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Abstract— We apply recent results on robust global asymp-
totic stabilization of the attitude of a single rigid body to the
problem of synchronizing the attitude of a network of rigid
bodies using graph-local information. The proposed synchro-
nization scheme relies on a hysteretic hybrid feedback based
on the unit quaternion representation of rigid body attitude
to achieve a global synchronization result that is robust to
measurement noise. While the hysteretic feedback manages
a trade-off between robustness to measurement noise and
unwinding, the scheme necessitates the communication of a
single binary logic variable between neighboring rigid bodies.

I. INTRODUCTION

The problem of attitude alignment or synchronization

among multiple rigid bodies (spacecraft, in particular) has

received increasing attention in the recent literature (e.g.

[1]–[9]) due to advances in technology and the promise

of multiple spacecraft missions in deep space exploration

[10]–[12]. However, despite the vast literature on attitude

alignment or synchronization of rigid bodies, to the best

of the authors knowledge, none of those works address a

subtle topological obstruction to the global synchronization

of rigid body attitude. In particular, the attitude of a rigid

body (and the relative attitude between two rigid bodies)

evolves on the compact manifold, SO(3), which precludes

the existence of a continuous feedback control law that is

globally asymptotically stabilizing [13]. Further troubling is

the fact that discontinuous state feedback may produce global

asymptotic stability without robustness to arbitrarily small

measurement noise, as pointed out in [14]–[16].

This topological obstruction also extends to control laws

based on parametrizations of SO(3). In particular, any three-

parameter parametrization of SO(3) cannot be globally

nonsingular [17], which hampers global control design based

on such parametrizations. When the globally nonsingular unit

quaternions are used to parametrize SO(3) by means of a

two-to-one covering map, it creates the need to stabilize a

disconnected set of two points in the quaternion space [15].

When this two-to-one cover is neglected, the resulting control

laws can induce the unwinding phenomenon [13].
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In this paper, we apply the hybrid control technique in

[15] to the quaternion-based attitude synchronization scheme

in [3]. The result is a decentralized quaternion-based hybrid

feedback that robustly and globally achieves synchronization

of spacecraft attitude. The enabling mechanism for this result

is a logic variable associated with each relative attitude that

determines the direction of rotation. The logic variable is

updated in a hysteretic fashion, which manages a trade-

off between robustness and unwinding. Interestingly, this

scheme necessitates the communication of this binary logic

variable between neighboring spacecraft and it is doubtful

that a robust global asymptotic stability result could be

accomplished otherwise.

This paper is organized as follows. Section II discusses

the multi-agent framework borrowed from [3], [18], attitude

representation by unit quaternions, attitude kinematics and

dynamics, relative error coordinates, and the hybrid systems

framework borrowed from [19], [20]. Section III introduces

the decentralized hybrid synchronization scheme and proves

the robust global synchronization result. Finally, we make

some concluding remarks in Section IV.

II. PRELIMINARIES

In this section, we introduce our multi-agent framework,

review attitude representation by quaternions, and define the

synchronization problem as robust global asymptotic stability

for a compact set.

A. Multi-agent Framework

Following [3], [18], we consider a network of N rigid

bodies (also, agents), whose inter-agent information flow

is represented by a graph. When two rigid bodies in the

network have access to relative attitude information and can

communicate a single binary logic variable, we let them

be connected by a link of the graph. While the relative

attitude sensing and information sharing is assumed to be

bidirectional, we use a directed graph for convenience in

defining error coordinates. For each graph link connecting

two vertices (agents), we arbitrarily assign a positive end and

a negative end. Let M denote the total number of graph links,

let N = {1, . . . , N} denote the set of agent indices, and let

M = {1, . . . ,M} denote the set of graph link indices. Then,

letting M+
i ⊂ M denote the set of links for which agent i

is the positive end and M−
i ⊂ M denote the set of links

for which node i is the negative end, we define the N ×M
incidence matrix [21] B as

bik =







+1 k ∈ M+
i

−1 k ∈ M−
i

0 otherwise.

(1)



We note that the rank of B is N − 1 when the graph

is connected and that the columns of B are linearly in-

dependent when no cycles exist in the graph. Finally, let

1 = [1 · · · 1]⊤ ∈ R
N . It follows from (1) that B⊤

1 = 0,

that is, 1 is in the null space of B⊤.

B. Attitude Representation by Quaternions

The attitude of a rigid body is an element of the special

orthogonal group of order three,

SO(3) = {R ∈ R
3×3 : R⊤R = I,detR = 1},

where I ∈ R
3×3 denotes the identity matrix. We define the

map S : R
3 → R

3×3 as

S(ǫ) =





0 −ǫ3 ǫ2
ǫ3 0 −ǫ1
−ǫ2 ǫ1 0



 .

Note that for two vectors x, y ∈ R
3, S(x)y = x×y, where ×

denotes the vector cross product and that S(x)⊤ = −S(x).
Let the n-dimensional unit sphere embedded in R

n+1 be

denoted as Sn = {x ∈ R
n+1 : x⊤x = 1}. Then, members

of SO(3) are often parametrized in terms of a rotation θ ∈
R about a fixed axis n̂ ∈ S2 by the so-called Rodrigues

formula, the map R : R × S2 → SO(3) defined as

R(θ, n̂) = I + sin(θ)S(n̂) + (1 − cos(θ))S2(n̂). (2)

In this paper, we utilize the unit quaternion parametrization

of SO(3) that associates every element of SO(3) with

exactly two elements of S3. In the sense of (2), a unit

quaternion, q, is defined as

q =

[
η
ǫ

]

= ±

[
cos(θ/2)
sin(θ/2)n̂

]

∈ S3, (3)

where η ∈ R and ǫ ∈ R
3, represents an element of SO(3)

through the map R : S3 → SO(3) defined as

R(q) = I + 2ηS(ǫ) + 2S2(ǫ). (4)

For convenience in notation, we will often write a quaternion

as q = (η, ǫ), rather than in the form of a vector. We note a

convenient “rotational invariance” property of R.

Lemma 2.1: For any q = (η, ǫ) ∈ S3, the map R satisfies

R(q)ǫ = R⊤(q)ǫ = ǫ.

Proof: This result follows directly from the definition

of R in (4) and the fact that for any ǫ ∈ R
3, S(ǫ)ǫ = 0.

With the identity element I = (1, 0) ∈ S3, each unit

quaternion q ∈ S3 has an inverse q−1 = (η,−ǫ) under the

quaternion multiplication rule

q1 ◦ q2 =

[
η1η2 − ǫ⊤1 ǫ2

η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]

,

where qi = (ηi, ǫi) ∈ R
4 and i ∈ {1, 2}. With this multipli-

cation rule, we have that R−1(q) = R⊤(q) = R(q−1) and

that R(q1)R(q2) = R(q1 ◦ q2).

While quaternion multiplication is associative and distribu-

tive, it is not commutative in general. Let ν : R
3 → R

4 be

defined as the map

ν(x) =

[
0
x

]

. (5)

Then, using the definition of quaternion multiplication, we

have that

q1 ◦ q2 = q2 ◦ q1 + 2ν(S(ǫ1)ǫ2). (6)

Quaternion multiplication is also related to the rotation of

vectors. Note that for any x ∈ R
3, it follows that xx⊤ =

S2(x) + x⊤xI . Then, it follows that for any q ∈ S3,

q ◦ ν(x) ◦ q−1 = ν(R(q)x) (7)

Finally, when qi are differentiable functions, we have the

following chain rule,

˙︷ ︸︸ ︷

q1(t) ◦ q2(t) = q̇1(t) ◦ q2(t) + q1(t) ◦ q̇2(t), (8)

and the property that differentiation commutes with quater-

nion inverse,
˙︷︸︸︷

q−1 = (q̇)−1. (9)

C. Kinematics and Dynamics

Let Ri and ωi denote the ith agent’s attitude and angular

velocity, respectively, where Ri indicates a rotation of vectors

given in the body frame to vectors in the inertial frame and ωi

is defined in the body frame. Written with rotation matrices,

the attitude kinematics of the ith agent are

Ṙi = RiS(ωi) Ri ∈ SO(3). (10)

When written with unit quaternions, (10) becomes

q̇i =
1

2
qi ◦ ν(ωi) qi ∈ S3. (11)

The quaternion kinematics (11) can also be written as a

matrix multiplication:
[
η̇i

ǫ̇i

]

=
1

2

[
−ǫ⊤i

ηiI + S(ǫi)

]

ωi η2
i + ǫ⊤i ǫi = 1. (12)

Assuming rigid body motion, the attitude dynamics for the

ith agent are given by Euler’s equation as

Jiω̇i = S(Jiωi)ωi + τi, (13)

where Ji = J⊤
i > 0 is the inertia matrix of the ith agent

and τi is the control torque input for the ith agent.

D. Error Coordinates and the Synchronization Problem

The attitude synchronization objective is to align all agents

at the same attitude and achieve a desired synchronized

rotation using only information that is local to each agent. In

this direction, we define graph-based error coordinates. For

every k ∈ M, we define the relative attitude and angular

velocities for each graph link as

q̃k = q−1
j ◦ qi

ω̃k = ωi −R⊤(q̃k)ωj

(14)



where k ∈ M+
i ∩M−

j , for i 6= j. That is, agent i and agent

j are the positive and negative vertex for link k, respectively.

We group these variables together as

q̃ = (q̃1, . . . , q̃M )

ω̃ = (ω̃1, . . . , ω̃M )

ω = (ω1, . . . , ωN ).

(15)

Then, to express ω̃ in terms of ω, we define the 3N × 3M
Rotational Incidence Matrix B̄(q̃) in terms of its 3× 3 sub-

matrices as

b̄ik(q̃k) =







I k ∈ M+
i

−R⊤(q̃k) k ∈ M−
i

0 otherwise,

(16)

where i ∈ N and k ∈ M. Then, it follows from (14), (15),

and (16) that

ω̃ = B̄⊤(q̃)ω. (17)

Using the properties of quaternion multiplication and

differentiation in (6), (7), (8), and (9), the error quaternion

kinematics are given as

˙̃qk =
1

2
q̃k ◦ ν(ω̃k) ∀k ∈ M. (18)

To synchronize the angular rate of each agent to a constant

desired angular rate, ωd, we assume that each agent has

access to ωd. The angular rate error for each agent is defined

as

ω̄i = ωi − ωd, (19)

where i ∈ {1, . . . , N}. This definition yields the angular rate

error dynamics for each agent as

Ji ˙̄ωi = S(Jiωi)ω̄i + S(Jiωi)ωd + τi. (20)

We let

Xo = S3N
× R

3N xo = (q, ω) ∈ Xo

denote the open-loop state space and state, respectively,

where S3N
denotes N copies of S3. For two matrices

X ∈ R
n×m and Y ∈ R

p×q , we let X ⊗ Y denote the

Kronecker product of X and Y . That is, X⊗Y is the np×mq
matrix

X ⊗ Y =






x11Y · · · x1mY
...

. . .
...

xn1Y · · · xnmY




 .

Then, supposing that the graph is fixed a priori, the

synchronization objective is to globally and asymptotically

stabilize the compact set

Ao = {xo ∈ Xo : q̃ = 1 ⊗ I, ω̄ = 0} .

E. Hybrid Systems Framework

A hybrid system is a dynamical system that allows for both

continuous and discrete evolution of the state. In this paper,

we follow the framework of [19], [20], where a hybrid system

H is defined by four objects: a flow map, F , governing

continuous evolution of the state by a differential inclusion,

a jump map, G, governing discrete evolution of the state

by a difference inclusion, a flow set, C, dictating where

continuous state evolution is allowed, and a jump set, D,

dictating where discrete state evolution is allowed. Given a

state x ∈ R
n, we write a hybrid system in the compact form,

H

{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D.

Solutions to hybrid systems are defined on hybrid time

domains, which are a subset of [0,∞) × {0, 1, . . . }, and

parametrized by t, the amount of time spent flowing, and

j, the number of jumps that have occurred. For a solution

x to a hybrid system, its hybrid time domain is denoted by

dom x. For further details on the concept of solution, we

refer the reader to [19], [20].

Robustness of stability to perturbation of the data of H
is dependent on the properties of the data. In this work,

the proposed hybrid control system satisfies the regularity

properties [20, A1)-A3)], consequently providing robustness

of stability to small perturbation. In particular, the flow map

of our closed-loop system is continuous, the jump map is

outer semicontinuous, and the flow and jump sets are closed.

III. ROBUSTLY SYNCHRONIZING HYBRID CONTROLLER

The hybrid control strategy proposed here assigns a logic

variable to each graph link that dictates the desired direction

of rotation for the associated error quaternion. This logic

variable will change hysteretically to ensure robustness to

measurement noise. In this paper, we assume that the agent at

the positive vertex of each link stores and manages the logic

variable and can communicate this variable to the negative

vertex of the link. Both agents must have access to the logic

variable, since if they are unaware of a common desired

rotation direction, they may rotate in “opposite” directions

and stall the synchronization process.

In this direction, we define a local hybrid dynamic con-

troller for each agent. Let

h = (h1, . . . , hM ) ∈ {−1, 1}M

denote a vector of logic variables, where hk is associated

with link k ∈ M. Essentially, hk will indicate to which pole

of S3 that q̃k should be regulated. Our hybrid controller will,

based on set inclusion conditions, either keep hk constant, or

instantaneously change its value. We define the state space

and state as

X = Xo × {−1, 1}M x = (xo, h) ∈ X .

Let 0 < δ < 1. Then, we define the flow and jump sets for

the ith agent as

Ci = {x ∈ X : ∀k ∈ M+
i hkη̃k ≥ −δ}

Di = {x ∈ X : ∃k ∈ M+
i hkη̃k ≤ −δ}.

(21)



We define the set-valued maps γik : X ⇉ {−1, 1} and γi :
X ⇉ {−1, 1}M as

γik(x) =

{

sgn(η̃k) k ∈ M+
i

hk otherwise
γi(x) =






γi1(x)
...

γiM (x)




 ,

(22)

where ⇉ denotes a set-valued mapping, and sgn : R ⇉

{−1, 1} is defined as

sgn(s) =







1 s > 0

−1 s < 0

{−1, 1} s = 0.

We propose the hybrid controller for the ith agent as

ḣ = 0 x ∈ Ci

h+ ∈ γi(x) x ∈ Di,
(23)

which takes ωi, ωd and q̃k, k ∈ M+
i ∪ M−

i as input and

produces the torque output

Ti(x) = −S(Jiωi)ωd −
M∑

k=1

bikhkℓk ǫ̃k − Kiω̄i, (24)

where ℓk > 0 for all k ∈ M and Ki = K⊤
i > 0 for all

i ∈ N .

This feedback obeys the structure of the graph. In partic-

ular, the flow and jump sets defined in (21) for each agent

depend only on hk and η̃k, which are assumed to be shared

between the agents sharing the graph link k. Moreover, while

the jump map for agent i, (22), is written (as a convenience)

to operate on the entire h vector, it only changes those

variables to which agent i has access. Finally, the torque

output for agent i defined in (24) depends only on local

information, which is evident from the definition of bik in

(1).

As a further remark, this control formulation, like those

in other quaternion-based synchronization schemes (e.g. [2]–

[6], [9]), assumes that each two agents sharing graph link

k have a consistent local representation of q̃k. To resolve

any ambiguity, only some agreement of the initial value of

q̃k is needed between agents. From that point, each agent

can select the measurement q̃k that satisfies the kinematic

equation (18).

To analyze the stability of the closed-loop system, we

group the kinematic equations for each link and dynamic

equations for each agent to form a more efficient notation.

Let
J = diag (J1, . . . , JN )

K = diag (K1, . . . ,KN )

S (ω) = diag (S(J1ω1), . . . , S(JNωN ))

H = diag (h1, . . . , hM )

L = diag (ℓ1, . . . , ℓM )

τ = (τ1, . . . , τN )

ω̄ = (ω̄1, . . . , ω̄N )

η̃ = (η̃1, . . . , η̃M )

ǫ̃ = (ǫ̃1, . . . , ǫ̃M ).

Then, we can write the open-loop error dynamics as

˙̃qk =
1

2
q̃k ◦ ν(ω̃k) ∀k ∈ M

J ˙̄ω = S (ω)ω̄ + S (ω)(1 ⊗ ωd) + τ,
(25)

where ω̄ is defined compactly as

ω̄ = ω − 1 ⊗ ωd. (26)

To prepare for theorems related to robustness of stability

to measurement noise in the sequel, we group the error states

together as

x̄o = (q̃, ω̄)

and denote their dynamics, given by (25) as

˙̄xo = ( ˙̃q, ˙̄ω) = Fo(xo, τ).

When multiple agents employ a hybrid controller, we must

define flow and jump sets that capture the hybrid dynamics

of the network as a whole. In this direction, we define

C =

N⋂

i=1

Ci

= {x ∈ X : ∀k ∈ M hkη̃k ≥ −δ}

D =

N⋃

i=1

Di

= {x ∈ X : ∃k ∈ M hkη̃k ≤ −δ}.

(27)

That is, a jump occurs when one agent’s controller requires a

jump, but otherwise, the system flows. Moreover, when there

exist i, j ∈ M, with i 6= j and x ∈ Di, multiple jumps can

occur at the same time instant, in no particular order. We

model this as follows. Let us define the set of agents that

require a change in their local logic variables as

I(x) = {i ∈ N : x ∈ Di}.

Then, we define a composite jump map as

Γ(x) =
⋃

i∈I(x)

{γi(x)},
(28)

which combines the possible outcomes when I(x) is

nonempty. Then, with the feedback

T (x) =






T1(x)
...

TN (x)




 = −S (ω)(1⊗ωd)−(BHL ⊗I)ǫ̃−K ω̄

defined in (24) and assuming that that neither q nor ω
experience any change over jumps, we define the flow and

jump maps for the closed-loop error dynamics as

F (x) =

[
Fo(xo, T (x))

0

]

G(x) =

[
xo

Γ(x)

]

Then, we write the closed-loop error dynamics in the com-

pact form
˙̄x = F (x) x ∈ C

x̄+ ∈ G(x) x ∈ D,

where x̄ = (x̄o, h), or expand them as



˙̃qk =
1

2
q̃k ◦ ν(ω̃k) ∀k ∈ M

J ˙̄ω = S (ω)ω̄ − (BHL ⊗ I)ǫ̃ − K ω̄

ḣ = 0







x ∈ C

q̃+ = q̃

ω̄+ = ω̄

h+ ∈ Γ(x)







x ∈ D.

(29)

Proceeding to a stability and convergence proof, we make

an observation based on Lemma 2.1.

Corollary 3.1: For any diagonal matrix

D = diag(d1, . . . , dM ),

the rotational incidence matrix satisfies

B̄(q̃)(D ⊗ I)ǫ̃ = (BD ⊗ I)ǫ̃, (30)

where B̄ is as defined in (16).

Proof: Let B̄i(q̃) =
[
b̄i1 · · · b̄iM

]
. Expanding the

left-hand side of (30) by means of (16), we see that

B̄i(q̃)(D ⊗ I)ǫ̃ = B̄i(q̃)






d1ǫ̃1
...

dM ǫ̃M




 =

M∑

k=1

b̄ik(q̃)dk ǫ̃k

=
∑

k∈M+

i

dk ǫ̃k −
∑

p∈M+

i

R⊤(q̃p)dpǫ̃p.

(31)

Applying Lemma 2.1, it follows that R⊤(q̃k)ǫ̃k = ǫ̃k for all

k ∈ M. Finally, it follows from (1) and matching terms in

(31) that

∑

k∈M+

i

hk ǫ̃k −
∑

p∈M−

i

R⊤(q̃p)dpǫ̃p =

M∑

k=1

bikdk ǫ̃k

so that for every i ∈ N ,

B̄i(q̃)(D ⊗ I)ǫ̃ = (BiD ⊗ I)ǫ̃,

where Bi =
[
bi1 · · · biM

]
. This proves the result.

We can now prove stability of the set

A = {x ∈ X : q̃ = H1 ⊗ I, ω̄ = 0}

and global attractivity of the set

E = {x ∈ C : (BHL ⊗ I)ǫ̃ = 0, ω̄ = 0}

Under the additional assumption that the graph is acyclic (B
has full column rank of N − 1), we see that E = A.

Lemma 3.2: If 0 < δ < 1, ℓk > 0 for all k ∈ M, and B
has full column rank, then, E = A.

Proof: If B has full column rank and ℓk > 0 for all

k ∈ M, it follows that (BHL ⊗ I)ǫ̃ = 0 implies that ǫ̃ = 0
and |η̃k| = 1 for all k ∈ M. If x ∈ C, then for all k ∈ M, it

follows that hkη̃k ≥ −δ > −1. Finally, since hk ∈ {−1, 1},

it follows that hkη̃k = 1 for all k ∈ M. By definition,

it follows that q̃k = hkI for all k ∈ M, or equivalently,

q̃ = H1 ⊗ I.

Theorem 3.3: Suppose that 0 < δ < 1, ℓk > 0 for all

k ∈ M, and Ki = K⊤
i > 0 for all i ∈ N . Then, the

compact set A is stable and the compact set E ⊃ A is

globally attractive for the closed-loop error dynamics (29).

When B has full column rank of N − 1, A = E so that A
is globally asymptotically stable.

Proof: Consider the Lyapunov function

V (x) = 21⊤L (1 − Hη̃) +
1

2
ω̄⊤J ω̄

= 2
∑

k∈M

ℓk(1 − hkη̃k) +
1

2

∑

i∈N

ω̄⊤
i Jiω̄i

Since ℓk > 0 for all k ∈ M and Ji = J⊤
i > 0 for all

i ∈ N , V (X \A) > 0 and V (A) = 0. We now examine the

evolution of V along solutions of (29).

First, we calculate the change in V along flows as

〈∇V (x), F (x)〉 = ω̃⊤(HL ⊗ I)ǫ̃

+ ω̄⊤ (S (ω)ω̄ − (BHL ⊗ I)ǫ̃ − K ω̄) .

Recalling from (17) that ω̃ = B̄⊤(q̃)ω and noting that HL
is diagonal, we apply Corollary 3.1 and see that

ω̃⊤(HL ⊗ I)ǫ̃ = ω⊤B̄(q̃)(HL ⊗ I)ǫ̃ = ω⊤(BHL ⊗ I)ǫ̃.

Then, noting that S ⊤(ω) = −S (ω), it follows that

ω̄⊤S (ω)ω̄ = 0, and

〈∇V (x), F (x)〉 = −ω̄⊤K ω̄ + ω⊤(BHL ⊗ I)ǫ̃

− (ω − 1 ⊗ ωd)
⊤

(BHL ⊗ I)ǫ̃.

Finally, applying the property that

(1 ⊗ ωd)
⊤(BHL ⊗ I) = (1⊤BHL ⊗ ωd),

and recalling that 1
⊤B = 0, it follows that

〈∇V (x), F (x)〉 = −ω̄⊤K ω̄.

Since Ki = K⊤
i > 0 for all i ∈ N , 〈∇V (x), F (x)〉 ≤ 0 for

all x ∈ C \ A and so V is nonincreasing along flows.

Let I(x) = {i ∈ N : x ∈ Di}. Examining V over jumps,

we see that

V (G(x)) − V (x) ∈
⋃

i∈I(x)

{

2
M∑

k=1

ℓk(hk − γik(x))η̃k

}

.

Then, since

2

M∑

k=1

ℓk(hk − γik(x))η̃k = 2
∑

k∈M+

i

ℓk(hk − sgn(η̃k))η̃k

= 2
∑

k∈M+

i

ℓk(hkη̃k − |η̃k|)

and for i ∈ I(x), there exists k ∈ M+
i such that hkη̃k ≤ −δ,

it follows that

V (G(x)) − V (x) ≤ −4ℓkδ ≤ −4δ min
k∈M

ℓk < 0



so that V (G(x))− V (x) < 0 for all x ∈ D. It follows from

[22, Theorem 7.6] that A is stable.

Applying an invariance principle for hybrid systems, [22,

Theorem 4.7], we see that closed-loop trajectories approach

the largest weakly invariant set contained in

W = {x ∈ C : 〈∇V (x), F (x)〉 = 0}

= {x ∈ C : ω̄ = 0}.

Since holding ω̄ ≡ 0 implies that ˙̄ω = 0, it follows from

(29) that x must converge to E = {x ∈ C : (BHL ⊗ I)ǫ̃ =
0, ω̄ = 0}. The result then follows from Lemma 3.2.

We now state a result asserting the robustness of stability

to measurement noise in terms of a KL estimate.

Theorem 3.4: Suppose that A is globally asymptotically

stable for (29). Then, there exists a class-KL function β :
R≥0 × R≥0 → R≥0 such that for each γ > 0 and any

compact set K ⊂ R
3N there exists α > 0 such that for each

measurable e : R≥0 → αB, the solutions to

˙̄x =

[
Fo(xo, T (xo + e, h))

0

]

(xo + e, h) ∈ C

x̄+ =

[
xo

Γ(xo + e, h)

]

(xo + e, h) ∈ D

with initial condition x(0, 0) ∈ S3N
×K×{−1, 1}M satisfy

|x(t, j)|A ≤ β (|x(0, 0)|A, t + j) + γ ∀(t, j) ∈ dom x.

IV. CONCLUSION

Existing attitude synchronization schemes fall victim to

topological difficulties encountered when designing control

laws for global rigid body attitude control. In particular, any

continuous control law will fail to be globally asymptotically

stabilizing [13] and discontinuous state feedback control is

not robust to measurement noise [14]–[16]. To solve these

issues, we employed a hybrid control law that utilizes a sin-

gle binary logic variable associated with each relative attitude

error that hysteretically decides the direction of rotation. The

result is a robust global asymptotic synchronization scheme

that manages a trade-off between unwinding and robustness

to measurement noise through the hysteresis width.

An interesting feature of the hybrid feedback presented

here is that it requires the communication of a single binary

logic variable between neighboring rigid bodies. It seems

doubtful that a robust synchronization scheme can exist

without the communication of such a variable, as the relative

attitude between two rigid bodies is dependent on both neigh-

bors. In particular, when there is a consensus on the rotation

direction between neighbors and this consensus is changed

hysteretically (as proposed in this paper), small amounts of

measurement noise cannot stall the synchronization process.

In contrast, when local control laws are based solely on

relative attitude measurements, continuous control laws are

topologically infeasible and discontinuous control laws are

susceptible to measurement noise.
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