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Abstract— The notion of synergistic potential functions has
been introduced recently in the literature and has been used as
the basis for the design of hybrid feedback laws that achieve
global asymptotic stabilization of a point on a compact manifold
(without boundary) such asS', S?, and SO(3). Here, synergistic
potential functions are generalized—to synergistic Lyapunov
functions—and are shown to be amenable to backstepping. In
particular, if an affine control system admits a (weak) syner-
gistic Lyapunov function and feedback pair then the system
with an integrator added at the input also admits a synergistic
Lyapunov and feedback pair. This fact enables “smoothing”
hybrid feedbacks, or implementing them through a chain of
integrators. In this way, hybrid control designed at a kinematic
level can be redesigned for control through forces, torques,
or even the derivative of these quantities. We demonstrate the
backstepping procedure for attitude stabilization of a rigid body
using a quaternion parametrization.

|. INTRODUCTION

Hybrid feedback is a powerful tool for achieving robus

global asymptotic stabilization in situations where tagpl

ical constraints preclude achieving this goal with claasic
feedback. Such situations include point stabilization fof
systems having states evolving on a compact boundaryle§I
manifold [1], or, more generally, point stabilization for
systems whose state space is not contractible [2] or diffe
morphic to some Euclidean space [3], [4]. Also include
in this list of situations is stabilization to a disconnette
set of points in a connected state space [5], which aris

naturally when considering point stabilization of rigidey
attitude with a unit quaternion parametrization [6], [7Theke
topological obstructions to global asymptotic stabilitsve

been emphasized recently in a series of papers [8]-[1

where the notion of a family of synergistic potential fuocts

has been introduced and used to achieve global asympto&‘?c:T
stability of a point by hybrid feedback for systems Whos%on
state space is not diffeomorphic to any Euclidean space.

Roughly speaking, a family of potential functions is syner-
gistic in the sense of [9] if, at each point where the gradien
of one of the potential functions vanishes (other than at t

point being stabilized), there is another potential fusrctin

the family whose value is strictly less than the value of th?
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given potential function. A synergistic family of potertia
functions gives rise to a simple hybrid controller based on
hysteretically choosing the minimum potential functiordan
its corresponding feedback control law for global asyniptot
stability. This “min-switch” hybrid control paradigm hag-a
peared in the literature in various contexts over the pagt tw
decades. In particular, an early application of this idea fo
implementing hysteresis in adaptive control was preseinted
[12], which was later made scale independent in [13]. Later,
[14] proposed this method (without hysteresis) for multi-
controller systems where it has been applied for the problem
of stabilizing a pendulum on a cart in [15] and for control
of a double-tank system in [16] (which suggests a similar
form for the hysteresis used in this paper); see also [17].
Ideas related to synergistic potential functions also appe
[18]-[20] where multiple Lyapunov functions are proposed
tfor analysis and control design.

In this paper, we extend the notion of synergistic potential
functions to a larger class of functions, which contains
ynergistic potential functions as a special case. We lvadld
émtions synergistic Lyapunov functions. We show thanif a
affine control system admits a family of (weak) synergistic
&yapunov functions, then the system with an integrator ddde

t the input also admits a family of synergistic Lyapunov
unctions. In turn, since synergistic Lyapunov functions
gmit global hybrid stabilizers, this result shows that fiyb
eedback can be smoothed or implemented through multiple
integrators. This observation is significant for extending
hybrid feedback designs from a kinematic level to a dynamic

vel or further through multiple integrators in an effoot t
avoid exciting unmodeled dynamics that might be sensitive
jump discontinuities in the control variable.
he backstepping feature of synergistic Lyapunov func-
s has its antecedent in the nonlinear control litemtur
of the late 1980s and early 1990s. A summary of the
|p1portant references in integrator backstepping can bedou
In the notes and references of [21, Chapter 2]. Our result
on passing from a family of weak synergistic Lyapunov
functions and feedbacks for an affine control system to a
amily of synergistic Lyapunov functions and feedbacks for
the system extended with an integrator at the input pasallel
the integrator backstepping idea summarized in [21, Lemma
2.8(ii)]. See also [22, Theorem 5.3]. Similar backstepping
results for switched systems have appeared in [23]; however
the crucial notion of synergism ensuring global asymptotic
stability does not appear in [23].

Our paper is organized as follows. In the next section,
we give some preliminaries including a description of the
hybrid systems framework we use. In Section Il we de-



fine synergistic Lyapunov function and feedback pairs. Iefinition 2 (hybrid arc) A function z : domx — R™ is a
Section IV we show how to build a globally asymptoti-hybrid arcif dom z is a hybrid time domain and, for each
cally stabilizing hybrid feedback from synergistic Lyapwn j € N, ¢t — (¢, 5) is locally absolutely continuous.
funcUop gnd feedback pairs. In Section V, we Fiefvver . Definition 3 (solution to). A hybrid arcx : dom x — R"
synergistic Lyapunov function and feedback pairs, while in . . . .
. ) . .~ _is asolution to the hybrid systert if 2(0,0) € C' U D;
Section VI we show that if an affine control system admits a S1) Vi € N h thatl. ) Ve d h
family of weak synergistic Lyapunov function and feedback (S1) VJ € N such thatl; == {t . (t,j) € domz} has
nonempty interior

pairs then the system with an integrator added at the input

admits a family of (non-weak) synergistic Lyapunov funatio x(t,j) e C for all t € [min I, sup I;)
and feedback pairs. In Section VII, we apply the method i(t, ) = f(x(t,j)) for almost allt € I;;
to the problem of rigid-body attitude stabilization using a
unit-quaternion parameterization. Finally, we providenso (S2) ¥(t,j) € domz such that(t,j + 1) € domz,
concluding remarks in Section VIII. 2(t,j) € D, x(t,j+1) € Gla(t,§)) .

Il. PRELIMINARIES Hybrid arcs, and solutions tdH in particular, are
A. Notation parametrized by pairét, j), wheret is the ordinary time

component ang is the number of jumps accrued. A solution

In this papl)er,}R geno'iez the realdr)umbe_ﬂﬁ,zol ItEhe I_ndon- x is said to benontrivial if dom x contains at least one point
negative real number&™ denotesn-dimensional Euclidean ;oo from (0, 0), maximalif there does not exist another

Zpsggt’o?r;med%rlm?;' tggnngfau;ilhguEsgzgégﬁlu\?emﬁwfgrm,S°'““°” 2’ such thatr is a truncation ofz’ to some proper

. ' . , subset oflom 2/, completef dom x is unbounded, andeno
Q|ven a sety C R” an'd a point e'R”, |z|s denotes the if it is complete but the projection oflom 2 onto R~ is
distance fromz tg S, ie. Jals = infyes|z —yl. For a 50464, Maximal solutions té¢ may not be unique, not
closed setX C R™ x @, where@ C R is a finite set, and only due to the jump dynamics being set-valued map, but

a smooth function : X — R, we useVV(z,q) to denote ;5 necause whe@ N D + fl, solutions fromC N D jump
gr_adlent ofV relative tgz, with ¢ considered to be constant. and, depending on the flow map, may be able to flow as
Given a smooth functiom : X — R™, we useDr(q,2) 0

denote the Jacobian matrix efrelative toz’a'f('; D)"‘(z’Q) The stability definitions below are generalizations of the
is anR™*™ matrix with ij-th entry given as=g5=%. standard stability concepts to the setting where compésten
B. Hybrid Systems or even existence of so_lutions is not_required. Itis a nehtL_Jra
stability notion for hybrid systems since, often, local exi
Hybrid systems are dynamical systems with both continyance of solutions is not guaranteed because th&'setD
ous and discrete dynamics. For the purposes of this paper Wges not coveR™. For the hybrid control problem studied
consider the framework used in [24]. Here, a hybrid systeiRere, the flow and jump sets will be subsets of the form

H is defined by the following objects: M x @, whereM is a closed subset of an Euclidean space
o« AsetC c R” called theflow set and @ is a finite set, hence, not coverii®gy® for somen.
o« AsetD C R" called thejump set Nonetheless, in our applications, local existence of swist
« Amap f:C — R” called theflow map will hold.

» A setvalued map? ‘R j_R called thej_ump map Definition 4 (asymptotic stability) Consider a hybrid system
The flow mapf defines the continuous dynamics on the flowy; | ot 4 - R” pe compact. Then:

setC, while the jump mag= defines the jump dynamics on « The compact se# is stablefor 7 if for eache > 0
the jump setD. A hybrid systeniH is written compactly as there existss > 0 such that any solution: to H with
i=f(z) z€C |2(0,0)].4 < ¢ satisfies|z(t,j)|a < e for all (¢,5) €
T €G(x) z€D @) dom.r.
' o The compact setd is attractive for H if there exists
Solutions are given on extended time domains by functions ¢ > 0 such that any solutiom to H with |z(0,0)|4 <
that satisfy the conditions suggested by (1). More pregisel  is bounded and if it is complete ther(t, j) — A as
t+j — oo.
o The compact setl is asymptotically stablé it is both
stable and attractive.
J—1 The set from which all solutions are bounded and the
E = U ([tj,t541],9) complete ones converge ibis called thebasin of attraction
j=0 of A. The compact se# is globally asymptotically stable
for some finite sequence of tim&s= ¢, < t; <ty ... < \when the basin of attraction is equal .
ty. It is ahybrid time domainf for all (7,J) € E, E N

([0,7] x {0,1,...7}) is a compact hybrid time domain. By definition, the basin of attraction contains a neighbor-
’ o hood of A. Points inR" \ (C'U D) always belong to the

e wem {

Definition 1 (hybrid time domain) A set £ C R>¢ x N is
a compact hybrid time domaiifi



basin of attraction since there are no solutions starting #te synergy gap When u(V,x) > 6 > 0 we say that the

such points. synergy gap exceeds
Definition 5 (weak invariance) For a hybrid systent{ in Remarké. In the setting of [9],¥ is a set corresponding to
R”. the setS c R” is said to be the critical values of the potential function, which is fenit

(a) weakly forward invarianif for eachz(0,0) € S, there under some mild conditions.

exists at least one complete solutiento H starting V. HYBRID CONTROL USING A SYNERGISTICLYAPUNOV
from x(0,0) with z(¢,5) € S for all (¢,;) € dom z; FUNCTION AND FEEDBACK

(b) weakly backward invarianif for eachgq € .5, N > 0, In this section, we develop a hybrid feedback for the
there existz(0,0) € .5 and at least one solution 1o conirol system (2) using a synergistic Lyapunov functiod an
H starting fromz(0,0) such that for somét”, j*) €  feedback pair relative to the compact sétthat globally
domwz, ¢* 4 j* > N, we havex(t”,j*) = ¢ and  aqymptotically stabilizesd. Let (V,x) be a synergistic

x(t,j) € S forall (¢,5) < (t*,5%), (t,j) € domz; Lyapunov function and feedback pair with gap exceeding
(c) weakly invariantif it is both weakly forward invariant 5° " \we propose the hybrid controller

and weakly backward invariant.
C={(2,q) € MxQ:V(z,q) —pv(z) <6}

[Il. SYNERGISTIC LYAPUNOV FUNCTION AND FEEDBACK w = K(z,q)
In this section, a synergistic Lyapunov function and feed- D={(z,q) € M xQ:V(z,q) — pv(z) > 5} (8)
back pair is defined for the affine control system
P g G(x) = {1 € Q: V(=) = pv(2)}.

£=¢(2,9) + w(ZJI)w} CaeMxQ (2 whereC, D c M x @, resulting in the closed-loop system

@=90 F=0lna) + 0z k(5 2 =2
where the functions) and are smooth w € R™ is the Gg=0 g € G(z)
control, the set\/ C R" is closed, and the s€} is discrete. o D
Smooth functions/ : M x Q — Rsp andk : M x Q — (2,9) € (z,9) € D.
R™ form asynergistic Lyapunov function and feedback paiTheorem 7. Suppose thatV, ) is a synergistic Lyapunov

9)

candidaterelative to the compact sed C M x Q if function and feedback pair relative to the compact get
e Vr>0,{(z,9) € M xQ:V(z,q) <r}is compact; With synergy gap exceeding for the system(2). Then,
« V is positive definite with respect td; the compact se#d is globally asymptotically stable for the
o Forall(z,q) € M x Q, closed-loop system (9).

Proof of Theorem 7.Consider the synergistic Lyapunov
(V{20,000 +9(z a)s(z,0)) <0 () function V' and feedback: and note that (3) holds for all
Given a synergistic Lyapunov function and feedback paifz,q) € M x Q. In particular, (3) holds for allz,q) € C.
candidate(V, ), define Also, by the construction oD andG in (8), for all (z,q) €
o ) D andg € G(z), we haveV(z,q) — V(z,9) > § > 0.
€= E%Z%ggzeq?l¢?quj+w(z k(2 q)) = 0} (4) In particular, V' is nonincreasing along flows of (9) and
T ’ ’ strictly decreasing over jumps of (9). Using the properties
and let¥ C & denote the largest weakly invariant set for theof V/, it follows that the setd is stable and all solutions are
system bounded. It remains to establish that all complete solstion
. converge toA. By the invariance principle in [25], since
2=0a i ‘””(Z’q)} c)ce. B (@) €MxQ:V(zq)~V(zg) =09 € Gz)}ND =1,
q=0 all complete solutions to (9) converge to the largest weakly
invariant set contained in the seNC', where& was defined

et () = min V(z, q) ©) in (4). From the definition of the closed-loop system (9),
pviz) = 2&3 %4 computing such a set amounts to finding the largest weakly
and define invariant set of
z2=¢(z,q9) +¥(z,9)K(2,q)
= - Q) EENC. (10
wVor) = b Viz0) = pv(z), ) i=0 (2,9) (10)

using the convention that(V, k) = co when¥\ A is empty. According to the definition ofl, this weakly invariant set
The pair(V, ) is called asynergistic Lyapunov function and must be contained i# NC. SinceV is positive definite with
feedback paiif (V. k) > 0, in which caseu(V, k) is called respect toA, V(z,q) — py(z) =0 < § for all (z,9) € A
. which implies that4 C C. Then, it follows thatl N C' C
“Here and in the rest of the paper, “smooth” means cont_inuousl((\I,\A) UA)NC = ((¥\.A)NC)n A But then, since
differentiable enough times so that all used derivatives vee# defined M(‘/’ m) > § >0, it follows that (\I/ \ .A) NC = 0, so that

and continuous. Fok steps of backstepping, it is enough férand ¢ to h
be Ck—1, all complete solutions to (9) converge tb O



The next corollary follows from Theorem 7 together withwith controlsw € R™.
the fact thatC' U D = M x Q. Let (Vh, ko) be a weak synergistic Lyapunov function and
feedback pair relative to the compact sét c M, x Q,
where My C R™ is closed and@ is a discrete set, with
weak synergy gap exceeding> 0, for the system (16). We
suppose thakg : My x Q — R™ can be written as linear

Corollary 8. Under the conditions of Theorem 7, if for
each (z,q) € M x Q, ¢(z,q) + 1(z,q)x(z,q) belongs to
the tangent cone ol at z then each maximal solution is

complete. in some function of the variable. In particular, we assume
V. WEAK SYNERGISTICLYAPUNOV FUNCTION AND that there exists a smooth functigh: M, — R™*L and
FEEDBACK some functiory : Q — R”, whereL > 1, such that
In this section, we introduce the notion ofwaaksyner- ro(2,q) = 9(2)o(q). 17

gistic Lyapunov function and feedback for the system (2).
Given a synergistic Lyapunov function and feedback pairemark10. We note thats, can always be decomposed

candidate, define as in (17). Assuming, without loss of generality, thliat=
T {1,...,N}, leto(q) = e,, wheree; € RL denotes theth
Wi={(2,0) € M xQ:%(2,¢) ' VV(2,9) =0}. (1) it vector, and let)(z) = [ko(z,1) -+ ko(z, N)]. Then,
Recall the definition of in Section Ill, and le2 c Enw  (17) holds.
denote the largest weakly invariant set for the system Define

Z.: ¢(z,9) +w(z,q)/€(z,q)} (z,q) €ENW.  (12) A ={((,q) € M1 xQ: (2,q) € Ao,
¢=0 p=o0(q), w=ro(zq)}. (18)

For a vecto € R™ and a symmetric, positive definite matrix

pw(Vik) = inf  V(z,q) — pv(2), (13) T e R™", let \yax(I") denote the largest eigenvalueloand

(z,q)e\A define|¢|2 := ¢TT¢. Consider the functior; : M; x Q —
using the convention thatyy(V,x) = oo whenQ\ A is Rso, My = My x R™ x R”, defined, for each(,q) €
empty. The pai(V, x) is called aweak synergistic Lyapunov M; x @, as
function and feedback paielative to the compact set C 1 1
M x Q if pw(V, k) > 0, in which caseuy(V, x) is called  Vi(¢,q) = VO(ZaQ)+§\P—U(Q)\%l+§|w—79(2)19|%27 (19)
theweak synergy gapVhenuyy (V, k) > § > 0, we say that
the weak synergy gap exceedls

Define

wherel'; € REXL andT'y € R™*™ are symmetric positive
definite matrices such that

Lemma 9. If (V) k) is a synergistic Lyapunov function and L )

feedback pair with synergy gap exceedinthen itis also a  #w(Vo; £0) = 3 Amax(T'1) max lo(s) —o(g)|” > 46, (20)

k istic L functi d feedback pair with
xggk :zgg:gié(;pyeiiig?j\ilﬁ;nc 'on and feedback pair wi which is possible since the weak synergistic Lyapunov

function and feedback paii'y, <o) has a weak synergy gap
Proof. By definition, the sef) of this section is contained in exceeding and Q is a finite set.

the setW in Section lll. Thus,uw (V, k) > u(V, k). Hence, Let 61,05 : R>o — Rx( be continuous, positive definite
if w(V,k) >4 thenpuw(V,k) > 0. O  functions, and let the smooth functio®s : RY — RL and
VI. BACKSTEPPING ©2 : R™ — R™ satisfy
Consider the control system vIT;0;(v) + 0;(v) Tyw < —6;(|v]) Vie {1,2} (21)
C=61(¢,q) +¥1(C Qu where the inequality should hold for all € R for i = 1
i=0 (Cq) € MixQ  (14)  and for ally € R™ for i = 2. Let Y;(z) = V(z)e;. Define
with controlsu € R™, where¢ = (z,w,p) is the state and k1(Cq) = @2(“’1_ ﬂ(z)p)T
-y z, V. Vo(z,
d0(2,a) + Vo (2, Q) 0 2 %o(z) V:ta(20)
$1(¢,q) = 0 Y1(¢,q) = |1] . (15) T ,
v(2,p,9) 0 * ; e PD3:(2)(00(2,0) + o[z g)w) (22)
For an appropriate choice for the functiorwe construct a +9(2)v(z,p,q)

(non-weak) synergistic Lyapunov function and feedback pai
with synergy gap exceeding> 0 for (14) by supposing we - T T
have a weak synergistic Lyapunov function and feedback pair —I19(2) "o(z,.0) T V2Va(z,q).
with weak synergy gap exceedingfor the reduced system  The following theorem establishes th@t;, «;) is a syn-
s ergistic Lyapunov function and feedback pair with synergy
- ) + ) .
Z_ ?0(2 9) + Yolz q)w} (z,q) € My x Q  (16) gap exceeding.
q =

v(z,p,q) = O1(p — 0(q))



Theorem 11. Let the compact sel; be defined as in (18) Remarkl2. It follows by combining Theorems 7 and 11 that
and let the pair(V1, k1) and the functionv be defined by we can use synergistic Lyapunov functions to build hybrid
(19), (22). If, for the system (16), the pairy, xo) is a weak stabilizers with an arbitrarily number of integrators beém
synergistic Lyapunov function and feedback pair relative tthe ideal system and the control variables. At each level of
the compact setl;, with weak synergy gap exceedifighen, backstepping, we add additional states, corresponding to
for the system (14)-(15), the paii;, 1) is a (non-weak) the statep in (14)-(15).

synergistic Lyapunov function and feedback pair relatoe tRemark13. If «(z,q) = 9(z)o(q) is independent of, i.e.,

A; and with (non-weak) synergy gap exceedig
Proof. For all (¢,q) € M; x @,

(VeVi(¢,q), 61(¢,q) +91(¢, q)k1(C, q))
(V:Vo(2,9), d0(2, q) + Yo(2, Q)w
—361(Ip — o(9)]) — 562(Jw — 9(2)p])
—(V2Vo(2,9), Yo(z,9)0(2)(p — o(q)))
—(V.Vo(2,9), %o (2, ¢)(w — 9(2)p))

= (V.Vo(2,9), ¢0(2,q) + o(z,q9)0(2)o(q))
= 361(lp — 0(@)]) — 362(Jw — I(2)p])
<0.

)

(23)

Define

E1={(z,9) e M1 xQ:
(VeVi(Cq)s ¢1(2,9) +b1(z,9)k1(Cq))
Wy = {(z,q) eM xQ:i(z,q)" VVa(¢

=0},
_0}

(24)

Let &, Wy, and2y come from the definitions in Section V
for the weak synergistic Lyapunov function and feedback

pair (Vy, ko) for the system (16). It follows from (23),
the properties of);, the definition of; in (15), and the
definition of 7 in (19) that

& ={(29) €&, w=3(2)p, p=0o(q)} CW1. (25)

Let Uy C M; x @ denote the largest weakly invariant set

for the system

¢ =¢1(2,9) +¥1(2,q)k1 (¢, q)

- } (C.a) €& . (26)
g=20

It follows from the definition ofu in (22), the fact thato =
x1(¢, q) and the characterization &% in (25) that

\Ill :{(CaQ> EMI XQ:(Zaq) EQO7

w=49(z)p, p=0(q)}. (27)
Then, it follows from (19) that
V,:‘@ 1
p(Vi, k1) = . )e%\Al Vi(¢,q) — pvi (Q)
> pw(Vo, ko) — %qnfg)é lo(q) — o(s)]F,
> 1w (Vo, £0) — 3 Amax(T'1) max [o(q) o(s)[?
>0 .
(28)

Thus, the pair(V1, k1) is a synergistic Lyapunov function
and feedback pair with gap exceedifig> 0. O

all of the columns of¥(z) are the same, then the variable
can be removed from the control scheme, by replagityy
o(q) in the Lyapunov function in (19).

Remark 14. If the goal is just to make the contrab
continuously differentiable without insisting on contiag
through an integrator, the statecan be removed from the
control scheme, by replacing by 9(z)p in the Lyapunov
function in (19). However, in this case, one must begin with
a non-weak synergistic Lyapunov function and feedback pair

VII. HYBRID CONTROL OF RIGID-BODY ATTITUDE

The attitude of a rigid body is represented by3a< 3
rotation matrix? € SO(3) = {R € R*>3: RRT = R'TR =
I, det R = 1}. Consider the kinematic equations of a rigid
body in a quaternion parametrization given by

_|m 3 -_1 —el
Z[Jgg Z2Lﬂ+khwl

whereS? = {(n,¢) € R x R? : n?> + e'e = 1} is the unit
3-sphere embedded iR*, z € S? is the unit quaternion
representing the attitude, € R? is the angular velocity, and

0 —Us V2
V3 0 —U1] -
U1 0

(29)

[v]

A quaternionz = (n,€) is related to a rigid-body attitude
through the Rodrigues formul® : S* — SO(3), defined as

R(z) =1 +2nd, +2[d>

We note that for eacl® € SO(3) there exist exactly two an-
tipodal unit quaternions satisfyiri@(+z) = R. Furthermore,
sinceR(z) = I if and only if 2 = +e; = (+1,0) € S3, we
wish to globally asymptotically stabilize the disconnecset
z = +e; for the system (29).

Let @ = {—1,1}, Ao = {(2,9) € S* x Q : z = ge1},
Vo(z,q) = 2k(1 — qn) = 2k(1 — (z,qe1)), and ko(z,q) =
0. SinceVj is continuous and? is compact, its sub-level
sets are compact and furthermore, it is positive definité wit
respect tad,. Sincexy(z,q) = 0, it follows thatV satisfies
(), & =S xQ, andW = Qg = {(2,q) : 2 = +e;} sO
that Qo \ Ao = {(2,9) € S®* x Q : z = —ge; }. Finally we
see that

w(Vo, ko) = Z:izlgel Vo(z,q) — v (2)
= Vo(—qe1,q) — pv,(—qe1)
=4k > 0,

so that(1), o) is a weak synergistic Lyapunov function and
feedback pair for (29) relative td, with gap exceeding any
d € (0,4k).



Consider the angular velocity dynamics

(1]

Jw = [Jw], w+T, (30)

wherer € R? is a control torque. We let = — [Jw], w+Ju
so thatw = u and now apply the backstepping procedure[2]

with Ty, = J and, sincex, does not depend op, p = [l
o(q) = 0, to obtain 4]
Vi(z,w,q) = 2k(1 — qn) + 3w Jw [5]
Hl(Qa"U,q) = @2((-0) - qulkea
where©, satisfies (21). A possible choice fér, is O3 (w) =
J N [Jw], w — ®(w)), where®(0) = 0 andw ' ®(w) >  [g]
(|w|) for some positive definitd : R>q — R>q. Then, it
follows that, withu = &1, [7]
T(2,w,q) = —qke — ®(w) (31) 8]

and finally, (V1,7) is a (non-weak) synergistic Lyapunov [g]
function and feedback pair for (29), (30) relative fo =
{(z,w,q) : z = ge;, w = 0} with gap exceeding any
0 € (0,4k). Applying the hybrid controller (8) recovers the
tracking controller of [6] when applied to point stabiliizat,
which globally asymptotically stabilizesl; for the closed-
loop hybrid system.

To smooth the torque feedback (31), we can reptaeel)
by p € R in (31) and apply the backstepping procedur?lsl
without controlling 7 through an integrator. We form the
Lyapunov function

[10]

(11]

[12]

[14]
‘/Q(Zaw7pa Q) = %(zawaQ) + Vé(p - Q)Qa

wherey > 0 and 4k — v > 0 and obtain, through the (%
backstepping procedure, the dynamics o R as
k

p=v(zw,p,q) = nge — kyp(p — ), (32) [l
where k, > 0. By defining ka(z,w,p,q) = 7(z,w,p), it
follows that(V5, ko) is a synergistic Lyapunov function and
feedback pair for the system (29), (30), (32), relativelto—=
{(z,w,p,q) : z=qe1, w =10, p=gq} with gap exceeding
anyd € (0,4k — 7).

[17]
(18]

[19]
VIII. CONCLUSION

We have defined synergistic Lyapunov function and feed20l
back pairs, in both weak and non-weak versions. Our main
result has been to show how to pass from weak syner-
gistic Lyapunov function and feedback pairs to non-weakll
synergistic Lyapunov function and feedback pairs througpy,
backstepping. In turn, this result permits constructingrid,
feedback control laws through a chain of integrators. The
latter result is useful in the case where unmodeled dynamifzz%]
would be sensitive to abrupt changes in the control signal.
This construction allowed us to recover the hybrid feedback
of [6] for rigid-body attitude stabilization in a quaternio |,y
setting and smooth it through backstepping. In a similar
fashion, this methodology can recover the control lawkd]
proposed in [10], [11] and furthermore, allow those control
laws to be smoothed.
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