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Abstract— An observer whose state lives in a copy of the the very rich literature on the topic is out of the scope of
space of the given system and which guarantees a vanishing this note, it is important for us to point out the interest of

estimation error exhibits necessarily a symmetric covariat i ; i
) > . exploiting a possible nonexpansivity property of the flow
tensor field of order 2 which is related to the local observabity P gap P Y property

information. A direct construction of this matrix field is po ssible generated by .the observer which emergfed from [13]. Study
by solving off-line ordinary differential equations. Using this  Of nonexpansive flows has a very long history and has been
symmetric covariant tensor field as a Riemannian metric, we proposed independently by several authors; see, e.g., [12]
prove that geodesic convexity of the level sets of the output [7], [5], [14] (see also [10] for a historical discussion).

function is sufficient to a!low the construction of an obserer Indeed, as we report in this note, when probles) lias
that contracts the geodesic distance between the estimatsthte

and the system’s state, globally in the estimated state anémi- & solution then there is necessarily a symmetric covariant

globally in the estimation error. tensor field of order 2 involved. It is then very tempting
to use it as a Riemannian metric to measure the distance
. INTRODUCTION between system'’s stateand its estimatiort, and therefore,

. characterize the nonexpansivity of the observer flow.
For a complete nonlinear system of the form

. Riemannian metrics have already been used in the context
& = f) (1) of observers in [1], [3] for instance. In these papers, the
y = hi) authors consider systems whose dynamics follow from a
with = € R™ being the system’s state amdc R the mea- principle of least action involving a Riemannian metric,
sured system’s output, we consider the problem of obtainirgych as Euler-Lagrange systems with a Lagrangian that
an estimatei of the statex by means of the dynamical is quadratic in the generalized velocities. The Riemannian
system, calledbserver metric used in such observer designs depends only on the
) system vector fieldf. This is a key difference with the
X Fiy), (2) approach taken in this paper: the proposed metric depends on
o= Hiw) the pair(f, h), i.e., it incorporates the observability property
with x € RP being the observer’s state, adde R™ the of the system.
observer's output, used as the system's state estimatee Mor 1he paper contains three main parts. In Section Il we show

precisely, we consider the following problem: that an observer whose statelives in a copy of the space
() Given functionsf and h, design functionsF” and #  of the stater of the given system guaranteeing a vanishing
such that, for the interconnection of systems (1) anéstimation error exhibits necessarily a symmetric cowdria
(2), the set tensor field of order 2 that is related to the local observ-
ability information. In Section Il we establish a relat&ip
{(z,x) € R" xRY | & =H(x.hx))}  B) petween the necessary condition in Section Il and a local
is globally asymptotically stable (see Section Il for aobservability property of system (1). By solving ordinary
definition). differential equations off line, we provide a constructioh

Thi ¢ h iUl h h a symmetric covariant tensor field of order 2 satisfying the
Is note focuses on the particular case where the S{tatenecessary conditions in Section II. In Section 1V, using thi

of the observer evolves in a copy of the space of the Sysmn%?mmetric covariant tensor field as a Riemannian metric, we

H n
statke:;, I.e.b, they kath belor;g tﬁ_ -In suclh a cas_e,kwe can propose a set of sufficient conditions for the construction
pick the observer's output functiolf trivial, l.e., pic of an observer guaranteeing contraction of the Riemannian
p=n, P = x. (4) distance between system’s state and estimated state. To
this end, we follow the formalism introduced in [14] (see
Many contributions from different points of view havealso [9]). In particular we exploit the properties of the
been made to address this problem. While a summary eb-called geodesically monotone vector fields which give
o ) rise to nonexpansive flows with expansivity measured via
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From our knowledge of the literature, we believe that theymmetric matrix values and a continuous functionR™ —
ideas which follow are new, although they can be seen & satisfying, for allz in R™,
extension of what was proposed in [15] under the restriction oh oh 1
of existence of a quadratic Lyapunov function depending LiP(z) < p(z) %(I)T%(Sﬂ) - 5Pl . (8
only on the estimation error. For the sake of simplicity, all
along this paper we work under, not always written, restric- 1. AL INKWITH LOCAL OBSERVABILITY

tions like, for instance, time independence, completenéss e necessary condition in (8) is linked to properties

the given system, functions differentiable sufficientlynpa of the family of linear time-varying systems obtained from
times, single outputR™, then-dimensional Euclidean Space, jinearizing (1) along its solutions. We denote By(z,t) a

as system state manifold, among others. solution to (1) at time issued fromz. Since (1) is assumed
Due to space limitations, the proof of the results will beo be complete, for each, ¢t — X(z,t) is defined on
reported elsewhere. (—00,4+00). The linearization off and » evaluated along
a solutionX (z, t) gives the functions
1. ANECESSARYCONDITION of
o | At) = FE(X(@b),
Let the estimation error be given by 8%
) Colt) = F(X(@1).
e=T —T.

They allow us to define the following family of linear time-
The interconnection of system (1) and observer (2) under thgrying systems:

conditions in (4) admitgx, ¢) as state with dynamics given

b £ = A¢
g n o= C:()¢§, ®)
;C z é((z);e,h(x)) ~ (@), (5) with state¢ € R™ and outputp € R. Systems (9) are pa-

rameterized by the initial condition of the chosen solution
In this context, the set to be rendered globally asympttyica X (=, t). For a given initial conditiorr € R", ®,, is the state

stable (GAS) takes the form transition matrix, which, for alt and 7, satisfies
A= {(z,e) eR"xR" |e=0} . (6) X(z,t) = p(t, 7) X (2, 7).
By GAS of this particular set we mean that there exists a _ N o
classk £ functiont 3 such that for all pairgz, e) inR"xR", ~To state our following proposition, we need two defini-
the solution (X ((x,e),t), E((z,e),t)) of (5) issued from tions.
(z,e) is right maximally defined o0, +o00) and satisfies: Definition 3.1:
|E((z,e),t)] < Blw(z,e),t) V>0, 1) Givenz < R", system (9) is said to beniformly

detectabldf there exists a continuous function

wherew : R” x R" — [0,+00) is a continuous function
satisfyingw(z,0) = 0 for all x € R™.

To state the following proposition, we introduce the Lie such that the origin of

derivative £y P of the symmetrioC>°-covariant tensor field

t— K.(t)

P of order2 on R" (see [4] and [11] for a definition). In ¢ = (A() — Ka(t)Colt)) € (10)
x coordinates, it satisfies the following expression (see [4, is uniformly exponentially stable.
Exercise V.2.8]): 2) The family of systems (9) is said to be reconstructible

uniformly in z if there exist strictly positive real

.
v LyP(z)v (7) numbersr ande such that we have
_ iy [0 8@ T Pl ) [ B @) el =0T Playo 0
= ; o ’ / B (5,0) T Co(s) T Co(5)® (5,0)ds > eI (11)
= — (’UTP(I) v) f(z) + 20" P(x) <—(a:) v) . o
Ox ox for all z in R™.

Proposition 2.1:1f the set A is GAS for (5), then there

' i ) ) The following proposition states a sufficient condition for
exist aC function P : R" — R™*™ with nonnegative

observability in terms of a symmetric covariant tensor field
. , o of order 2. The condition involves the Lie derivative of the
A function 3 : [0, +o0) x [0, +00) — [0, +00) is said to belong to

classX L if it is continuous, nondecreasing in its first argument,inoreas- symmetric Cova”ar.'t terjsor field along th.e YeCtor f|¢|d
ing in its second argument, ant\_o B(s, ) = limy—o0 B(s, ) = 0. It also asserts an invariant property that is induced by the



symmetric covariant tensor field under the reconstrudtbil to design the functiort’ of the observer (2). To that end,
condition. we useP as a Riemannian metric dR”. Then, define the
Proposition 3.2: length of aC! path~ between points; andzs as

- % (3(5)) 3L ) ds
where

0 < pl < P(x) < pl. VzeR", (12) Y(s1) = @1, A(s2) = w2 .
The Riemannian distanc&z+, z2) between two such points
S2
among all possible piece-

1) Suppose there exist strictly positive real numbgrs
andp, and a functionP : R® — R™*" with positive
symmetric matrix values satisfying condition (8) and

Then, for eachr € R”, the linear time-varying system
(9) is uniformly detectable. is then the minimum ofL.(v)
2) Conversely, suppose that the family of systems (9) iwise C' pathsy betweenz; and xo. With the Hopf-Rinow
reconstructible uniformly inz. Furthermore, assume Theorem (see [4, Lemma VII.7.8]), we know that, if every
that the functionsf and~ have bounded differential. geodesicscan be maximally extended®pthen the minimum
Then, there exist a strictly positive real numbeand of L(W)‘ : is actually given by the length of a (maybe

a continuous functiorP : R" — R™*" satisfying (12) nonyunique) geodesic, which is callednainimal geodesic
such that the system In the following, v* denotes such a minimal geodesic. For

0 - Bf of more details, see, e.g., [4] and [6].
N 8:0( ?) _ahax )6h The following lemma provides conditions on a symmetric
+ o (x )Ta (x) — NI, (13)  covariant tensor fieldP of order 2 that guarantee that
i o= f(@) r r geodesics can be maximally extendedRto

Lemma 4.1:Suppose that a functio®® : R* — R"*"

admits the set with symmetric values satisfies

{(z,1I) e R" x R™™™ : I = P(x)} 0 < P(z) VzeR™ (15)
as an invariant manifold. lim, o0 ?p(r) = +o00,
Remark 3.3:Item 1) in Proposition 3.2 indicates that thewhere, for any positive real numbey
existence. -ofP. satisfyirjg (8) is closely related to the local p(r) = min min v" P(x)v .
observability information of (1). It can be shown that a - z:|z| <rvfu]=1
particular construction fo”” in the second item is given Then, with P as Riemannian metric, any geodesic can be
by maximally extended tcR.
P(z) = (14) In the following, the functionP is assumed to satisfy the
I Oe (A8)Ba (5, 0) T Ca(5) T Co(5)s (5, 0)d conditions of Lemma 4.1. Consequently, the Riemannian
o0 T *PIAS)Tals) 2(8) Tels)Tals A4S distance s given by the length of minimal geodesics. More
with A > 0 large enough. A method to approximate thisoremsely, lety” be a minimal geodesic satisfying
particular construction is as follows. Given a point R” Y0) =z Y (8) = 2.
where we want to evaluat®, we compute the solution The Riemannian distanag is
X(x,t) to & = f(x) backward in time from the initial ! ! ! 0é(%, z) 'A
condition z, at timet = 0, up to negatlve _t|_met = -T, d(@,z) = L(v*)| = |3 .
for someT > 0 such thatexp(—AT) is sufficiently small. 0
Then, P(x) is given byII(0), which is the solution at time  with these preliminaries, our choice here to design the
t =0 of observer is to define its vector fieldl so that it makes the

Riemannian distancé(z, z) between estimated stateand

T _ T T _
T = —I4.(t) Az(t) 11 + Colt) Calt) Al system state: to decrease along solutions.

with initial conditionTI(—7") = 0 at timet = —T. Before continuing, we want to indicate that the approach
taken here induces restrictions. To make this clear, we first
I\V. SUFFICIENT CONDITION observe that, to study the dynamics of the observer, we have

_ _ _ _ to consider the system given by (1) and (2), whose state lives
~ In this section, we employ a symmetric covariant tensgh R" x R™. We do not introduce a metric on this this product
field P of order 2 and a functiop satisfying space, but simply a functior : R xR — [0, +o0) defined

as
£iP@) ~ pla) gt (@) 9h@) < 0 VreR" Vie.E) = dz.a), (16)



which we use as a Lyapunov function in our analysis. At would be sufficient to choose, at least whi(i) is far
remark about this definition is that for it to be consistentfrom y,

x and z must be expressed in the same coordinates. Also, . R L dy
coming from the properties of the distandewe have that F(z,y) = —k(2,y) P(2)"" —~(3)
V satisfies

with k : R" xR — R an arbitraryC" function. But%- ()
represents the direction in which the state estiniatsees”

V(z,z) = 0,
Vienas) = V(e s) the system state along a minimal geodesic. Unfortunately,
Le2) = o5 such a direction is unknown and we know only thdielongs
V(zy,2) < V(z,as) + Ve, 22) . to the following level set of the output function
On the other hand, we know that, in Lyapunov analysis, Ay) = {z: (@) =1y} .

only the geometry of the level sets and not the value of t
Lyapunov function plays a role. Namely,)f is a Lyapunov
function, it is equivalent to conside¥ and ¢ o V with ¢
being a continuous, strictly increasing function thabist
0. Hence, with our choice of in (16), we restrict ourselves
to the class of Lyapunov functions for which there exists
such a functionp such that we have

h"Iz"hen, to satisfy the above requirement, we need the praperty
given & andy, the level set of the output functiofi(y) is
“seen” from 2 within a cone whose aperture is less than
m. This property implies thaf(y) is (weakly) geodesically
convex; see [16, Definition 6.1.1] and [8, Section 9.4].

Definition 4.2 (weak geodesic convexity): subsetS of
R™ is said to be weakly geodesically convex if, for any pair

V(z,z) 0, of points (z1,z2) € S, there exists a minimal geodesic¢
V(zi,22) = V(r2,21), satisfying
o(V(x1,22)) < o(V(x1,23)) + d(V(x3,22)) - Vo) = 31 "V (52) = 2,

v (s)eS  Vse€[s1,s2]
Now, coming back to the observer design, as already re-

marked in the proof of Proposition 2.1, a necessary corditio The following result establishes a sufficient condition for

for having the set in (6), which can equivalently be written weak geodesic convexity.

as
. . . Lemma 4.3:Let P be a Riemannian metric. Then, a
A= {(&2) e R" xR" [ d(&,2) =0}, subsetS of R™ such that, for anyi in R” \ S, there exists
stable is a qmt_vectorv;ﬁ such that, for any minimal geodesic*
satisfying
F(z,h(z)) = f(z) VzeR". a7 VO)ES , 4E) = @,

This is a first constraint we impose dn It implies that the we have
observer contains also all solutions to (1). Then, we know

from the first order variation formula (see [17, Theorem ds
6.14] or [9, Theorem 5.7] for instance) that the evolutiorlS Weakly geodesically convex.

of the distancel(z, =) along the solutions is dictated by the This lemma motivates our restriction to consider the level

* T
D) P@)vs < 0,

equation set of the output functios(y) as being weakly geodesically
B convex for anyy in R. Actually, we ask for the property that
%d(fc,x) — dJ (5) P(v*(8)) F(v*(3),) (18) $(y) is an invariant set for the geodesic flow.
S

a7 Definition 4.4 (maximal geodesic convexity)e say that

———(0) P(v*(0)) F(v*(0),y) . $(y) is maximally geodesically convex for anyin R if,
ds for any pair(z,v) in R” x R™ satisfying

Since the last term on the right-hand side is imposed by (17), oh .
to obtain-£d(#,x) nonpositive we are left with choosing @ =0, v P@v=1,
so that g T the geodesiey satisfying
Y A * (A * (A
P F

is negative enough to dominate that last term. Satisfyiigy th
requirement would not be a problemﬁjfs—(é) were known.
Indeed, by definition, since

is defined on(—oo, +00) and takes its values ify(h(x)).
Figure 1 provides a graphical interpretation of this proyper

Remark 4.5:Using the geodesic equation, we can see that
v(8) = &, the maximal geodesic convexity 6f(y) for anyy in R holds



V. DISCUSSION

According to Proposition 4.6, the design of an observer
following the proposed approach based on a Lyapunov func-
tion coming from a Riemannian distance requires functions
P and p satisfying inequalities (19) and (20) and, simulta-
neously, making the level sei(y) maximally geodesically
convex for anyy in R.

We have indicated in Remark 3.3 a possible way to satisfy
inequalities (19) and (20). However, finding a solution to
these inequalities that simultaneously satisfies the ggode
Fig. 1. lllustration of the definition of maximal geodesicnexity. The ~ Convexity property is in general difficult. Instead of trgito
vector v of the pair (z,v) € R™ x R™ is such thaw " P(z)v = 1. find a functionP for a given pair(f, 2), one could proceed
the other way around and try to determine the class of pairs
(f,h) for which a given function” can be associated to.

if we have ) . . .
. For instance, consider the case whérés constant. This
9h (x) — Z %(Z) i (x) is a coordinate dependent property, which implies that, in
Oz 0z —~ Oz M these specific coordinates, geodesics are straight lires, T
oh oh the constraint of maximal geodesic convexity of the level

= gk(I)a—xl(I) + gi(x) 2, ()  VY(k1), Vx, sets ofh translates into the possibility of finding coordinates
_ denotedz such thath is a function of a linear map of these
whereg,, are arbitrary functions antlj, are the Christoffel coordinates, i.e., it must be in the form

symbols, which are given by
h(z) = p(Cz) .

;1 z": p-1 OPpi N OPmi Py . .
K5 . im \ "oz D7 o ) Also, in these coordinates, (20) takes the form
v of of .
In fact, this condition guarantees thaty) is invariant under 7 (%) + %(x)TP - v(@)CTC < -Q(x) VzeR",

]Egﬁn%ei?]d[isg;fgs\?rqsgﬁzlabom geodesic convexity can bv(\?herey : R™ — [0, +00) is an arbitrary function an@)(x)

is a positive definite matrix.

The fO"OW'.ng proposmo_n provides a construptlon (.)f AN With this constant? our Lyapunov function is quadratic
observer relying on the existence of an appropriate Rieman-

. . . . . Pn the estimation errof: — z. So, in this case, we have
nian metric as well as maximally geodesically convexity of . ; L .
) a link with all the many publications proposing observers
the output function se®(y).

with convergence properties asserted via quadratic Lyapun
Proposition 4.6:Let P : R" — R™*" be a sufficiently  fynctions of the estimation error and where one of the state
many time differentiable function with symmetric matriX components is the measured output; see [18], [2], [15] and

values andp : R" — [0, +-00) be aC'" function satisfying, the references therein, to just list a few.
for all z in R",

VI. CONCLUSION
0 <pl < Px) <pl (19)

T We showed that, if the observer problem can be solved
oh oh . i .
LyP(x) — plz) 5-(2) a—x(ff) < —qI < 0. (20) for system (1), then there exists a symmetric covarianotens
_ . ) field P of order 2 satisfying property (8). We showed also in
Assume the sef(y) is maximally geodesically convex for Section 1l that the satisfaction of such property is redatie

any y in R. Under these conditions, for any positive real, ,pseryability of the linear time-varying systems afeai
numberE there exists a continuous function from linearizing (1) along its solutions

kg :R" =R Conversely, from the data of such a symmetric covariant
tensor field, satisfying (8) and under geodesic convexity
of the level sets of the output function, we showed how
_,0h to construct an observer guaranteeing convergence of the
- o ~ ~ - 1970 _ ~
F@.y) = J@) + kp(@) P(2) ox (#) (y = (@) (1) estimation errore to 0, globally in the estimated state
renders the setd asymptotically stable with domain of and semi-globally in the error. To prove this result, we
attraction containing the set use the symmetric covariant tensor field as a Riemannian
metric. As written above, up to the lower and upper bounds
{(@,2) : |2 —2| < E} in (19), the existence of this symmetric covariant tensad fie

such that the observer given by
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