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Abstract— This paper develops the hybrid Lyapunov theorem
for geometric hybrid dynamical systems, namely hybrid inclu-
sions evolving on intrinsic C1-manifolds. We present various
nonsmooth analysis notions, which aid in the formulation of
sufficient conditions for existence of solutions. We also present
topological definitions of uniform global stability, attractivity,
and asymptotic stability of a nonempty, compact set A. Finally,
the Lyapunov theorem provides relaxed conditions for uniform
global asymptotic stability of the set A. An example illustrates
the concepts and results.

I. INTRODUCTION

A large class of systems, ranging from legged robots to
spacecraft dynamics, evolve on non-Euclidean manifolds.
Hybrid systems theory has proven useful to establish global
asymptotic stability results for such systems when the under-
lying manifold is noncontractible [1], [2]. However, much of
the literature on hybrid dynamical systems focuses on systems
evolving on the Euclidean space Rn [3], [4]. Consequently,
the characterization of uniform stability and attractivity of a
desired nonempty set A ⊂ Rn for a hybrid dynamical system
in [4, Definition 3.1] assumes knowledge of the Riemannian
metric, which, on Rn, is assumed to be the standard metric.

However, Riemannian metrics on smooth manifolds, while
they exist [5, Proposition 13.3], may not be known. Embed-
ding the manifold into Euclidean space can induce a metric
on the manifold. Although such an embedding approach has
been used in the literature, even in the context of hybrid
dynamical systems [2], we prefer to think of the manifold
from an intrinsic geometric perspective – independent of the
ambient Euclidean space – for the following reasons.

Firstly, while the Whitney Embedding theorem guarantees
existence of an embedding, it does not characterize it, thus
limiting its applicability in instances where the embedding
is not apparent. Examples include quotient manifolds, which
not only lack canonical embeddings, but also potentially lose
intrinsic geometric structure when embedded in Euclidean
space. For example, the isometry group of a 2-torus T2 =
R2/Z2 is the group of rotations, reflections, and translations
in R2. However, embedding T2 in R3, thus resulting in
the familiar S1 × S1 ‘doughnut’ structure, results in loss
of translations from the isometry group.
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Secondly, even on intrinsic manifolds without using embed-
dings, additional structure on the manifold may pose several
challenges. Consider, for example, disconnected Riemannian
manifolds which arise due to hybrid systems operating in
multiple modes of operation; see [2], [6] for examples
pertaining to attitude control and estimation. Even with
the lack of a continuous curve connecting two points on
the disconnected manifold, [5, Corollary 13.30] defines an
appropriate distance between them. However, due to ‘jumps’
in the definition therein, there does not exist a global smooth
Riemannian metric on M that yields the said distance defini-
tion. Furthermore, since this definition depends on arbitrarily
chosen points on each connected component of the manifold
M, certifying stability of A ⊂ M can be difficult as the
Lyapunov function, defined using the Riemannian distance
to A, may increase along solutions in certain regions on M.
This issue can be circumvented by a topological approach
to analysis of hybrid dynamical systems on manifolds, thus
only using the intrinsic properties of the manifold.

Motivated by the above discussion, we observe that there
is scarce literature on hybrid dynamical systems evolving
on intrinsic smooth manifolds. Some results include [7], [8],
where a class of hybrid systems operating in different modes
are studied. A more general modeling approach is presented
in [9], where topological hybrid systems are introduced.
While these papers present novel and insightful modeling
approaches, the dynamics therein enforce uniqueness of
solutions as they are modeled using differential equations,
and not differential inclusions, which are crucial to study
properties of nonsmooth and perturbed dynamical systems
[3, Chapter 4]. Such modeling for geometric hybrid systems
is presented in [10] to study multistable inclusions. How-
ever, [10] considers a connected Riemannian manifold, thus
limiting its applicability.

In light of a lack of tools for analysis of hybrid inclu-
sions from a topological and geometric viewpoint, we study
hybrid dynamical systems, modeled as hybrid inclusions,
evolving on C1-manifolds from a geometric point of view.
We refer to these systems as geometric hybrid dynamical
systems. First, we present various notions of nonsmooth
analysis on manifolds that provide the foundation for the
rest of this paper. Then, sufficient conditions for existence of
nontrivial solutions are discussed. We also define topological
notions of uniform global stability, (pre-)attractivity, and
(pre-)asymptotic stability of a nonempty, compact set A. Fi-
nally, we present the hybrid Lyapunov theorem that provides
pointwise sufficient conditions for uniform global asymptotic



stability of A, analogous to the version on Euclidean space [4,
Theorem 3.19], but without assuming additional structure on
the manifold. Additional results on the invariance principle
for geometric hybrid dynamical systems on C1-manifolds
are provided in the companion paper [11]. Due to space
constraints, proofs will be presented elsewhere.

II. PRELIMINARIES

A. Notation

We denote the set of real and nonnegative numbers by R
and R≥0, respectively. The set of natural numbers, including
0, is denoted by N. The distance from a point x ∈ Rn to a
nonempty set A ⊂ Rn is defined as |x|A := infy∈A |x− y|.
Let X denote a topological space with some topology. The
closure of a set S ⊂ X is denoted by S, and its interior by
int S. The set S is compact if every open cover of S has
a finite subcover, and it is precompact if S is compact. A
function α : R≥0 → R≥0 is a class-K∞ function, denoted by
α ∈ K∞, if α is zero at zero, continuous, strictly increasing,
and unbounded. A function σ : X → R≥0 is positive definite
with respect to A ⊂ X , denoted by σ ∈ PD(A), if σ(x) = 0
if and only if x ∈ A. The composition of two maps f : X →
Y and g : Y → Z is denoted by g ◦ f : X → Z. A set-
valued map F : X ⇒ Y maps each point x ∈ X to a subset
F (x) ⊂ Y . Given a nonempty set S ⊂ Rn, the tangent cone
TS(x) to S at x ∈ S is the set of all vectors w ⊂ Rn for
which there exist sequences xi ∈ S, τi > 0 with xi → x,
τi ↘ 0, and w = limi→∞

xi−x
τi

.

B. Differential geometry

The notions of a topological manifold M, coordinate
charts, atlas, and maximal atlas of M are borrowed from [5].
A pair (U,φ) is a coordinate chart, or chart, on a topological
manifold M if U ⊂ M is open and φ : U → RdimM is a
homeomorphism. A chart (U,φ) of M is called a chart at
x ∈ M if x ∈ U . Two charts (U,φ) and (W,ψ) of M are
Ck-compatible if U ∩W = ∅ or the transition map ψ ◦φ−1

onto its image is a Ck-diffeomorphism. A Ck-atlas of M
is one whose charts are Ck-compatible. A Ck-manifold M
is a topological manifold endowed with a maximal Ck-atlas.
The tangent space to M at x ∈ M is denoted by TxM, and
the tangent bundle of M is denoted by TM.

A map f : M → N between two Ck-manifolds is Ck

at x ∈ M if there exists a coordinate chart (U,φ) at x ∈ M
and a chart (W,ψ) at f(x) ∈ N such that the coordinate
representation ψ◦f ◦φ−1 is Ck in the usual Euclidean sense.
The map f is said to be Ck if it is Ck at each x ∈ M. The
tangent map of f at x ∈ M, denoted by dfx : TxM →
Tf(x)N , is defined by dfx(v) :=

df
dt (γ(t))

∣∣∣
t=0

, where I ∋
t 7→ γ(t), with I ⊂ R such that 0 ∈ I, is a smooth curve
on M satisfying γ(0) = x and γ′(0) = v ∈ TxM.

A Riemannian manifold [12] is a pair (M, g), where M
is a Ck-manifold and g is a Riemannian metric on M whose
value at each x ∈ M defines an inner-product on TxM. The
gradient of a C1-function f : M → R at x ∈ M, denoted
by grad f(x), is such that dfx(v) = g(grad f(x), v) for

each v ∈ TxM. The set of critical points of f is denoted
by crit f := {x ∈ M : grad f(x) = 0}.

C. Regularity of set-valued maps

A set-valued map F : M ⇒ N between topological
manifolds is outer semicontinuous at x ∈ M if for each
sequence of points xi converging1 to x and each convergent
sequence of points yi ∈ F (xi), it follows that y ∈ F (x),
where limi→∞ yi = y. The map F is outer semicontinuous if
it is outer semicontinuous at each x ∈ M. Given a nonempty
set S ⊂ M, F is outer semicontinuous relative to S the
restriction of F to S is outer semicontinuous at each x ∈ S.

Furthermore, F is locally precompact at x ∈ M if there
exist a neighborhood U of x such that F (U) is precompact.
The map F is said to be locally precompact if it is locally
precompact at each x ∈ M. Given a nonempty set S ⊂ M,
the map F is said to be locally precompact relative to S if
F , restricted to S, is locally precompact at each x ∈ S.

Finally, a single-valued function f : M → R is lower
semicontinuous if, at each x ∈ M, f(x) ≤ lim infy→x f(y).

III. GEOMETRIC HYBRID DYNAMICAL SYSTEMS

In this paper, we define geometric hybrid dynamical
systems as follows:

H :

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(1)

where x ∈ M is the state, C ⊂ M and D ⊂ M are the flow
set and the jump set, respectively, G : D ⇒ M is the jump
map, and M is a finite dimensional C1-manifold. The flow
map is a set-valued map such that F (x) ⊂ TxM for each
x ∈ C, and is denoted as F : C ⇒ TM. This hybrid system
is denoted by H = (C,F,D,G,M). We will assume M to
be a finite-dimensional C1-manifold.

Solutions to H are defined on hybrid time domains [4,
Definition 2.26], parametrized by ordinary time t ∈ R≥0,
that denotes the amount of time for which the solution has
flowed, and a jump counter j ∈ N that denotes the number of
jumps that have occurred. A set E ⊂ R≥0 ×N is a compact
hybrid time domain if there exists J ∈ N such that

E =

J⋃
j=0

[tj , tj+1]× {j}, (2)

for some finite sequence of times {tj}J+1
j=0 satisfying 0 =

t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ ≤ tJ+1. A set E ⊂ R≥0 × N is a
hybrid time domain if it is the union of compact hybrid time
domains Ej such that E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ej . . ..

Definition 1 (Solution to a hybrid system). A function ϕ :
dom ϕ→ M is a solution to the geometric hybrid dynamical
system H = (C,F,D,G,M) if dom ϕ is a hybrid time
domain, for each j ∈ N, the function t 7→ ϕ(t, j) is locally

1Convergence is defined in the topological sense, without using a metric
on the space. In particular, a sequence {xi}∞i=0 ⊂ M converges to x ∈ M,
written as limi→∞ xi = x, if for each neighborhood U ⊂ M of x, there
exists i∗ ∈ N such that xi ∈ U for all i ≥ i∗.



absolutely continuous on the interval Ij := {t : (t, j) ∈
dom ϕ}, ϕ(0, 0) ∈ C ∪D, and

• for each j ∈ N such that int Ij ̸= ∅, ϕ satisfies

ϕ(t, j) ∈ C for all t ∈ int Ij ,

ϕ̇(t, j) ∈ F (ϕ(t, j)) for almost all t ∈ Ij ;

• for each (t, j) ∈ dom ϕ such that (t, j + 1) ∈ dom ϕ,

ϕ(t, j) ∈ D,

ϕ(t, j + 1) ∈ G(ϕ(t, j)).

Note that the notion of local absolute continuity used in
the definition above is borrowed from [13, Section A.2.1].
We reproduce it here for completeness.

Definition 2 (Local absolute continuity). A function γ : R ⊃
I → M is said to be locally absolutely continuous if, for each
C1-function ψ : M → R, the composition ψ ◦ γ : I → R is
locally absolutely continuous.

Given a solution ϕ to H, its total time of flow is
given by supt dom ϕ := sup{t : ∃j s.t. (t, j) ∈ dom ϕ}.
Similarly, the number of times ϕ jumps is given by
supj dom ϕ := sup{j : ∃t s.t. (t, j) ∈ dom ϕ}. Then, we
define sup dom ϕ := (supt dom ϕ, supj dom ϕ).

A solution ϕ is nontrivial if dom ϕ contains at least two
points, it is maximal if it cannot be extended, and it is
complete if its domain is unbounded. Given a nonempty set
Xo ⊂ C ∪D, we denote by ŜH(Xo) (resp., SH(Xo)) the set
of solutions (resp., maximal solutions) to H from Xo.

Next, we provide some regularity conditions that impart
desirable properties to H, some of which are explored in the
companion paper [11].

Definition 3 (Geometric hybrid basic conditions). The ge-
ometric hybrid dynamical system H = (C,F,D,G,M) is
said to satisfy the geometric hybrid basic conditions if

1) M is a C1-manifold;
2) C and D are subsets of M that are closed relative to M;
3) F : C ⇒ TM is outer semicontinuous and locally pre-

compact relative to C, and F (x) is convex for all x ∈ C;
4) G : D ⇒ M is outer semicontinuous and locally pre-

compact relative to D.

If M = Rn and the hybrid system H satisfies Definition 3,
it is shown in [3, Chapter 6] that H is well-posed; in
particular, the set of solutions to H with compact time
domains is sequentially compact, and dynamical properties
of H are robust to arbitrarily small perturbations. This notion
of well-posedness requires knowledge of a distance metric
on the manifold. Since we assume M to be a C1-manifold,
a distance metric on M may be unknown. Consequently, a
similar notion is not yet defined for the class of systems in
(1). A weaker notion only requiring sequential compactness
of the set of compact solutions to H, namely, nominal well-
posedness, is defined in the companion paper [11].

In the following example, we look at a geometric hybrid
dynamical system on a Möbius band, which we will revisit
in the following sections to illustrate the results therein.

Fig. 1: Illustration of the open Möbius band embedded in R3,
with sample trajectories converging to Ã.

Example 1 (The Möbius band). Consider the open Möbius
band B := ([0, 1]× (−1, 1))/ ∼ with the equivalence
relation given by (0, z2) ∼ (1,−z2) for each z2 ∈ (−1, 1).
See Fig. 1 for an illustration of the Möbius band. Note
that, due to the quotient operation, B is a quotient space.
With some abuse of notation, an element of B is denoted
by [z]B := [z1, z2]B, where the notation [·]B denotes
the corresponding equivalence class. Equipped with smooth
coordinate charts according to [5, Ex. 10.3], B is a smooth
manifold, i.e., a C∞-manifold. We also endow B with a
Riemannian metric gB according to [12, Ex. 2.35].

Let Q := {−1, 1} and define the smooth manifold M :=
B ×Q. For each q ∈ Q, define a C1-function Vq ∈ PD(Ã)

for some nonempty, compact set Ã ⊂ B. Suppose that

µ := min
q∈Q

[z]B∈crit Vq\Ã

{
Vq([z]B)−min

p∈Q
Vp([z]B)

}
> 0. (3)

With this construction, we pick δ ∈ (0, µ) and define a
geometric hybrid dynamical system H = (C,F,D,G,M)
with state x := ([z]B, q) ∈ M as follows:

C :=

{
([z]B, q) ∈ M : Vq([z]B)−min

q∈Q
Vq([z]B) ≤ δ

}
,

F (x) :=

(
−grad Vq([z]B)

0

)
∀x ∈ C,

D :=

{
([z]B, q) ∈ M : Vq([z]B)−min

q∈Q
Vq([z]B) ≥ δ

}
,

G(x) :=

(
[z]B

argmin
q∈Q

Vq([z]B)

)
∀x ∈ D.

Since µ > 0 and card(Q) = 2, G is single valued. ■

IV. NONSMOOTH ANALYSIS ON MANIFOLDS

In this section, we define various notions of nonsmooth
analysis on manifolds that will be used throughout the paper.
First, we present the notion of tangent cone to a subset of a
C1-manifold. This notion is closely related to the notion of
tangent cones to subsets of the Euclidean space.

Definition 4 (Tangent cone to subsets of manifolds [14,
Definition 3.2]). Let M be an n-dimensional C1-manifold
and let S be a nonempty subset of M. The tangent cone
TM

S (x) at x ∈ S is defined as

TM
S (x) := (dφx)

−1
(Tφ(S∩U)(φ(x))),

where (U,φ) is any coordinate chart of M at x, and
Tφ(S∩U)(φ(x)) denotes the tangent cone to the set φ(S∩U)
at the point φ(x).



In the above definition, the inverse of the map dφx :
TxM → Rn exists as it is an isomorphism [5, Prop. 3.6(d)].
Next, we define the notion of locally Lipschitz function
between manifolds as follows. This notion will be instru-
mental in relaxing the requirement of a Lyapunov function
candidate to be continuously differentiable, as will be seen
in the forthcoming Section VII.

Definition 5 (Locally Lipschitz function between manifolds).
Given C1-manifolds M and N , a function f : M → N
is locally Lipschitz on M if for each pair of coordinate
charts (U,φ) and (W,ψ) on M and N , respectively, such that
V ∩f(U) ̸= ∅, the function ψ◦f ◦φ−1 : φ(U∩f−1(W )) →
ψ(W ) is locally Lipschitz, where f−1(W ) := {x ∈ M :
f(x) ∈W}.

Remark 1. For Definition 5 to be invariant under the choice
of coordinate charts, the transition map [5, Ch.1] between co-
ordinate charts on M (resp., N ) should be locally Lipschitz.
This holds since each transition map is a C1-diffeomorphism.

Remark 2. Local Lipschitz continuity of a function between
metric spaces is often defined using distance between points.
This definition solely depends on the choice of the metrics
on the spaces. Definition 5, however, implicitly assumes the
standard metric on Rn to comment about local Lipschitz
continuity of the coordinate representation of the map f
therein. Therefore, if Rn is endowed with a metric that is not
equivalent [15, p.22] to the standard metric, then Definition 5
differs from the metric-based definition [5, p.609].

Next, we provide a version of the Rademacher’s theorem
for locally Lipschitz functions on manifolds. This result will
be instrumental in bounding the rate of change of a locally
Lipschitz Lyapunov function candidate.

Proposition 1 (Rademacher’s theorem on manifolds). Con-
sider a finite-dimensional C1-manifold M and a locally
Lipschitz function f : M → R. Then, f is differentiable
almost everywhere on M.

Following Proposition 1, since a locally Lipschitz function
is not differentiable everywhere, we define the following
notion of generalized directional derivative that determines
the rate of change of a function at a given point along a
specified direction, even at its points of nondifferentiability.

Definition 6 (Generalized directional derivative [14]). Sup-
pose f : M → R is locally Lipschitz on a C1-manifold M.
Then, the generalized directional derivative of f at x ∈ M in
the direction v ∈ TxM, denoted by f◦(x, v), is defined as

f◦(x, v) := lim sup
y→x
t↘0

f̃(φ(y) + tdφx(v))− f̃(φ(y))

t
(4)

where (U,φ) is a chart at x, f̃ := f ◦ φ−1, and recall that
dφx : TxM → RdimM denotes the differential of φ at x.

It is shown in [14, Lemma 3.3] that Definition 6 is
independent of the choice of coordinate chart.

V. EXISTENCE OF NONTRIVIAL SOLUTIONS TO H
Using the nonsmooth analysis tools presented in the

previous section, we provide viability conditions for existence
of nontrivial solutions to the hybrid system H in (1). The
result follows similarly to the existence result presented in [3,
Prop. 6.10] for hybrid systems evolving on Euclidean space.

Proposition 2 (Existence of solutions). Consider the geo-
metric hybrid dynamical system H = (C,F,D,G,M) that
satisfies the geometric hybrid basic conditions in Definition 3.
Pick ξ ∈ C ∪D. If ξ ∈ D or
(V Cg) there exists an open neighborhood U of ξ such that,

for each x ∈ U ∩ C,

F (x) ∩ TM
C (x) ̸= ∅

then there exists a nontrivial solution ϕ ∈ ŜH(ξ). If (V Cg)
holds for every ξ ∈ C \ D, then there exists a nontrivial
solution to H from each point of C ∪D, and each maximal so-
lution ϕ to H satisfies exactly one of the following conditions:

a) ϕ is complete;
b) dom ϕ is bounded, the interval IJ = {t : (t, J) ∈

dom ϕ}, where J = supj dom ϕ, has a nonempty inte-
rior, and t 7→ ϕ(t, J) is a maximal solution to ẋ ∈ F (x)
x ∈ C such that there does not exist a compact set
K ⊂ M satisfying limt↗T ϕ(t, J) ∈ int K, where
T = supt dom ϕ;

c) ϕ(T, J) /∈ C ∪D, where (T, J) := sup dom ϕ.
Furthermore, the following hold:

1) If G(D) ⊂ C ∪D, then item c above does not hold.
2) If C is compact, then item b above does not hold.

Example 2 (The Möbius band, revisited). In Example 1, the
sets C and D are closed, and the maps F and G are single
valued and continuous. Therefore, H = (C,F,D,G,M)
therein satisfies the geometric hybrid basic conditions. Note
that C \ D = int C. Then, TM

C\D(x) = TxM for each
x ∈ C \D, and (V Cg) holds trivially for each x ∈ C \D.
Therefore, due to Proposition 2, there exists a nontrivial
solution to H from each point in C \D. ■

VI. STABILITY, ATTRACTIVITY, AND ASYMPTOTIC
STABILITY ON C1-MANIFOLDS

In this section, we first define several notions for the
system in (1), and later provide Lyapunov characterizations
for said notions. Recall that as M is a C1-manifold, we may
not know the Riemannian metric on it. Hence, the distance
between points on this manifold may not be defined. The
following definitions are formulated considering this fact. In
the presence of a distance metric, these definitions reduce to
what is present in the literature; see, e.g., [3].

Definition 7 (Uniform global stability). A nonempty, com-
pact set A ⊂ M is uniformly globally stable for H if, for
each compact neighborhood W of A, there exists a compact
neighborhood U of A such that U ⊂ W and a compact
neighborhood X of W such that each solution ϕ to H satisfies

ϕ(0, 0) ∈ U =⇒ ϕ(t, j) ∈W
ϕ(0, 0) ∈W =⇒ ϕ(t, j) ∈ X

}
∀(t, j) ∈ dom x.



The first implication in the above definition implies that A
is stable for H, while the second implication implies that A is
Lagrange stable for H. This definition when A is a compact
set and the hybrid system evolves on a Riemannian manifold
simplifies to the existence of a class-K∞ function that upper
bounds the distance from a solution of the hybrid system at
each hybrid time to the set A. The following result proves
this statement when said Riemannian manifold is Rn, hence
reconciling Definition 7 with [4, Definition 3.7].

Proposition 3. A nonempty, compact set A ⊂ Rn is
uniformly globally stable for H on Rn if and only if there
exists α ∈ K∞ such that each solution ϕ to H satisfies
|ϕ(t, j)|A ≤ α(|ϕ(0, 0)|A) for each (t, j) ∈ dom ϕ.

Definition 8 (Uniform global pre-attractivity). A nonempty,
compact set A is uniformly globally pre-attractive for H on
M if, for each compact neighborhoods U,W ⊂ M of A,
there exists T ≥ 0 such that for each solution ϕ ∈ ŜH(U),
(t, j) ∈ dom ϕ and t+ j ≥ T implies ϕ(t, j) ∈W .

Definition 9 (Uniform global pre-asymptotic stability). A
nonempty, compact set A ⊂ M is uniformly globally pre-
asymptotically stable for H on M if it is uniformly globally
stable and uniformly globally pre-attractive.

In the definitions above, the prefix “pre-” enables maximal
solutions to not be complete. If each maximal solution to H
is complete, then the prefix is dropped.

VII. LYAPUNOV THEOREM FOR
GEOMETRIC HYBRID DYNAMICAL SYSTEMS

We provide sufficient conditions for uniform global pre-
asymptotic stability of A for H using locally Lipschitz
Lyapunov functions. Then, using the results in Section IV, we
obtain upper bounds on the rate of change during flows and
at jumps of a Lyapunov function along solutions to H, which
will be used in the forthcoming Hybrid Lyapunov theorem.

Definition 10 (Lyapunov function candidate). Let H =
(C,F,D,G,M) be a geometric hybrid dynamical system.
Given nonempty sets U ,A ⊂ M, a function V : dom V →
R defines a Lyapunov function candidate on U with respect
to A for H if the following conditions hold:

1) (C ∪D ∪G(D)) ∩ U ⊂ dom V ;
2) U contains an open neighborhood of A∩(C∪D∪G(D));
3) V is continuous on U and locally Lipschitz on an open

set containing C ∪ U ;
4) V , restricted to C ∪D ∪G(D), satisfies V ∈ PD(A).

Due to item 3 in the definition above, V is differentiable
almost everywhere on C ∪ U . Then, the rate of change of
V along flows of the solutions to H is defined using the
generalized directional derivative.

Definition 11 (V̇ and ∆V ). Given a geometric hybrid
dynamical system H = (C,F,D,G,M), sets U ,A ⊂ M,
and a function V : dom V → R that defines a Lyapunov
function candidate on U with respect to A for H,

• the change of V along flows is given by

V̇ (x) := sup
v∈F (x)∩TM

C (x)

V ◦(x, v) ∀x ∈ C ∩ U ;

• the change of V at jumps is given by

∆V (x) := sup
g∈G(x)

V (g)− V (x) ∀x ∈ D ∩ U .

The following result proves that V̇ and ∆V , as defined
above, upper bound the rate of change of the Lyapunov func-
tion candidate V along flows and during jumps, respectively.

Lemma 1. Let H = (C,F,D,G,M) be a geometric hybrid
dynamical system. For each solution (t, j) 7→ ϕ(t, j) to H and
each (T, J) ∈ dom ϕ, let 0 ≤ t0 ≤ t1 ≤ . . . ≤ tJ+1 = T
satisfy (2) with E = dom ϕ ∩ ([0, T ]× {0, 1, . . . , J}). Then,

i) for each j ∈ {0, 1, . . . , J},

dV

dt
(ϕ(t, j)) ≤ V̇ (ϕ(t, j)) for almost all t ∈ [tj , tj+1];

ii) for each j ∈ {0, 1, . . . J} with (tj+1, j + 1) ∈ dom ϕ,

V (ϕ(tj+1, j + 1))− V (ϕ(tj+1, j)) ≤ ∆V (ϕ(tj+1, j)).

Following [3, Theorem 3.18] and using the results in [16],
we obtain the following theorem. Note that, in the following
theorem, the hybrid basic conditions are not needed.

Theorem 1 (Hybrid Lyapunov Theorem). Consider a
nonempty, compact set A ⊂ M and a function V : M →
R≥0 that defines a Lyapunov function candidate with respect
to A for H = (C,F,D,G,M). The set A is uniformly
globally pre-asymptotically stable for H if the Lyapunov
function candidate V : dom V → R≥0 is proper2, and one
of the following conditions hold:
(a) Strict decrease during flows and jumps: there exist lower

semicontinuous functions ρC, ρD ∈ PD(A) such that

V̇ (x) ≤ −ρC(x) ∀x ∈ C, (5)
∆V (x) ≤ −ρD(x) ∀x ∈ D. (6)

(b) Strict decrease during flows and no increase at jumps:
there exists a lower semicontinuous function ρC ∈
PD(A) such that (5) holds, (6) holds with ρD ≡ 0
and, for each compact neighborhood R of A, there exist
γ ∈ K∞ and N ≥ 0 such that for each solution
ϕ ∈ ŜH(R\A), (t, j) ∈ dom ϕ implies t ≥ γ(t+j)−N .

(c) Strict decrease at jumps and no increase during flows:
there exists a lower semicontinuous function ρD ∈
PD(A) such that (6) holds, (5) holds with ρC ≡ 0
and, for each compact neighborhood R of A, there exists
γ ∈ K∞ and N ≥ 0 such that for each solution
ϕ ∈ ŜH(R\A), (t, j) ∈ dom ϕ implies j ≥ γ(t+j)−N .

(d) Increase balanced by decrease: there exist constants λc ∈
R and λd ∈ R such that

V̇ (x) ≤ λcV (x) ∀x ∈ C,
∆V (x) ≤ (exp(λd)− 1)V (x) ∀x ∈ D,

2A map f : X → Y between topological spaces is proper if the preimage
of each compact set is compact.



and there exist M,γ > 0 such that, for each solution ϕ to
H and each (t, j) ∈ dom ϕ, λct+λdj ≤M − γ(t+ j).

(e) Strict decrease during flows and finite number of jumps:
there exist a lower semicontinuous function ρC ∈ PD(A)
and λ ∈ K∞ such that (5) holds, V (χ) ≤ λ(V (x)) for
each x ∈ D and each χ ∈ G(x), and for each compact
neighborhood R of A, there exists J > 0 such that each
solution ϕ ∈ ŜH(R \ A) satisfies supj dom x ≤ J .

(f) Strict decrease at jumps and bounded time of flow: there
exists a lower semicontinuous function ρD ∈ PD(A)
and λ ∈ R such that (6) holds, V̇ (x) ≤ λV (x) for
each x ∈ C, and, for each compact neighborhood R
of A, there exists T ≥ 0 such that each solution ϕ ∈
ŜH(R \ A) satisfies supt dom ϕ ≤ T .

The above theorem assumes that the Lyapunov function
candidate V is proper. In the case when M is the Euclidean
space, the following result establishes a class-K∞ lower
bound on the value of V at every point in its domain.

Proposition 4. Given a nonempty, compact set A ⊂ Rn, a
continuous function V ∈ PD(A) is proper if and only if there
exists α ∈ K∞ such that α(|x|A) ≤ V (x) for each x ∈ Rn.

The result in Theorem 1 can be specialized to hybrid
systems evolving on Rn using Proposition 4; see [16, Thm.3].

Example 3 (The Möbius band, revisited). We revisit Exam-
ple 1. Let Ã := {[z1, z2]B ∈ B : z1 ∈ {0, 1}, z2 = 0}
and, for each z1 ∈ [0, 1], define the equivalence class [·]S1
such that [z1]S1 = {z1} for each z1 ∈ (0, 1), and [0]S1 =
[1]S1 = {0, 1}. Then, for each q ∈ Q, let Vq([z]B) :=
U(Γ([z1]S1 , q))+z

2
2/2 for each (z1, z2, q) ∈ [0, 1]×(0, 1)×Q,

where U([z1]S1) := (1 − cos(2πz1))/2 for each z1 ∈ [0, 1],
Γ([z1]S1 , q) := [(z1 + q arcsin(U([z1])/2)/π)mod(1)]S1 for
each (z1, q) ∈ [0, 1] × Q, and mod denotes the modulo
operator. Note that Vq ∈ PD(Ã) is proper and continuously
differentiable for each q ∈ Q. This construction of the map Γ
is motivated by ideas from synergistic control [17].

Let A := Ã × Q, and V (x) := Vq([z]B) for each
x = ([z]B, q) ∈ M. Note that V ∈ PD(A), and V is
proper and C1 on M. For each x ∈ C, we have V̇ (x) =
d(Vq)[z]B(−grad Vq([z]B)) = −ρC(x), where ρC(x) :=
gB(grad Vq([z]B), grad Vq([z]B)) for all x ∈ M. Note that
ρC ∈ PD(A) and is continuous. Then, (5) holds.

Similarly, from the definition of D and G in Example 1, we
obtain ∆V (x) ≤ −δ for each x ∈ D. Noting that D∩A = ∅,
the condition in (6) holds with ρD ∈ PD(A) defined as
ρD(x) = 0 if x ∈ A, and ρD(x) = δ if x /∈ A. Note that ρD
is lower semicontinuous as A is closed. For each ξ ∈ M, let
r := V (ξ). Following (5) and (6), each ϕ ∈ ŜH(ξ) satisfies
ϕ(t, j) ∈ {x ∈ M : V (x) ≤ V (r)} for each (t, j) ∈ dom ϕ.
As V is proper, we use Prop. 2 and the fact that C∪D = M
to conclude each ϕ ∈ SH(M) is complete. Then, A is
uniformly globally asymptotically stable for H. Since B is
noncontractible, Ã cannot be globally asymptotically stabi-
lized by gradient descent using either function Vq . Introducing
hybrid dynamics overcomes this topological obstruction –
sample solutions to H in Fig. 1 illustrate this fact. ■

VIII. CONCLUSION

We develop a relaxed hybrid Lyapunov theorem for ge-
ometric hybrid inclusions on intrinsic C1-manifolds. By
leveraging tools from nonsmooth analysis and topology, we
provide sufficient conditions for the existence of nontrivial
solutions to such hybrid systems, and introduce topologi-
cal definitions of uniform global stability, (pre-)attractivity,
and (pre-)asymptotic stability. The presented results extend
existing hybrid systems theory beyond Euclidean spaces,
enabling the analysis of hybrid systems on manifolds where
a Riemannian metric may not be known. Extensions of this
work, which dive into the invariance principle for geometric
hybrid inclusions on intrinsic manifolds, are presented in the
companion paper [11].
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