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Abstract

This paper analyzes the dynamical properties of a class of hybrid systems simulators. A hybrid system is a dynamical system
with a state that can both flow and jump. Its simulator attempts to generate its solutions approximately. The paper presents
mild regularity conditions on the hybrid system and its simulator to guarantee that simulated solutions are close to actual
solutions on compact (hybrid) time intervals, and that asymptotically stable compact sets are preserved, in a semiglobal
practical sense, under simulation. In fact, it is established that asymptotically stable compact sets are continuous in the
integration step size parameter of the simulator; that is, as the step size of the simulator converges to zero, the asymptotically
stable set observed in simulations approaches the asymptotically stable compact set of the true hybrid system. Examples are
used to illustrate concepts and results.
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1 Introduction

The theory of numerical simulation for differential equa-
tions is well developed and several textbooks on the
subject are available, including [32] and [3]. The prop-
erties of integration schemes for differential equations
are often studied by treating them as dynamical sys-
tems. With this approach, one-step schemes (like Eu-
ler and Runge-Kutta methods), multi-step algorithms
(like Adams method and backward differentiation), and
their variable-step versions are shown to produce so-
lutions that are close to the ideal solutions, on com-
pact time intervals, for sufficiently small integration step
size. This enables simulators to approximately repro-
duce the asymptotic stability properties, which are infi-
nite time horizon attributes, of the true system. Results
of this type for differential equations and inclusions can
be found in the numerical analysis literature; see, e.g.,
[32], [10], and the references therein.

Over the last few decades, researchers have developed
tools for analysis, design, and control of dynamical sys-
tems with both continuous and discrete dynamics, that
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is, hybrid dynamical systems. Among several studies on
hybrid systems, including topics like stability, reachabil-
ity, and robustness, numerous software tools for numer-
ical simulation of hybrid systems have been recently de-
veloped. These include Matlab/Simulink, Modelica [11],
Ptolemy [22], Charon [2], HYSDEL [34], and HyVisual
[21]. More recently, special attention has been given to
semantics for description and simulation of hybrid sys-
tems [19, 27, 21, 31]; event detection algorithms [23,
12, 20]; and solvers and error control [12, 8, 20, 1]. To
the best of our knowledge, theoretical studies about the
structural properties of simulators for hybrid systems
that parallel those in the literature of simulation of dif-
ferential and difference equations are not available.

In this paper, we treat simulations of hybrid systems as
dynamical systems and provide a mathematical frame-
work for the development of a theory of numerical sim-
ulations for hybrid systems. We follow the framework
for hybrid systems introduced in [14], and further de-
veloped in [16] and [15], where the continuous dynamics
or flows are given by a differential equation (or inclu-
sion) and the discrete dynamics or jumps are given by a
difference equation (or inclusion). Flows and jumps are
only permitted on certain subsets of the state space. The
right-hand side of the differential and difference equa-
tion/inclusion are called the flow map and jump map, re-
spectively, while the subsets of the state space on which
flows and jumps are allowed are called the flow set and
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jump set, respectively. In our context, the term simulated
solution refers to the trajectory (or run) obtained from
a discretization of the dynamics of a hybrid system. We
establish conditions for the entity generating simulated
solutions, which we call hybrid simulator, guaranteeing
the following:

(1) On compact hybrid time domains, each simulated
solution is close to some solution of the true hybrid
system.

(2) Asymptotically stable compact sets for a hybrid
system are semiglobally practically (in the integra-
tion step size) asymptotically stable compact sets
for the hybrid simulator.

(3) Asymptotically stable compact sets for the simula-
tor are continuous in the integration step size.

Item (1) is a fundamental upper semicontinuity prop-
erty with respect to perturbations introduced when sim-
ulating hybrid systems. In fact, our proof relies on the
property established in [16] stating that, under certain
basic conditions, which we also use in the current work,
for each solution to a perturbed hybrid system there ex-
ists a solution to the unperturbed system that is close
to it. The converse of item (1), that is, the property of
every solution to the true hybrid system being close to
some simulated solution, relies on the converse of the said
property asserted in [16]. Such a property has been stud-
ied for differential inclusions (see, e.g., [13, 4]), and more
recently, for hybrid systems [6], where extra assumptions
beyond the basic conditions of [16] were shown to be re-
quired. We will not address this property here.

The paper is organized as follows. In Section 2, we de-
scribe the hybrid systems framework considered. In Sec-
tion 3, we present results on closeness of solutions and
robust stability of compact sets for hybrid systems. Our
main results build on these preliminaries. Section 4 in-
troduces a framework for simulations of hybrid systems.
We present results (1)-(3) in Section 5.

1.1 Notation

We use the following notation and definitions. R
n de-

notes n-dimensional Euclidean space. R denotes the
real numbers. R≥0 denotes the nonnegative real num-
bers, i.e., R≥0 = [0,∞). N denotes the natural numbers
including 0, i.e., N = {0, 1, . . .}. B denotes the closed
unit ball in a Euclidean space. Given a set S, S denotes
its closure. Given a set S, conS denotes the convex hull
and conS the closure of the convex hull. Given a vector
x ∈ R

n, |x| denotes the Euclidean vector norm. Given a
set S ⊂ R

n and a point x ∈ R
n, |x|S := infy∈S |x − y|.

Given sets S1, S2 ⊂ R
n, dH(S1, S2) denotes the Haus-

dorff distance between S1 and S2, that is, dH(S1, S2) =
max{supx∈S1

|x|S2 , supx∈S2
|x|S1}. Given sets S1, S2

subsets of R
n, S1 + S2 := {x1 + x2 | x1 ∈ S1, x2 ∈ S2 }.

A function α : R≥0 → R≥0 is said to belong to class-K∞

if it is continuous, zero at zero, strictly increasing, and
unbounded. A function β : R≥0 ×R≥0 → R≥0 is said to
belong to class-KL if it is continuous, nondecreasing in
its first argument, nonincreasing in its second argument,
and limsց0 β(s, r) = limr→∞ β(s, r) = 0.

2 Hybrid Systems: Data and Solutions

Hybrid systems are dynamical systems with continuous
and discrete dynamics. Several mathematical models for
hybrid systems have appeared in the literature. These
include the work of Tavernini [33], Michel and Hu [26],
Lygeros et al. [24], Aubin et al. [5], among many others.
In this paper, we consider the framework for hybrid sys-
tems outlined in [14], and further investigated in [16, 15],
where a hybrid system H on a state space R

n is defined
by the following objects:

• A set C ⊂ R
n called the flow set.

• A set-valued map F : R
n

⇉ R
n called the flow map.

• A set D ⊂ R
n called the jump set.

• A set-valued map G : R
n

⇉ R
n called the jump map.

The flow map F defines the continuous dynamics on the
flow set C, while the jump map G defines the discrete
dynamics on the jump set D. These objects are referred
to as the data of the hybrid system H, which at times is
explicitly denoted as H = (C,F,D,G).

The union of the flow and jump sets does not need to
cover R

n. For example, we may haveC∪D = S×Q ⊂ R
n

for some sets S and Q, where Q is some discrete subset
of a Euclidean space. In this situation, the state of the
hybrid system H, denoted by x, would comprise both
real-valued continuous states, perhaps denoted ξ, and
integer-valued discrete (or logic) states, perhaps denoted
q, i.e., x = [ξ⊤, q⊤]⊤. Example 2.6 and Example 2.7
deal with hybrid systems of this type.

The set-valued mappings F and G allow for the possi-
bility of discontinuous flow and jump maps, which, after
a regularization procedure like those in [30], become set
valued. They also permit explicit modeling of perturba-
tions in the system dynamics, a useful feature for robust
stability analysis of dynamical systems in general and
for the analysis of simulators in particular.

Hybrid systems H = (C,F,D,G) can be written as

H : x ∈ R
n

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D.
(1)

Solutions to H are given on extended time domains,
called hybrid time domains, by functions that satisfy the
conditions suggested by (1) and are called hybrid arcs.
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Definition 2.1 (hybrid time domain) A set E ⊂ R≥0×
N is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ .
It is a hybrid time domain if for all (T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

Hybrid time domains are similar to hybrid time trajec-
tories in [24] and [5] but give a more prominent role to
the number of jumps j (cf. hybrid time sets in [9]).

Definition 2.2 (hybrid arc) A function x : domx →
R

n is a hybrid arc if domx is a hybrid time domain and,
for each j ∈ N, the function t 7→ x(t, j) is absolutely
continuous on the interval Ij := {t | (t, j) ∈ domx}.

Hybrid arcs, and solutions to H in particular, are pa-
rameterized by pairs (t, j), where t is the ordinary-time
component and j is the discrete-time component that
keeps track of the number of jumps.

Definition 2.3 (solution) A hybrid arc x : domx→ R
n

is a solution to the hybrid systemH if x(0, 0) ∈ C∪D and

(S1) for each j ∈ N such that Ij has nonempty interior
int(Ij), x(t, j) ∈ C for all t ∈ int(Ij) and, for al-
most all t ∈ Ij , ẋ(t, j) ∈ F (x(t, j));

(S2) for each (t, j) ∈ domx such that (t, j+1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

A hybrid arc x is said to be nontrivial if domx contains
at least one point different from (0, 0), maximal if there
does not exist a solution x′ such that x is a truncation of
x′ to some proper subset of domx′, complete if domx is
unbounded, and Zeno if it is complete but the projection
of domx onto R≥0 is bounded. A hybrid system H is
said to be complete (also called forward complete in [16]
and [7]) if every maximal solution to H is complete. Note
that, during flows, the absolute continuity property of
the function t 7→ x(t, j) for each j ∈ N permits obtaining
the value of the solution during flows from its derivative.

Next, we illustrate modeling a hybrid system as in (1).

Example 2.4 (bouncing ball) Consider a ball bounc-
ing on the ground with relative height x1 and vertical
velocity x2. The dynamics between bounces are modeled
as ẋ1 = x2, ẋ2 = −γ, when x1 ≥ 0, where γ > 0 is the
gravity constant. The bouncing condition is x1 = 0 and
x2 ≤ 0 and the jump map is x+

1 = 0, x+
2 = −̺x2, where

̺ ∈ [0, 1) is the restitution coefficient. Then, the bounc-
ing ball is a hybrid system, denoted HBB, with F (x) =
[x2, −γ]⊤, C =

{
x ∈ R

2 | x1 ≥ 0
}
,G(x) = [0, −̺x2]

⊤,

and D =
{
x ∈ R

2 | x1 = 0, x2 ≤ 0
}
. Solutions to HBB

are unique and Zeno. △

Solutions to H may not be unique, not only due to the
flow and jump maps being set valued but also due to
having overlapping flow and jump sets. Indeed, there
may exist points in C ∩D from which it is possible both
to flow and to jump.

Note that, in principle, various “semantics” can be en-
forced by modifying the data of the hybrid system. For
example, forcing or triggering semantics [31] for the hy-
brid system (C,F,D,G) result by considering solutions
to the hybrid system with data (C \ D,F,D,G). How-
ever, the assumptions we impose next on the data of a
hybrid system may not hold for the data (C\D,F,D,G),
and in turn, as we discuss below, useful structural and
robustness properties of the set of solutions to H may
not be present. Alternatively, robustness of behavior un-
der forcing semantics can be assessed by considering the
system with data (C \D,F,D,G) at the price of poten-
tially adding new solutions.

Assumption 2.5 (hybrid basic conditions [16]) The
data (C,F,D,G) of a hybrid system H satisfies:

(A1) C and D are closed sets.
(A2) F : R

n
⇉ R

n is outer semicontinuous and locally
bounded, 1 and F (x) is nonempty and convex for
all x ∈ C.

(A3) G : R
n

⇉ R
n is outer semicontinuous and locally

bounded, and G(x) is a nonempty subset of R
n for

all x ∈ D.

Under Assumption 2.5, given a bounded sequence of so-
lutions to H, there exists a subsequence that converges
to a solution to H [16, Theorem 4.4]. Moreover, the set
of solutions to a hybrid system H satisfying Assump-
tion 2.5 can be shown to be equal to the set of solutions
to it under the presence of perturbations with size con-
verging to zero; see [30] for details.

Additional consequences of Assumption 2.5 that are rel-
evant for analyzing simulators will be recalled in Section
3. Among other things, we desire for each simulated so-
lution starting near a given point to be close, on a com-
pact time domain, to some true solution emanating from
that point. Presumably, the true system itself is the best
possible simulator of its own solutions; thus, the stated

1 A set-valued mapping F : R
n

⇉ R
n is outer semicon-

tinuous if for each sequence {xi}
∞

i=1 converging to a point
x ∈ R

n and each sequence yi ∈ F (xi) converging to a point
y, it holds that y ∈ F (x); see [28, Definition 5.4]. (For locally
bounded set-valued maps with closed values, outer semicon-
tinuity coincides with what is usually called upper semicon-
tinuity.) It is locally bounded if, for each compact set K ⊂ R

n

there exists K′ ⊂ R
n such that F (K) := ∪x∈KF (x) ⊂ K′.
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property should also hold for solutions of the true sys-
tem. Without Assumption 2.5, such a property may not
hold, as the following example illustrates.

Example 2.6 (obstacle avoidance) The hybrid system
in this example corresponds to an obstacle avoidance al-
gorithm for a planar vehicle modeled as a fully-actuated
point mass. We denote it as HA and its state as x =
[ξ⊤, q]⊤ ∈ R

3. The flow map is given by F (x) = [1 −
|q|, q, 0]⊤. The flow and jump sets are given by

C =
⋃

q∈{−1,0,1}

(Cq × {q}) , D =
⋃

q∈{−1,0,1}

(Dq × {q}) ,

where C0 = ([−3, 3]× [−3, 3]) \ B, C1 = 2B ∩ (R ×
R≥−0.5), C−1 = 2B∩ (R×R≤0.5), D1 is the boundary of
C1, D−1 is the boundary of C−1 and D0 = S1, i.e., the
unit circle in the plane, which includes the inner (but
not the outer) boundary of C0; see Figure 1. The jump
map is G(x) = [ξ⊤, ψq(ξ)]

⊤, where, for q ∈ {−1, 0, 1},
ψq : Dq ⇉ {−1, 0, 1} \ {q} is defined as follows: ψ0(ξ)
equals the sign of ξ2 unless ξ2 = 0, in which case ψ0(ξ) =
{−1, 1}; for q ∈ {−1, 1},ψq(ξ) = ψ−(ξ, q)∪ψ◦(ξ), where
ψ−(ξ, q) = {−q} when |ξ2| = 0.5, ψ◦(ξ) = {0} when
ξ ∈ 2S1, and ψ− and ψ◦ are empty otherwise. From the
initial condition x0 = [−3, 1 + ε, 0]⊤, we have

a) for ε ∈ [0, 2] there is a solution, with time domain
[0, 6] × {0}, given by x(t, j) = [−3 + t, 1 + ε, 0]⊤ for
all (t, j) ∈ domx;

b) for ε ∈ (−0.5, 0] there is a solution, with time domain
∪2

j=0([tj , tj+1] × {j}) with 0 = t0 < t1 < t2 < t3,

x(t, j) = [−3 + t, 1 + ε, 0]⊤ for all (t, j) ∈ domx with
j = 0, x(t, j) = [−3 + t1, 1 + ε + (t − t1), 1]⊤ for all
(t, j) ∈ domx with j = 1, and x(t, j) = [−3 + t1 + t−
t2, 1+ ε+ t2− t1, 0]⊤ for all (t, j) ∈ domx with j = 2.

When ε = 0, there are two solutions. This is caused by
the “grazing” of the flowing solution at the boundary
of D, which is allowed in the framework we consider.
These solutions are depicted in Figure 1. For more on the
grazing phenomenon, see, e.g., [9, 1]. Despite the lack of
uniqueness for ε = 0, it can be said that each solution
with small ε 6= 0 is close to some solution with ε = 0.
More generally, it can be said that, for each ε∗ ∈ R, each
solution with ε near ε∗ is close to some solution with
ε = ε∗.

Uniqueness of solutions for ε = 0 can be obtained
by modifying the data as suggested above as a way
to impose forcing semantics, that is, by removing
D from C and obtaining a hybrid system with data
(C \D,F,D,G). This amounts to removing the set S1

from C0 as it forces a jump when ξ reachesD0. However,
in this case, the closeness property described above can
no longer be asserted. In particular, for all ε > 0, the
solution will experience no jumps, but there are no such
solutions for ε = 0. △

q = 1q = 0

x0 xbxb

xb

xa

xa

ξ1ξ1

ξ2ξ2

1

3

3

Fig. 1. Sets and ξ component of solutions in a) and b) to the
system in Example 2.6. The obstacle is denoted with dotted
line and is contained by the set D0 given by S1, which is
the circle of unitary radius as the left plot shows. The set
C0 is depicted in gray in the left plot. The (truncated) circle
of radius 2 in the right plot corresponds to the set C1. Its
boundary defines D1. Sets C−1 and D−1 are given by vertical
mirror of C1 and D1, respectively.

Beyond the properties illustrated in the previous exam-
ple, we also do not want small inflations of the flow and
jump sets to create new solutions with features that are
dramatically different from the solutions to the original
system. In the context of simulators, this is desired since
a simulator approximates continuous change by discon-
tinuous change through an integration step; thus, in a
sense, a simulator inflates the flow set to include a con-
tinuum of points connecting the state value before an
integration step to the state value after an integration
step. The next example illustrates issues related to set
inflation.

Example 2.7 (zero-crossing detection) Consider the
task of driving a mobile robot, with position vector ξ ∈
R

2, around a circle n times in the clockwise direction and
then stopping. Rotations are to be counted by crossings
of the positive ξ2-axis. The count is stored in the vari-
able ℓ, which remains constant during flows. The equa-
tions of motion for the robot are taken to be ξ̇1 = ξ2,
ξ̇2 = −ξ1, and flows are restricted to the disk X :={
ξ ∈ R

2 | |ξ| ∈ [1, 2]
}
.

One possibility for the counting hybrid system is to take
D to be the set where ℓ ∈ {0, . . . , n− 1} and ξ belongs
to the disk X and the positive ξ2-axis, since this is the
set of points where the counter ℓ should be incremented.
Then, C can be taken to be the complement ofD in X ×
{0, . . . , n− 1}. This set C is not closed. Moreover, when
C is replaced by its closure, which is an infinitesimally
small inflation, we create solutions that always flow and
never jump, so that the counter is never incremented.
Such solutions do not appear with the original flow setC.
However, they typically would appear with a simulator
that does not use some type of zero-crossing detection
algorithm since the set of points where jumps are allowed
is a set of measure zero and flowing is allowed at any
point not in the jump set.
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q = 1q = −1

D−1

D1C−1 C1

ξ(0, 0)

ξ1 ξ1

ξ2 ξ2

Fig. 2. Component ξ and q of a solution to and sets of HZCD

in Example 2.7.

Despite this issue, the task can still be accomplished with
a hybrid system, which we denote HZCD, satisfying As-
sumption 2.5. We introduce an extra variable to define a
zero-crossing detection algorithm. The extra variable is
denoted q. Taking values in the two-point set {−1, 1}, it
is used to indicate whether ξ is to the left or to the right
of the ξ2-axis. We define x = [ξ⊤, q, ℓ]⊤, C1 := R≥0×R,
C−1 := R≤0 × R, D1 := {0} × R≤0, D−1 := {0} × R≥0,
C := ∪q∈{−1,1} ((Cq ∩ X ) × {q} × {0, 1, . . . , n− 1}) ,
D := ∪q∈{−1,1} ((Dq ∩ X ) × {q} × {0, 1, . . . , n− 1}) ,

and G(x) := [ξ⊤, −q, ℓ + (1 − q)/2]⊤. This hybrid
system accomplishes the counting task while using data
that satisfies Assumption 2.5. Figure 2 depicts a solu-
tion to HZCD. Moreover, small inflations of C and D
do not lead to solutions that never jump. Thus, based
on upcoming results, the simulated solutions will either
carry out the expected number of jumps or else termi-
nate prematurely. The latter behavior can be ruled out
by using a jump set in the simulator that is a slight
inflation of the original D set. For an illustration of a
“minimal” inflation, see Example 4.4. △

3 Robustness results for hybrid systems

For hybrid systems with data satisfying Assumption 2.5,
we recall some robustness results that are relevant for
analyzing hybrid systems simulators. We consider results
both on compact time domains and, under a stability
assumption, on unbounded time domains. We start with
the definition of the stability concept used.

A solution x to H is said to be bounded if there exists a
compact setK ⊂ R

n such that {x(t, j) | (t, j) ∈ domx}
is contained in K. A compact set A ⊂ R

n is said to be:

• stable if for each ε > 0 there exists δ > 0 such that
each solution x to H with |x(0, 0)|A ≤ δ satisfies
|x(t, j)|A ≤ ε for all (t, j) ∈ domx;

• globally pre-attractive if every solution x to H with
x(0, 0) ∈ C∪D is bounded and if it is complete satisfies
limt+j→∞ |x(t, j)|A = 0;

• globally pre-asymptotically stable if stable and globally
pre-attractive.

The prefix “pre” indicates that the concepts do not as-
sume that every maximal solution is complete, that is, it
is not required for H to be complete. In fact, in general,
solutions to hybrid systems are not necessarily complete:
a solution can reach a point from where neither flowing
nor jumping is possible, that is, they are blocking [25].
When completeness of H is present, the prefix “pre” can
be dropped and the classical stability and attractivity
notions are recovered. For general results about asymp-
totically stable compact sets for hybrid systems H see
[16, Section VI] and [29, Section VI and VII].

For the system in Example 2.6, the compact set A :=
(C ∪D) ∩ {x = (ξ, q) | ξ1 = 3 , q = 0} is globally pre-
asymptotically stable, and all solutions reach A in finite
hybrid time. For the system in Example 2.7, the com-
pact set A := (D−1 ∩ X ) × {1} × {n} is globally pre-
asymptotically stable, and all solutions reach A in fi-
nite hybrid time. For the bouncing ball system in Exam-
ple 2.4, invariance principles for hybrid systems, like the
ones in [29], or the strict Lyapunov function suggested
in [7], can be used to establish that the origin is globally
asymptotically stable.

By augmenting H as in [7, Lemma 7.12] to a hybrid
system for which A is globally asymptotically stable,
the following KL-stability result follows from [7, Lemma
7.11] and [7, Proposition 7.3]. It is a generalization of [16,
Theorem 6.5] to the case of globally pre-asymptotically
stable sets.

Theorem 3.1 (KL-bound) Assume that H satisfies As-
sumption 2.5. Let A be a globally pre-asymptotically sta-
ble compact set. There exists β ∈ KL s.t. for each solu-
tion x to H

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀(t, j) ∈ domx. (2)

A result on how the bound (2) holds up under perturba-
tions (see Theorem 3.5) will be relevant for statements
about how stability holds up in simulators.

In the absence of stability, we discuss the closeness of
perturbed solutions (perhaps coming from a simulator)
to unperturbed solutions. As in [16], the distance be-
tween hybrid arcs (and solutions) is quantified by the
distance between their graphs.

Definition 3.2 ((T, J, ε)-closeness) Given T, J ≥ 0 and
ε > 0, two hybrid arcs x1 : domx1 → R

n and x2 :
domx2 → R

n are (T, J, ε)-close if

(a) for all (t, j) ∈ domx1 with t ≤ T, j ≤ J there
exists s such that (s, j) ∈ domx2, |t− s| < ε, and

|x1(t, j) − x2(s, j)| < ε,

(b) for all (t, j) ∈ domx2 with t ≤ T, j ≤ J there
exists s such that (s, j) ∈ domx1, |t− s| < ε, and
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|x2(t, j) − x1(s, j)| < ε.

The types of perturbations we consider are detailed next.
Given a sequence of (set-valued) mappings {Fi}∞i=1,
its outer graphical limit is the mapping F0 such that
gphF0 = limi→∞ gphFi; for details, see [28, Chapter 4].

Definition 3.3 (convergence property (CP) [16, Sec-
tion 5]) Given a hybrid systemH = (C,F,D,G), a family
of hybrid systems Hδ with data (Cδ, Fδ, Dδ, Gδ) is a per-
turbation of H, with perturbation parameter δ > 0, satis-
fying the convergence property (CP) if for any sequence
1 > δ1 > δ2 > · · · > 0 converging to 0, the sequences
{Fi}∞i=1, {Ci}∞i=1, {Gi}∞i=1, and {Di}∞i=1, where for each
i ∈ {1, 2, . . .}, Fi := Fδi

, Ci := Cδi
, Gi := Gδi

, and
Di := Dδi

, are such that the sequences {Fi}∞i=1, {Gi}∞i=1
are locally eventually bounded 2 and

lim sup
i→∞

Ci ⊂ C, lim sup
i→∞

Di ⊂ D (3)

F0(x) ⊂ F (x), G0(x) ⊂ G(x) ∀x ∈ R
n, (4)

where F0 and G0 denote the outer graphical limits of
{Fi}

∞
i=1 and {Gi}

∞
i=1, respectively, at the given x ∈ R

n.

As pointed out in [16], in particular, the conditions in
(3) hold when the sequences {Ci}∞i=1, {Di}∞i=1 converge,
the flow set C is equal to limi→∞ Ci, and the jump setD
is equal to limi→∞Di. Analogous conditions on the se-
quences {Fi}∞i=1, {Gi}∞i=1 and F,G guarantee condition
(4). Moreover, under the assumption that Fi is convex-
valued and F is locally bounded, the condition on F in
(4) implies that {Fi}∞i=1 is locally eventually bounded.

The following result on closeness between solutions to
unperturbed and perturbed hybrid systems is an exten-
sion of [16, Corollary 5.5] as it relaxes the completeness
assumption therein to the “pre” case. It follows from [16,
Corollary 5.5] after embedding the original hybrid sys-
tem into an extended one with state and dynamics such
that each solution is complete. (This is possible by ap-
propriately allowing jumps from every point in R

n.) Be-
low, a hybrid system H is said to be pre-complete from
K if each maximal solution starting from K is either
bounded or complete.

Theorem 3.4 (closeness on compact domains) Assume
that H satisfies Assumption 2.5 and that its perturbation
given by the family of hybrid systems Hδ satisfies (CP).
LetK ⊂ R

n be a compact set such that H is pre-complete
fromK. Then, for every ε > 0 and every (T, J) ∈ R≥0×N

there exists δ∗ > 0 with the following property: for any
δ ∈ (0, δ∗] and any solution xδ to Hδ with xδ(0, 0) ∈
K + δB there exists a solution x to H with x(0, 0) ∈ K
such that xδ and x are (T, J, ε)-close.

2 A sequence of mappings {Fi}
∞

i=1 is locally eventually
bounded if for any compact set K ⊂ R

n there exists m > 0
and i0 > 0 such that for any i > i0, Fi(K) ⊂ mB.

The following KL-stability result under perturbation
generalizes [16, Theorem 6.6] to the case of globally
pre-asymptotically stable sets. The proof technique uses
ideas from [7, Lemma 7.12] and relies on [16, Theorem
6.6]. Its proof can be derived using [16, Theorem 6.6].

Theorem 3.5 (KL-bound under perturbations) As-
sume that H satisfies Assumption 2.5. Let A be a globally
pre-asymptotically stable compact set. Let β ∈ KL be
such that each solution x to H satisfies (2). Assume
that the family of perturbed hybrid systems Hδ satisfies
(CP). Then, for each compact set K ⊂ R

n and each
ε > 0 there exists δ∗ > 0 such that for each δ ∈ (0, δ∗],
each solution xδ to Hδ with xδ(0, 0) ∈ K satisfies for all
(t, j) ∈ domxδ

|xδ(t, j)|A ≤ β(|xδ(0, 0)|A, t+ j) + ε. (5)

4 A Simulation Framework for Hybrid Systems

Given a hybrid system H = (C,F,D,G), a hybrid simu-
lator for H is given by the family of systems Hs param-
eterized by the constant s satisfying s ∈ (0, s∗], s∗ > 0,
which determines the step size of the simulator. Like in
[32, Chapter 7], we consider the case of constant step
size. The data of the hybrid simulator Hs is given by
(Cs, Fs, Ds, Gs), where

• Cs ⊂ R
n is where integration of the flows is allowed;

• Fs : R
n

⇉ R
n is the integration scheme for flows of H;

• Ds ⊂ R
n is where jumps are allowed;

• Gs : R
n

⇉ R
n is the jump mapping.

Following (1), the hybrid simulator Hs can be written as

Hs : x ∈ R
n

{
x+ ∈ Fs(x) x ∈ Cs

x+ ∈ Gs(x) x ∈ Ds.
(6)

Comparing (1) with (6), the dynamics for the flows of
H have been replaced by the integration scheme x+ ∈
Fs(x), where Fs is constructed from F ; this construction
for particular integration schemes will be discussed in
the next section. The jump map of H has been replaced
by the mappingGs while the flow and jump setsC andD
have been replaced by the sets Cs and Ds, respectively.

Being the dynamics of the hybrid simulator Hs purely
discrete, the solutions to Hs are given on discrete ver-
sions of hybrid time domains.

Definition 4.1 (discrete time domain) A subset E ⊂
N × N is a compact discrete time domain if

E =

J−1⋃

j=0

Kj+1⋃

k=Kj

(k, j)
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for some finite sequence 0 = K0 ≤ K1 ≤ K2... ≤ KJ ,
Kj ∈ N for every j ≤ J , j ∈ N. It is a discrete time do-
main if ∀(K, J) ∈ E, E ∩ ({0, 1, . . .K} × {0, 1, . . . J})
is a compact discrete time domain.

Solutions to Hs are parameterized by the discrete vari-
ables j and k, where k keeps track of the steps of the
integration scheme for flows and j counts the jumps.

Definition 4.2 (discrete arc) A function xs : domxs →
R

n is a discrete arc if domxs is a discrete time domain.

Recall that, in our context, the term simulated solution
refers to a solution obtained from discretizing the dy-
namics of the hybrid system, that is, a solution to Hs.

Definition 4.3 (simulated solution toH) A discrete arc
xs : domxs → R

n is a simulated solution to the hybrid
system H with a hybrid simulator Hs, s > 0, if

(S1s) for all k, j ∈ N such that (k, j), (k+1, j) ∈ domxs,

xs(k, j) ∈ Cs, xs(k + 1, j) ∈ Fs(xs(k, j));

(S2s) for all k, j ∈ N such that (k, j), (k, j+1) ∈ domxs,

xs(k, j) ∈ Ds, xs(k, j + 1) ∈ Gs(xs(k, j)).

The same solution types defined in Section 2 (i.e., non-
trivial, maximal, etc.) apply for simulated solutions.

When the data of the simulator satisfies Fs(Cs) ⊂
Cs ∪ Ds, Gs(Ds) ⊂ Cs ∪ Ds, which simply require
evaluating the mappings Fs and Gs on sets Cs and
Ds, every simulated solution to H is complete. Note
that when completeness of simulated solutions to H is
not guaranteed by construction of Hs, the discretiza-
tion of the flows, which as in numerical simulation of
differential/difference equations is determined by the
integration scheme used (e.g., by Euler, Runge-Kutta,
and multi-step methods), can lead to simulated solu-
tions that, unlike the true solutions, end by leaving
C ∪D after a flowing step. A particular construction of
Gs, Cs, and Ds preventing such a premature stopping
of simulated solutions is given next.

Example 4.4 (“Minimal” inflation of jump set to
keep simulator from stopping prematurely) Given
H = (C,F,D,G), consider the simulator Hs =
(Cs, Fs, Ds, Gs), where Cs := C, Gs(x) = G(x) for all
x ∈ D and, for all x ∈ R

n \ (C ∪D),

Gs(x) :={g ∈ G(ξ) | ξ ∈ Ls(z, x) ∩D, z ∈ C, x ∈ Fs(z)} ,

where, given a continuous function ρ̃,Ls(z, x) is given by

{ξ | ξ = (1 − λ)z + λ(x + v), λ ∈ [0, 1], v ∈ sρ̃(s)B} ,

and letDs be the domain ofGs, i.e., the set of points x for
which Gs(x) is not empty. In words, this construction is

such that when a simulated solution reaches a point x /∈
C∪D, it checks if x is close enough toD that considering
x to be in D would be reasonable. This is determined
by first finding points in C from which the simulator
may have generated x. These are points z ∈ C such that
x ∈ Fs(z). Then, the simulator checks whether the set
Ls(z, x), which starts at z and ends in a neighborhood
around x, intersectsD. (Note that when ρ̃ in Ls is taken
to be zero, checking whether it intersectsD just involves
a line search.)With an affirmative answer,x is translated
to an intermediate point whereLs(z, x) intersects the set
D and then a jump is executed from that intermediate
point. With a negative answer, the simulation stops. △

One way to translate a simulated solution xs on a dis-
crete time domain domxs to a hybrid arc ξs on a hybrid
time domain dom ξs is by piecewise linear interpolation
of the flows as follows. Given a simulated solution xs

to H, its corresponding (linearly) interpolated simulated
solution ξs is a hybrid arc as follows:

• For every (t, j) such that (k, j), (k + 1, j) ∈ domxs,
ks ≤ t ≤ (k + 1)s,

ξs(t, j)=xs(k, j) +
(t− ks)(xs(k + 1, j) − xs(k, j))

s
.(7)

• For every (t, j) s.t. (k, j), (k, j + 1) ∈ domxs, t = ks,

ξs(t, j)=xs(k, j). (8)

Next, we illustrate this transformation in an example.

Example 4.5 (bouncing ball (revisited)) We propose
a hybrid simulator HBB

s for HBB in Example 2.4 with
step size s > 0 and data given by Fs(x) = x+ sF (x) for
all x ∈ C and Cs, Gs, Ds as in Example 4.4 with ρ̃ ≡ 0:

Cs = C, Ds = D ∪ {x | z ∈ C, x = z + sF (z) /∈ C} ,

Gs(x) =



 0

−̺
(
x2 + x1

s

(
1 − x2

x2+sγ

))


 .

The choice of Fs corresponds to the forward Euler rule.
(This type of integration scheme has been used to sim-
ulate the continuous dynamics of hybrid systems in the
literature, see e.g. [23, 27].) The data ofHBB

s is such that
simulated solutions starting from Cs ∪Ds are complete.

The exact solution x (not a simulated solution) to HBB

on a hybrid time domain starting from the initial condi-
tion x1(0, 0) = 6m, x2(0, 0) = 0.1m/s is depicted in Fig-
ure 3(a) (exact computation of solutions to this system
is possible by solving the for dynamics forward in hy-
brid time). A simulated solution along with its discrete
domain using step size s = 0.2sec are depicted in Fig-
ure 3(b) for xs(0, 0) = x(0, 0). Figure 3(b) also shows the
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Fig. 3. Solution (solid curve) and simulated solution (dot-
ted) to the bouncing ball system HBB . (a) A solution with
x1(0, 0) = 6m, x2(0, 0) = 0.1m/s, g = 9.8m/s2, and γ = 0.6.
(b) Simulation with step size s = 0.1sec and same parame-
ters as for the solution in (a). Discrete arc xs denote with +
and hybrid time domains shown in red.

interpolated simulated solution ξs (depicted with dashed
line) obtained from xs using (7)-(8). △

The stability definitions in Section 2 apply to hybrid
simulators Hs by just passing from hybrid time domains
to discrete time domains. Regarding closeness between
solutions and simulated solutions, we say that a solution
x and a simulated solution xs to a hybrid system H
are (T, J, ε)-close if x and the interpolated simulated
solution ξs (associated with xs) are (T, J, ε)-close.

The following conditions on the data of Hs are imposed.

Assumption 4.6 (data of the hybrid simulator) The
data of the hybrid simulator Hs = (Cs, Fs, Ds, Gs) for
the hybrid system H = (C,F,D,G) satisfies:

(B0) Fs is such that, for each compact set K ⊂ R
n, there

exists ρ ∈ K∞ and s∗ > 0 such that for each x ∈
Cs ∩K and each s ∈ (0, s∗]

Fs(x) ⊂ x+ s conF (x+ ρ(s)B) + sρ(s)B;

(B1) Gs is such that G0(x) ⊂ G(x) for each x ∈ R
n,

where, for any positive sequence {si}∞i=1 such that
si ց 0, G0 is the outer graphical limit of Gsi

;
(B2) Cs and Ds are such that for any positive sequence

{si}
∞
i=1 such that si ց 0

lim sup
i→∞

Csi
⊂ C, lim sup

i→∞
Dsi

⊂ D,

where lim supi→∞ Csi
, lim supi→∞Dsi

are the outer
limits of the sequence of sets Csi

, Dsi
, respectively.

Remark 4.7 Very often, the jump mapping G and the
sets C and D can be implemented accurately in the hy-
brid simulator, i.e., it may be possible to take Gs ≡ G,

Cs = C, and Ds = D. Condition (B2) is a condition on
the perturbation by s of the flow and jump sets. Condi-
tions (B1) and (B2) are satisfied when Gs, Cs, and Ds

are contained in outer perturbations of G,C, and D,
respectively. More precisely, the outer perturbation of
G, C, and D for a state-dependent perturbation deter-
mined by a constant δ > 0 and a continuous function
α : R

n → R≥0 are given by

Ĝδ(x) := {y ∈ R
n |y ∈ η + δα(η)B, η ∈ G(x + δα(x)B)},

Ĉδ := {x ∈ R
n | (x + δα(x)B) ∩ C 6= ∅} ,

D̂δ := {x ∈ R
n | (x + δα(x)B) ∩D 6= ∅} ,

respectively, which satisfy (B1)-(B2) by Theorem 5.4 in
[16] (see Example 5.3 in [16] for more details). Then,
(B1)-(B2) hold if for each δ > 0 there exists s∗ > 0 such
that for all s ∈ (0, s∗]

Gs(x) ⊂ Ĝδ(x) ∀x ∈ R
n, Cs ⊂ Ĉδ, Ds ⊂ D̂δ.

Outer perturbations allow to model, among other things,
measurement error, unmodeled dynamics, as well as
floating point errors. Assumption (B0) is a consistency
condition on the integration scheme for flows (cf. [32,
Definition 3.4.2]). It implies that, for every compact set
K ⊂ R

n and step size s > 0, from every point ξ ∈ Cs∩K
the new value given by the integration scheme for flows
picked from Fs(ξ) is close to a solution x to ẋ ∈ F (x)
starting from ξ and evaluated at time t = s.

The following examples illustrate that several widely
used integration schemes for differential equations sat-
isfy (B0) in Assumption 4.6.

Example 4.8 (forward Euler method) The simplest
numerical method to approximate solutions to differen-
tial inclusions (or equations) ẋ ∈ F (x) is the forward
Euler rule [3, Chapter 3], [10, Chapter 2]. This method
is based on the first-order Taylor expansion of the con-
tinuous right-hand side around x ∈ R

n and is given by
Fs(x) = x+ sF (x). Then, condition (B0) is satisfied. △

Example 4.9 (p-stage Runge-Kutta consistent meth-
ods) For differential inclusions (or equations) ẋ ∈ F (x)
with locally bounded F : R

n
⇉ R

n, the update law for
p-stage Runge-Kutta integration schemes, p ≥ 1, is

Fs(x) = x+ s

p∑

i=1

biξi, (9)

where bi ∈ R and ξi ∈ F (Yi), i ∈ I := {1, 2, . . . , p}. The
variables Yi are called stage variables and are given by

Yi = x+ s

p∑

j=1

aijξj , ξj ∈ F (Yj), (10)
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where aij ∈ R, (i, j) ∈ I×I. (When aij = 0 for all j ≥ i,
the method is called explicit since the stage variables
can be solved without recursion.)

Provided that (10) is solvable, either in an explicit or
implicit manner, for every compact set K ⊂ R

n there
exists ρ ∈ K∞ such that for each x ∈ K the stage vari-
ables satisfy, for each s > 0, Yi ∈ x+sρ(s)B for all i ∈ I.
Moreover, when the Runge-Kutta method is consistent
(see, e.g., [32, Definition 3.4.2]), the coefficients bi satisfy∑p

i=1 bi = 1 (see, e.g., [32, Section 3.4]). (This condition
is usually required for stability of the Runge-Kutta inte-
gration method, see, e.g., [18] and [17].) Then,

∑p
i=1 biξi

in (9) corresponds to a convex hull condition and As-
sumption (B0) is satisfied since for eachx ∈ K and s > 0,
Fs(x) ⊂ x+ s coni∈I F (Yi) ⊂ x+ s conF (x+ ρ(s)). △

5 Main Results

In this section, we present results on closeness between
solutions and simulated solutions to hybrid systems, and
on asymptotic stability of compact sets for hybrid sim-
ulators. These extend results in [32] to hybrid systems,
which include constrained differential and difference in-
clusions as special cases.

We treat the hybrid simulator Hs = (Cs, Fs, Ds, Gs) as
a perturbation of the hybrid system H = (C,F,D,G)
with perturbation parameter being the step size s. For
a given compact set K ⊂ R

n and a simulation horizon
(T, J) ∈ R≥0 × N, let reachHs

T,J(K) be the reachable set

of Hs from K up to (T, J), i.e.,

reachHs

T,J (K) := {xs(k, j) | xs is a simulated solution

to H, xs(0, 0) ∈ K, (k, j) ∈ domxs, ks ≤ T, j ≤ J} .

Let ρ ∈ K∞, s∗ be given by (B0) in Assumption 4.6, and

δ′(s) := max
η∈ reachHs

(T,J)(K)∩Cs

conF (η + ρ(s)B) + ρ(s)B.

Then, for each s ∈ (0, s∗], each simulated solution xs :
domxs → R

n to H with domxs ⊂ [0, T ] × {0, . . . , J},
xs(0, 0) ∈ K, and its associated hybrid arc ξs : dom ξs →
R

n (obtained using (7)-(8)) are such that

• For all (t, j) ∈ dom ξs, ks ≤ t ≤ (k + 1)s, where
(k, j), (k + 1, j) ∈ domxs, ξs satisfies

ξ̇s(t, j) :=
xs(k + 1, j) − xs(k, j)

s
,

ξ̇s(t, j) ∈ conF (ξs(ks, j) + ρ(s)B) + ρ(s)B,

|ξs(ks, j) − ξs(t, j)| ≤ |xs(k, j) − xs(k + 1, j)| ≤ sδ′(s),

which implies

ξ̇s(t, j) ∈ conF (ξs(t, j) + (sδ′(s) + ρ(s))B) + ρ(s)B,

ξs(t, j) ∈ {x ∈ R
n | (x+ sδ′(s)B) ∩ Cs 6= ∅} .

• For all (t, j), t = ks, where (k, j), (k, j + 1) ∈ domxs,

ξs(t, j + 1) ∈ Gs(ξs(t, j)) and ξs(t, j) ∈ Ds.

Given δ > 0, let s > 0 be small enough such that sδ′(s)+
ρ(s) ≤ δ. Then, let

Fδ(x) := conF (x+ δB) + δB,

Cδ :=
{
x ∈ R

n
∣∣ (x+ δB) ∩ Cs(δ) 6= ∅

}
,

Gδ(x) := Gs(δ)(x), Dδ := Ds(δ),

(11)

where the dependence of s on δ is explicitly indicated
and is such that s approaches zero as δ ց 0. From the
properties of ξs above, interpolated simulated solutions
ξs to H that start from K are solutions to the perturbed
hybrid system Hδ = (Cδ, Fδ, Dδ, Gδ) on hybrid time
domains that are subset of [0, T ]× {0, 1, . . . , J}.

Lemma 5.1 (convergence property for Hδ) Assume
H satisfies Assumption 2.5 and Hs satisfies Assump-
tion 4.6. Then, for every compact set K ⊂ R

n and every
simulation horizon (T, J) ∈ R≥0 × N, the family of hy-
brid systems Hδ = (Cδ, Fδ, Dδ, Gδ) with data as in (11)
satisfies (CP).

Proof. For every sequence {δi}∞i=1 with 1 > δ1 > δ2 >
. . . > 0 converging to zero, by construction and (B1)-
(B2) in Assumption 4.6, the sequences Ci := Cδi

, Di :=
Dδi

satisfy the conditions in (CP). Locally eventually
boundedness of Fi := Fδi

, Gi := Gδi
follows by con-

struction and (A2)-(A3). The proof that Fi, Gi satisfy
(4) follows from [16, Lemma 5.4] by the fact that Fi, Gi

are outer perturbations of F,G, respectively.

From the construction of Hδ, the following closeness re-
sult between solutions and simulated solutions holds.

Theorem 5.2 (closeness of simulated solutions on com-
pact domains) Assume that H satisfies Assumption 2.5
and that the family of hybrid systems Hs satisfies As-
sumption 4.6. Then, for every compact set K ⊂ R

n, ev-
ery ε > 0, and every simulation horizon (T, J) ∈ R≥0×N

there exists s∗ > 0 with the following property: for any
s ∈ (0, s∗] and any simulated solution xs to Hs with
xs(0, 0) = x0

s ∈ K + δB there exists a solution x to H
with x(0, 0) ∈ K such that xs and x are (T, J, ε)-close.

Proof. Since H satisfies Assumption 2.5 and Hs satis-
fies Assumption 4.6, by Lemma 5.1 and Theorem 3.4,
there exists δ∗ > 0 such that for each δ ∈ (0, δ∗], each
s > 0 such that sδ′(s)+ρ(s) ≤ δ, for each solution xδ to
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Hδ with xδ(0, 0) ∈ K+ δB there exists a solution x to H
with x(0, 0) ∈ K such that xδ and x are (T, J, ε)-close.
Then, since hybrid arcs ξs obtained from simulated solu-
tions xs to H are solutions to the perturbed hybrid sys-
tem Hδ, it follows that for every such hybrid arc ξs with
dom ξs ⊂ [0, T ]×{0, . . . , J}, there exists a solution x to
H with x(0, 0) ∈ K such that ξs and x are (T, J, ε)-close.
The proof concludes by picking s∗ > 0 to be the largest
s satisfying sδ′(s) + ρ(s) ≤ δ∗ and by the relationship
between simulated solutions xs and interpolated simu-
lated solutions ξs in (7)-(8).

When a compact set is globally pre-asymptotically sta-
ble for H, then its hybrid simulator has the same set
semiglobally practically pre-asymptotically stable.

Theorem 5.3 (semiglobal practical stability) Assume
that the hybrid system H = (C,F,D,G) satisfies As-
sumption 2.5 and that A is a globally pre-asymptotically
stable compact set forH. Assume that the family of hybrid
systems Hs = (Cs, Fs, Ds, Gs) satisfies Assumption 4.6.
Then, A is semiglobally practically pre-asymptotically
stable for Hs, i.e., there exists β ∈ KL such that, for ev-
ery compact set K ⊂ R

n, every ε > 0, and every simu-
lation horizon (T, J) ∈ R≥0 ×N there exists s∗ > 0 such
that, for each s ∈ (0, s∗], every simulated solution xs to
H with xs(0, 0) ∈ K satisfies for all (k, j) ∈ domxs

|xs(k, j)|A ≤ β(|xs(0, 0)|A, ks+ j) + ε.

Proof. By Theorem 3.1, there exists β ∈ KL such that
for each solution x to H

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀(t, j) ∈ domx.

Given a compact set K ⊂ R
n and a simulation horizon

(T, J) ∈ R≥0 ×N, let Hδ = (Cδ, Fδ, Dδ, Gδ) be a family
of hybrid systems given by the perturbation of H with
data as in (11) (with appropriately chosen parameter δ).
By the assumptions, Lemma 5.1 implies that Hδ satisfies
(CP). Then, by Theorem 3.5 using K above, for each
ε > 0 there exists δ∗ > 0 such that for each δ ∈ (0, δ∗],
every solution xδ to Hδ with xδ(0, 0) ∈ K + δB satisfies

|xδ(t, j)|A ≤ β(|xδ(0, 0)|A, t+ j) + ε ∀(t, j) ∈ domxδ.

Pick s∗ > 0 to be the largest s satisfying sδ′(s)+ ρ(s) ≤
δ∗. Then, since interpolated simulated solutions ξs are
solutions to the perturbed hybrid system Hδ, the result
follows by recovering simulated solutions xs via sampling
of the interpolated simulated solutions ξs.

Note that the property in Theorem 5.3 holds for small
enough step size s. The step size bound s∗ decreases with
the desired level of closeness to A, which is given by ε.

Our main result is as follows.

Theorem 5.4 (continuity of asymptotically stable
sets) Assume that the hybrid system H = (C,F,D,G)
satisfies Assumption 2.5 and that A is a globally pre-
asymptotically stable compact set for H. Assume that the
family of hybrid systems Hs = (Cs, Fs, Ds, Gs) satisfies
Assumption 4.6. Then, there exists s∗ > 0 such that for
each s ∈ (0, s∗], the hybrid simulator Hs has a semiglob-
ally pre-asymptotically stable compact set As satisfying

dH(As,A) → 0 as sց 0. (12)

Proof. Let K be any compact set such that for some
ε > 0, A + 2εB ⊂ K ⊂ R

n. With Hδ as in (11), us-
ing K as above and an arbitrary simulation horizon

(T, J) ∈ R≥0 × N, define H̃δ = (Fδ, Cδ, G̃δ, D̃δ), where

G̃δ(x) =

{
Gδ(x) ∪ A if x ∈ Dδ

A if x ∈ O \Dδ

, D̃δ = R
n.

Using K and ε as above, by Theorem 3.5, there exists

β ∈ KL such that solutions x̃δ to H̃δ satisfy (5).

Now, let Bε := reachH̃δ

∞ (A + 2εB), where reachH̃δ

∞ (A +

2εB) is the reachable set of H̃δ from A + 2εB. Since

solutions to H̃δ satisfy (5), then Bε is bounded. Since
Bε is closed by definition, it follows that it is compact.
We show that it is forward invariant. Let x̃δ be a solu-
tion to H̃δ from x̃δ(0, 0) ∈ Bε. Assume that there exists
(t′, j′) ∈ dom x̃δ for which x̃δ(t

′, j′) 6∈ Bε. By definition
of Bε, since x̃δ(0, 0) ∈ Bε, the solution x̃δ belongs to Bε

for all (t, j) ∈ dom x̃δ. This is a contradiction. To show

that solutions to H̃δ starting fromK converge to Bε uni-
formly, note that, (5) implies that for the given K and
ε, there exists N > 0 such that for every solution x̃δ to

H̃δ, x̃δ(0, 0) ∈ K, and all (t, j) ∈ dom x̃δ, t+ j ≥ N :

|x̃δ(t, j)|A ≤ β(|x̃δ(0, 0)|A, t+ j) + ε ≤ 2ε.

Then, since Bε is compact, forward invariant, and uni-
formly attractive from K, by [16, Proposition 6.1], Bε

is an asymptotically stable set for H̃δ. Pre-asymptotic
stability of Bε for Hs follows.

Finally, note that B0 = A and that as ε ց 0,
dH(Bε, B0) → 0. From the statements above, ε ց 0
implies δ ց 0. Since for a given δ, s needs to satisfy
sδ′(s) + ρ(s) ≤ δ, we have s ց 0 as ε ց 0. With some
abuse of notation, the claim holds with As = Bε.

We illustrate our results in examples 2.6 and 2.4.

Example 5.5 (Obstacle avoidance (revisited)) For the
hybrid system in Example 2.6, we propose a hybrid sim-
ulator HA

s with data given by

Fs(x) = x+ sF (x) ∀x ∈ C, Cs = C, Gs = G,Ds = D.

10



One particular type of simulated solutions to HA
s are

those hitting the jump set tangentially (or due to the
discretization, almost hitting it). For example, there ex-
ist simulated solutions starting from x0 = [−3, 1+ε, 0]⊤

with ε = 0 that, depending on the step size s, either hit
the set D0 or not and never jump. In either case, the ob-
tained simulated solution is close to the solution to HA

given in item a) of Example 2.6, which, as pointed out
in the discussion therein, is a grazing solution. △

Example 5.6 (bouncing ball (re-revisited)) Consider
the ball bouncing system HBB and the hybrid simula-
tor HBB

s = (Fs, Cs, Gs, Ds) in Example 4.5. From its
construction and the discussion in Example 4.8, it can
be checked that HBB

s satisfies Assumption 4.6. To illus-
trate the closeness property in Theorem 5.2, for a given
finite simulation horizon (T, J) and a level of closeness
ε, Figure 4(a) depicts the first component of a solution
x and the first component of a simulated solution xs to
HBB for a particular step size s. Note that solutions to
HBB can be computed exactly by solving its dynam-
ics forward in hybrid time. Since solutions to HBB are
unique, the solution to which each simulated solution is
close to is uniquely defined. The level of closeness be-
tween the solution x and the simulated solution xs is
satisfied for the time horizon (T, J) for which the step
size s was chosen for (the step size s used for the simu-
lated solution in Figure 4(a) was heuristically chosen).
Figure 4(b) shows a zoomed version to indicate that at
points (k, j) ∈ domxs (denoted by ◦) for which xs(k, j)
enters the set Ds, closeness between x and xs is not pos-
sible for a particular t = ks. As the notion of closeness
defined in Definition 3.2 states, the desired level of close-
ness is obtained by considering the distance between
graphs of x and xs. (See also the end of Section 4.)

As indicated earlier, the origin, i.e., the compact set
A = {(0, 0)}, is globally asymptotically stable for HBB.
By Theorem 5.3, the set A is semiglobally practically
asymptotically stable for HBB

s . This is depicted in Fig-
ure 5. We emphasize that this is an infinite horizon re-
sult saying that, for arbitrarily large time, the state x
is close to A. It is not a statement that, for arbitrarily
large time, the hybrid time domains of the simulated so-
lutions are close to the hybrid time domains of the true
solutions. Indeed, the true solutions exhibit Zeno behav-
ior whereas the simulated solutions do not. △

6 Conclusion

We introduced a framework for simulation of hybrid sys-
tems H = (C,F,D,G) that features a simulator model
Hs = (Cs, Fs, Ds, Gs) as a function of the step size s.
We have given conditions on the data (Cs, Fs, Ds, Gs) of
the hybrid simulator Hs that guarantee structural prop-
erties of simulated solutions to hybrid systems including
closeness between solutions and simulated solutions on

t
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Fig. 4. Closeness between solutions and simulated solutions.
(a) Discrete arc xs (+), exact hybrid arc solution x (black)
and exact hybrid time domain (red) are shown. Their graphs
are close until some finite hybrid time (T ′, J ′). Parameters:
s = 0.01sec, x1(0, 0) = 6m, x2(0, 0) = 0.1m/s, γ = 9.8m/s2 ,
and ̺ = 0.6. The circled points in xs are not close to x at the
same hybrid time instant – the closeness property is between
the graphs of xs and x.

xs

t
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Fig. 5. Projection to the t axis of a simulated (and interpo-
lated) solution to the bouncing ball nearby A.

compact time domains, and semiglobal practical stabil-
ity of compact sets under simulations. We have shown
how these new results enable us to establish that, for
the proposed framework, asymptotically stable compact
sets are continuous in the step size. We illustrated the
concepts and results in several examples.
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