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Abstract— Two invariance principles for generalized hybrid
systems are presented. One version involves the use of a
nonincreasing function, like in the original work of LaSalle.
The other version involves “meagreness” conditions. These
principles characterize asymptotic convergence of bounded
hybrid trajectories to weakly invariant sets. A detectability
property is used to locate a set in which the Ω-limit set
of a trajectory is contained. Next, it is shown how the
invariance principles can be used to certify asymptotic stability
in hybrid systems. Lyapunov and Krasovskii theorems for
hybrid systems are included.

I. INTRODUCTION

Hybrid systems theory has been a very active research
field in the recent decades due to the large number of tech-
nological advances that require mathematical models allow-
ing interactions between discrete and continuous dynamics.
Having state trajectories that can evolve continuously (flow)
and/or discretely (jump), hybrid systems permit modeling
and simulation of complex systems in a wide range of
applications. Several different hybrid solution concepts and
models have appeared in the literature. See, for example,
the work of Tavernini [23], Michel and Hu [18], Lygeros
et. al. [16], [17], Aubin et. al. [1], and van der Schaft and
Schumacher [25]. The recent work by Goebel and Teel [8]
and by Goebel et. al. in [7] (related to the concurrent results
by Collins [6]), propose a novel concept of solution and a
generalized hybrid system model.

One of the most important tools for convergence analysis
in dynamical systems is the invariance principle presented
by LaSalle [12], [13]. In his work, LaSalle proposed an
invariance principle for differential and difference equations
as an extension of Lyapunov’s theorem for convergence
of bounded solutions. Byrnes and Martin [4] presented
a version stating that bounded solutions converge to the
largest invariant set contained in the set of points where an
integrable output function is zero. A subsequent result by
Ryan [20] extends this integral invariance principle to dif-
ferential inclusions. A recent result by Logeman and Ryan
[15] extends LaSalle’s invariance principle for differential
inclusions using the notion of meagre functions, alongside
a generalization of Barbalat’s Lemma. For systems with
discontinuous right-hand side, invariance principles based
on LaSalle’s principle were presented by Shevitz and Paden
[22] and Bacciotti and Ceragioli [2] for solutions in the
sense of Filippov, and by Bacciotti and Ceragioli [3]
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for Caratheodory solutions. For hybrid systems, in [17],
Lygeros et al. present an extension of LaSalle’s invariance
principle for nonblocking, deterministic, and continuous
hybrid systems. In [9], Hespanha proposes an invariance
principle for switched linear systems under a specific family
of switching signals. Results therein are further extended to
a class of nonlinear systems in [10].

In this paper, we consider generalized hybrid systems
given by sets of hybrid trajectories. These generalized
hybrid systems can be specialized to the ones considered
in [7] and [8] (see also [6].) Our purpose is to provide
sufficient conditions for convergence of bounded hybrid
trajectories. For this, we propose two invariance principles
for general hybrid systems that generalize the principles
established in [17],[9], and [10], and resemble the original
one formulated by LaSalle. The first invariance principle
requires a nonincreasing function and involves conditions
on all trajectories that remain in a given set. The other
invariance principle relaxes the assumptions, considering
a pair of auxiliary functions satisfying a meagre-limsup
condition only for a single hybrid trajectory. These condi-
tions appear to be the weakest previously used in invariance
principles for continuous and discrete time systems.

We also invoke observability and detectability for conver-
gence, and we relate this approach to the invariance princi-
ples. When coupled with stability, our convergence results
give new sufficient conditions for asymptotic stability in
generalized hybrid systems. Special cases include versions
of Lyapunov’s basic theorem and Krasovskii’s extension
[11] for hybrid systems.

For our results, the key property of the general hybrid
systems is “upper semicontinuity” of solutions. Using the
tools of set-valued analysis and graphical convergence, it is
shown in [8] that, under mild conditions, any sequence of
solutions to a hybrid system has a convergent subsequence,
the limit of which is still a solution. Such a property is
present not just for the set of all solutions of hybrid systems
but also for various special classes of solutions.

For the formal proofs and examples of the results we
refer the reader to the journal version of this paper [21].

II. SETS OF HYBRID TRAJECTORIES

Throughout this paper we work with hybrid systems
given as sets of hybrid trajectories satisfying certain prop-
erties. In most applications, but not all, the set of hybrid
trajectories corresponds to all solutions of certain genera-
tor equations (or inclusions.) We start by defining hybrid
trajectories and their domains.

We write R≥0 for [0,+∞) and N≥0 for {0, 1, 2, ...}.
Definition 2.1 (hybrid time domain): A subset D ⊂

R≥0 × N≥0 is a compact hybrid time domain if



D =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .
It is a hybrid time domain if for all (T, J) ∈ D, D ∩
([0, T ] × {0, 1, ...J}) is a compact hybrid domain.

Equivalently, D is a hybrid time domain if D is a union
of a finite or infinite sequence of intervals [tj , tj+1]× {j},
with the “last” interval possibly of the form [tj , T ) with T
finite or T = +∞.

Definition 2.2 (hybrid trajectory): A hybrid trajectory is
a pair (x,dom x) consisting of a hybrid time domain dom x
and a function x defined on dom x that is continuous in t
on dom x ∩ (R≥0 × {j}) for each j ∈ N≥0.

We will usually not mention dom x explicitly, and un-
derstand that with each hybrid trajectory comes a hybrid
time domain dom x. Alternatively, one could think of a
hybrid trajectory as a set-valued mapping from R≥0 ×N≥0

whose domain is a hybrid time domain. In what follows,
rgex will denote the range of the hybrid trajectory x, i.e.
rgex = x(dom x).

A hybrid trajectory x is called nontrivial if dom x con-
tains at least one point different from (0, 0), complete if
dom x is unbounded, and Zeno if it is complete but the
projection of dom x onto R≥0 is bounded. Given a set of
hybrid trajectories S , a trajectory x ∈ S is called maximal
(with respect to S) if there does not exist x′ ∈ S such that
x is a truncation of x′ to some proper subset of dom x′.
S(x0) denotes the set of all hybrid trajectories in S with
x(0, 0) = x0. We will restrict the state space in which the
trajectories can evolve to an open set O. We will call a
sequence {xi}

∞
i=1 of hybrid trajectories locally eventually

bounded with respect to O if for any m > 0, there exists
i0 > 0 and a compact set K ⊂ O such that for all i > i0,
all (t, j) ∈ dom xi with t + j < m, xi(t, j) ∈ K. Finally, x
is precompact if it is complete and rgex ⊂ O is compact.

In what follows, we will rely on a nonclassical notion of
convergence, namely convergence in the graphical sense.
A sequence of (set-valued) mappings {Mi}

∞
i=1 converges

graphically to a mapping M if the graphs gph Mi converge
to gph M as sets (for a mapping M : R

m →→ R
n, the graph

gph M is {(a, b) ∈ R
m×R

n : b ∈ M(a)}.) For details on
set convergence, see Chapter 3 in [19]. Below, we specialize
the concept of graphical convergence to hybrid trajectories.

We note that a general property of set convergence
implies that from any locally eventually bounded sequence
of elements of S , a graphically convergent subsequence
can be picked. A sequence of hybrid trajectories {xi}

∞
i=1

converges graphically to a hybrid trajectory x if
(a) for any (t, j) ∈ dom x there exists a sequence (ti, ji) ∈

dom xi such that limi→∞ xi(ti, ji) = x(t, j),
(b) for any convergent sequence (ti, ji) ∈ dom xi such

that limi→∞ xi(ti, ji) exists, the limit equals x(t, j)
where (t, j) = limi→∞(ti, ji).

A given sequence of hybrid trajectories does not need to
converge graphically, and even when it does, the limit does
not need to be a hybrid trajectory itself. Throughout this
paper we will consider sets of hybrid trajectories S for

which each locally eventually bounded sequence of trajec-
tories that converges graphically has a limit that belongs to
S . Below, we make this assumption explicit.

Assumption 2.3 (Basic Assumption): The set S of hybrid
trajectories and the open set O ⊂ R

n satisfy
(B1) rgex ⊂ O for all x ∈ S ,
(B2) for any x ∈ S and any (t̄, j̄) ∈ dom x we have x̄ ∈ S ,

where x̄(t, j) = x(t + t̄, j + j̄) for all (t, j) ∈ dom x̄,
(B3) for any locally eventually bounded (with respect to

O) sequence {xi}
∞
i=1 of elements of S that converges

graphically, the limit is an element of S .
The set of solutions, denoted SH, of the hybrid system

H with state space O given by
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(1)
satisfy the Basic Assumption when, using the solution
concept of [8], [7] or [6], the data (F,G,C,D) satisfies
the assumptions therein. Also, the following subsets of SH

satisfy the Basic Assumption.
(a) For any δ ≥ 0, the set of all x ∈ SH for which
tj+1 − tj ≥ δ for all j = 1, 2, ... (the times tj come
from Definition 2.1.), i.e., the set of all solutions for
which jumps are separated by at least δ.

(b) For any closed set S ⊂ R≥0 × N≥0, the set of all
x ∈ SH such that dom x ⊂ S. Special cases here
include: S = {0}×N≥0 corresponding to all solutions
to the difference inclusion x+ ∈ G(x), S = R≥0 ×
{0} corresponding to all solutions to the differential
inclusion ẋ ∈ F (x), and S = R≥0 × {0, 1, ..J}
corresponding to all solutions with at most J jumps.

(c) For any continuous function V : O → R, and any
fixed j ∈ N≥0, the set of all x ∈ SH such that, if
(t, j−1), (t, j) ∈ dom x then V (x(t, j)) ≤ V (x(t, j−
1)). (The set of all x such that, if x has a j-th jump,
then V does not increase during that jump.)

In contrast, the following subsets of SH in general may
not meet the Basic Assumption.

(d) The set of all x for which tj+1 − tj > 0. Indeed, a
sequence of such solutions can converge graphically to
an instantaneous Zeno solution; consider, for example,
the bouncing ball. While this system satisfies the Basic
Assumption (see [7]), the subset of its trajectories such
that the times between jumps are positive does not.
This is because the graphical limit of such solutions
includes the instantaneous Zeno solution from zero
height. The latter is not an element of the subset.

(e) The set of all x that has exactly J jumps (or at
least J jumps.) Indeed, it is easy to construct a system
having a graphically convergent sequence {xi}

∞
i=1 of

solutions such that all J jumps occur at time i. The
graphical limit will have no jumps.

III. WEAK INVARIANCE AND Ω-LIMIT SETS

In this section we define invariance for the set of hy-
brid trajectories S and we extend results from differen-
tial/difference equations.

Definition 3.1 (weak invariance): The set M ⊂ O is



(a) weakly forward invariant (with respect to S) if for each
x0 ∈ M, there exists at least one complete trajectory
x ∈ S(x0) with x(t, j) ∈ M for all (t, j) ∈ dom x;

(b) weakly backward invariant (with respect to S) if for
each q ∈ M, N > 0, there exist x0 ∈ M and at least
one trajectory x ∈ S(x0) such that for some (t∗, j∗) ∈
dom x, t∗ + j∗ ≥ N , we have x(t∗, j∗) = q and
x(t, j) ∈ M for all (t, j) ¹ (t∗, j∗), (t, j) ∈ dom x;

(c) weakly invariant (with respect to S) if it is both weakly
forward invariant and weakly backward invariant.

Requiring completeness in forward invariance and arbi-
trarily large N > 0 in backward invariance leads to the
“smallest” possible invariant sets. To verify the forward
invariance though, it is sufficient to test every point x0 of
M for the existence of a trajectory x starting at x0 such
that x(t, j) ∈ M for all t + j ≤ 1, (t, j) ∈ dom x.

Given a hybrid trajectory x ∈ S , a sequence {(ti, ji)}
∞
i=1

of points in dom x is unbounded if the sequence of ti +ji’s
is unbounded, and increasing if for i = 1, 2, . . ., (ti, ji) ¹
(ti+1, ji+1) in the natural ordering on dom x (equivalently,
ti + ji ≤ ti+1 + ji+1.)

Definition 3.2 (ω-limit point): For a complete hybrid tra-
jectory x ∈ S , its ω-limit set, denoted Ω(x), is the set of
all points x∗ ∈ R

n for which there exists an increasing
and unbounded sequence {(ti, ji)}

∞
i=1 in dom x so that

limi→∞ x(ti, ji) = x∗.

Lemma 3.3: (ω-limit set properties) If x ∈ S is a
precompact hybrid trajectory then its ω-limit set Ω(x) is
nonempty, compact, and weakly invariant. Moreover, the
trajectory x approaches Ω(x), which is the smallest closed
set approached by x.

IV. AN INVARIANCE PRINCIPLE INVOLVING A
NONINCREASING FUNCTION

The invariance principles we formulate in this section will
rely on properties of certain functions not only on the range
of the trajectory in question, but also on the neighborhood
of its range. Below, given a hybrid trajectory x, t(j) will
denote the largest time t such that (t, j) ∈ dom x, while j(t)
will denote the smallest index j such that (t, j) ∈ dom x.
The notation f−1(r) will stand for the r-level set of f on
dom f , i.e. f−1(r) := {z ∈ dom f | f(z) = r}.

A. Sets of hybrid trajectories

Theorem 4.1: (V invariance principle) Suppose that there
exist a continuous function V : O → R, a set U ⊂ O,
and functions uc, ud : O → [−∞,+∞] such that for any
hybrid trajectory y ∈ S with rge y ⊂ U , uc(y(t, j)) ≤
0, ud(y(t, j)) ≤ 0 for all (t, j) ∈ dom y and

V (x(t′, j′)) − V (x(t, j))

≤

∫ t′

t

uc(x(t, j(t))) dt +

j′−1
∑

i=j

ud(x(t(j), j))
(2)

for any (t, j), (t′, j′) ∈ dom y, (t, j) ¹ (t′, j′).
Let x ∈ S be a precompact hybrid

trajectory such that for some (T, J) ∈ dom x,
{x(t, j) | (t, j) ∈ dom x, (T, J) ¹ (t, j)} ⊂ U . Then

x approaches the largest weakly invariant subset of
V −1(r) ∩ U ∩

(

u−1
c (0) ∪ u−1

d (0)
)

, for some r ∈ V (U).

Corollary 4.2: Under the assumptions of Theorem 4.1,
(a) if x is Zeno, then it approaches the largest weakly

invariant subset of V −1(r) ∩ U ∩ u−1
d (0), for some

r ∈ V (U);
(b) if x is such that for some γ > 0 and for every j such

that (tj , j), (tj+1, j) ∈ dom x, tj+1 − tj ≥ γ, then
x approaches the largest weakly invariant subset of
V −1(r) ∩ U ∩ u−1

c (0), for some r ∈ V (U).

B. Hybrid Systems
We now consider the hybrid systems H defined in [8].

The functions uc(x) and ud(x) of the previous section will
be constructed from a Lyapunov-like function V and will
be denoted by uC(x) and uD(x), respectively. One will
be determined by the “derivative” of V at x in directions
belonging to F (x); the other by the difference between V
at x and at points belonging to G(x). These functions will
be used to bound the increment of V as in (2).

We begin by formulating this infinitesimal inequality. Let
V : O → R be continuous on O and locally Lipschitz on
a neighborhood of C. Let x be any solution to the hybrid
system, and let (t, j), (t, j) ∈ dom x be such that (t, j) ¹

(t, j). The increment V (x(t, j))−V (x(t, j)) between them
must take into account the “continuous increment” due to
the integration of the time derivative of V (x(t, j)) and the
“discrete increment” due to the difference in V before and
after the jump. Consequently, we have

V (x(t, j)) − V (x(t, j)) =

∫ t

t

d

dt
V (x(t, j(t))) dt

+

j−1
∑

j=j

[V (x(t(j), j + 1)) − V (x(t(j), j))] .

(3)

The integral above expresses the desired quantity as t 7→
V (x(t, j(t))) is locally Lipschitz and absolutely continuous
on every interval on which t 7→ j(t) is constant.

The function uC : O → [−∞,+∞) must satisfy
d
dt

V (x(t, j(t))) ≤ uC(x(t, j(t))) for almost every t. When
V is locally Lipschitz, uC can be constructed using the
generalized Clarke directional derivative of V . It turns out
that, for this case, uC is upper semicontinuous. A better
bound arises in the case that V is nonpathological (see [24]
for details.) In this case, the bounding function may not be
upper semicontinuous.

To bound the “discrete contribution” to the increase in V
in (3), we will use the following quantity:

uD(x) = max
x+∈G(x)

{V (x+) − V (x)} (4)

for x ∈ D and uD(x) = −∞ for x 6∈ D. Even without
any regularity on V , one gets the bound V (x(tj+1, j +
1)) − V (x(tj+1, j)) ≤ uD(x(tj+1, j)) for any solution to
the hybrid system.

Now we state the hybrid invariance principle.
Corollary 4.3: (hybrid V invariance principle) Given a

hybrid system H, let V : O → R be continuous on O



and locally Lipschitz on a neighborhood of C. Suppose that
U ⊂ O is nonempty and such that uC(z) ≤ 0, uD(z) ≤ 0
for all z ∈ U . Let x ∈ SH be precompact with rge x ⊂ U .
Then, for some constant r ∈ V (U), x approaches the largest
weakly invariant set in V −1(r) ∩ U ∩

(

u−1
C (0) ∪ u−1

D (0)
)

.

V. A MEAGRE-LIMSUP INVARIANCE PRINCIPLE

In the result below we use the concept of a weakly
meagre function. A function f : R≥0 → R is weakly
meagre if limn→∞(inft∈In

|f(t)|) = 0 for every family
{In | n ∈ N} of nonempty and pairwise disjoint closed
intervals In in R≥0 with infn∈N µ(In) > 0. Here, µ stands
for the Lebesgue measure. Weak meagreness was used
previously in [15] to formulate extensions of Barbalat’s
lemma and resulting invariance principles. Following [15],
we state that f is weakly meagre if for some τ > 0,

lim
M→+∞

∫ M+τ

M

|f(t)| dt = 0. (5)

In particular, any L1 function is weakly meagre.

A. Sets of hybrid trajectories

Lemma 5.1: (meagre-limsup conditions) Let x ∈ S be a
precompact hybrid trajectory. Suppose that for some set U
with rge x ⊂ U there exist functions `c, `d : U → [0,+∞]
that satisfy the meagre-limsup conditions given by
(a) if the projection of dom x onto R≥0 is unbounded then

t 7→ `c(x(t, j(t))) is weakly meagre,
(b) if the projection of dom x onto N≥0 is unbounded then

lim supj→∞ `d(x(t(j), j)) = 0.
Then Ω(x) ⊂ Ex,`c

∪ Ex,`d
, where Ex,`c

is defined as
{z ∈ rge x | ∃zi → z, zi ∈ rgex, lim inf

i→∞
`c(zi) = 0}

and Ex,`d
is defined as

{z ∈ rge x | ∃zi → z, zi ∈ rgex, lim inf
i→∞

`d(zi) = 0}.

Remark 5.2: In Lemma 5.1, Ex,`c
is a subset of {z ∈

rgex | `c(z) = 0}, where `c is the lower semicontinuous
closure of `c. (Given a set U and a function ` : U →
[−∞,+∞], its lower semicontinuous closure ` : U →
[−∞,+∞], is the greatest lower semicontinuous function
defined on U , bounded above by ` on U . Equivalently, for
any x ∈ U , `(x) = lim infxi→x `(xi). In this terminology,
Ex,` is the zero-level set of the lower semicontinuous
closure of the function ` truncated to rge x.) In particular,
if both `c and `d are lower semicontinuous, and rge x ⊂ U ,
then the conclusion of Lemma 5.1 implies that Ω(x) is a
subset of {z ∈ rgex | `c(z) = 0} ∪ {z ∈ rge x | `d(z) =
0}. However, if the assumption that `c, `d are nonnegative
was weakened to say that they are nonnegative only on
rgex, the last conclusion above may fail.

Remark 5.3: Let x ∈ S be a precompact hybrid trajec-
tory for which there exist functions uc, ud : O → [−∞, 0]
and V : O → R such that (2) holds for all (t, j), (t′, j′) ∈
dom x such that (t, j) ¹ (t′, j′). Then `c = −uc, `d = −ud

satisfy conditions (a) and (b) of Theorem 5.1. In fact, there
exists a constant M > 0 for which

∫ T

0

`c(x(t, j(t))) dt < M,

J
∑

j=0

`d(x(t(j), j)) < M, (6)

for any (T, J) ∈ dom x.
Based on the previous remark, the next result shows that

when a function V with the right properties exists, the
conditions (a) and (b) of Lemma 5.1 are guaranteed.

Corollary 5.4: Let x ∈ S be a precompact hybrid tra-
jectory. Suppose that there exists a continuous function V :
O → R, and functions uc, ud : O → [−∞,+∞] such that
for some (T, J) ∈ dom x, uc(x(t, j)) ≤ 0, ud(x(t, j)) ≤ 0
for all (t, j) ∈ dom x,(T, J) ¹ (t, j), and (2) holds for any
(t, j), (t′, j′) ∈ dom x such that (T, J) ¹ (t, j) ¹ (t′, j′).
Then Ω(x) ⊂ Ex,uc ∪ Ex,ud , where Ex,uc is defined as
{z ∈ rge x | ∃zi → z, zi ∈ rgex, lim sup

i→∞

uc(zi) = 0}

and Ex,ud is defined as
{z ∈ rgex | ∃zi → z, zi ∈ rge x, lim sup

i→∞

ud(zi) = 0}.

Results for continuous time only or for discrete time only
can be easily recovered from Lemma 5.1.

Corollary 5.5: Let x ∈ S be precompact.
(a) If the projection of dom x onto N≥0 is bounded and

there exists a function `c : rgex → [0,+∞] such that
t 7→ `c(x(t, j(t))) is weakly meagre, then Ω(x) ⊂
Ex,`c

.
(b) If the projection of dom x onto R≥0 is bounded and

there exists a function `d : rge x → [0,+∞] such that
lim supj→∞ `d(x(t(j), j)) = 0, then Ω(x) ⊂ Ex,`d

.

It also turns out that if multiple instantaneous jumps
can occur “only on the zero-level set of `d” (for a hybrid
system H, this is equivalent to `d (G(D) ∩ D) = 0) and the
hybrid trajectory of S is precompact, then only (a) of the
meagre-limsup conditions needs to be checked to draw the
conclusion of Lemma 5.1. The reason for this is that under
such assumption on the jumps, on each compact set away
from the zero level set of `d, times between the jumps are
uniformly bounded below (by a positive constant.)

Corollary 5.6: Given the function `d : O → R≥0,
assume that for all x̃ ∈ S , if (t, j − 1), (t, j), (t, j + 1) ∈
dom x̃, then `d(x̃(t, j)) = 0. Let x ∈ S be precompact.
Suppose that there exists a function `c : rge x → [0,+∞]
such that condition (a) of the meagre-limsup conditions
holds. Then conclusion of Lemma 5.1 holds.

If, for the hybrid trajectory, the elapsed time between
jumps is uniformly positive then only (a) of the meagre-
limsup conditions needs to be checked to draw the conclu-
sion of Lemma 5.1.

Corollary 5.7: Let x ∈ S be a complete hybrid trajectory
of S such that tj+1 − tj ≥ γ > 0 for all j = 1, 2, . . ..
Suppose that x is precompact and that there exists a
function `c : rgex → [0,+∞] such that condition (a) of
the meagre-limsup conditions holds. Then Ω(x) ⊂ Ex,`c

.

Based on the results stated so far in this section, various
invariance principles can be stated. For example, in light of
Remark 5.2, we have the following result.

Corollary 5.8: (meagre-limsup invariance principle) Let
x ∈ S be a precompact hybrid trajectory. Suppose that



for some set U ⊂ O such that rge x ⊂ U , there exist
functions `c, `d : U → [0,+∞] for which the meagre-limsup
conditions hold. Then x converges to the largest weakly
invariant subset of {z ∈ U | `c(z) = 0}∪{z ∈ U | `d(z) =
0}. If rge x ⊂ U and `c, `d are lower semicontinuous, then
all the closure operations above can be removed.

Remark 5.9: For hybrid systems, the natural counterparts
of `c, `d are the functions −uC and −uD. One can show
that the results in Section IV-B can be rewritten replacing
the zero-level sets of uC , uD by Ex,uc , Ex,uc , respectively.

One difference between Theorem 4.1 and Corollary 5.8
is that in the latter, properties of the functions `c, `d only on
the range of the hybrid trajectory x in question are relevant.
In the former, properties of uc, ud (counterparts of `c, `d)
and also V holding for other trajectories (in particular, for
the trajectories verifying forward invariance of Ω(x)) are
assumed, and the conclusions of Theorem 4.1 do use these
properties.

VI. LOCATING WEAKLY INVARIANT SETS USING
OBSERVABILITY, OR STABILITY AND DETECTABILITY

Now we extend results on stability and convergence, and
the implications of detectability, from differential equations
to sets of hybrid trajectories.

In the literature of differential equations, detectability
is the property that when the output is held to zero, the
limit as t → ∞ of the norm of the state equals zero. Our
generalization of detectability for hybrid trajectories relaxes
also the limit condition, replacing it by a lower limit.

Definition 6.1 (detectability): Given sets A,K ⊂ O, the
distance to A is detectable on K for the set of trajectories S
if for every complete trajectory x ∈ S such that rge x ⊂ K
we have lim inft+j→∞ |x(t, j)|A = 0.

As discussed in [14], this detectability condition can be
understood as the trajectory x having a ω-limit point at A.

Definition 6.2 (relative stability): Given sets A,K ⊂ O,
A is stable relative to K for the set of trajectories S if for
any compact K′ ⊂ intK there exists δ > 0 such that any
trajectory x ∈ S(x0) with rgex ⊂ K and x0 ∈ (A + δB)
satisfies rge x ⊂ K′.

Stability of A is the same as stability relative to O. When
detectability (as in Definition 6.1) is combined with relative
stability, the usual detectability is recovered.

Lemma 6.3: (detectability and relative stability) Let
A,K ⊂ O be compact. Suppose that the distance to A
is detectable on K and A is stable relative to K. Then each
complete trajectory x ∈ S with rge x ⊂ K converges to A.

Theorem 6.4: (detectability and invariance principle) Let
A,K ⊂ O be compact and suppose that A is stable relative
to K. Then the following statements are equivalent:

1) The distance to A is detectable on K.
2) The largest weakly invariant set in K is a subset of A.
The detectability assumption on a stable compact attrac-

tor allow us to conclude uniform convergence respect to
trajectories that stay in a compact set of initial conditions.

Theorem 6.5: (uniform convergence) Let A,K ⊂ O be
compact. Suppose that A is stable relatively to K and the
distance to A is detectable on K. Then for each ε > 0
there exists M > 0 such that for each complete trajectory
x ∈ S with rgex ⊂ K we have |x(t, j)|A ≤ ε for all
(t, j) ∈ dom x, t + j ≥ M .

Remark 6.6: If for a certain (output) function h : O →
R

k, K = h−1(0), we say that the the distance to A is
detectable through the (output) h. Also note that the natural
notion of observability (for every nontrivial trajectory x ∈
S such that rgex ⊂ K we have rge x ⊂ A) and the
related results can be easily recovered from our definition
of detectability.

VII. ASYMPTOTIC STABILITY

A. Definitions and a KLL-characterization
The previous results rely on the convergence property

(B3) of the Basic Assumption. For results on uniform
convergence without a priori restriction of the trajectories
to a compact set, we need an additional condition. Besides
the Basic Assumption, from now on, we assume:

(B4) any sequence {xi}
∞
i=1 of hybrid trajectories in S for

which initial points xi(0, 0) converge to a point x0

where every solution x ∈ S(x0) is complete, is locally
eventually bounded.

For solutions of hybrid systems, this property requires local
boundedness of G, see Theorem 4.4 in [8]. In light of other
growth properties of G, and the fact that G maps to O, its
local boundedness is equivalent to local boundedness with
respect to O: for any compact K ⊂ O there exists a compact
K′ ⊂ O such that G(K) ⊂ K′.

Definition 7.1 (relative attractivity): Given sets A,K ⊂
O, A is attractive relative to K for the set of trajectories
S if there exists ρ > 0 such that for any x0 ∈ A + δB,
each trajectory x ∈ S(x0) with rgex ⊂ K is complete and
satisfies limt+j→∞ |x(t, j)|A = 0.

Attractivity of A is the same as attractivity relative to
O. We denote by BA the basin of attraction of a compact
attractor A, i.e. the set of all points x0 for which S(x0)
is nonempty, each x ∈ S(x0) is complete and such that
limt+j→∞ |x(t, j)|A = 0. One could also define a relative
basin of attraction of A relative to K, as the set of all points
x0 ∈ K for which each trajectory x ∈ S(x0) with rge x ⊂ K
is complete and satisfies limt+j→∞ |x(t, j)|A = 0. The set
A is said to be asymptotically stable (relative to K) if it is
both stable and attractive (relative to K.)

Given an open set X ⊂ O and a compact set A ⊂ X ,
a proper indicator ω : X → R≥0 for A on X is a
continuous function that is positive definite with respect to
A and proper with respect to X . A function β : R≥0 ×
R≥0 × N≥0 → R≥0 is said to belong to class KLL if it
is continuous, β(·, t, j) is zero at zero and nondecreasing,
β(s, ·, j) and β(s, t, ·) are nonincreasing and converge to
zero as the argument becomes unbounded. We say that the
set of hybrid trajectories S is forward complete on K if for
every x0 ∈ K, every x ∈ S(x0) is complete.



Definition 7.2: (KLL stability with one measure) Let ω :
K → R≥0 be continuous. The set of hybrid trajectories S
is said to be KLL-stable with respect to ω if it is forward
complete on K and there exists β ∈ KLL such that, for
each x0 ∈ K, all solutions x ∈ S(x0) satisfy

ω(x(t, j)) ≤ β(ω(x0), t, j) for each (t, j) ∈ dom x. (7)
We define R as the range set of trajectories of a given

set S , i.e. R := {rge x | x ∈ S}.
Theorem 7.3: (asymptotic stability implies KLL stab.)

Suppose that, for the set of trajectories S , the compact set
A is locally asymptotically stable with basin of attraction
BA. Then, for each open set X such that BA = X ∩ R
and for each proper indicator for A on X , denoted by ω,
there exists β ∈ KLL such that for every x0 ∈ BA, every
x ∈ S(x0) satisfies ω(x(t, j)) ≤ β(ω(x0), t, j) for each
(t, j) ∈ dom x.

For results on the existence of smooth Lyapunov func-
tions for asymptotically stable compact attractors see the
work by Cai et. al. [5].

B. Lyapunov and Krasovskii theorems for hybrid systems
In what follows, we assume that the hybrid system

H given by (1) satisfies assumptions A0-A3 in [8], and
furthermore, that for any point x0 ∈ C ∪ D, there exists
a nontrivial solution x ∈ SH(x0). Explicit conditions on
C, D, F , and G that guarantee such existence are given
in Proposition 2.1 of [8]. Here, we only mention that
the conditions are satisfied if C ∪ D = O. A particular
consequence of existence of nontrivial solutions from every
point of C ∪D is that any maximal solution to H is either
complete or eventually leaves any compact subset of O. So,
any x ∈ S(C ∪ D) (any maximal solution to H) which is
bounded with respect to O (i.e. for some compact K ⊂ O,
rgex ⊂ K) is complete, and hence, precompact. Below, this
fact will be needed in showing attractivity.

Theorem 7.4: (hybrid Krasovskii) Given a hybrid system
H, suppose that
(?) A ⊂ O is compact, U ⊂ O is a neighborhood of A,

V : O → R≥0 is continuous on O, locally Lipschitz on
a neighborhood of C, and positive definite with respect
to A, and uC and uD satisfy uC(z) ≤ 0, uD(z) ≤ 0
for all z ∈ U .

Then A is stable. Suppose additionally that
(??) there exists c > 0 such that for all c′ ∈ (0, c) the

largest weakly invariant subset of V −1(c′) ∩ {z ∈
U | uC(z) = uD(z) = 0} is empty.

Then A is locally asymptotically stable.
Corollary 7.5: (hybrid Lyapunov) For a hybrid system

H, suppose that (?) of Theorem 7.4 holds, and that further-
more, uC(z) < 0, uD(z) < 0 for all z ∈ U \ A. Then A is
locally asymptotically stable.

The following result states that when uC (respectively,
uD) is negative in points near a compact attractor and
instantaneous Zeno solutions (respectively, complete contin-
uous solutions) converge to the attractor, then the compact
attractor is asymptotically stable.

Theorem 7.6: For the hybrid system H, suppose that (?)
of Theorem 7.4 holds. Suppose that
(a) uC(z) < 0 for each z ∈ U\A (respectively, uD(z) < 0

for each z ∈ U \ A);
(b) any instantaneous Zeno solution x to H with rge x ⊂ U

converges to A (respectively, any complete continuous
solution x to H with rge x ⊂ U converges to A).

Then A is locally asymptotically stable.
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Dynamical properties of hybrid automata. IEEE Trans. Aut. Cont.,
48(1):2–17, 2003.

[18] A.N. Michel and B. Hu. Towards a stability theory of general hybrid
dynamical systems. Automatica, 35(3):371–384, 1999.

[19] R.T. Rockafellar and R. J-B Wets. Variational Analysis. Springer,
1998.

[20] E. P. Ryan. An integral invariance principle for differential inclusions
with applications in adaptive control. SIAM’s Journal of Control and
Optimization, 36(3):960–980, 1998.

[21] R. G. Sanfelice, Rafal Goebel, and A. R. Teel. Invariance principles
for hybrid systems with connections to detectability and asymptotic
stability. Submitted.

[22] D. Shevitz and B. Paden. Lyapunov stability theory of nonsmooth
systems. IEEE Trans. Aut. Cont., 39(9):1910–1914, 1994.

[23] L. Tavernini. Differential automata and their discrete simulators.
Nonlin. Anal., 11(6):665–683, 1987.

[24] M. Valadier. Entraı̂nment unilatéral, lignes de descente, fonctions
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