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Abstract— An observer whose state lives in a copy of the
space of the given system and which guarantees a vanishing
estimation error exhibits necessarily a symmetric covariant
tensor field of order 2 which is related to the local observability
information. A direct construction of this matrix field is po ssible
by solving off-line ordinary differential equations. Using this
symmetric covariant tensor field as a Riemannian metric, we
prove that geodesic convexity of the level sets of the output
function is sufficient to allow the construction of an observer
that contracts the geodesic distance between the estimatedstate
and the system’s state, globally in the estimated state and semi-
globally in the estimation error.

I. I NTRODUCTION

For a complete nonlinear system of the form

ẋ = f(x),

y = h(x),
(1)

with x ∈ R
n being the system’s state andy ∈ R the mea-

sured system’s output, we consider the problem of obtaining
an estimatex̂ of the statex by means of the dynamical
system, calledobserver,

χ̇ = F (χ, y),

x̂ = H(χ, y),
(2)

with χ ∈ R
p being the observer’s state, and̂x ∈ R

n the
observer’s output, used as the system’s state estimate. More
precisely, we consider the following problem:

(⋆) Given functionsf and h, design functionsF and H

such that, for the interconnection of systems (1) and
(2), the set

{(x, χ) ∈ R
n × R

p | x = H(χ, h(x))} (3)

is globally asymptotically stable (see Section II for a
definition).

This note focuses on the particular case where the stateχ

of the observer evolves in a copy of the space of the system’s
statex, i.e., they both belong toRn. In such a case, we can
pick the observer’s output functionH trivial, i.e., pick

p = n , x̂ = χ . (4)

Many contributions from different points of view have
been made to address this problem. While a summary of
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the very rich literature on the topic is out of the scope of
this note, it is important for us to point out the interest of
exploiting a possible nonexpansivity property of the flow
generated by the observer which emerged from [13]. Study
of nonexpansive flows has a very long history and has been
proposed independently by several authors; see, e.g., [12],
[7], [5], [14] (see also [10] for a historical discussion).
Indeed, as we report in this note, when problem (⋆) has
a solution then there is necessarily a symmetric covariant
tensor field of order 2 involved. It is then very tempting
to use it as a Riemannian metric to measure the distance
between system’s statex and its estimation̂x, and therefore,
characterize the nonexpansivity of the observer flow.

Riemannian metrics have already been used in the context
of observers in [1], [3] for instance. In these papers, the
authors consider systems whose dynamics follow from a
principle of least action involving a Riemannian metric,
such as Euler-Lagrange systems with a Lagrangian that
is quadratic in the generalized velocities. The Riemannian
metric used in such observer designs depends only on the
system vector fieldf . This is a key difference with the
approach taken in this paper: the proposed metric depends on
the pair(f, h), i.e., it incorporates the observability property
of the system.

The paper contains three main parts. In Section II we show
that an observer whose stateχ lives in a copy of the space
of the statex of the given system guaranteeing a vanishing
estimation error exhibits necessarily a symmetric covariant
tensor field of order 2 that is related to the local observ-
ability information. In Section III we establish a relationship
between the necessary condition in Section II and a local
observability property of system (1). By solving ordinary
differential equations off line, we provide a constructionof
a symmetric covariant tensor field of order 2 satisfying the
necessary conditions in Section II. In Section IV, using this
symmetric covariant tensor field as a Riemannian metric, we
propose a set of sufficient conditions for the construction
of an observer guaranteeing contraction of the Riemannian
distance between system’s state and estimated state. To
this end, we follow the formalism introduced in [14] (see
also [9]). In particular we exploit the properties of the
so-called geodesically monotone vector fields which give
rise to nonexpansive flows with expansivity measured via
a Riemannian metric (see also [12], [4, Sections V.3 and
VI.2], [7, Chapter XIV, Part III]). Finally, in Section V, we
briefly discuss the checkability of the sufficient conditions.



From our knowledge of the literature, we believe that the
ideas which follow are new, although they can be seen as
extension of what was proposed in [15] under the restriction
of existence of a quadratic Lyapunov function depending
only on the estimation error. For the sake of simplicity, all
along this paper we work under, not always written, restric-
tions like, for instance, time independence, completenessof
the given system, functions differentiable sufficiently many
times, single output,Rn, then-dimensional Euclidean space,
as system state manifold, among others.

Due to space limitations, the proof of the results will be
reported elsewhere.

II. A N ECESSARYCONDITION

Let the estimation error be given by

e = x̂ − x.

The interconnection of system (1) and observer (2) under the
conditions in (4) admits(x, e) as state with dynamics given
by

ẋ = f(x),

ė = F (x + e, h(x)) − f(x).
(5)

In this context, the set to be rendered globally asymptotically
stable (GAS) takes the form

A = {(x, e) ∈ R
n × R

n | e = 0} . (6)

By GAS of this particular set we mean that there exists a
class-KL function1 β such that for all pairs(x, e) in R

n×R
n,

the solution(X((x, e), t), E((x, e), t)) of (5) issued from
(x, e) is right maximally defined on[0, +∞) and satisfies:

|E((x, e), t)| ≤ β(ω(x, e), t) ∀t ≥ 0 ,

where ω : R
n × R

n → [0, +∞) is a continuous function
satisfyingω(x, 0) = 0 for all x ∈ R

n.

To state the following proposition, we introduce the Lie
derivativeLfP of the symmetricC∞-covariant tensor field
P of order 2 on R

n (see [4] and [11] for a definition). In
x coordinates, it satisfies the following expression (see [4,
Exercise V.2.8]):

v⊤LfP (x) v (7)

= lim
r→0

[(I+r
∂f
∂x

(x))v]⊤P (x+rf(x))[(I+r
∂f
∂x

(x))v]−v⊤P (x)v

r
,

=
∂

∂x

(

v⊤P (x) v
)

f(x) + 2 v⊤P (x)

(

∂f

∂x
(x) v

)

.

Proposition 2.1: If the setA is GAS for (5), then there
exist a C∞ function P : R

n → R
n×n with nonnegative

1A function β : [0, +∞) × [0,+∞) → [0, +∞) is said to belong to
class-KL if it is continuous, nondecreasing in its first argument, nonincreas-
ing in its second argument, andlim

sց0 β(s, r) = limr→∞ β(s, r) = 0.

symmetric matrix values and a continuous functionρ : R
n →

R satisfying, for allx in R
n,

LfP (x) ≤ ρ(x)
∂h

∂x
(x)⊤

∂h

∂x
(x) −

1

2
P (x) . (8)

III. A L INK WITH LOCAL OBSERVABILITY

The necessary condition in (8) is linked to properties
of the family of linear time-varying systems obtained from
linearizing (1) along its solutions. We denote byX(x, t) a
solution to (1) at timet issued fromx. Since (1) is assumed
to be complete, for eachx, t 7→ X(x, t) is defined on
(−∞, +∞). The linearization off and h evaluated along
a solutionX(x, t) gives the functions

Ax(t) =
∂f

∂x
(X(x, t)),

Cx(t) =
∂h

∂x
(X(x, t)).

They allow us to define the following family of linear time-
varying systems:

ξ̇ = Ax(t) ξ,

η = Cx(t) ξ,
(9)

with stateξ ∈ R
n and outputη ∈ R. Systems (9) are pa-

rameterized by the initial conditionx of the chosen solution
X(x, t). For a given initial conditionx ∈ R

n, Φx is the state
transition matrix, which, for allt andτ , satisfies

X(x, t) = Φx(t, τ)X(x, τ).

To state our following proposition, we need two defini-
tions.

Definition 3.1:

1) Given x ∈ R
n, system (9) is said to beuniformly

detectableif there exists a continuous function

t 7→ Kx(t)

such that the origin of

ξ̇ = (Ax(t) − Kx(t)Cx(t)) ξ (10)

is uniformly exponentially stable.
2) The family of systems (9) is said to be reconstructible

uniformly in x if there exist strictly positive real
numbersτ andǫ such that we have

∫ 0

−τ

Φx(s, 0)⊤Cx(s)⊤Cx(s)Φx(s, 0)ds ≥ ǫ I (11)

for all x in R
n.

The following proposition states a sufficient condition for
observability in terms of a symmetric covariant tensor field
of order 2. The condition involves the Lie derivative of the
symmetric covariant tensor field along the vector fieldf .
It also asserts an invariant property that is induced by the



symmetric covariant tensor field under the reconstructibility
condition.

Proposition 3.2:

1) Suppose there exist strictly positive real numbersp

and p, and a functionP : R
n → R

n×n with positive
symmetric matrix values satisfying condition (8) and

0 < p I ≤ P (x) ≤ p I. ∀x ∈ R
n, (12)

Then, for eachx ∈ R
n, the linear time-varying system

(9) is uniformly detectable.
2) Conversely, suppose that the family of systems (9) is

reconstructible uniformly inx. Furthermore, assume
that the functionsf and h have bounded differential.
Then, there exist a strictly positive real numberλ and
a continuous functionP : R

n → R
n×n satisfying (12)

such that the system

Π̇ = −Π
∂f

∂x
(x) −

∂f

∂x
(x)⊤Π

+
∂h

∂x
(x)⊤

∂h

∂x
(x) − λΠ,

ẋ = f(x)

(13)

admits the set

{(x, Π) ∈ R
n × R

n×n : Π = P (x)}

as an invariant manifold.

Remark 3.3:Item 1) in Proposition 3.2 indicates that the
existence ofP satisfying (8) is closely related to the local
observability information of (1). It can be shown that a
particular construction forP in the second item is given
by

P (x) = (14)

lim
T→−∞

∫ 0

T

exp(λs)Φx(s, 0)⊤Cx(s)⊤Cx(s)Φx(s, 0)ds

with λ > 0 large enough. A method to approximate this
particular construction is as follows. Given a pointx ∈ R

n

where we want to evaluateP , we compute the solution
X(x, t) to ẋ = f(x) backward in time from the initial
condition x, at time t = 0, up to negative timet = −T ,
for someT > 0 such thatexp(−λT ) is sufficiently small.
Then,P (x) is given byΠ(0), which is the solution at time
t = 0 of

Π̇ = −ΠAx(t) − Ax(t)⊤Π + Cx(t)⊤Cx(t) − λΠ

with initial condition Π(−T ) = 0 at time t = −T .

IV. SUFFICIENT CONDITION

In this section, we employ a symmetric covariant tensor
field P of order 2 and a functionρ satisfying

LfP (x) − ρ(x)
∂h

∂x
(x)⊤

∂h

∂x
(x) < 0 ∀x ∈ R

n

to design the functionF of the observer (2). To that end,
we useP as a Riemannian metric onRn. Then, define the
length of aC1 pathγ between pointsx1 andx2 as

L(γ)
∣

∣

∣

s2

s1

=

∫ s2

s1

√

dγ

ds
(s)

⊤

P (γ(s))
dγ

ds
(s) ds

where
γ(s1) = x1 , γ(s2) = x2 .

The Riemannian distanced(x1, x2) between two such points

is then the minimum ofL(γ)
∣

∣

∣

s2

s1

among all possible piece-

wise C1 pathsγ betweenx1 andx2. With the Hopf-Rinow
Theorem (see [4, Lemma VII.7.8]), we know that, if every
geodesic can be maximally extended toR, then the minimum

of L(γ)
∣

∣

∣

s2

s1

is actually given by the length of a (maybe

nonunique) geodesic, which is called aminimal geodesic.
In the following, γ∗ denotes such a minimal geodesic. For
more details, see, e.g., [4] and [6].

The following lemma provides conditions on a symmetric
covariant tensor fieldP of order 2 that guarantee that
geodesics can be maximally extended toR.

Lemma 4.1:Suppose that a functionP : R
n → R

n×n

with symmetric values satisfies

0 < P (x) ∀x ∈ R
n,

limr→∞ r2p(r) = +∞ ,
(15)

where, for any positive real numberr,

p(r) = min
x:|x|≤r

min
v:|v|=1

v⊤P (x)v .

Then, with P as Riemannian metric, any geodesic can be
maximally extended toR.

In the following, the functionP is assumed to satisfy the
conditions of Lemma 4.1. Consequently, the Riemannian
distance is given by the length of minimal geodesics. More
precisely, letγ∗ be a minimal geodesic satisfying

γ∗(0) = x , γ∗(ŝ) = x̂ .

The Riemannian distanced(x̂, x) is

d(x̂, x) = L(γ∗)
∣

∣

∣

ŝ

0
= |ŝ| .

With these preliminaries, our choice here to design the
observer is to define its vector fieldF so that it makes the
Riemannian distanced(x̂, x) between estimated statêx and
system statex to decrease along solutions.

Before continuing, we want to indicate that the approach
taken here induces restrictions. To make this clear, we first
observe that, to study the dynamics of the observer, we have
to consider the system given by (1) and (2), whose state lives
in R

n×R
n. We do not introduce a metric on this this product

space, but simply a functionV : R
n×R

n → [0, +∞) defined
as

V (x, x̂) = d(x̂, x), (16)



which we use as a Lyapunov function in our analysis. A
remark about this definition is that for it to be consistent,
x and x̂ must be expressed in the same coordinates. Also,
coming from the properties of the distanced, we have that
V satisfies

V (x, x) = 0 ,

V (x1, x2) = V (x2, x1) ,

V (x1, x2) ≤ V (x1, x3) + V (x3, x2) .

On the other hand, we know that, in Lyapunov analysis,
only the geometry of the level sets and not the value of the
Lyapunov function plays a role. Namely, ifV is a Lyapunov
function, it is equivalent to considerV and φ ◦ V with φ

being a continuous, strictly increasing function that is0 at
0. Hence, with our choice ofV in (16), we restrict ourselves
to the class of Lyapunov functionsV for which there exists
such a functionφ such that we have

V(x, x) = 0 ,

V(x1, x2) = V(x2, x1) ,

φ(V(x1, x2)) ≤ φ(V(x1, x3)) + φ(V(x3, x2)) .

Now, coming back to the observer design, as already re-
marked in the proof of Proposition 2.1, a necessary condition
for having the setA in (6), which can equivalently be written
as

A = {(x̂, x) ∈ R
n × R

n | d(x̂, x) = 0} ,

stable is

F (x, h(x)) = f(x) ∀x ∈ R
n . (17)

This is a first constraint we impose onF . It implies that the
observer contains also all solutions to (1). Then, we know
from the first order variation formula (see [17, Theorem
6.14] or [9, Theorem 5.7] for instance) that the evolution
of the distanced(x̂, x) along the solutions is dictated by the
equation

d

dt
d(x̂, x) =

dγ∗

ds
(ŝ)

⊤

P (γ∗(ŝ))F (γ∗(ŝ), y) (18)

−
dγ∗

ds
(0)

⊤

P (γ∗(0))F (γ∗(0), y) .

Since the last term on the right-hand side is imposed by (17),
to obtain d

dt
d(x̂, x) nonpositive we are left with choosingF

so that
dγ∗

ds
(ŝ)

⊤

P (γ∗(ŝ))F (γ∗(ŝ), y)

is negative enough to dominate that last term. Satisfying this
requirement would not be a problem ifdγ∗

ds
(ŝ) were known.

Indeed, by definition, since

γ∗(ŝ) = x̂,

it would be sufficient to choose, at least whenh(x̂) is far
from y,

F (x̂, y) = −k(x̂, y)P (x̂)−1 dγ∗

ds
(ŝ)

with k : R
n×R → R≥0 an arbitraryC1 function. Butdγ∗

ds
(ŝ)

represents the direction in which the state estimatex̂ “sees”
the system statex along a minimal geodesic. Unfortunately,
such a direction is unknown and we know only thatx belongs
to the following level set of the output function

H(y) = {x̄ : h(x̄) = y} .

Then, to satisfy the above requirement, we need the property:
given x̂ and y, the level set of the output functionH(y) is
“seen” from x̂ within a cone whose aperture is less than
π. This property implies thatH(y) is (weakly) geodesically
convex; see [16, Definition 6.1.1] and [8, Section 9.4].

Definition 4.2 (weak geodesic convexity):A subsetS of
R

n is said to be weakly geodesically convex if, for any pair
of points (x1, x2) ∈ S, there exists a minimal geodesicγ∗

satisfying

γ∗(s1) = x1 , γ∗(s2) = x2,

γ∗(s) ∈ S ∀s ∈ [s1, s2].

The following result establishes a sufficient condition for
weak geodesic convexity.

Lemma 4.3:Let P be a Riemannian metric. Then, a
subsetS of R

n such that, for anŷx in R
n \ S, there exists

a unit vectorvx̂ such that, for any minimal geodesicγ∗

satisfying

γ∗(0) ∈ S , γ∗(ŝ) = x̂ ,

we have
dγ∗

ds
(ŝ)

⊤

P (x̂) vx̂ < 0 ,

is weakly geodesically convex.

This lemma motivates our restriction to consider the level
set of the output functionH(y) as being weakly geodesically
convex for anyy in R. Actually, we ask for the property that
H(y) is an invariant set for the geodesic flow.

Definition 4.4 (maximal geodesic convexity):We say that
H(y) is maximally geodesically convex for anyy in R if,
for any pair(x, v) in R

n × R
n satisfying

∂h

∂x
(x) v = 0 , v⊤P (x) v = 1 ,

the geodesicγ satisfying

γ(0) = x ,
dγ

ds
(0) = v

is defined on(−∞, +∞) and takes its values inH(h(x)).

Figure 1 provides a graphical interpretation of this property.

Remark 4.5:Using the geodesic equation, we can see that
the maximal geodesic convexity ofH(y) for anyy in R holds



∂h
∂x

(x)

v = dγ
ds

(0)

x

H(y)

γ

Fig. 1. Illustration of the definition of maximal geodesic convexity. The
vectorv of the pair(x, v) ∈ R

n × R
n is such thatv⊤P (x)v = 1.

if we have

∂2h

∂xk∂xl

(x) −

n
∑

i=1

∂h

∂xi

(x) Γi
kl(x)

= gk(x)
∂h

∂xl

(x) + gl(x)
∂h

∂xk

(x) ∀(k, l) , ∀x,

wheregk are arbitrary functions andΓi
kl are the Christoffel

symbols, which are given by

Γi
kl =

1

2

n
∑

m=1

P−1
im

(

∂Pmk

∂xl

+
∂Pml

∂xk

−
∂Pkl

∂xm

)

.

In fact, this condition guarantees thatH(y) is invariant under
the geodesic flow. More about geodesic convexity can be
found in [16] for instance.

The following proposition provides a construction of an
observer relying on the existence of an appropriate Rieman-
nian metric as well as maximally geodesically convexity of
the output function setH(y).

Proposition 4.6:Let P : R
n → R

n×n be a sufficiently
many time differentiable function with symmetric matrix
values andρ : R

n → [0, +∞) be aC1 function satisfying,
for all x in R

n,

0 < p I ≤ P (x) ≤ p I (19)

LfP (x) − ρ(x)
∂h

∂x
(x)

⊤ ∂h

∂x
(x) ≤ −q I < 0 . (20)

Assume the setH(y) is maximally geodesically convex for
any y in R. Under these conditions, for any positive real
numberE there exists a continuous function

kE : R
n → R

such that the observer given by

F (x̂, y) = f(x̂) + kE(x̂)P (x̂)−1 ∂h

∂x
(x̂) (y − h(x̂)) (21)

renders the setA asymptotically stable with domain of
attraction containing the set

{(x, x̂) : |x̂ − x| < E}.

V. D ISCUSSION

According to Proposition 4.6, the design of an observer
following the proposed approach based on a Lyapunov func-
tion coming from a Riemannian distance requires functions
P and ρ satisfying inequalities (19) and (20) and, simulta-
neously, making the level setH(y) maximally geodesically
convex for anyy in R.

We have indicated in Remark 3.3 a possible way to satisfy
inequalities (19) and (20). However, finding a solution to
these inequalities that simultaneously satisfies the geodesic
convexity property is in general difficult. Instead of trying to
find a functionP for a given pair(f, h), one could proceed
the other way around and try to determine the class of pairs
(f, h) for which a given functionP can be associated to.

For instance, consider the case whereP is constant. This
is a coordinate dependent property, which implies that, in
these specific coordinates, geodesics are straight lines. Then,
the constraint of maximal geodesic convexity of the level
sets ofh translates into the possibility of finding coordinates
denotedx such thath is a function of a linear map of these
coordinates, i.e., it must be in the form

h(x) = µ(Cx) .

Also, in these coordinates, (20) takes the form

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P − ν(x)C⊤C ≤ −Q(x) ∀x ∈ R

n,

whereν : R
n → [0, +∞) is an arbitrary function andQ(x)

is a positive definite matrix.

With this constantP our Lyapunov function is quadratic
on the estimation error̂x − x. So, in this case, we have
a link with all the many publications proposing observers
with convergence properties asserted via quadratic Lyapunov
functions of the estimation error and where one of the state
components is the measured output; see [18], [2], [15] and
the references therein, to just list a few.

VI. CONCLUSION

We showed that, if the observer problem can be solved
for system (1), then there exists a symmetric covariant tensor
field P of order 2 satisfying property (8). We showed also in
Section III that the satisfaction of such property is related to
the observability of the linear time-varying systems obtained
from linearizing (1) along its solutions.

Conversely, from the data of such a symmetric covariant
tensor field, satisfying (8) and under geodesic convexity
of the level sets of the output function, we showed how
to construct an observer guaranteeing convergence of the
estimation errore to 0, globally in the estimated statêx
and semi-globally in the errore. To prove this result, we
use the symmetric covariant tensor field as a Riemannian
metric. As written above, up to the lower and upper bounds
in (19), the existence of this symmetric covariant tensor field



is necessary for the problem to have a solution. We have also
established that a geodesic convexity property is somehow
necessary if we want to be able to make the Riemannian
distance between estimated state and system state to decrease
along the solutions.

Finally, the impossibility of designing an observer
providing global asymptotic stability of the set
{(x, x̂) ∈ R

n × R
n | x = x̂} is likely due to the elementary

form of the proposed observer construction, which is taken
to be a copy of the system plus a correction term that is
linear in the output errory − h(x̂). We expect that other
choices of the observer are possible to obtain a global
asymptotic stability result.
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