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Abstract— The notion of synergistic potential functions has
been introduced recently in the literature and has been used as
the basis for the design of hybrid feedback laws that achieve
global asymptotic stabilization of a point on a compact manifold
(without boundary) such asS

1, S
2, and SO(3). Here, synergistic

potential functions are generalized—to synergistic Lyapunov
functions—and are shown to be amenable to backstepping. In
particular, if an affine control system admits a (weak) syner-
gistic Lyapunov function and feedback pair then the system
with an integrator added at the input also admits a synergistic
Lyapunov and feedback pair. This fact enables “smoothing”
hybrid feedbacks, or implementing them through a chain of
integrators. In this way, hybrid control designed at a kinematic
level can be redesigned for control through forces, torques,
or even the derivative of these quantities. We demonstrate the
backstepping procedure for attitude stabilization of a rigid body
using a quaternion parametrization.

I. I NTRODUCTION

Hybrid feedback is a powerful tool for achieving robust
global asymptotic stabilization in situations where topolog-
ical constraints preclude achieving this goal with classical
feedback. Such situations include point stabilization for
systems having states evolving on a compact boundaryless
manifold [1], or, more generally, point stabilization for
systems whose state space is not contractible [2] or diffeo-
morphic to some Euclidean space [3], [4]. Also included
in this list of situations is stabilization to a disconnected
set of points in a connected state space [5], which arises
naturally when considering point stabilization of rigid-body
attitude with a unit quaternion parametrization [6], [7]. These
topological obstructions to global asymptotic stability have
been emphasized recently in a series of papers [8]–[11]
where the notion of a family of synergistic potential functions
has been introduced and used to achieve global asymptotic
stability of a point by hybrid feedback for systems whose
state space is not diffeomorphic to any Euclidean space.

Roughly speaking, a family of potential functions is syner-
gistic in the sense of [9] if, at each point where the gradient
of one of the potential functions vanishes (other than at the
point being stabilized), there is another potential function in
the family whose value is strictly less than the value of the

♯mayhew@ieee.org, Robert Bosch Research and Technology Center, 4005
Miranda Ave., Palo Alto, CA 94304.

♭sricardo@u.arizona.edu, Department of Aerospace and Mechanical En-
gineering, University of Arizona, Tucson, AZ 85721.

†teel@ece.ucsb.edu, Center for Control Engineering and Computation,
Electrical and Computer Engineering Department, Universityof California,
Santa Barbara, CA 93106-9560.

∗Research partially supported by the National Science Foundation under
grant ECCS-0925637, grant CNS-0720842, grant ECCS-0852750 and by
the Air Force Office of Scientific Research under grant FA9550-09-1-0203
and grant FA9550-09-1-0092.

given potential function. A synergistic family of potential
functions gives rise to a simple hybrid controller based on
hysteretically choosing the minimum potential function and
its corresponding feedback control law for global asymptotic
stability. This “min-switch” hybrid control paradigm has ap-
peared in the literature in various contexts over the past two
decades. In particular, an early application of this idea for
implementing hysteresis in adaptive control was presentedin
[12], which was later made scale independent in [13]. Later,
[14] proposed this method (without hysteresis) for multi-
controller systems where it has been applied for the problem
of stabilizing a pendulum on a cart in [15] and for control
of a double-tank system in [16] (which suggests a similar
form for the hysteresis used in this paper); see also [17].
Ideas related to synergistic potential functions also appear in
[18]–[20] where multiple Lyapunov functions are proposed
for analysis and control design.

In this paper, we extend the notion of synergistic potential
functions to a larger class of functions, which contains
synergistic potential functions as a special case. We call these
functions synergistic Lyapunov functions. We show that if an
affine control system admits a family of (weak) synergistic
Lyapunov functions, then the system with an integrator added
at the input also admits a family of synergistic Lyapunov
functions. In turn, since synergistic Lyapunov functions
admit global hybrid stabilizers, this result shows that hybrid
feedback can be smoothed or implemented through multiple
integrators. This observation is significant for extending
hybrid feedback designs from a kinematic level to a dynamic
level or further through multiple integrators in an effort to
avoid exciting unmodeled dynamics that might be sensitive
to jump discontinuities in the control variable.

The backstepping feature of synergistic Lyapunov func-
tions has its antecedent in the nonlinear control literature
of the late 1980s and early 1990s. A summary of the
important references in integrator backstepping can be found
in the notes and references of [21, Chapter 2]. Our result
on passing from a family of weak synergistic Lyapunov
functions and feedbacks for an affine control system to a
family of synergistic Lyapunov functions and feedbacks for
the system extended with an integrator at the input parallels
the integrator backstepping idea summarized in [21, Lemma
2.8(ii)]. See also [22, Theorem 5.3]. Similar backstepping
results for switched systems have appeared in [23]; however,
the crucial notion of synergism ensuring global asymptotic
stability does not appear in [23].

Our paper is organized as follows. In the next section,
we give some preliminaries including a description of the
hybrid systems framework we use. In Section III we de-



fine synergistic Lyapunov function and feedback pairs. In
Section IV we show how to build a globally asymptoti-
cally stabilizing hybrid feedback from synergistic Lyapunov
function and feedback pairs. In Section V, we defineweak
synergistic Lyapunov function and feedback pairs, while in
Section VI we show that if an affine control system admits a
family of weak synergistic Lyapunov function and feedback
pairs then the system with an integrator added at the input
admits a family of (non-weak) synergistic Lyapunov function
and feedback pairs. In Section VII, we apply the method
to the problem of rigid-body attitude stabilization using a
unit-quaternion parameterization. Finally, we provide some
concluding remarks in Section VIII.

II. PRELIMINARIES

A. Notation

In this paper,R denotes the real numbers,R≥0 the non-
negative real numbers,Rn denotesn-dimensional Euclidean
space, andN denotes the natural numbers including0. Given
a vectorx ∈ R

n, |x| denotes the Euclidean vector norm.
Given a setS ⊂ R

n and a pointx ∈ R
n, |x|S denotes the

distance fromx to S, i.e., |x|S := infy∈S |x − y|. For a
closed setX ⊂ R

n × Q, whereQ ⊂ R is a finite set, and
a smooth functionV : X → R, we use∇V (z, q) to denote
gradient ofV relative toz, with q considered to be constant.
Given a smooth functionκ : X → R

m, we useDκ(q, z) to
denote the Jacobian matrix ofκ relative toz, i.e.,Dκ(z, q)
is anR

m×n matrix with ij-th entry given as∂κi(z,q)
∂zj

.

B. Hybrid Systems

Hybrid systems are dynamical systems with both continu-
ous and discrete dynamics. For the purposes of this paper we
consider the framework used in [24]. Here, a hybrid system
H is defined by the following objects:

• A setC ⊂ R
n called theflow set.

• A setD ⊂ R
n called thejump set.

• A map f : C → R
n called theflow map.

• A set-valued mapG : R
n

⇉ R
n called thejump map.

The flow mapf defines the continuous dynamics on the flow
setC, while the jump mapG defines the jump dynamics on
the jump setD. A hybrid systemH is written compactly as

H : x ∈ R
n

{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

Solutions are given on extended time domains by functions
that satisfy the conditions suggested by (1). More precisely:

Definition 1 (hybrid time domain). A setE ⊂ R≥0 × N is
a compact hybrid time domainif

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . It is a hybrid time domainif for all (T, J) ∈ E, E ∩
([0, T ] × {0, 1, ...J}) is a compact hybrid time domain.

Definition 2 (hybrid arc). A function x : domx→ R
n is a

hybrid arc if domx is a hybrid time domain and, for each
j ∈ N, t 7→ x(t, j) is locally absolutely continuous.

Definition 3 (solution toH). A hybrid arcx : domx 7→ R
n

is a solution to the hybrid systemH if x(0, 0) ∈ C ∪D;
(S1) ∀j ∈ N such thatIj := {t : (t, j) ∈ domx} has
nonempty interior

x(t, j) ∈ C for all t ∈ [min Ij , sup Ij)

ẋ(t, j) = f(x(t, j)) for almost allt ∈ Ij ;

(S2) ∀(t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) .

Hybrid arcs, and solutions toH in particular, are
parametrized by pairs(t, j), where t is the ordinary time
component andj is the number of jumps accrued. A solution
x is said to benontrivial if domx contains at least one point
different from(0, 0), maximalif there does not exist another
solutionx′ such thatx is a truncation ofx′ to some proper
subset ofdomx′, completeif domx is unbounded, andZeno
if it is complete but the projection ofdomx onto R≥0 is
bounded. Maximal solutions toH may not be unique, not
only due to the jump dynamics being set-valued map, but
also because whenC ∩D 6= ∅, solutions fromC ∩D jump
and, depending on the flow map, may be able to flow as
well.

The stability definitions below are generalizations of the
standard stability concepts to the setting where completeness
or even existence of solutions is not required. It is a natural
stability notion for hybrid systems since, often, local exis-
tence of solutions is not guaranteed because the setC ∪D
does not coverRn. For the hybrid control problem studied
here, the flow and jump sets will be subsets of the form
M ×Q, whereM is a closed subset of an Euclidean space
andQ is a finite set, hence, not coveringRn for somen.
Nonetheless, in our applications, local existence of solutions
will hold.

Definition 4 (asymptotic stability). Consider a hybrid system
H. Let A ⊂ R

n be compact. Then:
• The compact setA is stable for H if for each ε > 0

there existsδ > 0 such that any solutionx to H with
|x(0, 0)|A ≤ δ satisfies|x(t, j)|A ≤ ε for all (t, j) ∈
domx.

• The compact setA is attractive for H if there exists
δ > 0 such that any solutionx to H with |x(0, 0)|A ≤ δ

is bounded and if it is complete thenx(t, j) → A as
t+ j → ∞.

• The compact setA is asymptotically stableif it is both
stable and attractive.

The set from which all solutions are bounded and the
complete ones converge toA is called thebasin of attraction
of A. The compact setA is globally asymptotically stable
when the basin of attraction is equal toR

n.

By definition, the basin of attraction contains a neighbor-
hood of A. Points inR

n \ (C ∪ D) always belong to the



basin of attraction since there are no solutions starting at
such points.

Definition 5 (weak invariance). For a hybrid systemH in
R

n, the setS ⊂ R
n is said to be

(a) weakly forward invariantif for eachx(0, 0) ∈ S, there
exists at least one complete solutionx to H starting
from x(0, 0) with x(t, j) ∈ S for all (t, j) ∈ domx;

(b) weakly backward invariantif for each q ∈ S, N > 0,
there existx(0, 0) ∈ S and at least one solutionx to
H starting fromx(0, 0) such that for some(t∗, j∗) ∈
domx, t∗ + j∗ ≥ N , we havex(t∗, j∗) = q and
x(t, j) ∈ S for all (t, j) � (t∗, j∗), (t, j) ∈ domx;

(c) weakly invariantif it is both weakly forward invariant
and weakly backward invariant.

III. SYNERGISTIC LYAPUNOV FUNCTION AND FEEDBACK

In this section, a synergistic Lyapunov function and feed-
back pair is defined for the affine control system

ż = φ(z, q) + ψ(z, q)ω

q̇ = 0

}

(z, q) ∈M ×Q (2)

where the functionsφ andψ are smooth1, ω ∈ R
m is the

control, the setM ⊂ R
n is closed, and the setQ is discrete.

Smooth functionsV : M × Q → R≥0 and κ : M × Q →
R

m form a synergistic Lyapunov function and feedback pair
candidaterelative to the compact setA ⊂M ×Q if

• ∀r ≥ 0, {(z, q) ∈M ×Q : V (z, q) ≤ r} is compact;
• V is positive definite with respect toA;
• For all (z, q) ∈M ×Q,

〈∇V (z, q), φ(z, q) + ψ(z, q)κ(z, q)〉 ≤ 0 . (3)

Given a synergistic Lyapunov function and feedback pair
candidate(V, κ), define

E := {(z, q) ∈M ×Q :
〈∇V (z, q), φ(z, q) + ψ(z, q)κ(z, q)〉 = 0}

(4)

and letΨ ⊂ E denote the largest weakly invariant set for the
system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E . (5)

Let
ρV (z) = min

q∈Q
V (z, q) (6)

and define

µ(V, κ) := inf
(z,q)∈Ψ\A

V (z, q) − ρV (z), (7)

using the convention thatµ(V, κ) = ∞ whenΨ\A is empty.
The pair(V, κ) is called asynergistic Lyapunov function and
feedback pairif µ(V, κ) > 0, in which caseµ(V, κ) is called

1Here and in the rest of the paper, “smooth” means continuously
differentiable enough times so that all used derivatives arewell defined
and continuous. Fork steps of backstepping, it is enough forφ andψ to
beCk−1.

the synergy gap. When µ(V, κ) > δ > 0 we say that the
synergy gap exceedsδ.

Remark6. In the setting of [9],Ψ is a set corresponding to
the critical values of the potential function, which is finite
under some mild conditions.

IV. H YBRID CONTROL USING A SYNERGISTICLYAPUNOV

FUNCTION AND FEEDBACK

In this section, we develop a hybrid feedback for the
control system (2) using a synergistic Lyapunov function and
feedback pair relative to the compact setA that globally
asymptotically stabilizesA. Let (V, κ) be a synergistic
Lyapunov function and feedback pair with gap exceeding
δ > 0. We propose the hybrid controller

C = {(z, q) ∈M ×Q : V (z, q) − ρV (z) ≤ δ}

ω = κ(z, q)

D = {(z, q) ∈M ×Q : V (z, q) − ρV (z) ≥ δ}

G(z) = {q ∈ Q : V (z, q) = ρV (z)},

(8)

whereC,D ⊂M ×Q, resulting in the closed-loop system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0
︸ ︷︷ ︸

(z, q) ∈ C

z+ = z

q+ ∈ G(z)
︸ ︷︷ ︸

(z, q) ∈ D.

(9)

Theorem 7. Suppose that(V, κ) is a synergistic Lyapunov
function and feedback pair relative to the compact setA
with synergy gap exceedingδ for the system(2). Then,
the compact setA is globally asymptotically stable for the
closed-loop system (9).

Proof of Theorem 7:Consider the synergistic Lyapunov
function V and feedbackκ and note that (3) holds for all
(z, q) ∈ M × Q. In particular, (3) holds for all(z, q) ∈ C.
Also, by the construction ofD andG in (8), for all (z, q) ∈
D and g ∈ G(z), we haveV (z, q) − V (z, g) ≥ δ > 0.
In particular, V is nonincreasing along flows of (9) and
strictly decreasing over jumps of (9). Using the properties
of V , it follows that the setA is stable and all solutions are
bounded. It remains to establish that all complete solutions
converge toA. By the invariance principle in [25], since
{(z, q) ∈M×Q : V (z, q)−V (z, g) = 0, g ∈ G(z)}∩D = ∅,
all complete solutions to (9) converge to the largest weakly
invariant set contained in the setE ∩C, whereE was defined
in (4). From the definition of the closed-loop system (9),
computing such a set amounts to finding the largest weakly
invariant set of

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E ∩ C. (10)

According to the definition ofΨ, this weakly invariant set
must be contained inΨ∩C. SinceV is positive definite with
respect toA, V (z, q) − ρV (z) = 0 ≤ δ for all (z, q) ∈ A
which implies thatA ⊂ C. Then, it follows thatΨ ∩ C ⊂
((Ψ \ A) ∪ A) ∩ C = ((Ψ \ A) ∩ C) ∩ A. But then, since
µ(V, κ) > δ > 0, it follows that (Ψ \ A) ∩ C = ∅, so that
all complete solutions to (9) converge toA.



The next corollary follows from Theorem 7 together with
the fact thatC ∪D = M ×Q.

Corollary 8. Under the conditions of Theorem 7, if for
each (z, q) ∈ M × Q, φ(z, q) + ψ(z, q)κ(z, q) belongs to
the tangent cone ofM at z then each maximal solution is
complete.

V. WEAK SYNERGISTICLYAPUNOV FUNCTION AND

FEEDBACK

In this section, we introduce the notion of aweaksyner-
gistic Lyapunov function and feedback for the system (2).
Given a synergistic Lyapunov function and feedback pair
candidate, define

W :=
{
(z, q) ∈M ×Q : ψ(z, q)⊤∇V (z, q) = 0

}
. (11)

Recall the definition ofE in Section III, and letΩ ⊂ E ∩W
denote the largest weakly invariant set for the system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E ∩W. (12)

Define

µW(V, κ) := inf
(z,q)∈Ω\A

V (z, q) − ρV (z), (13)

using the convention thatµW(V, κ) = ∞ when Ω \ A is
empty. The pair(V, κ) is called aweak synergistic Lyapunov
function and feedback pairrelative to the compact setA ⊂
M ×Q if µW(V, κ) > 0, in which caseµW(V, κ) is called
theweak synergy gap. WhenµW(V, κ) > δ > 0, we say that
the weak synergy gap exceedsδ.

Lemma 9. If (V, κ) is a synergistic Lyapunov function and
feedback pair with synergy gap exceedingδ then it is also a
weak synergistic Lyapunov function and feedback pair with
weak synergy gap exceedingδ.

Proof. By definition, the setΩ of this section is contained in
the setΨ in Section III. Thus,µW(V, κ) ≥ µ(V, κ). Hence,
if µ(V, κ) > δ thenµW(V, κ) > δ.

VI. BACKSTEPPING

Consider the control system

ζ̇ = φ1(ζ, q) + ψ1(ζ, q)u

q̇ = 0

}

(ζ, q) ∈M1 ×Q (14)

with controlsu ∈ R
m, whereζ = (z, ω, p) is the state and

φ1(ζ, q) =





φ0(z, q) + ψ0(z, q)ω
0

v(z, p, q)



 ψ1(ζ, q) =





0
1
0



 . (15)

For an appropriate choice for the functionv we construct a
(non-weak) synergistic Lyapunov function and feedback pair
with synergy gap exceedingδ > 0 for (14) by supposing we
have a weak synergistic Lyapunov function and feedback pair
with weak synergy gap exceedingδ for the reduced system

ż = φ0(z, q) + ψ0(z, q)ω

q̇ = 0

}

(z, q) ∈M0 ×Q (16)

with controlsω ∈ R
m.

Let (V0, κ0) be a weak synergistic Lyapunov function and
feedback pair relative to the compact setA0 ⊂ M0 × Q,
whereM0 ⊂ R

n is closed andQ is a discrete set, with
weak synergy gap exceedingδ > 0, for the system (16). We
suppose thatκ0 : M0 × Q → R

m can be written as linear
in some function of the variableq. In particular, we assume
that there exists a smooth functionϑ : M0 → R

m×L and
some functionσ : Q→ R

L, whereL ≥ 1, such that

κ0(z, q) = ϑ(z)σ(q). (17)

Remark10. We note thatκ0 can always be decomposed
as in (17). Assuming, without loss of generality, thatQ =
{1, . . . , N}, let σ(q) = eq, whereei ∈ R

L denotes theith
unit vector, and letϑ(z) =

[
κ0(z, 1) · · · κ0(z,N)

]
. Then,

(17) holds.

Define

A1 := {(ζ, q) ∈M1 ×Q : (z, q) ∈ A0,

p = σ(q), ω = κ0(z, q)} . (18)

For a vectorξ ∈ R
r and a symmetric, positive definite matrix

Γ ∈ R
r×r, letλmax(Γ) denote the largest eigenvalue ofΓ and

define|ξ|2Γ := ξT Γξ. Consider the functionV1 : M1 ×Q→
R≥0, M1 = M0 × R

m × R
L, defined, for each(ζ, q) ∈

M1 ×Q, as

V1(ζ, q) := V0(z, q)+
1

2
|p−σ(q)|2Γ1

+
1

2
|ω−ϑ(z)p|2Γ2

, (19)

whereΓ1 ∈ R
L×L andΓ2 ∈ R

m×m are symmetric positive
definite matrices such that

µW(V0, κ0) −
1
2λmax(Γ1) max

s,q∈Q
|σ(s) − σ(q)|2 > δ, (20)

which is possible since the weak synergistic Lyapunov
function and feedback pair(V0, κ0) has a weak synergy gap
exceedingδ andQ is a finite set.

Let θ1, θ2 : R≥0 → R≥0 be continuous, positive definite
functions, and let the smooth functionsΘ1 : R

L → R
L and

Θ2 : R
m → R

m satisfy

vT ΓiΘi(v) + Θi(v)
T Γiv ≤ −θi(|v|) ∀i ∈ {1, 2} (21)

where the inequality should hold for allv ∈ R
L for i = 1

and for allv ∈ R
m for i = 2. Let ϑi(z) = ϑ(z)ei. Define

κ1(ζ, q) = Θ2(ω − ϑ(z)p)

− Γ−1
2 ψ0(z, q)

⊤∇zV0(z, q)

+

L∑

i=1

e
⊤
i pDϑi(z)(φ0(z, q) + ψ0(z, q)ω)

+ ϑ(z)v(z, p, q)

v(z, p, q) = Θ1(p− σ(q))

− Γ−1
1 ϑ(z)⊤ψ0(z, q)

⊤∇zV0(z, q).

(22)

The following theorem establishes that(V1, κ1) is a syn-
ergistic Lyapunov function and feedback pair with synergy
gap exceedingδ.



Theorem 11. Let the compact setA1 be defined as in (18)
and let the pair(V1, κ1) and the functionv be defined by
(19), (22). If, for the system (16), the pair(V0, κ0) is a weak
synergistic Lyapunov function and feedback pair relative to
the compact setA0 with weak synergy gap exceedingδ then,
for the system (14)-(15), the pair(V1, κ1) is a (non-weak)
synergistic Lyapunov function and feedback pair relative to
A1 and with (non-weak) synergy gap exceedingδ.

Proof. For all (ζ, q) ∈M1 ×Q,

〈∇ζV1(ζ, q), φ1(ζ, q) + ψ1(ζ, q)κ1(ζ, q)〉 =

〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ω〉

− 1
2θ1(|p− σ(q)|) − 1

2θ2(|ω − ϑ(z)p|)

− 〈∇zV0(z, q), ψ0(z, q)ϑ(z)(p− σ(q))〉

− 〈∇zV0(z, q), ψ0(z, q)(ω − ϑ(z)p)〉

= 〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ϑ(z)σ(q)〉

− 1
2θ1(|p− σ(q)|) − 1

2θ2(|ω − ϑ(z)p|)

≤ 0.

(23)

Define

E1 = {(z, q) ∈M1 ×Q :

〈∇ζV1(ζ, q), φ1(z, q) + ψ1(z, q)κ1(ζ, q)〉 = 0} ,

W1 =
{
(z, q) ∈M1 ×Q : ψ1(z, q)

⊤∇ζV1(ζ, q) = 0
}
.

(24)

Let E0, W0, andΩ0 come from the definitions in Section V
for the weak synergistic Lyapunov function and feedback
pair (V0, κ0) for the system (16). It follows from (23),
the properties ofθi, the definition ofψ1 in (15), and the
definition of V1 in (19) that

E1 = {(z, q) ∈ E0, ω = ϑ(z)p, p = σ(q)} ⊂ W1. (25)

Let Ψ1 ⊂ M1 × Q denote the largest weakly invariant set
for the system

ζ̇ = φ1(z, q) + ψ1(z, q)κ1(ζ, q)

q̇ = 0

}

(ζ, q) ∈ E1 . (26)

It follows from the definition ofu in (22), the fact thaṫω =
κ1(ζ, q) and the characterization ofE1 in (25) that

Ψ1 = {(ζ, q) ∈M1 ×Q : (z, q) ∈ Ω0,

ω = ϑ(z)p, p = σ(q)} . (27)

Then, it follows from (19) that

µ(V1, κ1) = inf
(ζ,q)∈Ψ1\A1

V1(ζ, q) − ρV1
(ζ)

≥ µW(V0, κ0) −
1
2 max

q,s∈Q
|σ(q) − σ(s)|2Γ1

≥ µW(V0, κ0) −
1
2λmax(Γ1) max

q,s∈Q
|σ(q) − σ(s)|2

> δ .
(28)

Thus, the pair(V1, κ1) is a synergistic Lyapunov function
and feedback pair with gap exceedingδ > 0.

Remark12. It follows by combining Theorems 7 and 11 that
we can use synergistic Lyapunov functions to build hybrid
stabilizers with an arbitrarily number of integrators between
the ideal system and the control variables. At each level of
backstepping, we addL additional states, corresponding to
the statep in (14)-(15).

Remark13. If κ(z, q) = ϑ(z)σ(q) is independent ofq, i.e.,
all of the columns ofϑ(z) are the same, then the variablep
can be removed from the control scheme, by replacingp by
σ(q) in the Lyapunov function in (19).

Remark 14. If the goal is just to make the controlω
continuously differentiable without insisting on controlling
through an integrator, the stateω can be removed from the
control scheme, by replacingω by ϑ(z)p in the Lyapunov
function in (19). However, in this case, one must begin with
a non-weak synergistic Lyapunov function and feedback pair.

VII. H YBRID CONTROL OF RIGID-BODY ATTITUDE

The attitude of a rigid body is represented by a3 × 3
rotation matrixR ∈ SO(3) = {R ∈ R

3×3 : RR⊤ = R⊤R =
I, detR = 1}. Consider the kinematic equations of a rigid
body in a quaternion parametrization given by

z =

[
η

ǫ

]

∈ S
3 ż =

1

2

[
−ǫ⊤

ηI + [ǫ]× ω,

]

(29)

whereS
3 = {(η, ǫ) ∈ R × R

3 : η2 + ǫ⊤ǫ = 1} is the unit
3-sphere embedded inR4, z ∈ S

3 is the unit quaternion
representing the attitude,ω ∈ R

3 is the angular velocity, and

[v]× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 .

A quaternionz = (η, ǫ) is related to a rigid-body attitude
through the Rodrigues formula,R : S

3 → SO(3), defined as

R(z) = I + 2η [ǫ]× + 2 [ǫ]
2
× .

We note that for eachR ∈ SO(3) there exist exactly two an-
tipodal unit quaternions satisfyingR(±z) = R. Furthermore,
sinceR(z) = I if and only if z = ±e1 = (±1, 0) ∈ S

3, we
wish to globally asymptotically stabilize the disconnected set
z = ±e1 for the system (29).

Let Q = {−1, 1}, A0 = {(z, q) ∈ S
3 × Q : z = qe1},

V0(z, q) = 2k(1 − qη) = 2k(1 − 〈z, qe1〉), andκ0(z, q) =
0. SinceV0 is continuous andS3 is compact, its sub-level
sets are compact and furthermore, it is positive definite with
respect toA0. Sinceκ0(z, q) = 0, it follows thatV0 satisfies
(3), E0 = S

3 × Q, andW = Ω0 = {(z, q) : z = ±e1} so
that Ω0 \ A0 = {(z, q) ∈ S

3 × Q : z = −qe1}. Finally we
see that

µW(V0, κ0) = inf
z=−qe1

V0(z, q) − ρV0
(z)

= V0(−qe1, q) − ρV0
(−qe1)

= 4k > 0,

so that(V0, κ0) is a weak synergistic Lyapunov function and
feedback pair for (29) relative toA0 with gap exceeding any
δ ∈ (0, 4k).



Consider the angular velocity dynamics

Jω̇ = [Jω]× ω + τ, (30)

whereτ ∈ R
3 is a control torque. We letτ = − [Jω]× ω+Ju

so that ω̇ = u and now apply the backstepping procedure
with Γ2 = J and, sinceκ0 does not depend onq, p =
σ(q) = 0, to obtain

V1(z, ω, q) = 2k(1 − qη) + 1
2ω

⊤Jω

κ1(q, ω, q) = Θ2(ω) − qJ−1kǫ,

whereΘ2 satisfies (21). A possible choice forΘ2 is Θ2(ω) =
J−1([Jω]× ω − Φ(ω)), where Φ(0) = 0 and ω⊤Φ(ω) ≥
θ(|ω|) for some positive definiteθ : R≥0 → R≥0. Then, it
follows that, withu = κ1,

τ(z, ω, q) = −qkǫ− Φ(ω) (31)

and finally, (V1, τ) is a (non-weak) synergistic Lyapunov
function and feedback pair for (29), (30) relative toA1 =
{(z, ω, q) : z = qe1, ω = 0} with gap exceeding any
δ ∈ (0, 4k). Applying the hybrid controller (8) recovers the
tracking controller of [6] when applied to point stabilization,
which globally asymptotically stabilizesA1 for the closed-
loop hybrid system.

To smooth the torque feedback (31), we can replaceq ∈ Q

by p ∈ R in (31) and apply the backstepping procedure
without controlling τ through an integrator. We form the
Lyapunov function

V2(z, ω, p, q) = V1(z, ω, q) + γ 1
2 (p− q)2,

where γ > 0 and 4k − γ > 0 and obtain, through the
backstepping procedure, the dynamics forp ∈ R as

ṗ = v(z, ω, p, q) =
k

γ
ω⊤ǫ− kp(p− q), (32)

where kp > 0. By defining κ2(z, ω, p, q) = τ(z, ω, p), it
follows that(V2, κ2) is a synergistic Lyapunov function and
feedback pair for the system (29), (30), (32), relative toA2 =
{(z, ω, p, q) : z = qe1, ω = 0, p = q} with gap exceeding
any δ ∈ (0, 4k − γ).

VIII. C ONCLUSION

We have defined synergistic Lyapunov function and feed-
back pairs, in both weak and non-weak versions. Our main
result has been to show how to pass from weak syner-
gistic Lyapunov function and feedback pairs to non-weak
synergistic Lyapunov function and feedback pairs through
backstepping. In turn, this result permits constructing hybrid
feedback control laws through a chain of integrators. The
latter result is useful in the case where unmodeled dynamics
would be sensitive to abrupt changes in the control signal.
This construction allowed us to recover the hybrid feedback
of [6] for rigid-body attitude stabilization in a quaternion
setting and smooth it through backstepping. In a similar
fashion, this methodology can recover the control laws
proposed in [10], [11] and furthermore, allow those control
laws to be smoothed.
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[3] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems.

Springer, 1970.
[4] F. W. Wilson, “The structure of the level surfaces of a Lyapunov

function,” Journal of Differential Equations, vol. 3, pp. 323–329, 1967.
[5] R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel, “Robust

hybrid controllers for continuous-time systems with applications to
obstacle avoidance and regulation to disconnected set of points,” in
Proceedings of the American Control Conference, 2006, pp. 3352–
3357.

[6] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quaternion-based
hybrid control for robust global attitude tracking,”IEEE Transactions
on Automatic Control, 2011.

[7] ——, “Quaternion-based attitude control and the unwinding phe-
nomenon,” inProceedings of the American Control Conference, 2011.

[8] C. G. Mayhew and A. R. Teel, “Hybrid control of planar rotations,” in
Proceedings of the American Control Conference, 2010, pp. 154–159.

[9] ——, “Hybrid control of spherical orientation,” inProceedings of the
49th IEEE Conference on Decision and Control, 2010, pp. 4198–4203.

[10] ——, “Global asymptotic stabilization of the inverted equilibrium
manifold of the 3D pendulum by hybrid feedback,” inProceedings of
the 49th IEEE Conference on Decision and Control, 2010, pp. 679–
684.

[11] ——, “Hybrid control of rigid-body attitude with synergistic poten-
tials,” in Proceedings of the American Control Conference, 2011.

[12] A. S. Morse, D. Q. Mayne, and G. C. Goodwin, “Applications of
hysteresis switching in parameter adaptive control,”IEEE Transactions
on Automatic Control, vol. 37, no. 9, pp. 1343–1354, 1992.

[13] J. Hespanha and A. Morse, “Scale-independent hysteresis switching,”
in Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
1999, vol. 1569, pp. 117–122.

[14] J. Malmborg, B. Berhardsson, and K. J.Åström, “A stabilizing
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