 3 S1 3 V 2 ,
D1 J D|1 d 1 1R2 \ e1B 2 3 S1 3 V 2 ,   
C1 J C1 h  D15 1R2 \ e1B 2 3 S1 3 V,

 

and 

 
C J C|2 d 1e2B 3 S1 3 V 2 ,

D2 J D|2 d 1e2B 3 S1 3 V 2 , 
C2 J e1B 3 S1 3 V.

The components of the supervisor are then given by 

 
H1 5C2 5  e1B 3 S1 3 V,
H2 5  1R2 \ e2B 2 3 S1 3 V,
Jq 5  32 q.

 

With these specifications, according to Corollary 33 the 
hybrid controller (40)–(42) renders the set A 3 Q globally 
asymptotically stable. !

Example 36: Global Asymptotic Stabilization of 
the Inverted Position for a Pendulum on a Cart
Consider the task of robustly, globally asymptotically sta-
bilizing the point xp

*
  J 10, 1, 0 2  for the system with state 

xp5 1j, z 2 [ R3 and dynamics 

cj
#

z
# d 5 czR 12p/2 2j

j11j2u
d 5:  fp 1xp, u 2 

     xp [ S1 3 R.

This model corresponds to a pendulum on a cart. The model 
includes an input transformation from force to acceleration 
of the cart, which is the control input u in the system above. 
Moreover, the ratio of the gravitational constant to the pendu-
lum length has been normalized to one. The cart dynamics are 
ignored to simplify the presentation; however, global asymp-
totic stabilization of the full cart-pendulum system can be ad-
dressed with the same tools used below. The state j denotes 
the angle of the pendulum. The point j 5 10, 1 2  corresponds 
to the inverted position while j 5 10, 2 1 2  corresponds to the 
down position. The state z corresponds to the angular velocity, 
with positive velocity in the clockwise direction. 

FIGURE 19 Position z5 1z1, z2 2  and orientation j 5 1j1, j2 2  of the mo-
bile robot with hybrid controller in Example 35. (a) The position, orienta-
tion, and ratio  2z/|z| with the first controller are shown on the z  and j 
planes. The position z  is in red, the orientation j is in blue, and  2z/|z| 
is in black. The first controller drives z  to a neighborhood of z5 0 and 
j to  2z/|z|. (b) The second controller drives the orientation to a cone 
centered at j* with aperture depending on z . Cones associated to two 
points in a neighborhood of z5 0  are depicted. The two points, indi-
cated by a square and a circle, along with the neighborhood around 
z5 0 , indicated with dashed line, are depicted in the z  plane, while 
their associated cones are denoted on the j plane. As z  approaches 
the origin, the aperture of the cone approaches zero.
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We construct a hybrid feedback stabilizer that supervis-
es three classical controllers. The first controller steers the 
state xp out of a neighborhood of the point 2xp

* . The second 
controller moves the system to a neighborhood of the point 
xp

*. The third controller locally asymptotically  stabilizes the 
point xp

*. For an illustration of the data of these controllers, 
see Figure 20. 

The third controller, a local asymptotic stabilizer for xp
*, 

is simple to synthesize. For example, the idea of partial 
feedback linearization with “output” j1 can be used since j2 
is positive and bounded away from zero in a neighbor-
hood of xp

*. Let k3 : S1 3 R S R  denote this local asymp-
totic stabilizer, let C3 be a compact neighborhood of the 
point xp

* that is also a subset of the basin of attraction 
for xp

* for the system x# p5 fp 1xp, k3 1xp 2 2 , xp [ S1 3 R, and 
let C3 be a compact neighborhood of the point xp

* with 
the property that solutions of x# p5 fp 1xp, k3 1xp 2 2  starting 
in C3 do not reach the boundary of C3. Then, redefine C3 
and C3 by intersecting the original choices with S1 3 R. 
The set C3 is indicated in green in Figure 20(d) while the 
set C3 is the union of the green and yellow regions in the 
same figure. 

For the second controller, let 0 , d , e , 1 and 
define 

 

W 1xp 2 J 1
2

z21 11j2, 

     C2 J 5 1j, z 2 [ S1 3 R : W 1xp 2 $ e6 \ C3, 
      C2 J 5 1j, z 2 [ S1 3 R : W 1xp 2 $ d6 \ C3, 
k2 1xp 2 J 2 zj2 1W 1xp 2 2 2 2   for all  xp [ C2.

The set C2 is indicated in green in Figure 20(b) or, alterna-
tively, in Figure 20(c). The set C2 is the union of the green 
and yellow regions in the same figures. 

For the first controller, define C1 J 1S1 3 R 2  \ 1C2 h  C3 2 , 
C1 J C1, and k1 1xp 2  J k for all xp [ C1, where 
k ."d 122d 2/ 112d 2 . The set C1 is indicated in green in 
Figure 20(a). 

We now establish that the indicated Cq and Cq satisfy 
the “Supervisor Assumption” for A J  5xp

* 6 , Q J 51, 2, 36 , 
and U J S1 3 R. We take C|q5S1 3 R and D|q5[ for 
each q [ Q. First, by construction, Cq ( Cq for each q [ Q. 
Also, 

 C1 
h

 
C2 
h

 
C35 1S1 3 R 2  \ 1C2 

h
 
C3 2 h  C2 

h
 
C3

 5S1 3 R5U.

Next, we check that A is globally pre-asymptotically 
stable for x# p5 fp 1xp, kq 1xp 2 2 , xp [ Cq for each q [ Q. This 
property holds for q5 3 since C3 is a subset of the basin of 
attraction for xp

* for the system x# p5 fp 1xp, k3 1xp 2 2 . 
For q5 1, we note that xp [ C1 implies that W 1xp 2 # d. 

In particular, |z| #"2d ,"2 and j2 # d2 1 , 0. We 
use the Lyapunov function V1 1xp 2  J  21 z, which is posi-
tive on C1, and we obtain 

 

8=V1 1xp 2 , fp 1xp, k1 1xp 2 2 9 5 j11j2k
# "12j2

22 |j2|k
# "d 122d 2 2 112d 2k
, 0

for all xp [ Cq. It follows from Theorem 20 that A is glob-
ally pre-asymptotically stable for x# p5 fp 1xp, k1 1xp 2 2 , xp [ C1. 
This conclusion is equivalent to saying that there are 
no complete solutions that remain in the green region in 
Figure 20(a). 

For q5 2, we use the Lyapunov function V2 1xp 2  J
11 1W 1xp 2 2 2 2 2, which is positive on C2. For all xp [ C2, 

 8=V2 1xp 2 , fp 1xp, k2 1xp 2 2 95 21zj2 2 2 1W 1xp 2 2 2 2 2 # 0.

It follows from Theorem 23 that A is globally pre-
asymptotically stable for x# p5 fp 1xp, k2 1xp 2 2 , xp [ C2. This 
is seen by noting that V2 1xp 2 5m $ 1 implies 

 8=V2 1xp 2 , fp 1xp, k2 1xp 2 2 95 2 1zj2 2 2 1m2 1 2 . 
For m . 1, nontrivial solutions evolving in the set where 8=V2 1xp 2 , fp 1xp, k2 1xp 2 2 95 0 must either be the constant so-
lution xp 1t, j 2 5 xp

*  or the constant solution xp 1t, j 2 5 2 xp
* . 

Since neither xp
*  nor 2 xp

*  belong to C2, the constrained 
system admits no nontrivial solutions. When m5 1, 
solutions evolve in the set where W 1xp 2 5 2. Belonging to 
this set and also to the set C2 implies that z is bounded 
away from zero. Otherwise, the state would be near xp

* , 
which is not a part of C2. When z is bounded away from 
zero, j must eventually approach the point 10, 1 2 . Then, 
because we are considering solutions satisfying the con-
dition W 1xp 2 5 2, z must even tually approach zero as j 
approaches 10, 1 2 . In other words, xp must eventually ap-
proach xp

* . Since xp
*  does not belong to C2, there are no 

complete solutions for the constrained system. 

A feature of hybrid systems satisfying the Basic Assumptions 
is that pre-asymptotic stability is robust.
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This deduction is equivalent to saying that there are no 
complete solutions that remain in the union of the green 
and yellow regions in Figure 20(b) or, alternatively, Figure 
20(c). This behavior is because trajectories in those regions 

converge to the set where W 1xp 2 5 2, which is indicated by 
the black curve, and moving along this set leads to points 
near xp

*  where the flow x# p5 fp 1xp, k2 1xp 2 2  cannot be contin-
ued in the union of the green and yellow regions. 

FIGURE 20 The sets used in the construction of the hybrid controller in Example 36 for q5 1, q5 2 , and q5 3  are shown in (a), 
(b), and (d), respectively. In (c), the sets for q5 2  are depicted with perspective rotated by 180˚. The state x5 1j, z 2  evolves 
on the cylinder S1 3 R ( R3, while q [ 51, 2, 3 6 . The vertical position 1j, z 2 5 1 10, 1 2 , 0 2  is indicated by a black x. The black 
curve represents the set of points where W 1x 2 J 0.5z21 11j25 2. To meet the “Supervisor Assumption,” the sets Dq  can be 
taken to be empty. The sets Fq :5h i.qCq  are indicated in blue, the sets Cq ( Cq  are indicated in green, the sets Cq\Cq  are 
indicated in yellow, and the sets 1S1 3 R 2 \ 1Cqh 1 h i.qC i 2 2  are indicated in red. The sets Hq  constructed in the supervisory control 
algorithm are the unions of the blue and red regions. The key properties are that, for each q [ 51, 2, 3 6 , the vertical position is 
globally pre-asymptotically stable for the system xp

#
5 fp 1xp, kq 1xp 2 2 , xp [ Cq , and each solution starting in a green region does 

not reach a red region. Taken together, these assumptions guarantee that solutions starting in a green region reach a blue 
region, for q [ 51, 2 6 . 
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Next we verify that, for each q [ Q, each solution 
of x# p5 fp 1xp, kq 1xp 2 2 , xp [ Cq is either complete or ends in 
Fqh 1S1 3 R 2  \ Cq, where Fq5 hi[Q, i.qCi. This condition 
follows immediately from the fact that the second condi-
tion in Proposition 2 holds for each xp [ Cq \ 1S1 3 R 2  \ Cq. 
Thus, maximal solutions that are not complete must end 
in 1S1 3 R 2  \ Cq. With respect to Figure 20, this conclu-
sion amounts to the statement that the only places in 
green or yellow regions where flowing solutions cannot 
be continued are on the boundaries that touch red or 
blue regions. 

Finally, we verify that, for each q [ Q, no solution start-
ing in Cq reaches 1S1 3 R 2  \ 1Cqh  Fq 2  \ A. In other words, 
in terms of Figure 20, no solution starting in a green region 
reaches a red region. For q5 1, the red set is empty and 
so there is nothing to check. For q5 3, the property fol-
lows from the definition of C3, which is taken sufficiently 
small to satisfy the condition. For q5 2, this property fol-
lows from the fact that 8=W 1xp 2 , fp 1xp, k2 1xp 2 2 9 $ 0 for xp 
such that d # W 1xp 2 # 2 and the fact that xp [ C2 implies 
W 1xp 2 $ e . d. 

This establishes that the “Supervisor Assumption” holds. 
In turn, the hybrid supervisory control algorithm given in 
(40)–(42), which is expressed explicitly in terms of Cq, Cq, 
and kq, robustly, globally asymptotically stabilizes the point 
xp

* for the pendulum on a cart. !

PATCHY CONTROL LYAPUNOV FUNCTIONS
Patchy control-Lyapunov functions (PCLFs) are defined in 
[24] as an extension of the now classical concept of a control-
Lyapunov function (CLF) [77], [2]. A CLF for a given control 
system is a smooth function whose value decreases along 
the solutions to the system under an appropriate choice of 
con trols. The existence of such a function guarantees, in 
most cases, the existence of a robust stabilizing feedback 
[48]. Unfortunately, some nonlinear control systems do not 
admit a CLF. 

A PCLF for system (5) is, broadly speaking, an 
object consisting of several local CLFs, the domains 
of which cover Rn and have certain weak invariance 
properties. PCLFs exist for far broader classes of non-
linear systems than CLFs, especially when an infinite 
number of patches (that is, of local CLFs) is allowed. 
Moreover, PCLFs lead to a robustly stabilizing hybrid 
feedback. 

A smooth PCLF for the nonlinear system (5) with respect 
to the compact set A ( Rn consists of a finite set Q ( Z and 

a collection of functions Vq and sets Vq, V rq  for each q [ Q, 
such that:

i) 5Vq6q[Q and 5V rq6q[Q are families of nonempty open 
subsets of Rn such that 

 Rn5 d
q[Q
Vq5 d

q[Q
V rq,  

 and, for each q [ Q, the unit outward normal vector 
to Vq is continuous on 'Vq \ 1 hi.q V ri  h  A 2 , and

 V rq \ A ( Vq. 

ii) For each q, Vq is a smooth function defined on an open 
set containing Vq \ hi.q V ri  \ A.

iii) For each q [ Q there exist a continuous, positive 
definite function aq : R$0 S R$0, class- K` func-
tions gq, gq, and a positive and continuous function 
mq : R$0 S R.0 such that
a) For all j [ Vq \ hi.q V ri,

 gq 1|j|A 2 # Vq 1j 2 # gq 1|j|A 2 . 
b) For all j [ Vq \ 1 hi.q V ri h  A 2 , there exists

 uq, j [ U d mq 1|j|A 2B, U ( Rr, such that 

 8=Vq 1j 2 , fp 1j, uq, j 2 9 # 2aq 1|j|A 2 .
c)  For all j [ 'Vq \ 1 hi.q V ri  h  A 2 , the uq, j of b) can 

be chosen such that 

 8nq 1j 2 , fp 1j, uq, j 2 9 # 2aq 1|j|A 2 , 
 where nq 1j 2  is the unit outward normal vector to 

Vq at j.

A stabilizing hybrid feedback can be constructed from 
a PCLF under an additional assumption. Suppose that, for 
each j, v [ Rn, and c [ R, the set 5u [ U : 8v, fp 1j, u 2 9 # c6 
is convex, which always holds if U is a convex set and 
fp 1j, u 2  is affine in u. For each q [ Q, let 

 Cq5Vq \ d
i.q
V ri,     Cq5V rq \ d

i.q
V ri,     Dq5[. 

It can be shown, in part through arguments similar to those 
used when constructing a feedback from a CLF, that for each 

Pre-asymptotically stable compact sets always 
admit Lyapunov functions.
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q [ Q there exists a continuous mapping kq : Cq \ A S U 
such that, for all j [ Cq \ A, 

 8=Vq 1j 2 , fp 1j, kq 1j 2 2 9 # 2aq 1|j|A 2/2, 

which implies that the set A is globally pre-asymptoti-
cally stable for each controller q [ Q; moreover, for all 
j [ 'Cq \ SA h d i.qCiD,

 8nq 1j 2 , fp 1j, uq, j 2 9 # 2aq 1|j|A 2/2,  

which implies that no maximal solution starting in Cq 
reaches 

 Rn \ SCqhd
i.q
CiD \ A, 

independently of how kq is extended from Cq \ A to Cq. 
To preserve outer semicontinuity and local bounded-
ness, set kq 1j 2 5mq 10 2B for j [ Cq d A. The “Supervisor 
Assumption” holds. In particular, conditions 2a) and 
2b) are addressed by the inequalities displayed above, 
while 2c) holds since U5Rn. By taking kq 1xp, xc 2 5 kq 1xp 2  
for each q [ Q, the feedbacks kq can be combined in 
a hybrid supervisor Hc with data given in (40). Al-
though kq are set-valued on A, the arguments used still 
apply. Furthermore, robustness results like Theorem 
15 hold. 

Example 37: Global Asymptotic Stabilization 
of a Point on the Three-Sphere 
Consider the problem of globally asymptotically stabiliz-
ing the point j*

 J   10, 0, 0, 1 2 [ S3 J  5x [ R4 : xTx5 16 for 
the system 

 
#
j
#
5L 1u 2j  j [ S3, 

where

 L 1u 2 5 ≥
0 u3 2u2 u1

2u3 0 u1 u2

u2 2u1 0 u3

2u1 2u2 2u3 0

¥ . 

These equations can model the orientation kinematics of a 
rigid body expressed in terms of unit quaternions. In this 
case, j* corresponds to a desired orientation and the inputs 
ui correspond to angular velocities. 

First we study the effect of the feedback controls ui J 2ji, 
i [ 51, 2, 36. Denote this feedback k2. Using the Lyapunov-
function candidate V 1j 2 5 12j4, and noting that 

 8=V 1j 2 , L 1k2 1j 2 2j95 12j4
2   for all  j [ S3,  

it follows that the point j* is rendered locally asymptoti-
cally stable with basin of attraction containing every point 
except 2j*.

Next we study the effect of the feedback controls 
u15 2j2, u25j1, u35j4. Denote this feedback k1. Using 
the Lyapunov-function candidate V 1j 2 5 12j3, it follows 
that the point 10, 0, 1, 0 2  is rendered locally asymptotically 
stable with basin of attraction containing every point ex-
cept 10, 0, 2 1, 0 2 . 

Consider a hybrid supervisor of the classical control-
lers H|q, q [ Q5 51, 26, that are static and are given by 
k|q 1j 2 5kq 1j 2 . The “Supervisor Assumption” is satisfied for 
A5 5j*6 and U5S3 by taking D15D25[ and 

 

C15  C1 J 5j [ S3 : j4 # 2 1/36,
                   C2 J 5j [ S3 : j4 $ 2 2/36, 
                 C2 J 5j [ S3 : j4 $ 2 1/36.

Following the prescription of the components of 
a hybrid supervisor in (41) and (42), we get H15C2, 
H25S3 \ C25 5j [ S3 : j4 # 22/36, and Jq5 32 q. Then, 
using the definition of a supervisory controller in (40), we 
get a hybrid controller with state xc5 q, data Cc5 1C1 3 516 2h  1C2 3 526 2 , fc5 0, Dc5 1H1 3 516 2  h  1H2 3 526 2 , 
Gc5 32 q, and kc 1j, q 2 5kq 1j 2 .

According to Corollary 33, this controller renders the 
set 5j*6 3 Q globally asymptotically stable. In fact, it can 
be established that the point 1j*, 2 2  is globally asymptoti-
cally stable. 

This example can also be interpreted in terms of the con-
cept of patchy control-Lyapunov functions. Indeed, it can 
be verified that, with Q5 51, 26, 
 

V1 1j 2 5 12j3,   V1 r5V1 J S3,
V2 1j 2 5 12j4,   V2 r J 5j [ S3 : j4 $ 2 1/36,

 V2  J  5j [ S3 : j4 $ 2 2/36,
constitutes a patchy control-Lyapunov function. ! 

Example 38: Nonholonomic Integrator
Consider the nonlinear control system 

 
j1
#
5 u

j2
#  5 u2

j3
#
5j1u22j2u1

s 5:  fp 1j, u 2

known as the nonholonomic integrator. According to 
Brockett’s necessary condition, the origin is not stabiliz-
able by continuous, static-state feedback, nor it is robustly 
 stabilizable by discontinuous, static state feedback. It is 
robustly stabilizable by time-varying feedback and by 
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hybrid feedback. See, for example, [35]. We construct 
a robustly stabilizing hybrid feedback using the idea 
of PCLFs. 

Define r 1j 2  J  "j1
21j2

2 and let the constants r . 1 
and e . 0 satisfy r 111 e 2 , 2. Let V1, V2 : R3 S R and 
V1
r , V1, V2

r , V2 ( R3 be given by 

  

V1 1j 2  J  111 e 2"r|j3|2j1,   V2 1j 2  J 1
2
j^j,

     V1 r J  R3,   V2 r  J  5r 1j 2 2 . r|j3|6,
    V1  J  R3,   V2 J  5r 1j 2 2 . |j3|6.

We show that these choices correspond to a PCLF with respect 
to A5 506 for the nonholonomic integrator control system. 

Observe that V2
r  \ A ( V2. Also, the unit outward normal 

vector to V2, given by 

 n2 1j 2  J 122j1, 2 2j2,  sgn 1j3 2 2
"4r 1j 2 21 1

, 

is continuous on 'V2 \ A since j3 2 0 in that set. For the same 
reason, V1 is smooth on an open set containing R3 \ V2

r  \ A. 
Next we bound V1 and V2, examine their directional de-

rivatives, and determine whether it is possible to pick the 
controls to make these functions decrease while also sat-
isfying the appropriate condition with respect to the unit 
outward normal vectors. 

Since, for each j [ R3 \ V2
r , we have "r|j3| $ r 1j 2 $ j1, 

it follows that 

 0.5e 1"r|j3|1 r 1j 2 2 # V1 1j 2 # 111 e 2 1"r|j3|1 r 1j 2 2 ,
 j [ R3 \ V2

r .

This condition implies the existence of class-K` func-
tions g1 and g1 such that g1 1|j| 2 # V1 1j 2 # g1 1|j| 2  for 
all j [ V1 \ V2

r . Also, 0.5|j|2 # V2 1j 2 # 0.5|j|2 for all 
j [ V2.

Now we consider possible control choices. Take 
u1, j 5 11, 0 2  for all j [ R3. Then, for all j [ R3 \  1V 2

r hA 2 , 
 8=V1 1j 2 , fp 1j, u1, j 2 95211 0.5 111 e 2r 2 j2

"r|j3|

 # 211 0.5 111 e 2  r , 0.

Since there is no unit outward normal for V1, this condition 
is all that needs to be checked for q5 1. 

For q5 2, consider the control choice 

 u2, j 5 ≥
2j11 4

j2j3

r 1j 2 2
2j22 4

j1j3

r 1j 2 2
¥    for all  j [ V2 \ A 

which is continuous on V2 \ A and approaches zero as j ap-
proaches A. We then have 

 8=V2 1j 2 , fp 1j, u2, j 2 95 2j1
22j2

22 4j3
2   for all  j [ V2 \ A 

and, for all j [ 'V2 \ A, 

 8n2 1j 2 , fp 1j, u2, j 2 95 2j1
21 2j2

22 4|j3|

"4r 1j 2 21 1
5 2

r 1j 2 21 |j3|

"4r 1j 2 21 1
.

These calculations verify that the given patches and func-
tions constitute a PCLF for the nonholonomic integrator 
system. Then, to construct a hybrid feedback control algo-
rithm for this system following the presentation on PCLFs, 
we take C15C1 J  R3 \ V2

r , C2 J V2, C25V2
r , k1 1j 2 5 u1, j 

for all j [ C1, k2 1j 2 5 u2, j for all j [ C2 \ A and k2 10 2 5 0. 
Finally, the hybrid feedback stabilizer is defined using Cq, 
Cq, and kq, q [ 51, 26. !

AN EXAMPLE BASED ON MULTIPLE 
LYAPUNOV FUNCTIONS
The final example uses many of the analysis tools that 
have been presented in this article. In particular, it uses 
Lyapunov functions, the invariance principle, results on 
 stability with a finite number of events, and Theorem 32 
based on the idea of multiple Lyapunov functions. 

Example 37 Revisited: Stabilization on the 
Three-Sphere with Restricted Controls
We again consider the problem of stabilizing the point 
j* J 10, 0, 0, 1 2 [ S3 for the kinematic equations in Ex-
ample 37. This time, we restrict our attention to controls 
in the set U J 5u [ R3 : u35 u1u25 0,  |u| # 16 . This 
problem can be associated with stabilizing a desired ori-
entation for an underactuated rigid body. For example, 
see [16]. We focus only on the local asymptotic stabi-
lization problem. Following the ideas outlined in this 
article, this solution can be combined with other hybrid 
controllers to achieve global asymptotic stabilization. 
The ideas used here are taken from [84], where global 
asymptotic stabilization is achieved. 

Controller Specification 
We use a hybrid controller with state q [ Q5 51, 2, 3, 4, 5, 66,  
a timer state t [ 30, 1 4 , a state % [ 521, 16 , and a state w [ 30, p/4 4. The closed-loop system state is x J  1j, q, t, %, w 2[ 
R8, constrained to the set K J 5j [ S3 : j4 $ e6 3 
Q 3 30, 1 4 3 521, 16 3 30,  p/4 4, where e [ 10, 1 2 . Our 
goal is to  globally pre-asymptotically stabilize the set 
A J 5j*6 3  Q 3 30, 1 4 3 521, 16 3 30, p/4 4, resulting in 
local asymptotic stability of A when the constraint j4 $ e 
is removed. 

Let si : N S 50, 16 satisfy si 1 i 2 5 1 and si 1 j 2 5 0 for j 2 i. 
For q [ 51, 26, we use ui52si 1q 2ji. For q [ 53, 4, 66, we 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



APRIL 2009 « IEEE CONTROL SYSTEMS MAGAZINE 89

use ui5 %si 11 2 . For q5 5, we use ui5 %si 12 2 . For each q [ Q, 
the resulting feedback law is denoted u5kq 1x 2 . 

For q [ 51, 26, we define Cq J 5x [ K : jq
2 $ m 1j32q

2 1j3
2 2 6, 

where m [ 10, 1/2 2 . For q [ 53, 66, we define Cq J5x [ K :2%j1 $ 06. We also define C5 J 5x [ K :2%j2 $ 06 
and C4 J 5x [ K : t [ 30, min 5"12j4, w6 4 6. For q [ Q, 
we define Dq5K \ Cq.

We pick the flow map so that q# 5 %# 5w# 5 0. In addition, 
t
#
5 1 for q5 4 while t# 5 0 for q 2 4. 

We pick the jump map G so that x1 [ G 1x 2  gives the 
following relationships: j1 5 j; t1 5 0; for q [ 53, 4, 56, 
q1 5 q1 1; for q [ 51, 2, 66, q1 5 3 when j1

21j2
2 , m̂j3

2, 
where m̂ . 2m/ 112m 2 , q1 [ I 1j 2  when j1

21j2
2 . m̂j3

2, 
where I 1j 2 :5 5i [ 51, 26 : j i

25max 5j1
2, j2

266, and q1 5536 h I 1j 2  when j1
21j2

25 m̂j3
2. The possible mode transi-

tions are indicated in Figure 21. 
When q [ 51, 2, 5, 66, % 1 [ 5s [ 5 2 1, 16 :2 sj1 $ 06, 

when q5 3, %1 5  sgn 1j2j3 2  for j2j3 2 0 and %1 5 5 2 1, 16 
for j2j35 0; when q5 4, % 1 [ 5s [ 5 2 1, 16 : sj2 $ 06, 
When q 2 3, w1 5 w; when q5 3, w1 5 0.5 cot21 1|j2/j3| 2  
for j3 2 0, w1 5 0 for j35 0 and j2 2 0, and w1 [ 30, p/4 4  
for j25j35 0.

Verifying the Conditions of Theorem 32 
for the Closed-Loop System

Condition 1
Since j1 5 j, it follows from the definitions above that 
G 1D d A 2 ( A.

Condition 2
We associate events with transitions to modes q5 3. Events 
are indicated by red arrows in Figure 21. To assess stability 
with these primary events inhibited, we define secondary 
events, corresponding to transitions to modes q [ 54, 5, 66. 
With primary events inhibited, there are no more than three 
secondary events. Therefore, according to Theorem 31, the 
system with primary events inhibited has A pre-asymp-
totically stable if the flow dynamics on Cq, q [ 53, 4, 5, 66 
has A pre- asymptotically stable, and switching back and 
forth between between q5 1 and q5 2 results in A being 
pre-asymptotically stable. 

To assess pre-asymptotic stability of the flow dynamics 
on C4, we use the Lyapunov function W 1x 2 5r"V 1j 2 2t, 
where V 1j 2 5 12j4 and r [ 11, "2 2 . For all x [ C4 \ A, 
it follows that 1r2 1 2"V 1j 2 # W 1x 2 # r"V 1j 2 . Also, since 

 8=V 1j 2 , L 1k4 1x 2 2j9 # |j1| #"2"V 1j 2 ,
for all x [ C4 \ A it follows that 

8=W 1x 2 , F4 1x 2 9 # r

"2
2 1 , 0, 

where F4 is the closed-loop flow map when q5 4. 
To assess pre-asymptotic stability of the flow dynamics 

on C3, C5 and C6 we use W 1x 2 5V 1j 2 . We obtain 

8=V 1j 2 , L 1kq 1x 2 2j95 %jj # 0,  

where j5 2 for q5 5 and j5 1 for q [ 53, 66 . This 
property establishes stability of A, and since j4 is 
bounded away from zero, there are no complete flowing 
solutions on C3, C5 or C6, which implies that A is pre-
asymptotically stable. 

To assess pre-asymptotic stability of the combined flow 
and jump dynamics Cq, Dq, q [ 51, 26, we use the Lyapunov 
function W 1x 2 5V 1j 2 . We obtain 

 8=V 1j 2 , L 1kq 1x 2 2j95 2jq
2 # 2

m

m1 1
112j4

2 2 , 0

 for all   x [ Cq \ A.

In addition, V 1j 2  does not change during jumps. So, 
to establish pre-asymptotic stability of A we just 
need to rule out complete solutions that jump only 
and do not converge. This behavior is ruled out by the 
fact that a jump to mode q [ 51, 26  from a point not in A 
means that jq

2 $ j32q
2 . 0 and m̂j3

2 # jq
21j32q

2 , which im-
plies that 

m 1j32q
2 1j3

2 2 # m 1j32q
2 1 m̂21 1j32q

2 1jq
2 2 2

 # m 111 2m̂21 2jq
2 , jq

2. 

In other words, a jump from D32q \ A lands at a point 
not in Dq. 

These calculations establish condition 2) of Theorem 32. 

Conditions 3 and 4 
We take W 1x 2 5 12j4, which satisfies Condition 3 with 
a1 1s 2 5a2 1s 2 5 2a3 1s 2 5 2s for all s $ 0. Now we estab-
lish Condition 4. We start from a hybrid time where a 

Synchronization in groups of biological oscillators occurs in 
swarms of fireflies, groups of crickets, ensembles of neuronal oscillators, 

and groups of heart muscle cells. 
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jump to q5 3 has just occurred. By the time a jump to 
q5 4 occurs, W 1x 2  has not increased and we have j15 0 
and j2

2 # m̂j3
2. When q5 4, W 1x 2  increases, but we argue 

that the sequence of modes q5 4, q5 5, q5 6 results in a 
decrease in W 1x 2 . Since W 1x 2  is also strictly decreasing 
for q [ 51, 26 , this implies that when q5 3 is revisited, 
W 1x 2  has decreased. The key to showing this proper-
ty is to establish that, with xi, q denoting ji at the end 
of mode q, there exists a continuous function r that is 
less than one except when its argument is one, so that 
|x3, 5| # r 1x4, 3 2|x3, 3|. Indeed, using that x1, 65x2, 55 0 
and x2, 6

2 1x3, 6
2 5x2, 5

2 1x2, 6
2 , this gives 

 

12x2
4, 65x1, 6

2 1x2, 6
2 1x3, 6

2

               5x2, 6
2 1x3, 6

2

              5x2, 5
2 1x3, 5

2

              5x3, 5
2

              # r2 1x4, 3 2x3, 3
2

              # r2 1x4, 3 2 112x4, 3
2 2 .

 

Since x4, 6 and x4, 3 are positive, this implies 

 12x4, 6 # r2 1x4, 3 2 112x4, 3 2 . 
Finally, we establish |x3, 5| # r 1x4, 3 2|x3, 3|. Let tq, 

q [ 54, 56, denote the time spent in mode q. Let %q, 
q [ 54, 56, denote the value of % in mode q. A routine calcu-
lation involving the solution of a linear, two-dimensional 
oscillator and using that x1, 35x2, 55 0 gives 

 cos 1%4t4 2x3, 55 cos 1%5t5 2 3 1cos 1%4t4 2 22 sin 1%4t4 2 2 2x3, 3

 2 2cos 1%4t4 2sin 1%4t4 2x2, 3 4.
Due to the construction of the jump map from mode q5 3, 
%45 sgn 1x2, 3x3, 3 2    when x2, 3x3, 3 2 0; otherwise %4[ 521, 16. 
Then, due to the value of w in mode q5 4, which lim-
its t4, it follows that the sign of sin 1%4t4 2x2, 3 is the same 
as the sign of x3, 3. Using t4 # p/4 and %4 [ 5 2 1, 16, 
it follows that 

 |x3, 5| #
cos 1t4 2 22 sin 1t4 2 2

cos 1t4 2 |x3, 3|.

The function involving t4 on the right-hand side takes 
values in the interval 30, 1 2  for all 
t4 [ 10, p/4 4 . Now, by the definition of 
C4, k4, and the fact that x1, 35 0, t4 can 
be expressed as a continuous function 
of x4, 3 that is zero when x4, 35 1 and is 
positive otherwise. In turn, this estab-
lishes the bound |x3, 5| # r 1x4, 3 2|x3, 3| 
for a continuous, nonnegative-valued 
function r that is less than one except 
when x4, 35 1. !

CONCLUSIONS
Hybrid dynamical systems combine 
flows and jumps. They can be modeled in 
a compact form, and they cover a fasci-
nating variety of dynamic phenomena. 

With the use of hybrid time domains 
and the notion of graphical conver-
gence, sequential compactness of the 
space of solutions and semicontinuous 
dependence of solutions on initial con-
ditions and perturbations can be estab-
lished under mild conditions. 

The concepts of average dwell-time switching and multiple Lyapunov 
functions, which are applicable to switched systems, 

extend to hybrid systems.

FIGURE 21 Possible mode transitions when stabilizing a point on the three-sphere by 
hybrid feedback that uses only two angular velocities, one at a time. Normal opera-
tion corresponds to jumps between modes q5 1 and q5 2. However, at times the 
sequence of modes 3 S 4 S 5 S 6 is required. The initiation of such a sequence is 
associated with an event in the hybrid system. Transitions associated with events are 
indicated by red arrows in the diagram. The quantity V 1j 2 5 1 2j4 does not increase 
along solutions except when q5 4. When events are inhibited, so that the mode q5 4 
is reached no more than once, the resulting hybrid system has the correct pre-as-
ymptotically stable set. With events included and V 1j 2  considered at event times, the 
resulting values of V 1j 2  constitute a strictly decreasing sequence. Thus, Theorem 32 
can be used to establish pre-asymptotic stability for the hybrid system.

q = 1

q = 2

q = 3 q = 4 q = 5 q = 6

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



APRIL 2009 « IEEE CONTROL SYSTEMS MAGAZINE 91

The properties of the space of solutions to a hybrid 
system have important consequences for stability theory. 
For example, these properties imply that asymptotic sta-
bility of a compact set is uniform and robust to pertur-
bations. The properties also facilitate extensions of the 
classical invariance principle and converse Lyapunov 
theorems to the hybrid setting. The hybrid invariance 
principle and Lyapunov functions lend themselves to 
natural sufficient conditions for asymptotic stability in a 
hybrid system. Additional stability analysis tools, relat-
ed to identifying and limiting events in a hybrid system, 
can also be  developed. 

The stability analysis tools can be used to predict the be-
havior of hybrid systems and to design hybrid control algo-
rithms. The examples of hybrid control systems provided 
in this article only scratch the surface of what is possible 
using hybrid feedback control. The framework and tools 
presented in this article may help in the process of discov-
ering new hybrid feedback control ideas. 
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Advancing the Field

With no other choice but to live one day at a time and to keep intellectually alive, Tsien contin-
ued to work and teach and await the next step, whatever it might be, whenever it might be. 

He turned to other fields of research, such as the study of games and economic behavior. In 1954, 
he published a textbook titled Engineering Cybernetics, a book on systems of communication and 
control. It too would be well received.

Years later, Wallace Vander Velde, an MIT professor and renowned expert in cybernetics, would 
describe the book as “remarkable” and “an extraordinary achievement in its time.” Wrote Vander 
Velde of the book:

In 1954, a decent theory of feedback control for linear, time invariant systems existed and 
servomechanism design was an established practice. But Tsien was looking ahead to more 
complex control and guidance problems—notably the guidance of rocket-propelled vehi-
cles. This stimulated his interest in the systems with time-varying coefficients, time lag and 
nonlinear behavior. All these topics are treated in this book.
But Tsien went further to deal with optimal control via the variational calculus, optimalizing 

control and fault-tolerant control systems among other topics! He visualized a theory of guidance 
and control which would be distinct from, and would support, the practice of these disciplines. 
This has certainly come to be, and his pioneering effort may be thought of as a major foundation 
stone of that effort which continues to this day.

—Thread of the Silkworm, by Iris Chang, BasicBooks, New York, 1994, pp. 175–176.
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