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~ Abstract—The unit quaternion is a pervasive representa- lead to dubious claims regarding the globality of asymptoti
tion of rigid-body attitude used for the d(_aS|gn and analysis stability (see e.g. [1], [12]). Nevertheless, unit quaitems
of feedback control laws. Often, quaternion-based feedback e gfjll ysed by many authors (including the authors of this

control laws require an additional mechanism that lifts a todav to desian feedback trol algorith
continuous attitude trajectory to the unit quaternion space. paper) today to design feedback control algorithms.

Lifting mechanisms that are memoryless, for example, selecting A feedback control law designed using a quaternion
the quaternion having positive scalar component, have a limited representation of attitude may not lmnsistentwith a
domain where they remain injective and, when used globally, control law defined orsO(3). That is, for every rigid-body
introduce discontinuities into the closed-loop system. We show attitude, the quaternion-based feedback may take on one

that such discontinuities can be exploited by an arbitrarily small f tw ibl | When this is th vsis f
measurement disturbance to stabilize attitudes far from the O WO POSSIDIE values. Ywhen this IS the case, analysis for

desired attitude and destroy “global” attractivity properties. quaternion-based feedback is often carried oufinwith
a lifted dynamic equation, but these results are not directl
I. INTRODUCTION related to a feedback system that takes measurements from

Controlling the attitude of a rigid body is, perhaps, one opO(3). This obviously begs the question, how is a unit
the canonical nonlinear control problems, with applicasio guaternion obtained from a measurement of attitude? While
in aerospace and publications dating back many decadgalculating the set of two quaternions that represent angive
[1]-[4]. A fundamental characteristic of attitude conttoat attitude is a fairly simple operation (see e.g. [13]-[18fk
imparts a fascinating difficulty is the topological comptgx Process of selecting which quaternion to use for feedback
of the underlying state spac8Q(3). In fact, SO(3) is not is a less obvious operation. As noted in [4], it is often the
a vector space, but a compact manifold without boundar§ase that the quaternion with positive “scalar” componsnt i
As a result of degree theory, this implies ti#®(3) does used for feedback. This operation is non-global (the scalar
not have the topological property of contractibility [5, .Ex Component could easily be zero) and discontinuous.

2.4.6]. Furthermore, attraction basins of asymptoticaty= N this paper, we show that when a discontinuous quater-
ble equilibrium points of differential equations with Idlya  Nion selection scheme is paired with a widely-used incon-
Lipschitz right-hand sides are necessarily contractiifle [Sistent quaternion-based feedback, any “global” attrgti
Theorem 1], [7, Theorem 21] and in fact, diffeomorphic tgoroperties are not robust to arbitrarily small measurement
some Euclidean vector space [8, Theorem V.3.4]. These fadlisturbances. In fact, we construct an explicit measurémen
preclude the existence of a continuous, time-invariaatest disturbance defined 080O(3) that stabilizes a region about
feedback control law that globally asymptotically statsk the manifold of180° rotations with zero angular velocity.

a particular attitude [7, Corollary 5.9.13]. This paper is organized as follows. Section Il provides

Often, unit quaternions, which evolve of® (the set background material on attitude control and unit quater-
of unit-magnitude vectors iR*), are used to parametrize NONS. Section Il reconstructs the select-the-quatermwdh-
SO(3). This parametrization provides for a minimal globallyPOsitive-scalar-component mechanism in terms of a memo-
nonsingular representation of rigid-body attitude [9]éns ryless map that selects a quaternion according to a metric.
of a topologically simpler space in several respects; hewey We show that this memoryless map has a limited range
there are exactly two unit quaternions corresponding to tff applicability when used to lift paths fron$O(3) to
same rigid-body attitude. This creates the need to stebilis’ and can cause extreme noise sensitivity and loss of
a disconnected set in the covering space [10], which has figbustness when used as part of an inconsistent quaternion-
own topological obstructions [11]. As discussed in [6],.gte based feedback.
topological subtleties can cause confusion and sometimes, || At1iTuDE KINEMATICS, DYNAMICS, AND UNIT
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by a matrix multiplicationy x z = [y], z, where
—Ys
0

0 Y2
Y3 —Yi| -
Y2 U 0

The attitude of a rigid body is denoted by € SO(3),

[yl

R :[0,1] — SO(3) and for everyp € Q(R(0)), there exists a
unique continuous patf, : [0, 1] — S? satisfyingg,(0) = p
andR(g,(t)) = R(t) for everyt € [0,1] [19, Theorem 54.1].
We call any such path, a lifting of R overR.

It is not just paths that can be lifted fro®0(3) onto
S3. In fact, flows and vector fields defined 6®(3) can be

where R transforms vectors expressed in the local bodiifted ontoS? as well [6]. In this direction, given a Lebesgue

frame of the rigid body to an inertial frame. The angulameasurable functionw :

rate of the rigid body is denoted asandJ = J" > 0 is
the symmetric and positive definite inertia matrix. When

[0,1] — R?® and an absolutely
continuous pattR : [0, 1] — SO(3) satisfying (1a) for almost
all t € [0,1], anyq : [0,1] — S that is a lifting of R over

is a vector of external torques, the kinematic and dynamiR satisfies thequaternion kinematic equation

equations are

R = R[],
Jw = [Jw], w+T.

(1a)
(1b)

Let the n-dimensional unit sphere embeddedRit! be
denoted ass” = {r € R**! : z"x = 1}. Then, members
of SO(3) are often parametrized in terms of a rotatidre
R about a fixed axisu € S? by the so-called Rodrigues
formula—the magR : R x S? — SO(3) defined as

R(6,u) = I +sin(0) [u], + (1 — cos(d)) [u]2X )
In the sense of (2), a unit quaterniap,is defined as

R b SR

wheren € R ande € R3, represents an element 60(3)
through the magR : S* — SO(3) defined as

R(q) =1+ 2n[e, +2[d>. @)

Note thatR(q) = R(—q) for eachq € S®. We denote the
set-valued inverse ma@ : SO(3) = S* as

Q(R) ={q€S’:R(q) = R}. (5)

For convenience in notation, we will often write a quatemio

asq = (n,¢), rather than in the form of a vector.
With the identity elemeni = (1,0) € S3, eachq € S?
has an inversg—! = (1, —¢) under the multiplication rule

-
mmn2 — €1 €

® =
a2 ni€x + n2€1 + [e1], €2

)

whereg; = (n;,¢;) € R* andi € {1,2}. With this definition,
the covering mapgR is a group homomorphism, satisfying

R(q1)R(q2) = R(q1 © q2) (6)

The quaternion state spac®?, is a covering spaceor
SO(3) andR : S* — SO(3) is the covering map Precisely,

VQI7Q2 € 83-

for every R € SO(3), there exists an open neighborhood

U € SO(3) of R such thatQ(U) is a disjoint union of open
setsOq, O,, where, for eactk € {1,2}, the restriction ofR
to Oy, is a diffeomorphism. In particular, this implies th&t
is everywhere a local diffeomorphism.

= ovw)

: ™

i= ] = SAW@e,

for almost allt € [0,1], where the maps : R* — R* and
A :S? — R**3 are defined as
—€

v =0 A=

| NCONSISTENTQUATERNION-BASED CONTROL
LAWS AND PATH LIFTING

T

: 8

It is quite commonplace in the attitude control literature
to design a feedback based upon a quaternion representation
of rigid-body attitude. That is, the control designer cesaa
continuous function: : S3 x R? — R? and closes a feedback
loop around (1) by setting(t) = x(q(t),w(t)), whereg(t)
is selected to satisffR(¢(t)) = R(t), for eacht € Rx.
When the feedback satisfies

Vg € S?, 9)

we say thatx is consistent When consistent feedbacks are
used, there is little need for a quaternion representatien,
x might as well be defined in terms @ € SO(3).

When a quaternion-based feedbackiisonsistentthat is,

(10)

r(g,w) = K(—¢,w)

JgeS®  k(gw) # K(—q,w),

the resulting feedbaclloes not define a unique vector field
on SO(3) x R? because for som& € SO(3) the feedback
k(Q(R),w) is multi-valued [6]. At this point, the control
designer must, for every € R, choose whichg(t) €
Q(R(t)) to use for feedback. Or, in the topological terms
of lifting, the control designer must choose how to lift the
measured attitude trajectory $0(3) to S3. In this direction,
we provide a quote from the seminal paper [4]:

“In many quaternion extraction algorithms, the sign
of 7 is arbitrarily chosen positive. This approach

is not used here, instead, the sign ambiguity is
resolved by choosing the one that satisfies the
associated kinematic differential equation. In im-

plementation, this would probably imply keeping

some immediate past values of the quaternion.”

There is much insight to be gained from this quotation,

A fundamental property of a covering space is that aspecially when viewed in the context of lifts ov&.
continuous path in the base space can be uniquely “liftedih particular, it suggests that inconsistent quaterniasebl
to a continuous path in the covering space. In terms afontrol lawsrequire an extra quaternion memory state to
SO(3) and S3, this means that for every continuous patHift the measuredSO(3) trajectory toS?. In this direction,



we reconstruct the discontinuous quaternion “extractionéross the manifold ofl80° rotations, where®; is multi-
algorithm mentioned in the quotation above in terms of aalued, or elseb; will produce a quaternion trajectory that
metric and use the ensuing discussion to motivate a hybrisl discontinuous. This can have disastrous effects vdhes
algorithm for on-line lifting of a measured attitude trafy  composed with an inconsistent feedback. We now examine
from SO(3) to S?, which is thoroughly examined in the such a feedback.

companion paper [20].

) IV. NON-ROBUSTNESS
Let P:S* — [0,2] be defined as

Let ¢ > 0 and letL : R? — R3 be a continuous function

P(q)=P(n,e)=1—-i'g=1-n. (11) satisfying
Then, the function? : S? x §* — [0, 2] defined as LO)=0  (w]2) <w'L(w), 17)
dlg,p)=P(g ' op)=1-q'p (12) Wwherey: R>q — Rx( is a continuous and strictly increasing
function satisfyingy(0) = 0. Consider the inconsistent

defines a metric 083. From a geometric viewpoint/(¢,p)  feedback
is the height ofp on S? “above” the plane perpendicular to ) T.
the vectorg at ¢. Given a set) C S3, we define the distance r*(g,w) = —ce = L(w) = cA(q) i — L(w). (18)
to @ from ¢ (in terms of the metriel) as In (18), thece term introduces a rotational spring force and
. . L(w) introduces damping. While this control law asymptoti-
dist(q, Q) = inf{d(q,p) : p € @} (13) ca(\II; stabilizeq(i, 0) fo?thge lifted closed-loop system )c/iefri)ned
When the set) in (13) takes the form of2(R) for some by (7), (1b), and setting = x*(¢,w), it renders(—i,0) an
R € SO(3), the distance function also takes a special formunstable saddle equilibrium. When composed with one

In particular, letQ(R) = {p, —p}. Then, might expect that the resulting feedback globally asymptot
) - ically stabilizes the identity element 80(3); however, we
dist(q, Q(R)) =1 — g p|. (14 show that any such expected global attractivity propegres

One candidate method to lift a path frof0(3) to S? not robust to arbitrarily small measurement disturbantres.
is to simply pick the quaternion representationftthat is Particular, we construct a malicious measurement dishaba
closest to a specific quaternion in terms of the medrién that exploits the discontinuity introduced l to stabilize

particular, let us define the map: S* x SO(3) = S? as the 180° manifold. _
Define the signum function : R — {—1,0,1} as

®(q, R) = argmin d(q, p) = argmaxq ' p.
pEQ(R) pEQ(R) (15) 1 5s>0

The map® has some useful properties, which we summarize o(s) =40 s=0 (19)
in the following lemmas. -1 s<0.
Lemma 1. Let g € S* and R € SO(3). The following are Then, for0 < ¢ < 7, consider the (discontinuous) function
equivalent: A :SO(3) x R3 — R(4,S?) defined as

1) ®(q, R) is single-valued, R(—6o(wu),u) cos < cos(m + 9)

2) 0= dist(¢, Q(R)) < 1, . AROu)w) = otherwise

3) ¢'p#£0forall pe Q(R) so thatg' ®(¢, R) > 0, (20)

4) R # R(m,u)R(q) for someu € §*. For any(R,w) € SO(3) x R?, the rotation matrixA (R, w)R

Given a fixedg € S, @ can be used to lift curves in constitutes an angular perturbation Bfin the amount of
SO(3) so long as it remains single-valued. 0 and asé decreases to zerd) converges to the identity

matrix. In particular, the parametércontrols the size of the

Lemma 2. For everyq € S, every continuous? : [0,1] = gisturbance. We note that (20) is well defined $M(3).
SO(3), and every continuoug : [0,1] — S? satisfying

d(4,¢(0)) < 1, R(q(t)) = R(t), and dist(¢, Q(R(t))) < 1 ~Lemma 3. For everyd € [0,7) and (R,w) € SO(3) x R?,
for all ¢ € [0,1], it follows that ®(g, R(t)) = ¢(t) for all A(R,w) is uniquely defined.

t € [0,1]. Proof. Suppose thaR = R (6, u) for somefd € R andu €

Since a common goal of attitude control is to regulaté’- Clearly, A(R,w) is uniquely defined when either = 0
R to I, one might choosé as a point of reference (since Of cos = cos(f + 2mZ) > cos(m + 0), since it does not

R(i) = I) and use the map; : SO(3) = S? defined as depend on eitheR or w in this case. S
Suppose thatos 6 < cos(m +¢) andw # 0. This implies

Pi(R) = ©(i, R). (16) thatR # I, since0 < § < m. Then, by Euler's theorem on

. . rotations, for anyv € S? and ¢ such thatkR = R(¢,v), it
Now, following 3) from Lemma 1 we see that ®;(R) > 0, must be the case that= v or 1 — —v (only whenR = 1),

that is,®; always chooses the quaternion with positive scalgt. B .
component, so long as it is single-valued. Further, Lemmaaémcen(_e’ —u) =R(6,u), it follows that
allows one to lift curves with®; so long asR does not A(R(¢,v),w) = R(—do(w'v),v) = R(—=do(w u),u).



So, we have shown that the value 4f is independent of Expressed in terms of rotation angle, we have equivalently,
the angle and axis representation used ®Ryrhence, it is a 1
uniquely defined or50(3) x R?. O V(R(0,u),w) = 5(1 + cosf) + inJw

Let ¢; : _SO(S) — S* be any single-valued selection sincetrace(I — R(6,u)) = 2(1 — cos ), so thatV (SO(3) x
of ®;, that is, qSi(R).: ®;(R) for all R # R(w,_u) ar)d R?) > 0 and V(R,w) = 0 if and only if R = R(m,v) and
¢i(R) € ®; otherwise. Now, we apply the noise signal , _ o Eyrthermore, the sub-level sets Gfare compact.
A to measurements of attitude before being converted t0 Hofina the function) : R¥*3 — R3 as
a quaternion for use with the inconsistent feedback (18) and ’

analyze the resulting closed-loop system. That is, we cepla 1 Azp — Agg
q with ¢;(A(R,w)R) in the control lawx* defined in (18). P(A) = 5 A1z — Az (26)
Becausep; and A are discontinuous, we use the notion Agy — Ajg
of Krasovskii solutions for discontinuous systems [21]. o
o . . Then, 1 satisfies trace A[w], = —2w'¢¥(A) and
I_Deflmtlon_ 4. Let f:R® — R". The Krasovskii regulariza- (R (6, u)) = usinf. Employing the Krasovskii regulariza-
tion of f is the set-valued mapping tion, we calculate the time derivative &f as
K f(x) = ﬂ conv f(z + €B) (21) V(R,w) € _% trace(—R [w], )
e>0
T T
where convB denotes the closed convex hull of the set +w (~KeAGi(AR,w)R) i - L(w))
B C R™ and B denotes the unit ball iiR™. Then, given = —wTL(w)
a function f : R® — R", a Krasovskii solutionto & = f(x) T(_2h(R) — K eAld (AR RN i
on an intervall C R is an absolutely continuous function Tt ( 21/}( ) A (AR, w) R)) ?2%)
satisfying

. where we have used the fact that [Jw], w = 0. Note
() € K f((t)) (22) that V(R,0) = 0 no matter what values the Krasovskii
for almost allt € 7. regularization may take.

Now, we let R = R(#,u) and henceforth constrain our
analysis to the case whetes < cos(r+0) andw # 0, SO
that A(R,w)R = R(0 — do(wu),u) and ¢;(A(R,w)R) is
single-valued. Also, in this region, the Krasovskii regida-
Theorem 5. Leta > 0, ¢ > 0, and > 0 satisfy tion of (24) is identical to (24). Recalling that selects the
guaternion with positive scalar component and noting that

0<é< % (J‘ + <9)2 n 8> <2 (23) R(&,)R(0,u) =R(0 + ¢, u), we can now write
& &

An important property of a Krasovskii regularization is
that K f(x) = f(z) for every z where the functionf is
continuous.

and define Gi(ARw)R) = (0 — bo(wTu))2
B ={(R(0,u),w) : cosf + (1/a)w " Jw < cos(m + §)}. o (cos (6 = do(w ' u))/2)) sin ((6 — do(w'u))/2) u|’

Then, the sefR(w,S?)} x {0} is stable and% is invariant and in particular,
for the Krasovskii regularization of the closed-loop syste

R =R,
Jo = [Jw], w — cA(¢i(A(R,w)R)) "1 — L(w).

Proof. Since we are studying Krasovskii solutions to (24),
we might normally need to find the Krasovskii regular-
ization of (24); however, the analysis in this proof obvi- a
ates the need for calculating the Krasovskii regularizatio V(R(0,u),w) < =y([|w]l2) —w vy sinf/
for rggions where the calc.ulation_is nontr.ivial. Since fc.he _wru(ca (COS <(9_50<w7u))/2))
function (R,w) — R][w], is continuous, its Krasovskii . T
regularization is identical to the original map. Also note #sin (0 = do(w w))/2)) . (29)

that, by definition of A and ¢;, the map (R,w) = Note that whensTu — 0, it follows that V(R (6, u),w) <0,

[J;ngw - .(Qsi(Ag(R’ W)R)’“g) IS continuous |2n the If__et so we further constrain our analysis from this point to the
{ (I ’y)’t“.’) '.Cosl <.§os(t7.r+l t), :‘;f 0.},-so||ts raso;zsn case whenvTu # 0. Now, without loss of generality, we
regularization is also identical to the original map on assume thatr — d < 0 < 7 -+ 8, where

Consider the Lyapunov function
g — 00 T =0 \m— — 00 T .
V(R,w) = a(1 — trace( — R)/4) + %w—r]w. (25) (cos (0= do (o ))/2) (m =0 =do(w >)230)

A¢i(A(R,w)R))i=

(24) o (cos ((0 — 5U(wTu))/2)) sin ((0 — 5J(wTu))/2) u.
(28)

Applying (28) and (17) to (27),



Now, sincec(w'u)? =1 andso(s) = |s|, we factor this small measurement disturbance. This is because at the dis-

term to arrive at continuity of ®; (on the manifoldR(,S?)), the feedback
. +oa o term cA(®;(R)) i opposes itself about the discontinuity.
V(R(0,u),w) < —y(lwll2) = |w " ul50(w u)sind Then, malicious noise signals like (20) can exploit the dis-
— wTuleo(wTu)o (r— (0 - 5U(WTU))) continuity_ pf the vector field to induge a cha_tterir]g _behavio
. T that stabilizes{R(w,S?)} x {0}. This is quite similar to
#sin (0 —do(w'w))/2) . (31) the inconsistent feedback;(q,w) = —o(n)e — w (when
Moreover, for anyr,s € R, it follows that o(s)o(r) = implemented with a lifted trajectory), which was shown in
a(ro(s)). Applying this relation to (31), we have [10] to exhibit extreme noise sensitivity that can destroy
_ a “global” attractivity properties of a desired attitude in a
V(R(O,u),w) < —v(||w|l2) — |wTu|§U(wTu) sin 6 kinematic setting.

T T The various failures ofb; have led several authors (e.qg.
= |w ulea (7 ~ )o(w u) +)) [22]) to derive sufficient conditions on the initial condi-
*Sin((9 —50(WT“))/2)« (32)  tions of (1) to ensure that thes0° attitudes are never
approached, thus obviating the use of a globally nonsimgula
representation of attitude like unit quaternions. Howgver
co ((m = 0)a(w u) +6)) sin ((0 — do(wu))/2) the issues with usingb; as a path-lifting algorithm are
a ) not a problem with the quaternion representation—theyearis
T EU(wTW sinf > 0. (33) because®; is a memoryless map fror8O(3) to S3. In
Now, we can apply trigonometric inequalities to analyzdarticular, ®; always chooses the closest quaternioni.to
(33). In particular, we have thasin6| < |6 — x| and since In general, when one compareg(R) with ¢ for some
1—cosf < 6%, we can use the properties ¢h andcosto R € SO(3) and ¢ € S?, ®(q, R) is multi-valued on the
deduce thagin(L (6 — do(wTu))) > 1 — 1(§ — 7). Hence, 2-D manifold {p € S* : pTq = 0}. However, when the
(33) holds when reference point for choosing the closest quaternion isvaitb
) to change, it is then possible to create a dynamic algorithm
co ((m—0)a(w'u) +6)) (1 — (0 —7—do(wu)) ) /8  for lifting a trajectory inSO(3) to S3. We explore such an

a algorithm that is hybrid in nature in the companion paper
> §|9 — 7r|. (34) [20].

It follows that V(R (6, u),w) < 0 whenever

Now, sinced > |7 — 0| by a previous assumption, it follows V. SIMULATION
that o ((§ — m)o(w u) +6) = 1. This assumption also

implies thatl — (6 — 7 — do(w'u))? > 1 — 162 Hence, 1 UV , N
(33) holds when by Theorem 5 in simulation. For ease of exposition, we let
= __ T . = _ . - .
) ) v=[345]" and definev = v/|v|. The following simulation
c(1-6°/2) >ad/2 <= 0>06"+(a/c)d—2. (35) has the parametets= diag(10v), ¢ = 1, § = 107/180, and
Sinces > 0, we have at least for smafl that0 > 62 + L(w) = w/10. Initial conditions were selected d@8(0) = I,
ad/c— 2, so we can bound by the positive root of\(z) = w(0) = 2v. Finally, the following simulation was conducted
22 + (a/c)z — 2 located atr = (—(a/c) = \/(a/c)? + 8)/2. in MATLAB as follows. The attitude kinematic equation
Hence, we have thal’ (R(0,u),w) < 0 on the seti = Was implemented using a quaternion representation and the
{(R,w) : cos < cos(r+8) or w = 0} > {R(r,5?)}x {0}, differential equationj = 3(q/|g|) © v(w) — 10q(la| - 1).

L This implementation render§® asymptotically stable and
— / 2 :
whereO < 0 < ( (a/c) + /(a/c) + 8) /2. This implies ensures thaj does not drift far fron? during the numerical

that {R(m,S?)} x {0} is stable. We note that this lastintegration. The state was projected ta&? before being

In this section, we demonstrate the non-robustness adserte

inequality implies thatd < & < V2, since, if u(z) = gybsequently used. The fixed-step solver ode3 was used for
3 (—z + Va2 +8), it follows that numerical integration with a step size of 1/100.
du(x) _ 1 ( 1 B 1) “0 Fig. 1 shows the effects of the malicious noise sigm‘all,
dx 9 2218 : on the closed-loop system. The top plot shows the signal

O(R) = cos™*((trace(R) — 1)/2), representing the angle
betweenR and I, the middle plot shows the components
of w, and the bottom plot shows the componentsrof=
K*(¢i(A(R,w)R),w) filtered by the systent/ (s) = 10/(s+
10). The signals are filtered for purposes of display, as the
discontinuous noise signak causes immense amounts of
chattering inx* (after 50s) that cannot be meaningfully
visualized. We note that after 50s, the actual components of
This result shows that the discontinuity created by pairinthe torque rapidly oscillate betweeri(q,w) andx*(—q, w),
an inconsistent quaternion-based feedback with a disoonti leading to a net torque of zero (as shown by filtering the
ous quaternion selection scheme is susceptibkrbdrarily  signals).

That is, as the ratio of to c increases, the upper bound on
d given as0 < ¢ < p(a/c) must decrease.

To estimate an invariant set using we find a sub-level
set of V' contained in the setV. In fact, the set# is a
sub-level set ofl” corresponding to the set(R (6, u),w) :
V(R(0,u),w) < (1 + cos(m + J))}. Moreover, C W
and so it is invariant.



[1]
[2]
(3]
[4]
[5]
5 [6]
=
e
= [7]
T -2 : : : 8]
0 20 40 60 80
Time (s) [9]
Fig. 1. Effects of malicious noise on inconsistent quaterfbased feed- [10]
back composed with a memoryless litting map. The manilgr, S2) x
{0} C SO(3) x R3 is stabilized. Top: solid line isO(R) =
cos™! ((trace(R) — 1)/2), dashed line ist — 6. Middle: solid line isws,
dashed line isv2, dash-dot line isvs. Bottom: shows a filtered version of
= K*(g,w) defined in (18). Solid line is1, dashed line is, dash-dot  [11]

line is 73.

As displayed in Fig. 1, the rigid body has some initiall12]
kinetic energy that is dissipated through the functiofw).
In this simulation, the rigid body rotates near the manifold
R(7,S?) several times, causing the torque to jump disconi13]
tinuously; however, only at 50s is the kinetic energy small
enough that it cannot escape the effects of the maliciousenoij1 4]
signal. At this point, the attitude is stabilized in a regioin
R (7, S?) with zero angular velocity. [15]

VI. CONCLUSION [16]

Achieving global asymptotic stability of rigid-body at- [17]
titude is a fundamentally difficult task. When feedback
controllers are designed using unit quaternions they requi[lg]
a mechanism to lift paths fror50(3) to S*. When this
mechanism is memoryless, there are inherent obstacles to
its use. In particular, it will necessarily have a Iimited[gg}
region where it is a continuous mapping. When paired WitL
an inconsistent feedback, such a mechanism may produce
“global” asymptotic stability without robustness to arhbiily
small measurement noise. This phenomenon was rigoroushye]
proven and demonstrated by simulation, where initial condi
tions of the rigid body brought the state to a region abo
R(7,S?) x {0} rendered invariant by malicious noise.

In a companion paper [20], we analyze a hyhldighamic
lifting mechanism that allows one to translate stabilityules 54
obtained in the covering space directly to the actual plant;
however, such a feedback system can induce an undesirable
unwinding response when the quaternion-based feedback is
not designed to stabilizall quaternion representations of
the desired attitude. As the authors have shown in [10],
[23], [24], these issues can be resolved with robustness to
measurement noise by a simple hybrid feedback.

REFERENCES

R. E. Mortensen, “A globally stable linear attitude régfor,” Inter-
national Journal of Contrglvol. 8, no. 3, pp. 297-302, 1968.

G. Meyer, “Design and global analysis of spacecrafttadi control
systems,” NASA, Tech. Rep. R-361, Mar. 1971.

B. Wie and P. M. Barba, “Quaternion feedback for spacideage
angle maneuvers,Journal of Guidance, Control, and Dynamjcs
vol. 8, no. 3, pp. 360-365, 1985.

J. T.-Y. Wen and K. Kreutz-Delgado, “The attitude comtpooblem,”
IEEE Transactions on Automatic Controlol. 36, no. 10, pp. 1148—
1162, Oct. 1991.

V. Guillemin and A. Pollack,Differential Topology Prentice-Hall,
Inc., 1974.

S. P. Bhat and D. S. Bernstein, “A topological obstruatim con-
tinuous global stabilization of rotational motion and thewinding
phenomenon,'Systems & Control Lettersiol. 39, no. 1, pp. 63-70,
Jan. 2000.

E. Sontag,Mathematical Control Theory Springer, 1998.

N. P. Bhatia and G. P. SzégStability Theory of Dynamical Systems
Springer, 1970.

J. Stuelpnagel, “On the parametrization of the three-dismanal
rotation group,”SIAM Reviewvol. 6, no. 4, pp. 422-430, Oct. 1964.
C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Robustbglo
asymptotic attitude stabilization of a rigid body by quatembased
hybrid feedback,” inProceedings of the 48th IEEE Conference on
Decision and Control and 28th Chinese Control Confererz@09,
pp. 2522-2527.

R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Td&bbust
hybrid controllers for continuous-time systems with applmas to
obstacle avoidance and regulation to disconnected set infsgoin
Proceedings of the American Control Conferen2606, pp. 3352—
3357.

S. M. Joshi, A. G. Kelkar, and J. T.-Y. Wen, “Robust aiftie
stabilization of spacecraft using nonlinear quaterniediack,”|IEEE
Transactions on Automatic Controlol. 40, no. 10, pp. 1800-1803,
1995.

C. Grubin, “Derivation of the quaternion scheme via théef axis
and angle,”Journal of Spacecraft and Rocketeol. 7, no. 10, pp.
1261-1263, Oct. 1970.

A. Klumpp, “Singularity-free extraction of a quatermiofrom a
direction-cosine matrix,Journal of Spacecraft and Rockeil. 13,
no. 12, pp. 754-755, 1976.

C. Grubin, “Quaternion singularity revisitedJournal of Guidance,
Control, and Dynamigsvol. 2, no. 3, pp. 255-266, May—Jun. 1979.
M. D. Shuster, “A survey of attitude representatiorifie Journal of
the Astronomical Scienceeol. 41, no. 4, pp. 439-517, 1993.

I. Y. Bar-ltzhack, “New method for extracting the quatiem from a
rotation matrix,”Journal of Guidance, Control, and Dynamje®l. 23,
no. 6, pp. 1085-1087, 2000.

F. L. Markley, “Unit quaternion from rotation matrix,Journal of
Guidance, Control and Dynamicsol. 31, no. 2, pp. 440-442, Mar.—
Apr. 2008.

J. R. Munkres;Topology Prentice Hall, 2000.

C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quatenabased
attitude control and the unwinding phenomenon,”Rroceedings of
the American Control Conferenc2011.

] O. Hajek, “Discontinuous differential equations, Jburnal of Differ-

ential Equationsvol. 32, no. 2, pp. 149-170, May 1979.
J. R. Lawton and R. W. Beard, “Synchronized multiple suaaft
rotations,” Automatica vol. 38, no. 8, pp. 1359-1364, Aug. 2002.

3] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Robustbglo

asymptotic stabilization of a 6-DOF rigid body by quaternlmsed
hybrid feedback,” inProceedings of the 48th IEEE Conference on
Decision and Control and 28th Chinese Control Conferer2@09,
pp. 1094-1099.

C. G. Mayhew, R. G. Sanfelice, M. Arcak, and A. R. Teel otRist
global asymptotic attitude synchronization by hybrid cokitrin
Proceedings of the American Control Conferen2610, pp. 3666—
3671.



