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Abstract— Global asymptotic stabilization of the attitude of
a rigid body is hindered by major topological obstructions.
In fact, this task is impossible to accomplish with continuous
state feedback. Moreover, when the attitude is parametrized
with unit quaternions, it becomes impossible to design a
globally stabilizing state feedback (even discontinuous) that
is robust to measurement noise. In this paper, we present
a quaternion-based hysteretic hybrid feedback that robustly
globally asymptotically stabilizes the attitude of a rigid body.
The hybrid control laws are derived through Lyapunov analysis
in kinematic and dynamic settings. In the dynamic setting,
we provide two control laws: one derived from an energy-
based Lyapunov function and another based on backstepping.
Analyzing the change in these Lyapunov functions due to
switching of a logic variable yields a straightforward form for
state-based hysteresis. A simulation study demonstrates how

hysteresis provides robustness to measurement noise and high-

lights differences between the energy-based and backstepping
control laws.

I. INTRODUCTION

The problem of robust global asymptotic attitude stabi

lization is subject to several major topological obstroicsi.
First, the attitude of a rigid body evolves ¢fO(3), whose

topology precludes the existence of a globally stabilizin

continuous feedback [3]. Other problems arise wis&n3)
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[5], [6], guarantee global asymptotic stability that is usb
to measurement noise.

In Section Il, we review unit quaternions, their applica-
tion to attitude representation, and topological obstonst
to global asymptotic stability in quaternion-based atkiu
control. In Section Ill, we provide a compact description
of the framework in [5], [6]. In Section IV, we derive
Lyapunov-based hybrid controllers that robustly and dglgba
asymptotically stabilize the desired attitude in kinematnd
dynamic settings. When considering dynamics, we provide
two controllers: one derived from an energy-based Lyapunov
function and another derived by backstepping, similar {o [7
Section V concludes the paper with a brief simulation study.

Il. QUATERNIONS AND ATTITUDE STABILIZATION

The attitude of a rigid body is represented by3a 3
rotation matrix, indicating a rotation between two referen
frames. The set o3 x 3 rotation matrices with unitary
determinant is the special orthogonal group of order three,

SO3)={RecR*>?:R"R=1IdetR=1},

d{vhere[ € R3*3 denotes the identity matrix. We leb(3) =

S eR¥3: ST = -8} and defineS : R? — s0(3) as

is parametrized by various means. In particular, any three- 0 —x3 a9
parameter parametrization cannot be globally_ nopsmgular S(z) = | a3 0 —x
[1], preventing controls based on such parametrizaticos fr —zy 1 0
being globally stabilizing. s
When the globally nonsingular four-parameter unit quatefNote that for two vectors:,y € R*, S(z)y = —S(y)z =

nions are used to parametriZ&0(3), a new topological % X ¥ Wherex denotes the vector cross product. Let the
problem arises: there are exactly two unit quaternions refi=dimensional sphere (embedded li¥ ") be denoted as
resenting each element iSO(3). This creates the need S" = {z € R"*':27a = 1}. Then, given an anglé € R

to stabilize a disconnected, two-point set in the quaternicnd an axis of rotationy € S?, a rotation matrix can be
space, which again is impossible to achieve globally uf@rametrized by the so-called Rodrigues formdta; R x

ing a continuous feedback. Furthermore, arbitrarily smaff~ — SO(3), defined as

measurement noise can destroy global attractivity of gerta

discontinuous controllers applied to this problem [4].

R(0,7) = I +sin(0)S() + (1 — cos(#))S?*(n). (1)

We propose a solution to the attitude control problem using Unit quaternions are often used to parametrize members
quaternion-based hysteretiybrid feedback, similar to that of SO(3). A unit quaternion

proposed in [4] for regulating a disconnected set of points.
The proposed hybrid control laws, based in the framework of
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mapR : 83 — SO(3) defined as

R(q) = I +2nS(e) + 25%(e).

Note that for everyR € SO(3), there are exactly two unit
quaternions;tq, such thatR = R(q) = R(—q).



With the identity elementt = [1 OITXS]T, each unit B. The Pitfalls of Attitude Stabilization
quaterniong € S® has an inversg ' = [ —¢']" under

: S The task of robust global attitude stabilization is made
the quaternion multiplication rule

difficult by several major topological obstructions. The en

TN — €] €2 lightening discussion in [3] elucidates these topological
@ Qg = nes + ey + S(er)ez | issues and points to several instancgs in the Iiteraturee{vhe
_ _ S they have been quietly at work. In this section, we highlight
With this multiplication rule, we have thaR~'(q) = those issues and also discuss subtle robustness issues that
R'(9) = R(¢"") and thatR(q1)R(g2) = R(q1 @ g2). arise when measurement noise is inflicted upon controllers

that attempt to solve the topological problems with (non-
hybrid) discontinuous feedback.

Written with rotation matrices, the attitude kinematics of It is known that a continuous vector field over a compact
a rigid body are manifold posses no globally asymptotically stable equilib
rium point [3]. Hence,SO(3) being compact precludes the
existence of a continuous control law that is globally stabi
éizing. In fact, the best that one can achieve with contirsuou
state feedback ialmostglobal stabilization as in [9], where
the proposed control vanishes at attitudes that 80é away

A. Kinematics, Dynamics, and Stabilization

R=RS(w) ReSO3),

where R denotes a rotation of vectors in the body fram
to the inertial frame and> € R® denotes the rigid body’s

angular velocity in the body frame. When written with unit]c the desired attitude about th incipal f iBerti
quaternions, (2) becomes rom the desired attitude about the principal axes of inerti

When parametrizations ofO(3) are used, one encoun-
G= }q ® v(w) g8 3) ters furthgr tppological difficulties. Since no three-paeder
2 parametrization ofSO(3) is globally nonsingular [1], any
control derived with such a parametrization is not globally
defined, much less, globally stabilizing. Seeking a glob-
ally defined parametrization, many employ unit quaternions
7 1 —el s T which use four parameters, but, as noted in Section II-A,
M b [nI+S(6)] w  ntee=L (4)  create a two-to-one cover #O0(3). Then, to stabilize a
single attitude inSO(3), one must stabilize disconnected
two-point set in the quaternion space. When this is over-
Jir = S(Jw)w + 7, ) Iook_ed_(e.g. [10]), the resulting controller can exhibit an
unwinding phenomenon, where the controller unnecessarily
whereJ = JT > 0 is the inertia matrix and is the control rotates the attitude through large angles [3]. Moreoveg, th
torque. To clearly illustrate the main innovation in thippg Nneed to robustly and globally stabilize disconnectedset
we neglect damping terms and those due to gravity; howevef, points imparts its own topological obstructions. As mbte
these external torques do not play a significant role in thi@ [4], such a task is impossible to accomplish with certain
subsequent stability results. Instead, we refer the retler (non-hybrid) discontinuous state feedback controlleremh
[8] for the application of the ideas in this paper to a fullymeasurement noise is present.
actuated six degree-of-freedom rigid body including dangpi  To illustrate these points in parallel, we appeal to the
terms and external (e.g., gravitational) forces. problem of globally asymptotically stabilizing the idemti
The attitude control objective is stated in terms of erroglement ofSO(3) using unit quaternions in a kinematic-only
coordinates that are also rotation matrices or their ungetting (i.e., (3)). Suppose that we overlook the fact thuih b
quaternion representations. Supposing tiRat € SO(3) +1 correspond to the identity rotation and that we construct
denotes a constant desired reference attitities= R(IR e the Lyapunov function
SO(3) is an error coordinate with the kinematic equation _
R. = R.S(w). Certainly, the goal is to hav&k = Ry Vig) =2(1—-n),
so that R. = I. Hence, the objective k_)ecomes to designy, thatV(S? \ {1}) > 0 and V(1) = 0. Note thatV takes
a control tqrque thgt globall_y asymptptlcally stabiliz&s jts maximum of 4 aty = —1.
to an identity matrix. In unit quaternions, we see that if Suppose one chooses the feedback— —¢ so that
R, =1, then thg associated set of unit quaternionsis )?VV(q), lg@v(—)) = —|lel|3. Applying this feedback,
So, the kinematic sub-problem is to robustly and globally, . e are two equilibrium points; 1, with —1 unstable and

asymptotically stabilize +1 stable. Sincet1 represent the same point i$iO(3),

wherev(w) = [0 wT]T. Dividing (3) into separate equa-
tions forn ande, we have

Assuming rigid body motion, the dynamics are

A = {q €8%.q= il}. (6) depending on the controller's knowledge of the quaternion
representation, the desired attitude is either stablenstau
When dynamics are taken into account, the goal is to robusthfe! In fact, for anyq € S3, we havew(q) = —w(—q), SO
and globally asymptotically stabilize the set that the feedback is defined twice for a given attitude (in

5 3 terms of R € SO(3)). This fact is discussed further in [3],
Ad:{(q,w)GS x R?:q= 41, w:O}. @) (71, [2].



To remedy this issue, some authors (e.g., [7], [11]) havasymptotically stable i34 = R™. By definition, points in
resorted to stabilizing the sef+1} with discontinuous R™\ (C U D) belong to the basin of attraction since there

control. Defining are no solutions from those points.
-1 n<o0 IV. RoBUST GLOBAL ASYMPTOTICATTITUDE
sgn(n) = 1 >0 STABILIZATION : KINEMATICS AND DYNAMICS
i ) In this section, we consider robust global asymptotic stabi
the feedbacks = «(q) := —sgn(n)e is globally asymptoti- iz ation of A using hybrid feedback. To make the innovation

cally stabilizing with Lyapunov functio/y = 2(1 —[1[);  clear, we first consider the kinematic stabilization prable

however, the global attractivity property is not rObet WQusing velocity as the control input), since the topolobica

arbitrarily small measuregment noise. L& = {z € R* :  gppryctions to global asymptotic stability already arise

[#] <4} andE' = {g € §* : ) = 0}. Then, appealing {0 [4, this setting. We then show how this method can be extended

Theorem 2.6], we state this non-robustness issue precisely,iq 4 dynamic setting in two ways: with an energy-based
Theorem 2.1: Leb > 0. Then, for eachy, € (E+B)N  Lyapunov function that requires the use of an invariance

S3, there exist a piecewise constant function(0, co) — 6B principle and via backstepping.

and an absolutely continuoug : [0,00) — S? satisfying o . . .

g(0) = go, 4(t) = %q(t) © v(k(g(t) + e(t)) for almost all A. Stz_ablhzatl.on of Attitude Kmemancs o

t €[0,00), andq(t) € (E + 6B) NS3 for all t € [0, 00). As in Section 1I-B, we consider the problem of stabilizing

Theorem 2.1 states that for initial conditions closeRp the d;et “k4fh f;); (). dWe pr(JIpoge th:blfollowin?jyién;c
it is possible for a small amount of measurement noise tfge ack that depends on a logic variable {~1,1} =: H,

keep solutions close t& for all time. h=0
(g.h) €C
I1l. HYBRID SYSTEMS PRELIMINARIES w=—hKece 8)
A hybrid system is one where both continuous and discrete N
evolution of the stater € R™ are possible. Following the h™ =—h (¢,h) € D
framework of [6], [5], a hybrid systerf is defined by four where 5
objects: aflow map f : R* — R”, that dictates continuous C={(¢,h) € 8° x H : hn > =4}, ©

evolution of the state, gump map ¢ : R* — R", that D ={(q,h) € S* x H : hn < =6},

dictates discrete evolution of the stateflav sef C C R”, T o3

that indicates where continuous evolution is possible, and\l/{vftgtf]{'s f> ?j’baniétﬁ (0’|1)' l(;k?te thstO UD=5"xH.
jump set D C R", indicating where discrete evolution is : IS Teedback, the closed loop becomes

possible. A hybrid systertt = (f, g, C, D) is written in the = So@u(—hK
suggestive form ? 24 U ) (g,h) € C
h=0
y) #=1@) wec (10)
rt =g(z) x€D. + =
L0 @meD.
In this paper, the data of the proposed hybrid systems are ht =—h

defined to satisfy thélybrid Basic Conditiong5, A0-A3],
which are a set of mild regularity conditions on the data o
H guaranteeing the robustness of stability. For the purposes t=f(x) ze€C
of this paper, these reduce foand g being continuous and zt =g(z) zeD.
C and D being closed.

The framework and robust stability results of [6], [5]
largely depend on a concept of solution. We note here that a V(z) =2(1 - hn) (112)
solutionz to hybrid system is defined on hybrid time domain
domz C [0,00) x {0,1,2,...}. The set of solutions to a
hybrid systemH from an initial conditionz, is denoted as A={(¢,h) €S> x H:q=h1}.

S (xo). We refer the reader to [6], [5] for further details. . B .
Stability and attractivity of compact sets for hybrid sys—NOte that Projss A = Ay, where Projy X' denotes the

tems are defined in a familiar way. A compact set- R” projection of a sefX ontoY. We see thal” has the desired
. iac: 3 —

is stableif Ve > 0, 36 > 0 such thatvz, € A + B, each pr(lj\lpoetir::est.r‘(a(t(for zf% \eAISI >h(2) ing/‘;f“ﬁ)l_v?/é calculate

solution x € Sy(xg) satisfiesz(t,j) € A+ eB V(t,j) € the chag e i alonyflows ’as(V_V(:c) }(x’» T K

domz. Let |- |4 denote the distance td. The compact set g 9 v ’ . ©

) ) ) . : . forall x € C. Since—1 < —0 < hn whenz € C, it follows
A is attractive with basin of attraction5 4 if 35 > 0 such - ' .
that Vay € Ba > A+ 0B, everys € Sp(zo) is complete that (V,V(z), f(z)) < 0 for all z € C'\ A. The change in

and satisfiedimg ;.o |2(t, j)[.a = 0. A is asymptotically V7 over jumps is
stable if it is both stable and attractive and gfobally V(g(z)) = V(z) =2(1 — (=h)n) —2(1 — hn) = 4hn.

If:or compactness, let = (¢, h). Then, we denote (10) as

Consider the Lyapunov function

for analyzing the stability of the set



When(q, h) € D, hn < -4, so thatV (g(z))—V(z) < —46.  Lyapunov function. In each case, we will stabilize the set
Hence, by [12, Corollary 7.7]4 is globally asymptotically s 3 3 o B

stable for (10). The robustness of stability (asserted kya A={(q,w,h) €S* xR* x H:q=hl, w=0}.
estimate) follows from [5, Theorem 6.6] and the fact thaNote thatProjgs , gs A=A,

measurement noise is captured by an “outer perturbation” 1) Energy-based Lyapunov Functiohet ¢ > 0. We first

(see [5, Example 5.3]). introduce an energy-based Lyapunov function,
Theorem 4.1: The hybrid feedba@), (9), makesA glob- . 1+
ally asymptotically stable for the closed-loop systérn). Vi(2) = cV(z) + 3v Jw,

Moreover, there exists a clags£ function 5 such that for o~ - ..
that satisfied/; (83 x R® x H) \ A) > 0 and V;(A) = 0.

any~ > 0 there existsy > 0 such that for each measurable ~
functione = [e, e]T : Rso — B, each solution to We calculate the change ¥, along flows as

€

VaVi(@), f(@, 7)) =w' (che+ S(J .
§= Sq@u(~hK.(e +e.)) (Vali(@), f(@.7)) =T (che + S(Jw)w+7)
2 (g+eh)eC L
=0 et
T =71(Z) := —che — K,w, (13)
gt =g¢q where K, = K > 0, and recall that for anyr <
W= (¢+eh)eD R? and any S € so(3), 2"Sx = 0. It follows that
o <Vi,f/1(33), (@ (:E))> = —w' K,w. We now examine the
satisfies .~ / . . .
change inV; due to jumps in the state. Since there is no
lz(t, j)|a < B(z(0,0)|a,t+7) +7v V(t,j) € domz. change ing andw, we find that
_The ena!bling mechanis_m for_global asymptoti(_: stability in % (4(2)) — ‘71(33) = 4dchn.
this case is the hysteresis logic used for updatingvVhen
h = 1, the feedback isv = —K.¢, which is used for As in Section IV-A, we define the flow and jump sets for
stabilizing +1. Whenh = —1, the feedback isv = +K.¢, this system as
which is used for stabilizing-1. Deciding which feedback Ci = {(qw,h) € S® xR3 x H : hy > —5}

law to use depends on the value of the logic variable - 3 3
which only jumps wherhn crosses the thresholds. D1 ={(g:w,h) € S* xR* x H : hn < =4}

It is important to pick§ € (0,1). Choosingd = 0  sincek,, = K >0, c >0, ands > 0, it follows that
eliminates the hysteresis and destroys the accompanying ~ ~ R
robustness properties as pointed out in Section 11-B. On the <V5;V1(If),f(i’,7’1 (:E))> <0 Vel
other extreme, since € [—1, 1], choosingd > 1 will cause ~ ~ .=
h to neverchange, mak[ing tr}e point = —h1 an unstable i(9(2)) - Vi(#) <0 Vi € D,
equilibrium. Ford € (0,1), the hysteresis implements aThen, it follows from [12, Theorem 7.6] thatl is stable;
trade-off between unWinding and robustness. Note that tl‘mwever’ we must app]y an invariance princip|e for hy_
KL stability property in Theorem 4.1 applies to solutions obyrid systems to assert global attractivity (and hence, ajlob
the perturbed system whegecan have an initial condition asymptotic stability). Sincdvif/l(j)’f(j’q-l(j))) —0if
anywhereon S3. Such is not the case with (non-hybrid) gng only ifw = 0 and{# € Dy : V1(§(z))—V1(Z) = 0} = 0,
discontinuous feedback, as pointed out in Section II-B. it follows from [12, Theorem 4.7] that solutions converge to

B. Stabilization of Attitude Dynamics the largest invariant set contained in

In this section, we propose two controllers for stabilizing W = {(¢;w,h) € §* xR® x H : hn > =4, w = 0}.

the setA for the system Examining the closed-loop system with = 0 (so that

.1 3 Jw = 0), we see thad = he, which implies thaty = +1
§=509vw) q¢€S (i.e. ¢ = +1). Then, sincehn > —§ > —1, it follows that
Jw = S(Jw)w + T, n = h and g = h1. So, since solutions to the closed-loop

system are complete and bounded, they convergé.to

wherer € R® is a control torque. Le€ = (¢,w,h), where 5y go o cienning-based  Lyapunov ~ Function: The
h is the controller state defined in Section IV-A. The ﬂOWLyapunov-based design in Section IV-B.1 relied on an

and jump maps of the closed-loop system are invariance principle to complete the proof of asymptotic

3@ v(w) q stability. As in [7], we employ backstepping to construct
f@ ) =T SUww+7)|, §@) =|w a Lyapunov function that is strictly decreasing along flows
0 —h and jumps of the system. Our innovation is in designing the

(12) flow and jump sets to achieve this strict decrease.
At this point, we will not define the flow and jump sets Recalling that the controb = —hK.e derived in Sec-
for our two controllers, as they will depend on our choice ofion IV-A resulted in a strict decrease n(z) along flows of



(10), we introduce the backstepping variable- w + hK.e.  with initial condition Zy € S? x K x H satisfy
It's easily seen that P - .
g 3t 9)] 4 < B (150,0)] oot +5) +7

. h
Ji=S(Jww+71+ 5JKe(nI + S(e))w for all (t,5) € dom Z.
V.V (3), f(7, = T K.e+ he 2 Using bothV; andV; as Lyapunov functions for control
< (@), (@ T)> ¢ cthe s design yields some interesting differences. Notably, when

Proceeding, we let > 0 and define the Lyapunov function a control law was derived for making; nonincreasing

1 along flows, there was no need to cancel the Coriolis forces;
Vo(z) = cV(x) + §ZTJZ (14)  however, the need to cancel these terms becomes apparent
- _ o in the backstepping design using.
satisfyingV5((S* x R® x H) \ A) > 0 andV>(A) = 0. We Also interesting is the need for different flow and jump

calculate the change i, along flows as sets to guarantee a decrease of the Lyapunov function over
. . jumps. While the set§€; and D; are identical in structure
<V;z‘/2(5f)>f(5?77)> = —ce' Kee+chz'e+ to C' and D, the backstepping design necessitates tiat
~(h and D, depend not only om, but on the inner product of
z (2JK€(7;I+ S(€))w + S(JW)W+T> : the current rotation axis (multiplied by a gaink.e, and
the angular momentumjw. As seen from the form of’;
Let 7 = 75(Z), where and D, h is less likely to switch when the sign of this inner
_ h product opposes the sign bf From the quaternion kinematic
72(7) = _S(J“’)w_§JK€(”I+S(€))W_KZZ_C’7@ (15)  equation, we see thaj = —sw'e, S0 the backstepping

switching threshold is essentially predicting the derieat

— T
and K = K, > 0. Then, of n and whethenr is headed towarda or —h.

<Vi‘72(57)>f(5772(93))> =—ce'Kee— 2" K. 2. V. SIMULATION STUDY

For each of the following simulations, as in [7}, =
diag(4.35,4.33, 3.664).
Va(§(7)) — Va() = 4ch (77— leJK€€> . .Fig. _1 illustrates the benefits of using hy;tergsis over
2c discontinuous control when measurement noise is present.
The simulation shows the response of the energy-based
control in Section 1V-B.1 withé = 0 (discontinuous), and
0 = 0.45 (hysteretic). The initial condition is selected to be

The change iV, along jumps is

Letting ®(¢,w) = n—5-w' JK.e, it follows thatV;(g(z)) —
Vo(Z) = 4ch®(q,w). Let § € (0,1). By defining flow and

Jump~sets as 180° away from the desired attitudg(0,0) = [0 o],
Cy = {(q,w,h) € S* xR® x H : h®(q,w) > —6} w(0,0) = 0, and h(0,0) = 1, wherev = [3 —4 5T
Do = {(q,w0,h) € 83 X R® x H : hd(q,w) < -5}, andv = 9/|d|/o. The control gains for each controller are

¢ = 1 and K, = 1I. The controllers were subjected to

it follows that<vif/2(j),f(j77-2(i‘))> <OforallzeC,\ Mmeasurement noise so that the measured stasatisfies

A andV4(§(2)) — Ta(#) < —4cb < 0 for all 7 € Dy. Then, 9 = (@ + ©)/lla + ell where [lell; < 0.4 was selected

by [12, Corollary 7.7].4 is globally asymptotically stable. randomly from a uniform distribution. No measurement noise
. : : was used onw. Note thatd was selected to be larger than
We summarize these results in the following theorem.

) the noise magnitude og. The simulation uses a fixed-

Theorem 4.2: For eachi € {1,2}, the hybrid feedback  step algorithm with a sampling period f/1000 seconds.
=0 } 3 Because of the sampling period time and immense amount

- zeC; of chattering from the discontinuous control, Fig. 1 shows

7= 1i(%) a filtered version ofh, Fh, where F = (3/(s + ), with

. £ = 10. The initial condition of the filter was set to 1 (same

hWt=-h zeD, as the initial condition of).

One can see that the hysteretic controller is impervious

renders.A globally asymptotically stable for the closed-loo . . .
9 y asymp y pto the noise and outperforms the discontinuous controller,

system . L ) . .
i Jz@ (7)) Fe c. which exhibits approximately a 5s lag in response time
L ~’ ! ~ ! and expends more control energy due to the noise-induced
Tt =g(@) z € D;. chattering. Only after approximately 10s does the discenti

Moreover, there exists a clags£ function 5; such that for uous controller steer the rigid body to a region where the
eachy > 0 and any compact séf C R3, there existsy; > 0 bounded noise cannot affect the desired rotation direction
such that for eacte : R~, — «;B, the solutions to In this case, the noise is not so adversarial that it always
keeps the trajectory of the discontinuous controller nbar t
discontinuity; however, Theorem 2.1 asserts that thisenois
exists (see [4] for more examples).

=f(@n(E+e) (Z+e)

3;? € éi
it =) (i +e) € D;
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Fig. 1. A comparison between discontinuous and hysteretitegoion-

based controllers under measurement noise. The hysteraticolber is
impervious to the measurement noise, while the discontinuonsraller
chatters at the discontinuity causing a response lag angevasntrol effort.

— — Energy-based
— — — Backstepping b

f(f 7T rdt
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Fig. 2. A comparison between controllers derived froin(energy-based)
and V> (backstepping) from initial conditiog(0,0) = 1, w(0,0) = 2w,
andh(0,0) = 1. The backstepping controller accelerates the rigid body to
make a full rotation (drivingy to —1), while the energy-based controller
opposes the initial velocity and drivesback to+1.

Fig. 2 illustrates the difference between the energy-based

controller from Section IV-B.1 and the backstepping con-[4]
troller from Section IV-B.2. To compare the two, the con-
trol gains for each controller were tuned to yield similar

performance from the initial condition(0,0) = [0 »T]T,
w(0,0) = 0, andh(0,0) = 1. Both controllers have = 1
and 6 = 0.45. The energy-based controller h&s, = I,
while the backstepping controller hdé, = 37 and K, =

K, = %I. The simulation pictured in Fig. 2 begins from [

initial condition ¢(0,0) = 1, w(0,0) = 2v, andx(0,0) = 1.

In this case, the backstepping controller expends moraygner
to accelerate the rigid body and make a full rotation, while!®

the energy-based controller opposes the initial velocity.
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