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Abstract— The problem of robust, global asymptotic stabi- with state feedback (even discontinuous) that is robust to
lization of a rigid body is hampered by major topological measurement noise impossible [7], [11].

obstructions. These obstructions prevent a continuous state :
feedback from solving the problem and also lead to robustness In this paper, we extend current results for the robust

issues when (non-hybrid) discontinuous feedback is applied. In 9lobal stabilization Qf th_e attitude of.a rigid body [7] toeth
this paper, we extend a hybrid control strategy proposed in a case where translation is also considered. As in [7], the re-

companion paper for robust, global asymptotic stabilization of  sults presented here use a quaternion-based hystiyéiici
rigid body attitude to the case where translation is also con- fgedback that robustly, globally asymptotically stalsiiza

sidered. Through Lyapunov analysis, we develop quaternion- : : . .,
based hysteretic hybrid control laws in the kinematic and desired rotation and translation of the rigid body. Results

dynamic settings. In the dynamic setting, two control laws are &r€ prgsented in _kinematic and dynamic settings. When
derived: one derived from an energy-based Lyapunov function dynamics are considered, two controllers are derived girou
and one derived by backstepping. Robustness to measurement Lyapunov analysis. One is developed from an energy-based

noise is asserted by employing recently developed stability | yapunov function and the other is derived through back-
theory for hybrid systems. A comparison between discontinuous stepping and is similar to [3] for attitude-only regulation

and hysteretic feedback under measurement noise is shown in X
simmgﬂonl As in [8], [1], the energy-based controller does not rely on

backstepping and requires the use of an invariance pracipl
I. INTRODUCTION Interestingly, for the kinematic and energy-based control
laws, the addition of translational motion does not add any
The control of the translation and attitude of a rlgld bOdX’;omp|exity to the form of the hysteresis in [7] However,
has applications ranging from underwater vehicles [1] anglhen backstepping is applied, the form of the hysteresis
robotic manipulators [2] to satellites [3], [4], [5]. While can include coupling terms between position and rotation
controlling the attitude of a rigid body is often addressed iof the rigid body. In both cases, robustness of stability of
the literature without mention of position control (€.9],[6 the closed-loop system to measurement noise is asserted by
[7]), coupling terms present in the dynamics can complieatea k£ estimate provided by the results of [12].
separation in the design of attitude and position contralle  This paper is organized as follows. Section Il provides
In this paper, we address attitude and position control si review of the application of unit quaternions to rigid
multaneously, motivated by the application to underwat&fogy stabilization, where quaternion algebra, kinematics
vehicles in [1], [8], [9]. dynamics, and error coordinates on the appropriate state
The problem of global rigid body stabilization is subjectspace are discussed. Section Il provides introductory ma-
to major topological obstructions (see [7] for a rigorougerial on hybrid systems (those that allow continuous and
description). First, any three-parameter parametrinatb discrete state evolution). Section IV develops the hybrid
SO(3) cannot be globally nonsingular [4], making con-control strategy and presents the robust, global asyneptoti
trollers based on these parametrizations inherently nogtapility results. Finally, Section V shows a simulationdst,

global. Noted in [10],5O(3), the configuration manifold for comparing (non-hybrid) discontinuous feedback to hysiere
the rigid body, is compact, which precludes the existencgybrid feedback.

of a globally stabilizing continuous feedback. Moreover,
control schemes based on redundant parametrizations of
SO(3) may exhibitunwinding where the attitude is rotated
unnecessarily through large angles. Finally, when redunda The position and attitude of a rigid body are represented by
parametrizations are used, it becomes necessary to s&abily pajr(p, R) € R? x SO(3) wherep is a vector representing

a disconnected set of points, making global stabilizatioghe position of the rigid body,R is a rotation matrix

representing the attitude of the rigid body (orientation),
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and define the map : R? — s0(3) as Let

0 —XI3 To
S(:E) = T3 0 —x1] -

—XT2 i) 0

—e' R(q) Osx3 }

U = A = .
Then,¢ = 1U(¢q)w and (5) becomes
Note that for two vectorsy,y € R3, S(z)y = z x y, where 5 R(q) 0 v v
x denotes the vector cross product operation. We denote the M = [ 0 lU(q)} { } = A(q) [ ] (6)
2

n-dimensional sphere (embeddedRfi*!) as
. ntl T Motivated by the application to underwater vehicles in
S"={zeR" 1z z=1} [13], we assume the dynamic model,

w wl”

Then, given an anglé € R and a rotation axis: € S?,

. : . . . My +Cv)y +D(v)v +£(q) = 7, @)
a rotation matrix can be parametrized using the Rodrigues
formula, R : R x 82 — SO(3), defined as where )
_ 6
R(0,7) = I +sin(0)S(n) + (1 — cos(0))S?*(R). (1) V= L}} €R’,

Using the Rodrigues formula (1), we can define a\f = MT > 0 is a matrix representing mass and inertia,
parametrization ofSO(3) in terms of unit quaternions. A C(v) = —C"(v) is a skew-symmetric matrix containing
unit quaternion Coriolis terms,D(v) = DT (v) > 0 is a matrix representing

1 cos(8/2) s dissipative forces{(q) is a vector of known external forces
q= { } =% [ : ] €S (2) (e.g. gravitational and buoyant forces) afdis a vector of
€ sin(0/2)7
control forces.
represents an element &fO(3) by the mapR : §* — The control objective is stated in terms of appropriate
SO(3) defined as error coordinates. Suppose that there is a desired position
R(q) = I + 2nS(e) + 25%(e).

3) and attitudep4, Rq) € R3 x SO(3) for the rigid body and
Note that for everyR € SO(3), there are exactly two unit attitude. Then, error coordinates are obtained;asR.) =

that (p, R) € R® x SO(3) denote the actual position and
quaternions;-¢, such thatkR = R(q) = R(—q).

Let ¢1, g2 € R*. Then, under the multiplication rule,

(p — pa, R) R) € R3 x SO(3). Assuming that(pq, R4) is
constant, the error coordinates have the kinematic equatio
pe = Rv and R, = R.S(w). In this setting, the goal is

to drive (p., R.) to (0,I) so that(p, R) = (pa, Ra). When
written using unit quaternions, we see thaRjf = I, then the
associated set of unit quaternionstid. Since the dynamic
equations do not change when error coordinates are used, we
henceforth drop the subscript

We can now state our global stabilization goals. Then, the
kinematic sub-problem is to robustly and globally asymptot
ically stabilize

Ap = {0} x {1} c R* x S! (8)

M2 — €] €2 }

® =
he [77162 +nae1 + S(er)ex

the unit quaternion inverse and identity are

-1 ] 1 3
= 1 = .
=0 1=l e

Note thatR is a group homomorphism, i.e.,

R(q1)R(q2) = R(q1 ® q2)

and in particularR"(q) = R"(¢) = R(¢"'). Note also

that’R(1) = R(-1) = I. for the system (5) (equivalently, (6)). When dynamics are

taken into account, the goal is to robustly and globally
asymptotically stabilize

Ag = {0} x {#1} x {0} C R® x S* x R® 9)
for the system (5) (equivalently, (6)), (7).

A. Kinematics, Dynamics, and Stabilization
The kinematics of a rigid body are given by
p=Rv
R =RS(w)
whereR maps vectors in the body frame to the inertial frame I1l. HYBRID SYSTEMS PRELIMINARIES

and v,w € R® denote the rigid body's translational and 15 preak the topological obstructions to robust global
angular_ velocme_s in the body frame, respectively. W”tte%tability discussed in Section | and [7], we employ the power
with unit quaternions, (4) becomes of hybrid systems: dynamic systems where both continuous

} (p, R) € R® x SO(3), (4)

p=R(q)v and discrete evolution of the state can occur. Following
1 (p,q) € R® x S3 (5) the framework presented in [12], [14], we let € R"
¢=54®xWw) denote the state of a hybrid systé= (f, g, C, D), where

f:R™ — R" is the flow mapthat dictates continuous state
evolution according ta: = f(z), g : R™ — R" is thejump
O} mapthat dictates discrete evolution of the state according to

wherey : R? — R* is defined as

mw:[

xt = g(x), C C R" is the flow setthat indicates where



continuous evolution is possible, ard is thejump setthat A. Stabilization of Kinematics
indicates where discrete evolution is possible. We write a \we consider the problem of stabilizingy, for (5). We

hybrid system as propose alynamicfeedback that depends on a logic variable
he{-1,1} =: H. Let
H t=f(z) zeC RT(@) 0 o
rt =g(x) x€D. G(q,h){ Oq hI}’ Kp[op k‘J}’

To reap the benefits of the robust stability theory irwhereK, = K, >0 andk. > 0 (so thatK, = K] > 0).
[12], the data of the hybrid system must satisfy some mildlVe define our velocity feedback as
regularity conditions [12, A0-A3], which for the purposes
of this paper reduce t¢ andg being continuous and' and kP, g, h) = =Glg, M) Eyp, (10)
D being closed sets. and let®4(p,q) = n, andé € (0,1). Note that for any
The available robust stability theory in [12] largely de-(¢,h) € S* x H, G(q,h) is orthogonal (i.e., omitting
pends on the notion of a solution to a hybrid system. Warguments' G = GG = I). Then, we propose the hybrid
note here that a solution to X is defined on a hybrid control law,

time domain, denotedomz C [0,00) x {0,1,2,...} and =0
parametrized by, the amount of time spent flowing, anid (p,q,h) € C
the number of jumps that have occurred. The set of solutions v=k(p;q, h)} (11)
to H with initial condition z is denoted asSy(x). For
further details, we refer the reader to [12], [14]. ht=-h  (p,q,h) €D
Defining stability and attractivity for compact sets is donavhere
in a familiar fashion. Le® = {z € R™ : |lzl» < 1} denote _ r(, 4 n) € R® x S x H : hdy,(p, q) > 0}
the closedn-dimensional unit ball and for some sg, let (12)

| - |4 denote the distance tgl. A compact setd C R” D ={(p,a,h) € R® x §* x H : hdy(p, q) < =0}
is stableif Ve > 0, 36 > 0 such thatvzy € A + 6B, each Note thatC U D = R3 x §% x H. For compactness, we let
solutionz € Sy (xg) satisfiest(t, j) € A+eB for all (¢,5) €
domz. A is attr(act)ivewith ba(sir{)of attraction3 4 ig‘ 3]6) > X=R'xS§ xH,  z=(pgh) e

0 such thatvzy € B4 D A+ 0B, everyr € Sy(zo) IS Then, with the hybrid feedback (11), closed-loop system
complete and satisfidém; ;.o [#(t,j)|.4 = 0. A compact pecomes (in terms of),

setA is asymptotically stable if it is both stable and attractive

and isglobally asymptotically stable i3 4 = R™. Note that r] i )= [A(q)m(x)} } el

R"™\ (C'UD) C By sinceSy(R™\ (CUD)) = 0. Z 0
(13)
IV. RoBUST GLOBAL ASYMPTOTIC STABILIZATION : pt »
KINEMATICS AND DYNAMICS {f] =2t =g(z) = { q ] } reD

In this section, we derive a hybrid feedback that ro- ht —h
bustly globally asymptotically stabilizesi; for (5). We Consider the Lyapunov function
then provide two extensions of this result into the dynamic 1 T
setting: with a simple Lyapunov function requiring a re¢gnt Viz) = 9P Kpp + 2k (1 — hn) (14)
developed invariance principle for hybrid systems and vig,, analyzing the stability of the set
backstepping. In all cases, the design of the flow and jump
sets become critical for ensuring robust global asymptotic A={zeX:p=0, ¢=h1}.
stability of the appropriate target sets. The design ofethesNote that
sets depends on a logic variable, which decides which pole Proj A= Ay
of 83 ¢ should be steered towards. REx S1 ’

In the following sections, we let where Proj,- X denotes the projection of a sat onto Y.

I 0 o Also note thatV (X \ A) > 0, V(A) = 0 and for every
p= m, = { 33 3X3] v € V(R? x 83 x H), the set{z € X : V(z) < v} is
€ O3x3 0 I3x3

compact.
Recalling that for all(q,h) € S® x H, G(q,h) is
orthogonal, we calculate change ihalong flows as

p=t [’ s=rram p=0% e (VaV (@), £(@)) = T KGO (g, b)) = —o" K2,

Since K, is a symmetric and positive definite matrix (and
Recall thaty = [T wT]T. so is its square) it follows that-p" K?p < 0 and that

so that



(ViV(x), f(x)) = 0ifand only if p = 0. If p = 0, it B. Stabilization of Dynamics

follows thatp = 0, n = &1, ande = 0; however, we | thjs section, we propose two controllers for stabilizing

have the additional constraint that during flows € C),  the setA, for (5), (7). The proposed hybrid feedback will
hn > —§ > —1, so it must follow that) = h and sor € A.  gke the form

It follows that (V,V (z), f(z)) < 0 for all z € C'\ A. The

change inV over jumps is h=0 } (0, h) € Ci
V(g(r)) ~ V(x) = 4hehn = 4.7y (). F=Filwa ) (15)
Whenz € D, h®y(p,q) < =46, so thatV(g(z)) — V(z) < ht—=_h (za,h) € D;.

—4k.0. Hence, by [15, Corollary 7.7]A is globally asymp-
totically stable for the closed-loop system (13).
Theorem 4.1: The hybrid feedba¢kl), (12) renders.A X =R>xS'xR® x H, i=(p,q,v,h) € X,
globally asymptotically stable fdt3). Moreover, there exists
a classXL function 5 such that for anyy > 0 and any
compact sefC C R?, there existsx > 0 such that for each

Let

ande : R, — R'3. Then, applying the hybrid feedback (15)
to (5), (7), the closed-loop system subjected to measuremen
noisee =[e] e/ ¢]]T becomes

measurables = [e, e,]" : R>o — aB, any solutionz = pTa
(p,q.h) to i=f(zF(&) z2eC; (16)
P=p+tep i =g(z) ieD;
d=q+eq (k) € C where@ = (p + e, q + €4,V + €, h) and
; o p,q,h) € -
T 0 5 1g®x(Ww)
TER = | M1 (F —ela) — 0w~ D)
N 0
p p -
[qi] = IQ:| } (pa(jvh)eDa b
h —h g@ ="
with initial condition (0, 0) € §* x K x H satisfies _h

2 (t, 5)la < B(12(0,0)[4,t +5) + V¥(t,]) € doma. At this point, we will not define the flow and jump sets

It is important to choosey € (0,1). Whené > 0, for our Lyapunov-based control designs, as they will depend
switchingh becomes a hysteretic decision that yields a strign our choice of Lyapunov function.
decrease of the Lyapunov function over jumps and provides 1) Energy-based Lyapunov Functioi€onsider the Lya-
robustness to noise. Wheh < 1, we avoid making the punov function,
point p = 0, ¢ = —h1 an unstable equilibrium point and . 1
ensure a strict decrease in the Lyapunov function along Vi(#) =V(z) + v My,
flows. Sincen € [-1,1], settingd > 1 would causeh 2
to never change and induce the unwinding phenomenoffr analyzing the stability of the compact set
[10]. Together, the logic variablé and the hysteresis half- A= {(#€X:p=0, g=hl, v=0}
width, §, manage a trade-off between robustness to noise
and unwinding. Finally, we note that the£ estimate of Note thatProjy, A = As. Also note thatl; (X' \ A) >
Theorem 4.1 applies to solutions of the perturbed systebi (A) = 0 and for everyy € V;(X), the set{i € X
starting from initial conditions witly anywhere inS®. Such  Vi(x) <~} is compact.
cannot be said for certain discontinuous control laws (see The change ir/; along flows is
7], [11] for examples). o x
[ ]OLe ]might notepthat) the Lyapunov function appearing here <va1(x)7 f@, }_)> = v (F=C)y = Dv)v —&(q)
uses the termV,(¢) = 1 — hn to define an appropriate + G(q, h)K,p).
potential function. Comparing this with [1, Table 1], one
can see thaV,(¢q) resembles the first few entries. As note -
in the table, t?]ih)variable is used to select which of the two F =10 =¢&q) - Glo.NEp — Kyv, (17)
points in the quaternion space to stabilize. In some sensghere K, = K,) > 0. Recalling thatz " Sz = 0 for any
one can think ofin as a generalization df| (first entry of S € s0(3), it follows that
[1, Table 1]). Indeed, only fofp| < § can one possibly have . .
h # sgn(n). With this observation, one might propose other ViVi(Z), f(Z, Fa (5?))> = v (D) + K,)v.
Lyapunov functions like those in [1, Table 1], but depende
on a logic variable: that selects which equilibrium point to
stabilize. Vi(§(8)) — V(&) = 4kohn.

r%ince there is no change iry during jumps, we find that



Let ®;(z4) = n ando € (0,1), then we define andK, = K > 0. Then,

Cy = {7 € X : hdy(zq) > 0} (VVa(@), [(@, Fol@)) = —p  KZp— 2T K.z,
Dl = {i‘ S .X’V‘ : h@l(xd) < —5} ~
) o ) Letting G* = G(q, —h), the change i, along jumps is
With these definitions, it follows that

Va(§(%)) — Va(&) = 4kehn + v M(GY = G)Kp

<V5J71(:E),f(5c,f1(i))> <0 Vie, X
+ 5pTKp (GTTMGT — GTMG) K,p. (19)

N N N (18)

Vi(§(#)) — Vi(3) <0 Vi€ Dy.
Then, it follows from [15, Theorem 7.6] thatl is stable; Let _
however, we must apply an invariance principle for hybrid I
systems to assert the attractivity dﬂ(and hence, global
asymptotic stability). SincéV;Vi(z), f(z,F1(z))) = 0 if and

03x3 033 M= My M,
0343 1 MJ  M;

and only if = 0 and{z € D, : Vl(g(j))fvl_(i) =0} =10, I(q) = {MT;%T( ) R(Q())Mz] .
it follows from [15, Theorem 4.7] that solutions converge to 2 q
the largest invariant set contained in Then,

W={feX:hy>-6 v=0} Gt —G=—2hl (20)
Examining the closed-loop system while holdings 0, we GTT MG — GTMG = —2hT'(g). (21)
see that0 = G(q,h)K,p, which implies thatp = 0 and
e =0 (i.e.n = +1). Also, sincehn > —§ > —1, it follows 1 1
thatn = h and sog = h1. Since solutions are complete and &, (z;) =1 — o v MIK,p — EpTKpF(q)KppT.
bounded, they must then convergeAo € €

2) Backstepping-based Lyapunov Functiom: this sec- Then, from (19), (20), and (21), it follows that
tion, we employ a backstepping procedure to construct a . ~
Lyapunov function and control law that does not require the Va(9(2)) = Va(7) = 4kch®2(za)-
use of an invariance principle to complete the stabilityogfro By defining flow and jump sets as

Recalling that the feedback = k(z) = —G(q,h)K,p . o
derived in Section IV-A resulted in a decrease Wif{z) Co ={Z € X : h®y(xq) > —6}
along flows of (13), we, omitting arguments for readability, Dy = {& € X : hdy(xq) < -0},

introduce the backstepping variable . - - -
it follows that V5(g(z)) — Va(Z) < —4k.0 whenz € Ds.

z2=v+GKpyp. Sinced < 1, it follows that V; is strictly decreasing along
flows for all z € Cs \ A and By [15, Corollary 7.7],4 is

Let . globally asymptotically stable.
Glg,w) = Glgw) = [(R(qO)S(w)) 83”} . Theorem 4.2: For eache 1,2, applying the hybrid feed-
3x3 3x3 back(15)to (5), (7) with e = 0 rendersA globally asymptot-
Then, ically stable for the closed-loop systdi6). Moreover, there
. . ) . exists a clasgcL function 3; such that for everyy > 0 and
Mz = Mi+ M (GKpP+ GKpP) any compact sek C R® x R3 x R3, there existsy; > 0
g =~ such that for each measurable: R>o — «;B, solutions to
=My +M (GK”'O + GK"LA(Q)V> (16) starting from (qo, po, vo, wo, ho) € S* x K x H satisfy
el T (7 = — T 2 T ~ . ~ . . ~
(VaV(@).f(@.7)) = =" K}p+ TGy #(t.9)] 5 < B (130.0) 1.t +5) +7 ¥(t,5) € dom.
We then define the Lyapunov function V. SIMULATION STUDY
V() = V(z) + lzTMz, In this section, we present a brief simulation study of the
2 non-backstepping control law derived in Section IV-B.1. As
which satisfiesl>(X \ A) > 0 and Va(A) = 0. The change in [1],
in v along flows is given by M = diag(215, 265, 265,40, 80, 80)
<Vj172(5c),f(i,j’-')> _ _pTK2p+ 2T (M2 + GK,p) . D(v) = diag(70, 100, 100, 30, 50, 50)

+ diag(100, 200, 200, 50, 100, 100) diag(|v|),
Let F = F»(Z), where

where|v| = (Jv]1,- - ,|v|s). C(v) is calculated as
Fo(z) =&(q) +C(v)v +D(v)v — GK,p — K,z

~ C(l/) _ O3><3 7S(M10+M2w)
-M (GKpp + GKpLA(q)v) T —S(Myv + Mow)  —S(Msw + MJ)



Discontinuous
— — — Hysteretic

35 40

to the immense amount of chattering, Fig. 1 shows a filtered
version ofh, Gh, whereG = 10/(s + 10). The filter was
given an initial condition of 1 — the same as the initial
condition onh. The hysteretic hybrid feedback ignores this
noise and responds to the error signal immediately. While
this particular noise profile only delayed the discontirsiou
control response for approximately 10 seconds, theresexist
a noise profile that keeps the attitudg0° away from the
desired attitude for all time (see [7]).

VI. ACKNOWLEDGMENTS

The authors would like to thank Nalin Chaturvedi for
stimulating discussions about quaternions, attitude rognt
and unwinding that improved the content of this paper.

(1]
0.06f /\ . 2]
\
5 004f / \ 1
|7
3 002}/ N 1
0 ~ T e [3]
0 5 10 15 20 25 30 35 40 45
RN 4]
N
5 04} ~ - E [5]
}_ -~
2 02f = 1
0 . . . . . ,
0 5 10 15 20 25 30 35 40 45 [6]

Fig. 1. A comparison between discontinuous and hysteretittrab

with initial conditions close to the discontinuity. The disitinuous control (7]
exhibits noise-induced chattering on the discontinuity areates a lag in

the angular response. On the other hand, the hysteretiedhfgmdback is
impervious to the bounded noise.

(8]

In this simulation, the disturbance torqgg;) is assumed to (9]

be zero.

In this simulation, we compare the hysteretic feedback?]
with § = 0.25 to the discontinuous feedback & 0). The
control gains are selected &5, = 101, k. = 10, and K, =
0. Initial conditions are selected ag0,0) = (0,/|z|),
where z 3 —4 5], p'(0,0) = [10 10 10],
v(0,0) =0, andh(0,0) = 1.

To demonstrate how discontinuous control is susceptible {%)2]
noise, we inflicted measurement noise only upondlstate
in the following way. Letgmeas denote the measurement of[13]
g. Then,gmeas= (¢ + €1 + e2(q))/llg + e1 + e2(q) ||, where
the direction ofe; is selected from a normal distribution and[14]
the magnitude is selected from a uniform distribution and
bounded by0.16. The noisees(q) = [~0.08sgn(n) 07]" |1
depends omy and is designed to confuse the control law. In
this setting, the randomly generated noise can have twee th
magnitude of the adversarial noise,

Fig. 1 shows how the discontinuous control can chatter
about the discontinuity when measurement noise is present.
This creates a response lag and wastes control energy. Due

[11]
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