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Abstract— The unit quaternion is a pervasive representa-
tion of rigid-body attitude used for the design and analysis
of feedback control laws. Often, quaternion-based feedback
control laws require an additional mechanism that lifts a
continuous attitude trajectory to the unit quaternion space.
Lifting mechanisms that are memoryless, for example, selecting
the quaternion having positive scalar component, have a limited
domain where they remain injective and, when used globally,
introduce discontinuities into the closed-loop system. We show
that such discontinuities can be exploited by an arbitrarily small
measurement disturbance to stabilize attitudes far from the
desired attitude and destroy “global” attractivity properties.

I. I NTRODUCTION

Controlling the attitude of a rigid body is, perhaps, one of
the canonical nonlinear control problems, with applications
in aerospace and publications dating back many decades
[1]–[4]. A fundamental characteristic of attitude controlthat
imparts a fascinating difficulty is the topological complexity
of the underlying state space,SO(3). In fact, SO(3) is not
a vector space, but a compact manifold without boundary.
As a result of degree theory, this implies thatSO(3) does
not have the topological property of contractibility [5, Ex.
2.4.6]. Furthermore, attraction basins of asymptoticallysta-
ble equilibrium points of differential equations with locally
Lipschitz right-hand sides are necessarily contractible [6,
Theorem 1], [7, Theorem 21] and in fact, diffeomorphic to
some Euclidean vector space [8, Theorem V.3.4]. These facts
preclude the existence of a continuous, time-invariant, state-
feedback control law that globally asymptotically stabilizes
a particular attitude [7, Corollary 5.9.13].

Often, unit quaternions, which evolve onS3 (the set
of unit-magnitude vectors inR4), are used to parametrize
SO(3). This parametrization provides for a minimal globally
nonsingular representation of rigid-body attitude [9] in terms
of a topologically simpler space in several respects; however,
there are exactly two unit quaternions corresponding to the
same rigid-body attitude. This creates the need to stabilize
a disconnected set in the covering space [10], which has its
own topological obstructions [11]. As discussed in [6], these
topological subtleties can cause confusion and sometimes,
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lead to dubious claims regarding the globality of asymptotic
stability (see e.g. [1], [12]). Nevertheless, unit quaternions
are still used by many authors (including the authors of this
paper) today to design feedback control algorithms.

A feedback control law designed using a quaternion
representation of attitude may not beconsistentwith a
control law defined onSO(3). That is, for every rigid-body
attitude, the quaternion-based feedback may take on one
of two possible values. When this is the case, analysis for
quaternion-based feedback is often carried out inS

3 with
a lifted dynamic equation, but these results are not directly
related to a feedback system that takes measurements from
SO(3). This obviously begs the question, how is a unit
quaternion obtained from a measurement of attitude? While
calculating the set of two quaternions that represent a given
attitude is a fairly simple operation (see e.g. [13]–[18]),the
process of selecting which quaternion to use for feedback
is a less obvious operation. As noted in [4], it is often the
case that the quaternion with positive “scalar” component is
used for feedback. This operation is non-global (the scalar
component could easily be zero) and discontinuous.

In this paper, we show that when a discontinuous quater-
nion selection scheme is paired with a widely-used incon-
sistent quaternion-based feedback, any “global” attractivity
properties are not robust to arbitrarily small measurement
disturbances. In fact, we construct an explicit measurement
disturbance defined onSO(3) that stabilizes a region about
the manifold of180◦ rotations with zero angular velocity.

This paper is organized as follows. Section II provides
background material on attitude control and unit quater-
nions. Section III reconstructs the select-the-quaternion-with-
positive-scalar-component mechanism in terms of a memo-
ryless map that selects a quaternion according to a metric.
We show that this memoryless map has a limited range
of applicability when used to lift paths fromSO(3) to
S

3 and can cause extreme noise sensitivity and loss of
robustness when used as part of an inconsistent quaternion-
based feedback.

II. ATTITUDE KINEMATICS , DYNAMICS , AND UNIT

QUATERNIONS

The attitude of a rigid body is represented by a3 × 3
orthogonal matrix with unitary determinant: an element of
the special orthogonal group of order three,

SO(3) = {R ∈ R
3×3 : R⊤R = RR⊤ = I,detR = 1},

where I ∈ R
3×3 denotes the identity matrix. The cross

product between two vectorsy, z ∈ R
3, is represented here



by a matrix multiplication:y × z = [y]× z, where

[y]× =





0 −y3 y2
y3 0 −y1
−y2 y1 0



 .

The attitude of a rigid body is denoted byR ∈ SO(3),
where R transforms vectors expressed in the local body
frame of the rigid body to an inertial frame. The angular
rate of the rigid body is denoted asω andJ = J⊤ > 0 is
the symmetric and positive definite inertia matrix. Whenτ
is a vector of external torques, the kinematic and dynamic
equations are

Ṙ = R [ω]× (1a)

Jω̇ = [Jω]× ω + τ. (1b)

Let then-dimensional unit sphere embedded inR
n+1 be

denoted asSn = {x ∈ R
n+1 : x⊤x = 1}. Then, members

of SO(3) are often parametrized in terms of a rotationθ ∈
R about a fixed axisu ∈ S

2 by the so-called Rodrigues
formula–the mapR : R × S

2 → SO(3) defined as

R(θ, u) = I + sin(θ) [u]× + (1 − cos(θ)) [u]
2
× . (2)

In the sense of (2), a unit quaternion,q, is defined as

q =

[

η
ǫ

]

= ±
[

cos(θ/2)
sin(θ/2)u

]

∈ S
3, (3)

whereη ∈ R and ǫ ∈ R
3, represents an element ofSO(3)

through the mapR : S
3 → SO(3) defined as

R(q) = I + 2η [ǫ]× + 2 [ǫ]
2
× . (4)

Note thatR(q) = R(−q) for eachq ∈ S
3. We denote the

set-valued inverse mapQ : SO(3) ⇉ S
3 as

Q(R) = {q ∈ S
3 : R(q) = R}. (5)

For convenience in notation, we will often write a quaternion
asq = (η, ǫ), rather than in the form of a vector.

With the identity elementi = (1, 0) ∈ S
3, eachq ∈ S

3

has an inverseq−1 = (η,−ǫ) under the multiplication rule

q1 ⊙ q2 =

[

η1η2 − ǫ⊤1 ǫ2
η1ǫ2 + η2ǫ1 + [ǫ1]× ǫ2

]

,

whereqi = (ηi, ǫi) ∈ R
4 andi ∈ {1, 2}. With this definition,

the covering mapR is a group homomorphism, satisfying

R(q1)R(q2) = R(q1 ⊙ q2) ∀q1, q2 ∈ S
3. (6)

The quaternion state space,S
3, is a covering spacefor

SO(3) andR : S
3 → SO(3) is thecovering map. Precisely,

for every R ∈ SO(3), there exists an open neighborhood
U ⊂ SO(3) of R such thatQ(U) is a disjoint union of open
setsO1, O2, where, for eachk ∈ {1, 2}, the restriction ofR
to Ok is a diffeomorphism. In particular, this implies thatR
is everywhere a local diffeomorphism.

A fundamental property of a covering space is that a
continuous path in the base space can be uniquely “lifted”
to a continuous path in the covering space. In terms of
SO(3) and S

3, this means that for every continuous path

R : [0, 1] → SO(3) and for everyp ∈ Q(R(0)), there exists a
unique continuous pathqp : [0, 1] → S

3 satisfyingqp(0) = p
andR(qp(t)) = R(t) for everyt ∈ [0, 1] [19, Theorem 54.1].
We call any such pathqp a lifting of R overR.

It is not just paths that can be lifted fromSO(3) onto
S

3. In fact, flows and vector fields defined onSO(3) can be
lifted ontoS

3 as well [6]. In this direction, given a Lebesgue
measurable functionω : [0, 1] → R

3 and an absolutely
continuous pathR : [0, 1] → SO(3) satisfying (1a) for almost
all t ∈ [0, 1], any q : [0, 1] → S

3 that is a lifting ofR over
R satisfies thequaternion kinematic equation

q̇ =

[

η̇
ǫ̇

]

=
1

2
q ⊙ ν(ω) =

1

2
Λ(q)ω, (7)

for almost allt ∈ [0, 1], where the mapsν : R
3 → R

4 and
Λ : S

3 → R
4×3 are defined as

ν(x) =

[

0
x

]

, Λ(p) =

[

−ǫ⊤
ηI + [ǫ]×

]

. (8)

III. I NCONSISTENTQUATERNION-BASED CONTROL

LAWS AND PATH L IFTING

It is quite commonplace in the attitude control literature
to design a feedback based upon a quaternion representation
of rigid-body attitude. That is, the control designer creates a
continuous functionκ : S

3×R
3 → R

3 and closes a feedback
loop around (1) by settingτ(t) = κ(q(t), ω(t)), whereq(t)
is selected to satisfyR(q(t)) = R(t), for eacht ∈ R≥0.
When the feedbackκ satisfies

κ(q, ω) = κ(−q, ω) ∀q ∈ S
3, (9)

we say thatκ is consistent. When consistent feedbacks are
used, there is little need for a quaternion representation,as
κ might as well be defined in terms ofR ∈ SO(3).

When a quaternion-based feedback isinconsistent, that is,

∃q ∈ S
3 κ(q, ω) 6= κ(−q, ω), (10)

the resulting feedbackdoes not define a unique vector field
on SO(3) × R

3 because for someR ∈ SO(3) the feedback
κ(Q(R), ω) is multi-valued [6]. At this point, the control
designer must, for everyt ∈ R≥0, choose whichq(t) ∈
Q(R(t)) to use for feedback. Or, in the topological terms
of lifting, the control designer must choose how to lift the
measured attitude trajectory inSO(3) to S

3. In this direction,
we provide a quote from the seminal paper [4]:

“In many quaternion extraction algorithms, the sign
of η is arbitrarily chosen positive. This approach
is not used here, instead, the sign ambiguity is
resolved by choosing the one that satisfies the
associated kinematic differential equation. In im-
plementation, this would probably imply keeping
some immediate past values of the quaternion.”

There is much insight to be gained from this quotation,
especially when viewed in the context of lifts overR.
In particular, it suggests that inconsistent quaternion-based
control laws require an extra quaternion memory state to
lift the measuredSO(3) trajectory toS

3. In this direction,



we reconstruct the discontinuous quaternion “extraction”
algorithm mentioned in the quotation above in terms of a
metric and use the ensuing discussion to motivate a hybrid
algorithm for on-line lifting of a measured attitude trajectory
from SO(3) to S

3, which is thoroughly examined in the
companion paper [20].

Let P : S
3 → [0, 2] be defined as

P (q) = P (η, ǫ) = 1 − i
⊤q = 1 − η. (11)

Then, the functiond : S
3 × S

3 → [0, 2] defined as

d(q, p) = P (q−1 ⊙ p) = 1 − q⊤p (12)

defines a metric onS3. From a geometric viewpoint,d(q, p)
is the height ofp on S

3 “above” the plane perpendicular to
the vectorq at q. Given a setQ ⊂ S

3, we define the distance
to Q from q (in terms of the metricd) as

dist(q,Q) = inf{d(q, p) : p ∈ Q}. (13)

When the setQ in (13) takes the form ofQ(R) for some
R ∈ SO(3), the distance function also takes a special form.
In particular, letQ(R) = {p,−p}. Then,

dist(q,Q(R)) = 1 − |q⊤p|. (14)

One candidate method to lift a path fromSO(3) to S
3

is to simply pick the quaternion representation ofR that is
closest to a specific quaternion in terms of the metricd. In
particular, let us define the mapΦ : S

3 × SO(3) ⇉ S
3 as

Φ(q,R) = argmin
p∈Q(R)

d(q, p) = argmax
p∈Q(R)

q⊤p. (15)

The mapΦ has some useful properties, which we summarize
in the following lemmas.

Lemma 1. Let q ∈ S
3 and R ∈ SO(3). The following are

equivalent:

1) Φ(q,R) is single-valued,
2) 0 ≤ dist(q,Q(R)) < 1,
3) q⊤p 6= 0 for all p ∈ Q(R) so thatq⊤Φ(q,R) > 0,
4) R 6= R(π, u)R(q) for someu ∈ S

2.

Given a fixedq ∈ S
3, Φ can be used to lift curves in

SO(3) so long as it remains single-valued.

Lemma 2. For every q̂ ∈ S
3, every continuousR : [0, 1] →

SO(3), and every continuousq : [0, 1] → S
3 satisfying

d(q̂, q(0)) < 1, R(q(t)) = R(t), and dist(q̂,Q(R(t))) < 1
for all t ∈ [0, 1], it follows that Φ(q̂, R(t)) = q(t) for all
t ∈ [0, 1].

Since a common goal of attitude control is to regulate
R to I, one might choosei as a point of reference (since
R(i) = I) and use the mapΦi : SO(3) ⇉ S

3 defined as

Φi(R) = Φ(i, R). (16)

Now, following 3) from Lemma 1 we see thati
⊤Φi(R) > 0,

that is,Φi always chooses the quaternion with positive scalar
component, so long as it is single-valued. Further, Lemma 2
allows one to lift curves withΦi so long asR does not

cross the manifold of180◦ rotations, whereΦi is multi-
valued, or elseΦi will produce a quaternion trajectory that
is discontinuous. This can have disastrous effects whenΦi is
composed with an inconsistent feedback. We now examine
such a feedback.

IV. N ON-ROBUSTNESS

Let c > 0 and letL : R
3 → R

3 be a continuous function
satisfying

L(0) = 0 γ(‖ω‖2) ≤ ω⊤L(ω), (17)

whereγ : R≥0 → R≥0 is a continuous and strictly increasing
function satisfyingγ(0) = 0. Consider the inconsistent
feedback

κ∗(q, ω) = −cǫ− L(ω) = cΛ(q)⊤i − L(ω). (18)

In (18), thecǫ term introduces a rotational spring force and
L(ω) introduces damping. While this control law asymptoti-
cally stabilizes(i, 0) for the lifted closed-loop system defined
by (7), (1b), and settingτ = κ∗(q, ω), it renders(−i, 0) an
unstable saddle equilibrium. When composed withΦi, one
might expect that the resulting feedback globally asymptot-
ically stabilizes the identity element ofSO(3); however, we
show that any such expected global attractivity propertiesare
not robust to arbitrarily small measurement disturbances.In
particular, we construct a malicious measurement disturbance
that exploits the discontinuity introduced byΦi to stabilize
the 180◦ manifold.

Define the signum functionσ : R → {−1, 0, 1} as

σ(s) =











1 s > 0

0 s = 0

−1 s < 0.

(19)

Then, for0 ≤ δ < π, consider the (discontinuous) function
∆ : SO(3) × R

3 → R(δ,S2) defined as

∆(R(θ, u), ω) =

{

R(−δσ(ω⊤u), u) cos θ < cos(π + δ)

I otherwise.
(20)

For any(R,ω) ∈ SO(3)×R
3, the rotation matrix∆(R,ω)R

constitutes an angular perturbation ofR in the amount of
δ and asδ decreases to zero,∆ converges to the identity
matrix. In particular, the parameterδ controls the size of the
disturbance. We note that (20) is well defined onSO(3).

Lemma 3. For everyδ ∈ [0, π) and (R,ω) ∈ SO(3) × R
3,

∆(R,ω) is uniquely defined.

Proof. Suppose thatR = R(θ, u) for someθ ∈ R andu ∈
S

2. Clearly,∆(R,ω) is uniquely defined when eitherω = 0
or cos θ = cos(θ + 2πZ) ≥ cos(π ± δ), since it does not
depend on eitherR or ω in this case.

Suppose thatcos θ < cos(π ± δ) andω 6= 0. This implies
thatR 6= I, since0 < δ < π. Then, by Euler’s theorem on
rotations, for anyv ∈ S

2 and φ such thatR = R(φ, v), it
must be the case thatu = v or u = −v (only whenR 6= I).
SinceR(−θ,−u) = R(θ, u), it follows that

∆(R(φ, v), ω) = R(−δσ(ω⊤v), v) = R(−δσ(ω⊤u), u).



So, we have shown that the value of∆ is independent of
the angle and axis representation used forR, hence, it is
uniquely defined onSO(3) × R

3.

Let φi : SO(3) → S
3 be any single-valued selection

of Φi, that is, φi(R) = Φi(R) for all R 6= R(π, u) and
φi(R) ∈ Φi otherwise. Now, we apply the noise signal
∆ to measurements of attitude before being converted to
a quaternion for use with the inconsistent feedback (18) and
analyze the resulting closed-loop system. That is, we replace
q with φi(∆(R,ω)R) in the control lawκ∗ defined in (18).

Becauseφi and ∆ are discontinuous, we use the notion
of Krasovskii solutions for discontinuous systems [21].

Definition 4. Let f : R
n → R

n. The Krasovskii regulariza-
tion of f is the set-valued mapping

K f(x) =
⋂

ǫ>0

convf(x+ ǫB) (21)

where convB denotes the closed convex hull of the set
B ⊂ R

n and B denotes the unit ball inRn. Then, given
a functionf : R

n → R
n, a Krasovskii solutionto ẋ = f(x)

on an intervalI ⊂ R≥0 is an absolutely continuous function
satisfying

ẋ(t) ∈ K f(x(t)) (22)

for almost allt ∈ I.

An important property of a Krasovskii regularization is
that K f(x) = f(x) for every x where the functionf is
continuous.

Theorem 5. Let a > 0, c > 0, and δ > 0 satisfy

0 < δ <
1

2

(

−a
c

+

√

(a

c

)2

+ 8

)

<
√

2 (23)

and define

B = {(R(θ, u), ω) : cos θ + (1/a)ω⊤Jω ≤ cos(π + δ)}.

Then, the set{R(π,S2)}×{0} is stable andB is invariant
for the Krasovskii regularization of the closed-loop system

Ṙ = R [ω]×

Jω̇ = [Jω]× ω − cΛ(φi(∆(R,ω)R))⊤i − L(ω).
(24)

Proof. Since we are studying Krasovskii solutions to (24),
we might normally need to find the Krasovskii regular-
ization of (24); however, the analysis in this proof obvi-
ates the need for calculating the Krasovskii regularization
for regions where the calculation is nontrivial. Since the
function (R,ω) 7→ R [ω]× is continuous, its Krasovskii
regularization is identical to the original map. Also note
that, by definition of ∆ and φi, the map (R,ω) 7→
[Jω]× ω − κ∗(φi(∆(R,ω)R), ω) is continuous on the set
{(R(θ, u), ω) : cos θ < cos(π+δ), ω 6= 0}, so its Krasovskii
regularization is also identical to the original map on thisset.

Consider the Lyapunov function

V (R,ω) = a(1 − trace(I −R)/4) +
1

2
ω⊤Jω. (25)

Expressed in terms of rotation angle, we have equivalently,

V (R(θ, u), ω) =
a

2
(1 + cos θ) +

1

2
ω⊤Jω

sincetrace(I −R(θ, u)) = 2(1− cos θ), so thatV (SO(3)×
R

3) ≥ 0 andV (R,ω) = 0 if and only if R = R(π, v) and
ω = 0. Furthermore, the sub-level sets ofV are compact.

Define the functionψ : R
3×3 → R

3 as

ψ(A) =
1

2





A32 −A23

A13 −A31

A21 −A12



 . (26)

Then, ψ satisfies traceA [ω]× = −2ω⊤ψ(A) and
ψ(R(θ, u)) = u sin θ. Employing the Krasovskii regulariza-
tion, we calculate the time derivative ofV as

V̇ (R,ω) ∈ −a
4

trace(−R [ω]×)

+ ω⊤
(

−K cΛ(φi(∆(R,ω)R))⊤i − L(ω)
)

= −ω⊤L(ω)

+ ω⊤
(

−a
2
ψ(R) − K cΛ(φi(∆(R,ω)R))⊤i

)

,

(27)
where we have used the fact thatω⊤ [Jω]× ω = 0. Note
that V̇ (R, 0) = 0 no matter what values the Krasovskii
regularization may take.

Now, we letR = R(θ, u) and henceforth constrain our
analysis to the case wherecos θ < cos(π+ δ) andω 6= 0, so
that ∆(R,ω)R = R(θ− δσ(ω⊤u), u) andφi(∆(R,ω)R) is
single-valued. Also, in this region, the Krasovskii regulariza-
tion of (24) is identical to (24). Recalling thatφi selects the
quaternion with positive scalar component and noting that
R(φ, u)R(θ, u) = R(θ + φ, u), we can now write

φi(∆(R,ω)R) =

σ
(

cos
(

(θ − δσ(ω⊤u))/2
))

[

cos
(

(θ − δσ(ω⊤u))/2
)

sin
(

(θ − δσ(ω⊤u))/2
)

u

]

,

and in particular,

Λ(φi(∆(R,ω)R))⊤i =

σ
(

cos
(

(θ − δσ(ω⊤u))/2
))

sin
(

(θ − δσ(ω⊤u))/2
)

u.
(28)

Applying (28) and (17) to (27),

V̇ (R(θ, u), ω) ≤ −γ(‖ω‖2) − ω⊤u
a

2
sin θ

− ω⊤u
(

cσ
(

cos
(

(θ − δσ(ω⊤u))/2
))

∗ sin
(

(θ − δσ(ω⊤u))/2
))

. (29)

Note that whenω⊤u = 0, it follows that V̇ (R(θ, u), ω) ≤ 0,
so we further constrain our analysis from this point to the
case whenω⊤u 6= 0. Now, without loss of generality, we
assume thatπ − δ < θ < π + δ, where

σ
(

cos
(

(θ − δσ(ω⊤u))/2
))

= σ
(

π − (θ − δσ(ω⊤u))
)

.
(30)



Now, sinceσ(ω⊤u)2 = 1 andsσ(s) = |s|, we factor this
term to arrive at

V̇ (R(θ, u), ω) ≤ −γ(‖ω‖2) − |ω⊤u|a
2
σ(ω⊤u) sin θ

− |ω⊤u|cσ(ω⊤u)σ
(

π − (θ − δσ(ω⊤u))
)

∗ sin
(

(θ − δσ(ω⊤u))/2
)

. (31)

Moreover, for anyr, s ∈ R, it follows that σ(s)σ(r) =
σ(rσ(s)). Applying this relation to (31), we have

V̇ (R(θ, u), ω) ≤ −γ(‖ω‖2) − |ω⊤u|a
2
σ(ω⊤u) sin θ

− |ω⊤u|cσ
(

(π − θ)σ(ω⊤u) + δ)
)

∗ sin
(

(θ − δσ(ω⊤u))/2
)

. (32)

It follows that V̇ (R(θ, u), ω) < 0 whenever

cσ
(

(π − θ)σ(ω⊤u) + δ)
)

sin
(

(θ − δσ(ω⊤u))/2
)

+
a

2
σ(ω⊤u) sin θ > 0. (33)

Now, we can apply trigonometric inequalities to analyze
(33). In particular, we have that| sin θ| ≤ |θ − π| and since
1− cos θ ≤ 1

2θ
2, we can use the properties ofsin andcos to

deduce thatsin(1
2 (θ − δσ(ω⊤u))) ≥ 1 − 1

8 (θ − π)2. Hence,
(33) holds when

cσ
(

(π − θ)σ(ω⊤u) + δ)
)

(

1 −
(

θ − π − δσ(ω⊤u)
)2
)

/8

>
a

2
|θ − π|. (34)

Now, sinceδ > |π− θ| by a previous assumption, it follows
that σ

(

(θ − π)σ(ω⊤u) + δ
)

= 1. This assumption also
implies that1 − 1

8 (θ − π − δσ(ω⊤u))2 ≥ 1 − 1
2δ

2. Hence,
(33) holds when

c
(

1 − δ2/2
)

> aδ/2 ⇐⇒ 0 > δ2 + (a/c)δ − 2. (35)

Sinceδ ≥ 0, we have at least for smallδ that 0 > δ2 +
aδ/c− 2, so we can boundδ by the positive root ofλ(x) =
x2 +(a/c)x− 2 located atx = (−(a/c)±

√

(a/c)2 + 8)/2.
Hence, we have thaṫV (R(θ, u), ω) ≤ 0 on the setW =
{(R,ω) : cos θ < cos(π+δ) or ω = 0} ⊃ {R(π,S2)}×{0},

where0 < δ <
(

−(a/c) +
√

(a/c)2 + 8
)

/2. This implies

that {R(π,S2)} × {0} is stable. We note that this last
inequality implies that0 < δ <

√
2, since, if µ(x) =

1
2

(

−x+
√
x2 + 8

)

, it follows that

dµ(x)

dx
=

1

2

(

1√
x2 + 8

− 1

)

< 0.

That is, as the ratio ofa to c increases, the upper bound on
δ given as0 < δ < µ(a/c) must decrease.

To estimate an invariant set usingV , we find a sub-level
set of V contained in the setW . In fact, the setB is a
sub-level set ofV corresponding to the set{(R(θ, u), ω) :
V (R(θ, u), ω) ≤ a

2 (1 + cos(π + δ))}. Moreover,B ⊂ W
and so it is invariant.

This result shows that the discontinuity created by pairing
an inconsistent quaternion-based feedback with a discontinu-
ous quaternion selection scheme is susceptible toarbitrarily

small measurement disturbance. This is because at the dis-
continuity of Φi (on the manifoldR(π,S2)), the feedback
term cΛ(Φi(R))⊤i opposes itself about the discontinuity.
Then, malicious noise signals like (20) can exploit the dis-
continuity of the vector field to induce a chattering behavior
that stabilizes{R(π,S2)} × {0}. This is quite similar to
the inconsistent feedbackκd(q, ω) = −σ(η)ǫ − ω (when
implemented with a lifted trajectory), which was shown in
[10] to exhibit extreme noise sensitivity that can destroy
“global” attractivity properties of a desired attitude in a
kinematic setting.

The various failures ofΦi have led several authors (e.g.
[22]) to derive sufficient conditions on the initial condi-
tions of (1) to ensure that these180◦ attitudes are never
approached, thus obviating the use of a globally nonsingular
representation of attitude like unit quaternions. However,
the issues with usingΦi as a path-lifting algorithm are
not a problem with the quaternion representation–they arise
becauseΦi is a memoryless map fromSO(3) to S

3. In
particular, Φi always chooses the closest quaternion toi.
In general, when one comparesQ(R) with q̂ for some
R ∈ SO(3) and q̂ ∈ S

3, Φ(q,R) is multi-valued on the
2-D manifold {p ∈ S

3 : p⊤q̂ = 0}. However, when the
reference point for choosing the closest quaternion is allowed
to change, it is then possible to create a dynamic algorithm
for lifting a trajectory inSO(3) to S

3. We explore such an
algorithm that is hybrid in nature in the companion paper
[20].

V. SIMULATION

In this section, we demonstrate the non-robustness asserted
by Theorem 5 in simulation. For ease of exposition, we let
v̄ = [3 4 5]⊤ and definev = v̄/|v̄|. The following simulation
has the parametersJ = diag(10v), c = 1, δ = 10π/180, and
L(ω) = ω/10. Initial conditions were selected asR(0) = I,
ω(0) = 2v. Finally, the following simulation was conducted
in MATLAB as follows. The attitude kinematic equation
was implemented using a quaternion representation and the
differential equationq̇ = 1

2 (q/|q|) ⊙ ν(ω) − 10q(|q| − 1).
This implementation rendersS3 asymptotically stable and
ensures thatq does not drift far fromS

3 during the numerical
integration. The stateq was projected toS3 before being
subsequently used. The fixed-step solver ode3 was used for
numerical integration with a step size of 1/100.

Fig. 1 shows the effects of the malicious noise signal,∆,
on the closed-loop system. The top plot shows the signal
θ(R) = cos−1((trace(R) − 1)/2), representing the angle
betweenR and I, the middle plot shows the components
of ω, and the bottom plot shows the components ofτ =
κ∗(φi(∆(R,ω)R), ω) filtered by the systemH(s) = 10/(s+
10). The signals are filtered for purposes of display, as the
discontinuous noise signal∆ causes immense amounts of
chattering inκ∗ (after 50s) that cannot be meaningfully
visualized. We note that after 50s, the actual components of
the torque rapidly oscillate betweenκ∗(q, ω) andκ∗(−q, ω),
leading to a net torque of zero (as shown by filtering the
signals).
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Fig. 1. Effects of malicious noise on inconsistent quaternion-based feed-
back composed with a memoryless lifting map. The manifoldR(π, S2) ×
{0} ⊂ SO(3) × R3 is stabilized. Top: solid line isθ(R) =
cos−1 ((trace(R) − 1)/2), dashed line isπ − δ. Middle: solid line isω1,
dashed line isω2, dash-dot line isω3. Bottom: shows a filtered version of
τ = κ∗(q, ω) defined in (18). Solid line isτ1, dashed line isτ2, dash-dot
line is τ3.

As displayed in Fig. 1, the rigid body has some initial
kinetic energy that is dissipated through the functionL(ω).
In this simulation, the rigid body rotates near the manifold
R(π,S2) several times, causing the torque to jump discon-
tinuously; however, only at 50s is the kinetic energy small
enough that it cannot escape the effects of the malicious noise
signal. At this point, the attitude is stabilized in a regionof
R(π,S2) with zero angular velocity.

VI. CONCLUSION

Achieving global asymptotic stability of rigid-body at-
titude is a fundamentally difficult task. When feedback
controllers are designed using unit quaternions they require
a mechanism to lift paths fromSO(3) to S

3. When this
mechanism is memoryless, there are inherent obstacles to
its use. In particular, it will necessarily have a limited
region where it is a continuous mapping. When paired with
an inconsistent feedback, such a mechanism may produce
“global” asymptotic stability without robustness to arbitrarily
small measurement noise. This phenomenon was rigorously
proven and demonstrated by simulation, where initial condi-
tions of the rigid body brought the state to a region about
R(π,S2) × {0} rendered invariant by malicious noise.

In a companion paper [20], we analyze a hybriddynamic
lifting mechanism that allows one to translate stability results
obtained in the covering space directly to the actual plant;
however, such a feedback system can induce an undesirable
unwinding response when the quaternion-based feedback is
not designed to stabilizeall quaternion representations of
the desired attitude. As the authors have shown in [10],
[23], [24], these issues can be resolved with robustness to
measurement noise by a simple hybrid feedback.
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[21] O. Hájek, “Discontinuous differential equations, I,”Journal of Differ-
ential Equations, vol. 32, no. 2, pp. 149–170, May 1979.

[22] J. R. Lawton and R. W. Beard, “Synchronized multiple spacecraft
rotations,”Automatica, vol. 38, no. 8, pp. 1359–1364, Aug. 2002.

[23] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Robust global
asymptotic stabilization of a 6-DOF rigid body by quaternion-based
hybrid feedback,” inProceedings of the 48th IEEE Conference on
Decision and Control and 28th Chinese Control Conference, 2009,
pp. 1094–1099.

[24] C. G. Mayhew, R. G. Sanfelice, M. Arcak, and A. R. Teel, “Robust
global asymptotic attitude synchronization by hybrid control,” in
Proceedings of the American Control Conference, 2010, pp. 3666–
3671.


