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Abstract— Global asymptotic stabilization of the attitude of
a rigid body is hindered by major topological obstructions.
In fact, this task is impossible to accomplish with continuous
state feedback. Moreover, when the attitude is parametrized
with unit quaternions, it becomes impossible to design a
globally stabilizing state feedback (even discontinuous) that
is robust to measurement noise. In this paper, we present
a quaternion-based hysteretic hybrid feedback that robustly
globally asymptotically stabilizes the attitude of a rigid body.
The hybrid control laws are derived through Lyapunov analysis
in kinematic and dynamic settings. In the dynamic setting,
we provide two control laws: one derived from an energy-
based Lyapunov function and another based on backstepping.
Analyzing the change in these Lyapunov functions due to
switching of a logic variable yields a straightforward form for
state-based hysteresis. A simulation study demonstrates how
hysteresis provides robustness to measurement noise and high-
lights differences between the energy-based and backstepping
control laws.

I. I NTRODUCTION

The problem of robust global asymptotic attitude stabi-
lization is subject to several major topological obstructions.
First, the attitude of a rigid body evolves onSO(3), whose
topology precludes the existence of a globally stabilizing
continuous feedback [3]. Other problems arise whenSO(3)
is parametrized by various means. In particular, any three-
parameter parametrization cannot be globally nonsingular
[1], preventing controls based on such parametrizations from
being globally stabilizing.

When the globally nonsingular four-parameter unit quater-
nions are used to parametrizeSO(3), a new topological
problem arises: there are exactly two unit quaternions rep-
resenting each element inSO(3). This creates the need
to stabilize a disconnected, two-point set in the quaternion
space, which again is impossible to achieve globally us-
ing a continuous feedback. Furthermore, arbitrarily small
measurement noise can destroy global attractivity of certain
discontinuous controllers applied to this problem [4].

We propose a solution to the attitude control problem using
quaternion-based hysteretichybrid feedback, similar to that
proposed in [4] for regulating a disconnected set of points.
The proposed hybrid control laws, based in the framework of
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[5], [6], guarantee global asymptotic stability that is robust
to measurement noise.

In Section II, we review unit quaternions, their applica-
tion to attitude representation, and topological obstructions
to global asymptotic stability in quaternion-based attitude
control. In Section III, we provide a compact description
of the framework in [5], [6]. In Section IV, we derive
Lyapunov-based hybrid controllers that robustly and globally
asymptotically stabilize the desired attitude in kinematic and
dynamic settings. When considering dynamics, we provide
two controllers: one derived from an energy-based Lyapunov
function and another derived by backstepping, similar to [7].
Section V concludes the paper with a brief simulation study.

II. QUATERNIONS AND ATTITUDE STABILIZATION

The attitude of a rigid body is represented by a3 × 3
rotation matrix, indicating a rotation between two reference
frames. The set of3 × 3 rotation matrices with unitary
determinant is the special orthogonal group of order three,

SO(3) = {R ∈ R
3×3 : R⊤R = I,det R = 1},

whereI ∈ R
3×3 denotes the identity matrix. We letso(3) =

{S ∈ R
3×3 : S⊤ = −S} and defineS : R

3 → so(3) as

S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

Note that for two vectorsx, y ∈ R
3, S(x)y = −S(y)x =

x × y, where× denotes the vector cross product. Let the
n-dimensional sphere (embedded inR

n+1) be denoted as
Sn = {x ∈ R

n+1 : x⊤x = 1}. Then, given an angleθ ∈ R

and an axis of rotation,̂n ∈ S2, a rotation matrix can be
parametrized by the so-called Rodrigues formula,R : R ×
S2 → SO(3), defined as

R(θ, n̂) = I + sin(θ)S(n̂) + (1 − cos(θ))S2(n̂). (1)

Unit quaternions are often used to parametrize members
of SO(3). A unit quaternion

q =

[

η
ǫ

]

= ±

[

cos(θ/2)
sin(θ/2)n̂

]

,

whereη ∈ R andǫ ∈ R
3, represents a rotation matrix by the

mapR : S3 → SO(3) defined as

R(q) = I + 2ηS(ǫ) + 2S2(ǫ).

Note that for everyR ∈ SO(3), there are exactly two unit
quaternions,±q, such thatR = R(q) = R(−q).



With the identity element1 =
[

1 0
⊤
1×3

]⊤
, each unit

quaternionq ∈ S3 has an inverseq−1 = [η − ǫ⊤]⊤ under
the quaternion multiplication rule

q1 ⊗ q2 =

[

η1η2 − ǫ⊤1 ǫ2
η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]

.

With this multiplication rule, we have thatR−1(q) =
R⊤(q) = R(q−1) and thatR(q1)R(q2) = R(q1 ⊗ q2).

A. Kinematics, Dynamics, and Stabilization

Written with rotation matrices, the attitude kinematics of
a rigid body are

Ṙ = RS(ω) R ∈ SO(3), (2)

where R denotes a rotation of vectors in the body frame
to the inertial frame andω ∈ R

3 denotes the rigid body’s
angular velocity in the body frame. When written with unit
quaternions, (2) becomes

q̇ =
1

2
q ⊗ ν(ω) q ∈ S3, (3)

whereν(ω) =
[

0 ω⊤
]⊤

. Dividing (3) into separate equa-
tions for η and ǫ, we have

[

η̇
ǫ̇

]

=
1

2

[

−ǫ⊤

ηI + S(ǫ)

]

ω η2 + ǫ⊤ǫ = 1. (4)

Assuming rigid body motion, the dynamics are

Jω̇ = S(Jω)ω + τ, (5)

whereJ = J⊤ > 0 is the inertia matrix andτ is the control
torque. To clearly illustrate the main innovation in this paper,
we neglect damping terms and those due to gravity; however,
these external torques do not play a significant role in the
subsequent stability results. Instead, we refer the readerto
[8] for the application of the ideas in this paper to a fully
actuated six degree-of-freedom rigid body including damping
terms and external (e.g., gravitational) forces.

The attitude control objective is stated in terms of error
coordinates that are also rotation matrices or their unit
quaternion representations. Supposing thatRd ∈ SO(3)
denotes a constant desired reference attitude,Re = R⊤

d R ∈
SO(3) is an error coordinate with the kinematic equation
Ṙe = ReS(ω). Certainly, the goal is to haveR = Rd

so thatRe = I. Hence, the objective becomes to design
a control torque that globally asymptotically stabilizesRe

to an identity matrix. In unit quaternions, we see that if
Re = I, then the associated set of unit quaternions is±1.
So, the kinematic sub-problem is to robustly and globally
asymptotically stabilize

Ak =
{

q ∈ S3 : q = ±1
}

. (6)

When dynamics are taken into account, the goal is to robustly
and globally asymptotically stabilize the set

Ad =
{

(q, ω) ∈ S3 × R
3 : q = ±1, ω = 0

}

. (7)

B. The Pitfalls of Attitude Stabilization

The task of robust global attitude stabilization is made
difficult by several major topological obstructions. The en-
lightening discussion in [3] elucidates these topological
issues and points to several instances in the literature where
they have been quietly at work. In this section, we highlight
those issues and also discuss subtle robustness issues that
arise when measurement noise is inflicted upon controllers
that attempt to solve the topological problems with (non-
hybrid) discontinuous feedback.

It is known that a continuous vector field over a compact
manifold posses no globally asymptotically stable equilib-
rium point [3]. Hence,SO(3) being compact precludes the
existence of a continuous control law that is globally stabi-
lizing. In fact, the best that one can achieve with continuous
state feedback isalmostglobal stabilization as in [9], where
the proposed control vanishes at attitudes that are180◦ away
from the desired attitude about the principal axes of inertia.

When parametrizations ofSO(3) are used, one encoun-
ters further topological difficulties. Since no three-parameter
parametrization ofSO(3) is globally nonsingular [1], any
control derived with such a parametrization is not globally
defined, much less, globally stabilizing. Seeking a glob-
ally defined parametrization, many employ unit quaternions,
which use four parameters, but, as noted in Section II-A,
create a two-to-one cover ofSO(3). Then, to stabilize a
single attitude inSO(3), one must stabilize adisconnected,
two-point set in the quaternion space. When this is over-
looked (e.g. [10]), the resulting controller can exhibit an
unwindingphenomenon, where the controller unnecessarily
rotates the attitude through large angles [3]. Moreover, the
need to robustly and globally stabilize adisconnectedset
of points imparts its own topological obstructions. As noted
in [4], such a task is impossible to accomplish with certain
(non-hybrid) discontinuous state feedback controllers when
measurement noise is present.

To illustrate these points in parallel, we appeal to the
problem of globally asymptotically stabilizing the identity
element ofSO(3) using unit quaternions in a kinematic-only
setting (i.e., (3)). Suppose that we overlook the fact that both
±1 correspond to the identity rotation and that we construct
the Lyapunov function

V̄ (q) = 2(1 − η),

so thatV̄ (S3 \ {1}) > 0 and V̄ (1) = 0. Note thatV̄ takes
its maximum of 4 atq = −1.

Suppose one chooses the feedbackω = −ǫ so that
〈

∇V̄ (q), 1

2
q ⊗ ν(−ǫ)

〉

= −‖ǫ‖2
2. Applying this feedback,

there are two equilibrium points,±1, with −1 unstable and
+1 stable. Since±1 represent the same point inSO(3),
depending on the controller’s knowledge of the quaternion
representation, the desired attitude is either stable, or unsta-
ble! In fact, for anyq ∈ S3, we haveω(q) = −ω(−q), so
that the feedback is defined twice for a given attitude (in
terms ofR ∈ SO(3)). This fact is discussed further in [3],
[7], [2].



To remedy this issue, some authors (e.g., [7], [11]) have
resorted to stabilizing the set{±1} with discontinuous
control. Defining

sgn(η) =

{

−1 η < 0

1 η ≥ 0,

the feedbackω = κ(q) := − sgn(η)ǫ is globally asymptoti-
cally stabilizing with Lyapunov function̄Vd = 2(1 − |η|);
however, the global attractivity property is not robust to
arbitrarily small measurement noise. LetδB = {x ∈ R

4 :
‖x‖ ≤ δ} andE = {q ∈ S3 : η = 0}. Then, appealing to [4,
Theorem 2.6], we state this non-robustness issue precisely.

Theorem 2.1: Letδ > 0. Then, for eachq0 ∈ (E + δB)∩
S3, there exist a piecewise constant functione : [0,∞) → δB

and an absolutely continuousq : [0,∞) → S3 satisfying
q(0) = q0, q̇(t) = 1

2
q(t) ⊗ ν(κ(q(t) + e(t)) for almost all

t ∈ [0,∞), and q(t) ∈ (E + δB) ∩ S3 for all t ∈ [0,∞).

Theorem 2.1 states that for initial conditions close toE,
it is possible for a small amount of measurement noise to
keep solutions close toE for all time.

III. H YBRID SYSTEMS PRELIMINARIES

A hybrid system is one where both continuous and discrete
evolution of the statex ∈ R

n are possible. Following the
framework of [6], [5], a hybrid systemH is defined by four
objects: aflow map, f : R

n → R
n, that dictates continuous

evolution of the state, ajump map, g : R
n → R

n, that
dictates discrete evolution of the state, aflow set, C ⊂ R

n,
that indicates where continuous evolution is possible, anda
jump set, D ⊂ R

n, indicating where discrete evolution is
possible. A hybrid systemH = (f, g, C,D) is written in the
suggestive form

H

{

ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D.

In this paper, the data of the proposed hybrid systems are
defined to satisfy theHybrid Basic Conditions[5, A0-A3],
which are a set of mild regularity conditions on the data of
H guaranteeing the robustness of stability. For the purposes
of this paper, these reduce tof andg being continuous and
C andD being closed.

The framework and robust stability results of [6], [5]
largely depend on a concept of solution. We note here that a
solutionx to hybrid system is defined on hybrid time domain,
dom x ⊂ [0,∞) × {0, 1, 2, . . . }. The set of solutions to a
hybrid systemH from an initial conditionx0 is denoted as
SH(x0). We refer the reader to [6], [5] for further details.

Stability and attractivity of compact sets for hybrid sys-
tems are defined in a familiar way. A compact setA ⊂ R

n

is stable if ∀ǫ > 0, ∃δ > 0 such that∀x0 ∈ A + δB, each
solution x ∈ SH(x0) satisfiesx(t, j) ∈ A + ǫB ∀(t, j) ∈
dom x. Let | · |A denote the distance toA. The compact set
A is attractive with basin of attractionBA if ∃δ > 0 such
that ∀x0 ∈ BA ⊃ A + δB, every x ∈ SH(x0) is complete
and satisfieslimt+j→∞ |x(t, j)|A = 0. A is asymptotically
stable if it is both stable and attractive and isglobally

asymptotically stable ifBA = R
n. By definition, points in

R
n \ (C ∪ D) belong to the basin of attraction since there

are no solutions from those points.

IV. ROBUST GLOBAL ASYMPTOTIC ATTITUDE

STABILIZATION : K INEMATICS AND DYNAMICS

In this section, we consider robust global asymptotic stabi-
lization ofA using hybrid feedback. To make the innovation
clear, we first consider the kinematic stabilization problem
(using velocity as the control input), since the topological
obstructions to global asymptotic stability already arisein
this setting. We then show how this method can be extended
into a dynamic setting in two ways: with an energy-based
Lyapunov function that requires the use of an invariance
principle and via backstepping.

A. Stabilization of Attitude Kinematics

As in Section II-B, we consider the problem of stabilizing
the set Ak for (3). We propose the followingdynamic
feedback that depends on a logic variableh ∈ {−1, 1} =: H,

ḣ = 0

ω = −hKǫǫ

}

(q, h) ∈ C

h+ = −h (q, h) ∈ D

(8)

where
C = {(q, h) ∈ S3 × H : hη ≥ −δ},

D = {(q, h) ∈ S3 × H : hη ≤ −δ},
(9)

Kǫ = K⊤
ǫ > 0, andδ ∈ (0, 1). Note thatC ∪ D = S3 × H.

With this feedback, the closed loop becomes

q̇ =
1

2
q ⊗ ν(−hKǫǫ)

ḣ = 0







(q, h) ∈ C

q+ = q

h+ = −h

}

(q, h) ∈ D.

(10)

For compactness, letx = (q, h). Then, we denote (10) as

ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D.

Consider the Lyapunov function

V (x) = 2(1 − hη) (11)

for analyzing the stability of the set

A = {(q, h) ∈ S3 × H : q = h1}.

Note that ProjS3 A = Ak, where ProjY X denotes the
projection of a setX ontoY . We see thatV has the desired
properties:V ((S3 × H) \ A) > 0 andV (A) = 0.

Noting that for anyh ∈ H, h2 = h/h = 1, we calculate
the change inV along flows as〈∇xV (x), f(x)〉 = −ǫ⊤Kǫǫ
for all x ∈ C. Since−1 < −δ ≤ hη whenx ∈ C, it follows
that 〈∇xV (x), f(x)〉 < 0 for all x ∈ C \ A. The change in
V over jumps is

V (g(x)) − V (x) = 2(1 − (−h)η) − 2(1 − hη) = 4hη.



When(q, h) ∈ D, hη ≤ −δ, so thatV (g(x))−V (x) ≤ −4δ.
Hence, by [12, Corollary 7.7],A is globally asymptotically
stable for (10). The robustness of stability (asserted by aKL
estimate) follows from [5, Theorem 6.6] and the fact that
measurement noise is captured by an “outer perturbation”
(see [5, Example 5.3]).

Theorem 4.1: The hybrid feedback(8), (9), makesA glob-
ally asymptotically stable for the closed-loop system(10).
Moreover, there exists a class-KL function β such that for
any γ > 0 there existsα > 0 such that for each measurable
functione = [eη e⊤ǫ ]⊤ : R≥0 → αB, each solutionx to

q̇ =
1

2
q ⊗ ν(−hKǫ(ǫ + eǫ))

ḣ = 0







(q + e, h) ∈ C

q+ = q

h+ = −h

}

(q + e, h) ∈ D

satisfies

|x(t, j)|A ≤ β (|x(0, 0)|A, t + j) + γ ∀(t, j) ∈ dom x.

The enabling mechanism for global asymptotic stability in
this case is the hysteresis logic used for updatingh. When
h = 1, the feedback isω = −Kǫǫ, which is used for
stabilizing+1. Whenh = −1, the feedback isω = +Kǫǫ,
which is used for stabilizing−1. Deciding which feedback
law to use depends on the value of the logic variableh,
which only jumps whenhη crosses the threshold−δ.

It is important to pick δ ∈ (0, 1). Choosing δ = 0
eliminates the hysteresis and destroys the accompanying
robustness properties as pointed out in Section II-B. On the
other extreme, sinceη ∈ [−1, 1], choosingδ ≥ 1 will cause
h to neverchange, making the pointq = −h1 an unstable
equilibrium. For δ ∈ (0, 1), the hysteresis implements a
trade-off between unwinding and robustness. Note that the
KL stability property in Theorem 4.1 applies to solutions of
the perturbed system whereq can have an initial condition
anywhereon S3. Such is not the case with (non-hybrid)
discontinuous feedback, as pointed out in Section II-B.

B. Stabilization of Attitude Dynamics

In this section, we propose two controllers for stabilizing
the setAd for the system

q̇ =
1

2
q ⊗ ν(ω) q ∈ S3

Jω̇ = S(Jω)ω + τ,

whereτ ∈ R
3 is a control torque. Let̃x = (q, ω, h), where

h is the controller state defined in Section IV-A. The flow
and jump maps of the closed-loop system are

f̃(x̃, τ) =





1

2
q ⊗ ν(ω)

J−1(S(Jω)ω + τ)
0



 , g̃(x̃) =





q
ω
−h



 .

(12)
At this point, we will not define the flow and jump sets

for our two controllers, as they will depend on our choice of

Lyapunov function. In each case, we will stabilize the set

Ã = {(q, ω, h) ∈ S3 × R
3 × H : q = h1, ω = 0}.

Note thatProjS3×R3 Ã = Ad.
1) Energy-based Lyapunov Function:Let c > 0. We first

introduce an energy-based Lyapunov function,

Ṽ1(x̃) = cV (x) +
1

2
ω⊤Jω,

that satisfies̃V1((S
3 × R

3 × H) \ Ã) > 0 and Ṽ1(Ã) = 0.
We calculate the change iñV1 along flows as

〈

∇x̃Ṽ1(x̃), f̃(x̃, τ)
〉

= ω⊤ (chǫ + S(Jω)ω + τ) .

Let
τ = τ1(x̃) := −chǫ − Kωω, (13)

where Kω = K⊤
ω > 0, and recall that for anyx ∈

R
3 and any S ∈ so(3), x⊤Sx = 0. It follows that

〈

∇x̃Ṽ1(x̃), f̃(x̃, τ1(x̃))
〉

= −ω⊤Kωω. We now examine the

change inṼ1 due to jumps in the state. Since there is no
change inq andω, we find that

Ṽ1(g̃(x̃)) − Ṽ1(x̃) = 4chη.

As in Section IV-A, we define the flow and jump sets for
this system as

C̃1 = {(q, ω, h) ∈ S3 × R
3 × H : hη ≥ −δ}

D̃1 = {(q, ω, h) ∈ S3 × R
3 × H : hη ≤ −δ}.

SinceKω = K⊤
ω > 0, c > 0, andδ > 0, it follows that

〈

∇x̃Ṽ1(x̃), f̃(x̃, τ1(x̃))
〉

≤ 0 ∀x̃ ∈ C̃1

Ṽ1(g̃(x̃)) − Ṽ1(x̃) < 0 ∀x̃ ∈ D̃1.

Then, it follows from [12, Theorem 7.6] that̃A is stable;
however, we must apply an invariance principle for hy-
brid systems to assert global attractivity (and hence, global
asymptotic stability). Since〈∇x̃Ṽ1(x̃), f̃(x̃, τ1(x̃))〉 = 0 if
and only ifω = 0 and{x̃ ∈ D̃1 : Ṽ1(g̃(x̃))−Ṽ1(x̃) = 0} = ∅,
it follows from [12, Theorem 4.7] that solutions converge to
the largest invariant set contained in

W = {(q, ω, h) ∈ S3 × R
3 × H : hη ≥ −δ, ω = 0}.

Examining the closed-loop system withω ≡ 0 (so that
Jω̇ ≡ 0), we see that0 = hǫ, which implies thatη = ±1
(i.e. q = ±1). Then, sincehη ≥ −δ > −1, it follows that
η = h and q = h1. So, since solutions to the closed-loop
system are complete and bounded, they converge toÃ.

2) Backstepping-based Lyapunov Function:The
Lyapunov-based design in Section IV-B.1 relied on an
invariance principle to complete the proof of asymptotic
stability. As in [7], we employ backstepping to construct
a Lyapunov function that is strictly decreasing along flows
and jumps of the system. Our innovation is in designing the
flow and jump sets to achieve this strict decrease.

Recalling that the controlω = −hKǫǫ derived in Sec-
tion IV-A resulted in a strict decrease inV (x) along flows of



(10), we introduce the backstepping variablez = ω + hKǫǫ.
It’s easily seen that

Jż = S(Jω)ω + τ +
h

2
JKǫ(ηI + S(ǫ))ω

〈

∇x̃V (x̃), f̃(x̃, τ)
〉

= −ǫ⊤Kǫǫ + hǫ⊤z.

Proceeding, we letc > 0 and define the Lyapunov function

Ṽ2(x̃) = cV (x) +
1

2
z⊤Jz (14)

satisfyingṼ2((S
3 × R

3 × H) \ Ã) > 0 and Ṽ2(Ã) = 0. We
calculate the change iñV2 along flows as

〈

∇x̃Ṽ2(x̃), f̃(x̃, τ)
〉

= −cǫ⊤Kǫǫ + chz⊤ǫ +

z⊤
(

h

2
JKǫ(ηI + S(ǫ))ω + S(Jω)ω + τ

)

.

Let τ = τ2(x̃), where

τ2(x̃) = −S(Jω)ω−
h

2
JKǫ(ηI+S(ǫ))ω−Kzz−chǫ, (15)

andKz = K⊤
z > 0. Then,

〈

∇x̃Ṽ2(x̃), f̃(x̃, τ2(x̃))
〉

= −cǫ⊤Kǫǫ − z⊤Kzz.

The change iñV2 along jumps is

Ṽ2(g̃(x̃)) − Ṽ2(x̃) = 4ch

(

η −
1

2c
ω⊤JKǫǫ

)

.

Letting Φ(q, ω) = η− 1

2c
ω⊤JKǫǫ, it follows thatṼ2(g̃(x̃))−

Ṽ2(x̃) = 4chΦ(q, ω). Let δ ∈ (0, 1). By defining flow and
jump sets as

C̃2 = {(q, ω, h) ∈ S3 × R
3 × H : hΦ(q, ω) ≥ −δ}

D̃2 = {(q, ω, h) ∈ S3 × R
3 × H : hΦ(q, ω) ≤ −δ},

it follows that
〈

∇x̃Ṽ2(x̃), f̃(x̃, τ2(x̃))
〉

< 0 for all x̃ ∈ C̃2 \

Ã and Ṽ2(g̃(x̃))− Ṽ2(x̃) ≤ −4cδ < 0 for all x̃ ∈ D̃2. Then,
by [12, Corollary 7.7],Ã is globally asymptotically stable.
We summarize these results in the following theorem.

Theorem 4.2: For eachi ∈ {1, 2}, the hybrid feedback

ḣ = 0

τ = τi(x̃)

}

x̃ ∈ C̃i

h+ = −h x̃ ∈ D̃i

rendersÃ globally asymptotically stable for the closed-loop
system

˙̃x = f̃(x̃, τi(x̃)) x̃ ∈ C̃i

x̃+ = g̃(x̃) x̃ ∈ D̃i.

Moreover, there exists a class-KL functionβi such that for
eachγ > 0 and any compact setK ⊂ R

3, there existsαi > 0
such that for eache : R≥0 → αiB, the solutions to

˙̃x = f̃(x̃, τi(x̃ + e)) (x̃ + e) ∈ C̃i

x̃+ = g̃(x̃) (x̃ + e) ∈ D̃i

with initial condition x̃0 ∈ S3 ×K × H satisfy

|x̃(t, j)|Ã ≤ βi (|x̃(0, 0)|Ã, t + j) + γ

for all (t, j) ∈ dom x̃.

Using bothṼ1 and Ṽ2 as Lyapunov functions for control
design yields some interesting differences. Notably, when
a control law was derived for making̃V1 nonincreasing
along flows, there was no need to cancel the Coriolis forces;
however, the need to cancel these terms becomes apparent
in the backstepping design using̃V2.

Also interesting is the need for different flow and jump
sets to guarantee a decrease of the Lyapunov function over
jumps. While the sets̃C1 and D̃1 are identical in structure
to C and D, the backstepping design necessitates thatC̃2

and D̃2 depend not only onη, but on the inner product of
the current rotation axis (multiplied by a gain),Kǫǫ, and
the angular momentum,Jω. As seen from the form of̃C2

andD̃2, h is less likely to switch when the sign of this inner
product opposes the sign ofh. From the quaternion kinematic
equation, we see thaṫη = − 1

2
ω⊤ǫ, so the backstepping

switching threshold is essentially predicting the derivative
of η and whetherη is headed towardsh or −h.

V. SIMULATION STUDY

For each of the following simulations, as in [7],J =
diag(4.35, 4.33, 3.664).

Fig. 1 illustrates the benefits of using hysteresis over
discontinuous control when measurement noise is present.
The simulation shows the response of the energy-based
control in Section IV-B.1 withδ = 0 (discontinuous), and
δ = 0.45 (hysteretic). The initial condition is selected to be
180◦ away from the desired attitude:q(0, 0) = [0 v⊤]⊤,
ω(0, 0) = 0, and h(0, 0) = 1, where v̂ = [3 − 4 5]⊤

and v = v̂/‖v̂‖2. The control gains for each controller are
c = 1

2
and Kω = 1

2
I. The controllers were subjected to

measurement noise so that the measured stateq̃ satisfies
q̃ = (q + e)/‖q + e‖ where ‖e‖2

2 ≤ 0.4 was selected
randomly from a uniform distribution. No measurement noise
was used onω. Note thatδ was selected to be larger than
the noise magnitude onq. The simulation uses a fixed-
step algorithm with a sampling period of1/1000 seconds.
Because of the sampling period time and immense amount
of chattering from the discontinuous control, Fig. 1 shows
a filtered version ofh, Fh, whereF = β/(s + β), with
β = 10. The initial condition of the filter was set to 1 (same
as the initial condition ofh).

One can see that the hysteretic controller is impervious
to the noise and outperforms the discontinuous controller,
which exhibits approximately a 5s lag in response time
and expends more control energy due to the noise-induced
chattering. Only after approximately 10s does the discontin-
uous controller steer the rigid body to a region where the
bounded noise cannot affect the desired rotation direction.
In this case, the noise is not so adversarial that it always
keeps the trajectory of the discontinuous controller near the
discontinuity; however, Theorem 2.1 asserts that this noise
exists (see [4] for more examples).
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Fig. 1. A comparison between discontinuous and hysteretic quaternion-
based controllers under measurement noise. The hysteretic controller is
impervious to the measurement noise, while the discontinuous controller
chatters at the discontinuity causing a response lag and wasted control effort.

Fig. 2 illustrates the difference between the energy-based
controller from Section IV-B.1 and the backstepping con-
troller from Section IV-B.2. To compare the two, the con-
trol gains for each controller were tuned to yield similar
performance from the initial conditionq(0, 0) = [0 v⊤]⊤,
ω(0, 0) = 0, andh(0, 0) = 1. Both controllers havec = 1
and δ = 0.45. The energy-based controller hasKω = I,
while the backstepping controller hasKǫ = 1

2
I and Kω =

Kz = 1

4
I. The simulation pictured in Fig. 2 begins from

initial condition q(0, 0) = 1, ω(0, 0) = 2v, andh(0, 0) = 1.
In this case, the backstepping controller expends more energy
to accelerate the rigid body and make a full rotation, while
the energy-based controller opposes the initial velocity.

VI. A CKNOWLEDGMENTS

The authors would like to thank Nalin Chaturvedi for
stimulating discussions about quaternions, attitude control,
and unwinding that improved the content of this paper.

REFERENCES

[1] P. C. Hughes,Spacecraft Attitude Dynamics. John Wiley & Sons,
1986.

[2] J. T.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,”
IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148–
1162, Oct. 1991.

[3] S. P. Bhat and D. S. Bernstein, “A topological obstruction to con-
tinuous global stabilization of rotational motion and the unwinding
phenomenon,”Systems & Control Letters, vol. 39, no. 1, pp. 63–70,
Jan. 2000.

0 2 4 6 8 10 12 14 16 18 20

−1

1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

 

 

Energy−based

Backstepping

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

Time (s)

h
η

ω
⊤

ω

R

t 0
τ
⊤

τ
d
t

Fig. 2. A comparison between controllers derived fromṼ1 (energy-based)
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