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Abstract—It is well known that controlling the attitude of a  point must have at least one other equilibrium point that is
rigid body is subject to topological constraints. We illustrate, ynstable.
with examples, the problems that arise when using continuous  ~gntinuous state-feedback control laws 60(3) are at
and (memoryless) discontinuous quaternion-based state-feealtk e . .
control laws for global attitude stabilization. We propose a mostalmqstglobally stabilizing, where the basin of attraction
quaternion-based hybrid feedback scheme that solves the global Necessarily excludes a nowhere dense set of zero Lebesgue
attitude tracking problem in three scenarios: full state mea- measure. For instance, the controllers proposed in [6]-[8]
surements, only measurements of attitude, and measurementSyanish at attitudes that areS0° from the desired attitude
of attitude with angular velocity measurements corru T iy
a constant bias. Ingeach case,ythe hybrid feedback ié);r?gm?g abOUt. the principal axes of the rigid bOd.y. When the angular
and incorporates hysteresis-based switching using a single binary velocity is zero, creating three saddle eq_U|I|br|a (orfia tase
logic variable for each quaternion error state. When only Of [9], an unstable connected 2-D manifold) and one almost
attitude measurements are available or the angular rate is globally asymptotically stable equilibrium. Theducedatti-
corrupted by a constant bias, the proposed controller is observe  tude stabilization problem has similar issues as its dyoami
based and incorporates an additional quaternion filter and 4,qve onS?, the unit 2-sphere, which is also compact and
bias observer. The hysteresis mechanism enables the proposecg .
scheme to simultaneously avoid the “unwinding phenomenon” | oundaryless. Indeed_,_the Smo‘_’th controller proposed]in [8
and sensitivity to arbitrarily small measurement noise that is 1S almostglobally stabilizing. A similar nonsmooth controller
present in discontinuous feedbacks. These properties are shownproposed in [10] makes for a simple description of the basin
using a general framework for hybrid systems and the results of attraction, but is undefined at some attitudes and results
are demonstrated by simulation. in an unbounded feedback. These topological issues arise in
other applications involving rotational degrees of fremdo
like pendulum systems [11], robotic manipulators [12], and
gimbal-pointing mechanisms (e.g. a pan-tilt camera) [13],
A. Motivation and Background among others (see [4, Table 1] for several examples).
Achieving robust global asymptotic stability of the atties ~ Rigid-body attitude is often parametrized to exploit redun
of a rigid body is rife with topological difficulty stemming dancies in the rotation-matrix description 80 (3); however,
from the very structure of the rigid body state space: tH@rtain parametrizations face further topological ditfies.
special orthogonal group of order three, denofd(3). In As pointed out in [14], no three-parameter parametrization
particular, SO(3) is not a vector space—it is a boundarylesaf SO(3) is globally nonsingular (i.e., the map from rep-
compact manifold, which, as a result of degree theory, iespliresentation coordinates t80(3) is not everywhere a local
that it does not have the topological property of contraletib diffeomorphism). This creates an inherent obstacle ineaehi
ity [1, Ex. 2.4.6]. Furthermore, the basin of attraction ofng global asymptotic stability using control methods lhse
an asymptotically stable equilibrium point of a differeti on Euler angles (e.g. pitch, roll, yaw), (modified) Rodrigue
equation with a locally Lipschitz right-hand side is neceidg Parameters, and exponential coordinates, among others.
contractible [2] and in fact, homeomorphic to some Euclidea Pursuing a globally nonsingular parametrization, many au-
space [3, Theorem V.3.4]. Sincg0(3) is not diffeomorphic thors (as well as the authors of this paper) employ unit quate
to any Euclidean space (it is not contractible), itrimossible nions, which evolve on the three-dimensional unit sphere,
for any continuous state-feedback control law to renderesoifienoted S*. Because there are exactly two antipodal unit
equilibrium point of SO(3) (or its tangent bundle) globally quaternions corresponding to the same attitud&an(3), the
asymptotically stable [4]. In fact, [5] points out that anyttitude-control objective i3 is to stabilize thedisconnected
smooth vector field orO(3) with an attracting equilibrium Set of quaternions representing the same physical attitude
When this double-covering is neglected (e.g., in [15]-[20])
tchristopher.mayhew@us.bosch.com, Robert Bosch Reseaicfeahnol-  the resulting controller can inducgwinding causing the rigid
ogy C_entsr, @‘)1009_Mirand§ A\lfje-' Pfiﬂo A'ttO’fCAA 94304 Mt body to unnecessarily make a full rotation [4], [15]-[17].
rechtagu Lo sy Deparrert, of Aecapece and WIS The problem of robusty and globaly asymprotially sta-
>teel@ece.ucsb.edu, Center for Control Engineering and @tripn, Dbilizing a disconnectedset of points has its own topological
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Santa Barbara, CA 93106-9560. , , , this task with a (memoryless) discontinuous state-feedirac
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an attempt to break the topological constraints for global In this paper, the attitude of a rigid body € SO(3) will
stabilization onSO(3), the introduction of arbitrarily small denote a rotation of vector coordinates expressed in thg bod
measurement noise can destroy any global attractivitygstgp frame to vector coordinates expressed in an inertial frarae.
This is a common problem for topologically constrained € R® denote the angular velocity given in the body frame,
control problems and has been investigated in [21], [26], ftet 7 = J " > 0 denote the inertia matrix of the rigid body,
example. A classic example where dynamics constrain thad letr denote a vector of external torques. Then, the rigid
state to move along circles R? is provided in [27] (discussed body satisfies the kinematic and dynamic equations

again in [28]), which suffers similar issues. b RS(w)

Jw=8Jww+T
. . . Let the n-dimensional unit sphere embeddedRi*! be
In this paper, we propose a quaternion-based hybrid feeud— 11T

. . enoted asS” = {x € R"™' : z'2 = 1}. Then an element

back that breaks the topological obstructions to globairasy of SO(3) can be parametrized by a unit quaternion
totic stability on SO(3) and concurrently defeats problems P y q
indu_ced by measurement_ noise. The_ proposed scheme is q= [,7 eT]T €83, 2)
applicable to any quaternion-based attitude control @bl _ _
and we apply it to three attitude tracking scenarios: fulhrough the Rodrigues formulg : §* — SO(3) defined as
state measurements, only attitude measure_zments, andafigl| s _ R(q) = I +205(e) + 25(e)2. ?)
measurements where the angular velocity measurement is
corrupted by an unknown constant bias. In each case, ¥ve note that mappin® : S> — SO(3) is everywhere a local
hybrid controller maintains a single binary logic variabl@iffeomorphism, but globally two-to-one and satisfieég) =
per quaternion state to implement hysteresis-based sngichR(—q). For convenience, we may refer to a unit quaternion
of control laws. When the latter two cases are addressed, a pairg = (1), €) rather than as a vector and we note that
the hybrid controller incorporates an additional quatmni » € R ande € R are commonly referred to as the “scalar”
filter and bias estimate. The price to pay for robust globanhd “vector” components of € S3.
asymptotic stabilization with the proposed scheme is alsmal Multiplication between two quaternions; = (n;,¢;), i €
region in the state space where the hybrid control law puld, 2}, is defined as
the rigid body in the direction of a longer rotation, thougle t

(R,w) € SO(3) xR3. (1)
B. Contributions

_ T
amount is controlled by a user-defined hysteresis width that Q1 Qg2 = . 117726 f:;%e e
is usually selected to be commensurate with the anticipated e T Re Ve
noise magnitude. With the identity elementt = (1,0), eachq = (n,¢) € S3

This paper is organized as follows. Section Il gives a bri¢fas an inverse; ! = (1, —¢), so thatg ' ®¢ = q2q¢~ ! = 1.
review of attitude representations, unit-quaternionfalgeand Quaternion multiplication is analogous to multiplicatite-
rigid body kinematics and dynamics. Section Il discusseween elements afO(3), in thatR(q1)R(q2) = R(q1 ® ¢2).
how topological constraints arise when using quaterniasell ~ When representing? with a unit quaterniory, we must
feedback. Section IV serves to derive the open-loop errtift” the kinematic equation (1) ontaS®. Suppose that :
system and pose the tracking objective as a compact Bef, — R? is measurableR : R>, — SO(3) is absolutely
stabilization problem for an autonomous system. Section déntinuous and satisfies (1), and let R? — R* be defined
proposes hybrid control schemes for robust tracking inrs¢veas the mapping
output feedback scenarios, and finally, Section VI shows a v(z) = [0 IT]
simulation study where the proposed hybrid controller isi€o

pared to its discontinuous and unwinding-inducing analogs Then, if for everyt € R, an absolutely continuous mapping
q: Rso — 83 satisfiesR(q(t)) = R(t), theng satisfies

T

Il. RIGID BODY ATTITUDE: REPRESENTATION i= m

QUATERNION ALGEBRA AND DYNAMICS €

1 1 —el
=g1orwl=5 [nf + S(e)} w4

The attitude of a rigid body is described by 3ax 3 From the path lifting property, we recall that such a traject
rotation matrix. The set of x 3 rotation matrices with unitary ¢ is unique up to its initial condition (of which there are two
determinant is thepecial orthogonal groupf order three,  that satisfyR(¢(0)) = R(0)) [29]. We refer the reader to [30]
3x3 . mT T for a more complete description of attitude representadioch

SOB)={ReR™: R R=RR =1, detR=1}. rigid body dynamics, and to [31] for a wealth of information
For anyz € R3, we let about unit quaternions.

0 —z3 2 I11. QUATERNION-BASED ATTITUDE CONTROL
S(x)=| x3 0 —x1,

Cry w 0 To elucidate the topological issues discussed in Sectioe |,

consider the problem of designing a globally asymptotycall
so that for two vectors:,y € R?, x x y = S(x)y, wherex  stabilizing control law for the identity element 810(3) with a
denotes the vector cross product. unit quaternion representation usingas the control variable.
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One might see (1) as a singular perturbation of the kinematic
or as the start of a backstepping procedure (see e.g. [2Rjpise-induced chattering
[32]). The following discussion is of independent intenebien

qguaternion filters are used (as in [20], [23], as well as is thi
paper) and also applies to designing a torque feedbackhwhic o w(a) = —sgn(n)e
we consider in the sequel.

Our goal is to design a velocity feedback to stabilize )
qg = (n,¢) = £1 = (£1,0) for the system (4). Suppose one W\
overlooks the double-cover property indicated above amd us V v -
the Lyapunov function (see, for example, [15]-[20], [33]) _1 0 1 n o
Vilg)=2(1-n)=(1- 77)2 +e'e. ®) Fig. 1. Quaternion-based attitude control: unwinding piceti by continuous

. control and non-robust global asymptotic stability produbg discontinuous
It is obvious thatV;(¢q) = 0 if and only if ¢ = 1 and that control. Arrows indicate the direction of rotation — towargl= 1 orn = —1.

Vi(S3\ {1}) > 0. Note further that/; achieves its maximum
overS3 atq = —1. N N
With the feedback = ¢, (¢) := —¢, we have which satisfied/3(+1) = 0 and V3(S3\ {+1}) > 0. Consider
the control law

<V‘71(Q), 3q® V(¢1(q))> =—¢'e

-1 <0
o _ _ _ w = ¢3(q) == —sgn(n)e, where sgn(n) =
which is negative for ally € S\ {+1}. This particular I n=0.
choice of feedback law generates two closed-loop equilibri . . N . (1)
points: ¢ = —1 (unstable) and; = 1 (stable). Since both It achieves global asymptotic stability ¢f-1} in the sense

+1 and —1 represent the same point 30(3% the desired of classical solutions to differential equations. Howewbis
attitude can be stable or unstable, depending on the ctentsol Stability property is not robust tarbitrarily small measure-
knowledge of the quaternion representation! Note thatgusifent noise. In fact, [32] appeals to [21, Theorem 2.6] to
Vi(—q) and the control laws;(—q) = € has much the same assert the existence of an arbitrarily small piecewisestzon
effect on stability by stabilizing-1 and destabilizing-1. This noise signal that, for initial conditions arbitrarily clso the
point is illustrated in Fig. 1 and discussed further in [4]5], discontinuity, keeps the state near the discontinuityd @may
[16]. In particular, [4] discusses how this control law lead from {£1}) for all time. Note that the discontinuity lies at
unwinding n = 0, which corresponds to attitudes that arésa° rotation
To avoid unwinding, one can employ the Lyapunov functioffom the desired equilibrium.
R This point can also be seen through the study of the
Valq) =1—n" =€'e= Ltrace(I — R(q)). generalized solutions to the resulting discontinuous esgst

N o~ ) _ (see [35], [36]). With the control law (7), the closed-loop
Clearly, V» satisfiesVz(¢q) = 0 if and only if ¢ = +£1 and system becomes

Va(S8%\ {£1}) > 0. Note thatVs(q) = Va(—¢q) and thatV;
achieves its maximum value on ¢ =2q@v(—sgn(n)e) = fa(q) qe S (8)

M={qe 8 :n=0} We use the following solution concept for solutions to (8).

which is the connected two-dimensional submanifoldssf ~ Definition 3.1 (Caratkodory Solutions)A  Caratheodory

corresponding to attitudes that al&0° from the desired Sflutionto the systemi = f(z), x € R, on an interval

attitude about some rotation axis. This choice of Lyapundy C K=o IS an absolutely continuous function: 7 — R"
function naturally leads to the control law= ¢2(q) := —ne. that satisfies:(t) - (1)) fornalmost e\{eryt €L Gl\{en a
Note thates(—q) = éa(g). With this control law, we have measurablej functiom : I — R™, a Cargtleodory solution to
the systemi = f(z + ¢) on [ is a functionz : I — R" that
<V172(q), e V(¢2(q))> — 2T, satisfiesi(t) = f(z(t) + e(t)) for almost allt € I.

The solution obtained by taking the limit of a sequence of
which is negative onS® \ ({1} U M). Further analysis Carattéodory solutions{z;}3°, to & = f(z + e;) with mea-
shows thatM is a 2-D unstable invariant manifold, and thasurable functionge; }5°, having the property that, for each
{£1} is attractive fromS® \ M. Moreover, since the vector lim,_, ., e;(t) = 0 is called aHermes solutiorto @ = f(x);
field resulting from¢, vanishes onM, solutions can take an see [35]. The functior; plays the role of measurement noise.
arbitrarily long time to converge tec1 as initial conditions As shown in [35, Corollary 5.6], whetfi is locally bounded,
are taken closer and closer tof. every Hermes solution to the system= f(x) is a solution

To eliminate the undesired equilibrium manifald, some to its Krasovskii regularization [37].
authors (e.g. [15], [22]-[25], [34]) have used discontinsio  The Krasovskii regularization of (8) is given as
feedback motivated by the locally Lipschitz Lyapunov fuoot - , )
q € Jalg) == [ @fal(g+B)NS®) qe &,

Va(q) = 2(1 = |n]), (6) 550
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whereco denotes the closed, convex hull. Let denote a e
set-valued assignment and defigd : R = [—1,1] as

. Jsen(s) s[>0
bgn(s)—{[—l,l] 5=0.

resis

Then, the regularized closed-loop system can be written as \
. 1 — 3 ‘ h —
4 € 3q® v (—sgn(n)e) qge S’ . ‘

For everyq € M, it follows that0 € fy(q). Thus,M := {q € -1 =6 0 s 1 U

3 . I .
i = is an ilibrium f the regulariz

S°im .0} S an equ brium set o t € reguia ed SySte.rq:ig[. 2. Hysteretic regulation of unit quaternions to the ¢ét1}. The
_Th? equivalence between KraSOVSk_” a!’ld Hermes SOIL_H'OQ e space for, and ¢! ¢ is represented by the semicircle. The value of
indicates that when measurement noise is present, sauion’ determines ify = (1, €) should be regulated tb or —1. The parametes
the unregularized system can approximate such an equiibri determines the hysteresis half-width.

solution.
Theorem 3.2: Leps(q) = —sgn(n)e. Then, foreachy > 0 gemicontinuous set-valued map
and eachgy € (M + aB) N &3, there exist a measurable
functione : [0,00) — oB and a Caratt®odory solutiong : sgi(s) = sgn(s) |s| >0 ©)
[0,00) — 8% t0 ¢ = 39 @ v (p3(q + ¢)) satisfyingq(0) = go STV Ly s=o.
andq(t) € (M +aB)NS3 for all t € [0,0). _
nsider the feedback = ¢4(q,h) = —he, whereh €

Proof: This result can be seen as a consequence of [
Corollary 5.6] or [21, Theorem 2.6]; however, we provide a
alternative proof by explicitly constructing a noise sigra h=0 when (¢, h) € {hn > —d}
Let o > 0 and definee to be the function of the state = ht esga(n) when (g, h) € {hn < —6},
(—acsgn(n),0). Then, it follows that N

=1,1} and the dynamics ot are

whereh™ denotes the value of the logic variable after being
. J3a®v(sgn(n)e) 0<|In<a updated. This is a hybrid feedback in whi¢hselects the
Lg@v(—sgn(n)e) |n| > a. _deswed_ rotation d_lrectlon to movgto either+1 or —1. The
inequalities dictating whethet remains constant or changes
Solutions to this system yield a measurable function value are designed to swit¢ghonly when a “significant” sign
[0,00) — aB. We defineV(q) = n?, which has the property mismatch occurs betweepand k. Note that whenhn > 0,
that Vi (S? \ M) > 0 and V(M) = 0. It follows that, for the feedback—he is pulling in the direction of the shortest

0<|n <a, rotation to aligng with +1. On the other hand, whel) < 0,
R the feedback is pulling in the direction of a longer rotation
<VVM(q), 2q@v(—sgn(n — asgn(n))e)> = —|nle’e Hence, the desired direction of rotation changes only when

there is a significant benefit in switching it, where “sigrafit”

Standard Lyapunov theory yields the desired result. B s defined precisely by the selection &f
Interestingly, this result directly contradicts the asiser of The hybrid feedbacky, generalizes the feedbacks and
[24] that definingsgn without a zero value at zero, as weps, as ¢4(q,sgn(n)) = ¢3(q) and ¢4(q,h) = ho1(q). The
have in (7), avoids the regularization-induced equilibriu hysteresis width) manages a trade-off between robustness to

While some might dismiss this development since thmeasurement noise and a small amount of hysteresis-induced
regularization-induced equilibrium set has measure zaro inefficiency. When§ > 1, the value of the logic variable
the space of unit quaternions, the fact remains that suchnnot change and our strategy reduces to a static feedback
a discontinuous control produces global asymptotic stgbil that induces unwinding. Wheti = 0, the resulting control
without robustness. One can imagine that oscillating noisecomes discontinuous.
could, at the very leastdegrade performance as a fickle This similarity is also present in the Lyapunov analysis:. Fo
discontinuous feedback changes its “mind” on which wayotational convenience, we let
to rotate. Referring to Fig. 1, one can visualize how noise 14® v(da(g, )
affecting the measurement of can cause chattering at the  f(¢,h) = [Qq 04 4 } g(q,h) = LI?(T)]
discontinuity ¢ = 0). We now show how one can add Ea
decisiveness with a hysteretic memory state encapsulatedNiow, we consider the Lyapunov function
a hybrid feedback. 5 _ 5

To solve the various issues in the control laws above, we Va(g, h) = 2(1 = h) = Vi (ha),
propose the strategy suggested in Figure@rmamicfeedback which satisfie§74(q, h) =0 if and only if ¢ = h1, while it is
that uses a memory state to select which poleS8fto positive otherwise. Sincg? = 1, it follows that
regulate in ahystereticfashion. Leté € (0,1) denote the N
hysteresis half-width and l&gm : R = {—1,1} be the outer <VV4(q, h), f(a, h)> = —€'e,
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which is negative wheneveém > —¢ andq # h1. Thatis,V; well. We will assume thats, can be measured. We note
decreases along flows of the closed-loop system. Furthesmdhat the inclusion formulation of the generator system (%0)
we have that autonomous; hence, invariance principles for hybrid sgste

N N can be used to assert convergence of solutions.

Va(g(q, h)) — Va(q, h) = 4hn, To express the difference between the reference trajectory
which is negative whenevein < —§, that is, V, decreases (Rq4,wq), and the actual rigid body trajectoryR,w), we
over jumps of the closed-loop system. This analysis impli€nploy a common coordinate transformation that resolves th
that the compact and invariant set = {(¢,h) € S x angular velocity error in the body frame (see [5], [7], [20],
{-1,1} : ¢ = h1} is globally asymptotically stable for the[23], [40], [41]). In this direction, we define the attituderer
closed-loop system since; is strictly decreasing along all coordinatesR = RJR € SO(3). Using the property that
trajectories, except of those starting from Finally, we note « — S(x) is linear and that for every € R* andR € SO(3),
that the hysteresis makes the scenario described in Theo®mS(z)R = S(R'z), it follows that the attitude error system
3.2 impossible. In the coming sections, we will find that thesvolves according to
ideas extend naturally to the dynamic setting wherés a .

D DT
state variable and torque is an input. R=RSw— R wa). 11)
As a final remark, the correctness of any convergence @ define
stability result written for rigid body attitude control ing By = R wy 5= w— @y (12)

guaternions fundamentally depends on using a measurement
of ¢ that satisfies the quaternion kinematic equation (4). Herghen, defining
we quote the seminal paper [16].

“In many quaternion extraction algorithms, the sign 20, wa) 1= S(Tw) + §(T@a) = (S(@a) T + TS(@a)),

of n is arbitraril_y chosen po;itive. This .approach is following [20], [23], [40], [41] vields the error dynamics
not used here, instead, the sign ambiguity is resolved

by choosing the one that satisfies the associated R:RS(@) 13
kipematic differentia_l equation._ In implementatipn, T = (@, 50)0 — S(04) T 5 — TR g+ 7 (13)
this would probably imply keeping some immediate

past values of the quaternion.” The salient features of this transformation are thap, w,)

We note that additionally, such a discontinuous quaterniéh Skew symmetric for every value of its argument and that,
selection method is inherently non-global, ascan easily assuming the inertia matrix/ is known, S(wq)Jws and
be zero (destroying a main purpose of quaternion use). K2 wa can be inferred through measurementrof
stead, as the quotation above suggests, properly implechent The error system (13) can be expressed in terms of unit
quaternion-based control laws amherently dynamicand duaternions as well. Letting; = (14,¢4) € S* denote the
require an extra quaternion memory state to properly “extra desired quaternion, wheig, = 3494 ® v(wa), we define the
the measurement af from a measurement k. We assume tracking error quaternion ag= g, ® g = (7, €). Then, per-
that this mechanism is working in the background and omitferming the same coordinate transformatian, = R(q) 'wa,
from the analysis. it follows that
i=37®v(®). (14)
IV. TRACKING ERRORDYNAMICS
The tracking objective is to design so that R and w
asymptotically track a desired bounded reference trajgcto 71 1(q, @a, wa) = TR(Q) T wa + S(@04) T Da- (15)
To pose this tracking problem in terms of a compact attractor _ ~ o
for an autonomous system, we utilize an exogenous systenf'na"yé we Igtx,, i (4,9, g, wa), Tp = (4,9, qa,wa), and
to generate any useful reference trajectory. Lét> 0 and “» = S° X R? x 87 <, so that, with this formulation,
Q C R? be compact. Then, we generate such desired refereff2g tracking objective is to robustly, globally asymptetig

We define thdeedforwardtorque term as

trajectories with the system stabilize the compact set
5 A, ={z,€X,:R(q) =1, w =0}
Rd = RdS(wd) P p P ’ 16
b € MB (Ra,wa) € SO(3) x 2, (10) = (T, € X, q=+1, =0} 4o
where MB denotes the closed ball of radiu/. Since fOr the autonomous system
0 € MB, S_O(B) x Q is always viaple (see [38]). _Ther_1, _since g lgov(®)
SO(3) x Q is compact, every maximal solution (i.e., it is not &5 - fuo(Zp, 7) -
a proper truncation of another solution) to (10) is complete’» = da € Fyp(Zp,7) := %qd ® v(wy) Iy € &,
(i.e., has an unbounded domain-see, e.g., [39, Proposition @ MB
2.4]). Additionally, any possible solution componeny of 17)

(10) is Lipschitz continuous with Lipschitz constahf, but where

not necessarily differentiable. This formulation alsooat - o o o

for non-periodicwy and includes the regulation problem as  Jfu(Zp,7) =T (2(0,0a)@ — 75£(q, @a, wa) + 7) -
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V. ATTITUDE TRACKING CONTROL where F' : R™ = R" is the flow mapgoverning continuous

g_volution of the state: on theflow setC', while G : R == R"

iS the jump mapgoverning the discrete evolution of the state

on thejump setD. For details, see [39], [43].

: ) In the following sections, we will make several divisions of
3) measurements af andw + b are available, wheré is o gtate space by notation to precisely indicate where mea-

an unknown constant bias. surement noise enters the closed-loop systems, As a rmuthtio

Our solution to 1) is an extension of [32] and the hybriguide, a bar or tilde embellishment indicates an error state

feedback of Section Ill to the tracking problem, for which weumbered subscript indicates the problem number (e-g1:

employ the error coordinates of Section IV and feedforwafd| state measurements)pasubscript indicates the plant state,

compensation. It uses a single binary logic variable as dgw subscript indicates the controller state, and a subséript
scribed in Fig. 2 to achieve global asymptotic attitudeki@@ indicates the “known” states.

that is robust to measurement noise.
To solve 2), we build on our solution toll) b_y emp_loymgA_ Full state measurements
the results of [20] that use an extra quaternion filter to jgev o
damping that would otherwise be accomplished by negative'Veé @ssume the output of the system (17) is given as
feedback of angular-velocity error terms. In [20], a Lyapun y1 = (¢, w). (18)
function based on (5) is used for both the tracking error _
quaternion and the extra quaternion filter state. We remoV&€e proposed controller has a single state, {—1,1}, so we
the unwinding caused by this choice of Lyapunov function bg,artition the state space as follows. We define the controlle
introducing another binary logic variable for the quatemi State and state space as; := h € X.; := {-1,1}. For
filter and implementing the ideas in Fig. 2. consistency in indexing and notation throughout the foilayv
Finally, our solution to 3) uses the ideas of [23], whichSections, we let,,; := xp, Tp1 = Tp, Xp1 := Ay, Teq = h,
based on the observer design of [22], employ a coupléd ‘= (Tp,1, 1)y T1 1= (Tp,1, Te,1), ANAAY 1= Ay X Aoy
quaternion filter similar to the one in [20] and a bias observ&inally, we letz; 1 = (qa, wa, Tc,1).
to achieve asymptotic tracking. Unlike [20], the works [28[d ~ The goal is to globally asymptotically stabilize the set
[22] use a L_yapun.ov function based on (6) gnq its resulting Ay = {ch €X :g=Fhl, &= 0}. (19)
non-robust discontinuous control to avoid unwinding. Here ~
directly build on our solution to 2) by adding a bias observefhat is,q should be regulated tog; andw should be regulated
In fact, our solution to 2) can be seen as a special case of turwq. Note thatProj, A; = A,, whereProj, X is the
solution to 3) without the bias observer and extra feedbapkojection of the sefX onto the set’’.
term. Given a gainc > 0, a strongly passive functiof® : R? —
To summarize, our proposed controllers are dynamic afid, andd € (0,1), our hybrid controller is
employ hysteretically switched logic variables for eachtgy 2 _ _ -
nion error state. The solutions to 2) and 3) employ an addi- 7h =0 T €C =11 € 7}77 = 0} (20)
tional quaternion filter to achieve damping and the solution »* € 5gi(u1) 1 € D1 :={Z; € Ay : hi] < —0},
to 3) uses an additional bias observer. We note that 2) hjere the vector of inpus; = (7, u, ) is specified by defining
been solved using a linear attitude filter in [19] and [42]. It N
may be possible to extend these methods to solve 3). Becauses,1(¥1, k1) = —ché — (), wi(y1,261) =17,  (21)
the presenti paper is primarily concerned with the qyaternignd settingl/, = K1 = (7 + o1, k1),
representation, we have chosen to employ quaternion flltersThe torque feedback termfb’i is quite similar to other

although the use of a linear filter would obviate the need f%orks. The “proportional” term-che essentially implements a
an additional logic variable.

) _ . spring force that pulls the rigid body along the axis of riatat

In what fol!ows, we will make use of comparison functionsyg iscussed in Section lllh determines the orientation
and a function that removes energy from the system. g yhe spring force and that because of the hysteresis, this
continuous functiony : R>g — R is said to beclassk  gying force may sometimes pull in the direction of the
if v(0) =0and it is stngtly increasing. A cpntmuous f“_nCt'OnIonger rotation. Damping is provided by®(). The whole
B Rzo — Ry Is said to beclassk.L if for each fixed y,q,e input is comprised of the feedback payt; and the

r, the maps — f(s,r) is classk and if for each fixeds, teqtorward part,.1, which is model dependent when either
the mapr — (s, r) is decreasing antlm, ., 5(s,) = 0. g OF Gy iS NONZEro.

A continuous function® : R™ — R™ is strongly passive
if there exist clasgc functions;, ¢ € {1,2}, such that , ,
n(w]) € wT®(w) < yo(w]) for all w € R™. Finally, we B. Only attitude measurements available

work within the hybrid systems framework of [43] in which a Here, we assume the output of the system (17) is given as
hybrid system is denoted &¢ = (F, G, C, D) and given by

We now consider three attitude tracking control scenario

1) measurements af andw are available;
2) only measurements a@f are available;

Y2 =(q. (22)
e F() vel We append two states to the hybrid controller outlined in
rT €G(x) zeD, Section V-A: a quaternion filter statej € S2, and an
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accompanying hysteresis variable, The control law in this Now, we let Teg = (@72,5), g = (Tp3,Tc3), Tz =

instance is additionally parametrized by a gain- 0 and a (7p3,7.3), X3 = A&p3 x A3, and finally, x5 =

matrix gainK = K' > 0. The state and state space of thégs,wq, . 3). Our goal is to stabilize the compact set

controller isz o = (zc1,h,4) € Xeg = Xog x{—1,1} xS3. - . -

The quaternion error betweehand g is As = {T5 € X5 : 72 € Az, b=0}, (29)
which satisfiesPro] X, As = A,.

~ ~A—1 _

1=9 9 (23) Let & = w + b — b denote the estimate of the unbiased
Now, we letz, s := 2,1, Xpo i= Xp1, Teo := (Te1,h,q), angularvelocity measurement. Then, for this task, we pepo
Ty = (Tpo,Tea), T = (Tpa,Tea), Xo = Xpo X X0, and the hybrid controller
finally, z; 2 = (q4,wd, xc,2). NOow, we can state the goal of 7

. i h 0
?hur proposed controller as globally asymptotically stali E 0 Ty € Cyim (s € Xy : i) > =0
e compact set =11 -
. q 34 @ v(ug) andhij > —6}
Ay ={Z2 € Xy : 71 € Ay, §=h1}. (24) j, Uy
As before,h decides to regulaté to g or —¢ and we have [h*] sgi(uq) B
Projy A; = A, where A, was defined in (16). ht sgn(us) T3 € D3 :={T3€X3:h< —0
For this task, we propose the hybrid controller (again|g* € q or hij < —6}
expressed in terms of inputs) ht b
. ) ‘ (30)
. 8 Tg € Oy := {1y € Xo: hij > —§  Where the vector of inputé'z = (Uz, u4) is defined by
h| = . I .
(j %qA ® V(’U,Q) and h?? > —5} beﬁg(y(g,xk’g) := —Ch€é — che — <I>(w — Wd), (31)
7+ se(us) ~ B P s Ka(Ys, Th,3) == P(0 — ©a)
iL+ c @(Ug) T2 € Dy = {12 ~€~X2 ' hT} = and SettingU3 = Kg = (Tff + Tb,3, K1, K2, K3, Ii4)- Here,
g+ g or hi) < =6}, the estimated value of is used in certainty equivalence

(25) fashion. The term®(w — wq) in k4 acts to estimaté by
where the vector of input&, = (Uy,us,us) is defined by exploiting the passivity of feedback loops witho andg. The
_ - . addition of the bias state and its observer requires noiaddit
Tib2(Y2, Tk 2) := —Che — Ché  ka(y2, Tk 2) := hKeE (26) complexity in terms of logic variables (and accompanying/flo
k3(y2, Tr2) =1, and jump conditions) over the output feedback case coreider
in Section V-B. This is due to the fact that the bias and its

and settingUs = Ko = (775 + Tpp2, K1, Ko, k3). Here, : N ) .
. ST e . . im volve i fr f logical constraints.
much is the same as [20], where the extra quaternion f||t%srt ate evolve IrR”, free of topological constraints

exploits passivity to introduce damping. The primary anB Closed-loop error system and main results

crucial difference between [20] and our approach aboveiis oU’ ) ] ) ) )

addition of logic variables for each quaternion state. In this section, we combine the results of previous sections
Compared to the full state feedback controller of Se@nd prove global asymptotic stability of; for the i closed-

tion V-A, the quaternion filter staté and logic variablel, 00P error system; € {1,2,3}. Below, we show the open-loop

introduced in this design necessitates some additionadtsie €TOr system fori = 1,2, 3 by displaying the evolution of all

in the flow and jump sets. Conditions are included in the junffTor states with nontrivial dynamics (i.ei, 7 0, 2 # x).

and flow sets to updatk when there is a significant amount'Ve slightly abuse notation to save space by writing= Ci,

of sign mismatch betweei and %, and otherwise, keep it 8V€N when tr_\e sta_tes listed below may not belong to the state

constant. Note that (25) guarantees that, weéher jump SPace of whichC; is a close.d subset. In terms of the input

condition is metboth logic variablesh and/, are reset to the VectorsU;, the error system is

sign of their respective’s. q= %q ® (@)

j(D = E(w7wd)aj - Tff(qv wd7djd) + T

C. Biased angular velocity measurements 44 = 394 ® v(wq)
In this section, we append a constant bias state,{) C wq € MB
R? to the plantiz, 3 = (7,2,b) € X,3 := X, 2 x Q with I _ AT T
e ' 2 , 2 7 =sdv—-R U ht es

dynamicsb = 0. We assume the output of (17) is given as (Z 24 ( (@) u2) . € sgn(u1)

b= U4 ht e Sgin(u?))
ys = (¢, w +b). (27) D e—
R z; € C; Z; € Dy,
We append a bias observer staiec R?, to the controller (32)

state ase. 3 = (.13072,?)) € X, 3 := X.o x R®. We define the which we abbreviate as

bias observer error as i € Fi(z,U;) i€ Ch
~ ~ HZ(U’L) _+ _ _ (33)
b="b-—0b. (28) T, € Gz(xuUz) T, € D;.
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We note that the evolution fob is calculated trivially from

the definitionb = b — b and that the evolution fo§ can be

derived in much the same way asn (11), (12), and (14).
Closing the loop by setting/; = KC;(y;, x,i, wa), We have

I, € Fp(Zp,Trs + Trb,i)

i=3i®v (@—R(Q)Tffg) ht e sgn(7)
b= 0@ — y) ht e sgn(i)
—_——————
z; € C; Ti € D;
B o (34)
which we abbreviate by definingt, = (F;,G;,C;, D;) =

H;(K;). Before commencing our stability analysis, we not

that our closed-loop systems satisfy the following prapsrt

Lemma 5.1: Fori = 1,2,3, the closed-loop systerf;
corresponding tq34) satisfies the following properti&s
(A1) C; and D; are closed sets.

(A2) F; R™ = R™ is outer semicontinuous,
bounded, convex-valued, aifd (x) # 0 for all z € C;.
(A3) G;
bounded, and7;(z) # 0 for all z € D,.

Proof: The following statements hold far € {1,2,3}.

The setsC; and D; are obviously closed by inspection. Th

flow equation for every state except far; is continuous
and locally bounded. Sincé/B has no dependence af,
it is outer semicontinuous. Moreove/B is convex and
bounded.G;(Z;) is nonempty for everys; € D;. Moreover,
since s +— sgn(s) is outer-semicontinuous;(z;) is outer-
semicontinuous for alg; € D,. [ |

8

and any skew-symmetric matri, it follows thatw " Y@ = 0.
Finally, sinceS(x)z = 0 for anyz € R?, we have the property
that R(q)e = ¢, for any ¢ = (n,e) € S3. It follows that
2¢(1 — hij) = ¢he T (@ — uy).

Now, sinces = @+b—b=w+b—b—@g+b =& —a4+b,
settingU; = K; yields

(VVi(z), Fi(z3)) =
—@wTd(w) <0 i=1
—&Ke<0 i=2 (37)

—ETKé— (0 —@g) ®(& —@)—
o, we have thatVVi(z;), Fi(z;)) < 0forall z; € X; O C;.
Now, we examine the change il; over jumps. Since
xsgn(x) = |z|, for everyz; € D, and everyg € G;(Z;),

2¢(hij — |7]) i=1

locally V19 = Vil@) = {20(1177 —|7l) + 2&(hi — |7]) i =2,3.

(38)

R™ = R" is outer semicontinuous, locally Then, by virtue ofz; € Dj, it follows that wheni = 1,

hij < —6 and —|fj| < —4, so 2¢(hij — |f]) < —4cb. For,
i = 2,3, we have either tha2é(hi] — |7j|) < —4¢d or that

e’z&(i}ﬁ— |7]) < —4¢d, and the other term can be upper bounded

by zero. So, it follows that for all € {1,2,3}, z; € D, and
g € Gi(z;), we haveV;(g) — V;(Z;) < —4min{é,¢}d < 0.

So far, we have established that the functignis mono-
tonically nonincreasing along flows of the closed-loop syst
and is strictly decreasing along jumps. Applying [44, Thesor
7.6] asserts thatl; is stable forH,;.

Our analysis is based on Lyapunov’s method and the func-To complete the proof, we will apply an invariance principle

tionsV; : X; — R, defined as

Vi(z1) = 2¢(1 — hi)) + 30" T® (35a)
Va(Z2) = Vi(Z1) + 26(1 — hij) (35b)
Vi(23) = Va(Z2) + 2070 (35¢)

Theorem 5.2: Let > 0,&> 0, K =K' >0,d € (0,1),

for hybrid systems. In this direction, let
W; ={z; € C; : (Vi(z;), Fi(z;)) = 0} &
Wi={z,€X,:0=0, hij > -6}
Wa = {Zy € Xy : hij > =6, hij > -6}
Ws={Ts€Xs:6=0—wg=0, hij > =0, hij > —}.
(39)

and let® : R® — R? be strongly passive. Then, the compadinceV; is nonincreasing along flows and strictly decreasing
set.A; ((19), (24), (29)) is globally asymptotically stable for over jumps of thei closed-loop system for every e

the closed-loop hybrid systemd; (34), for eachi € {1,2,3}.

Proof: Consider the functions; : &; — R>( in (35).
Fori =1,2,3, V; satisfiesV;(X; \ A;) > 0, V;(A;) =0, and
for anya > 0, the set{z; € &; : V(z;) < a} is compact. Let
o = —Ty +ché + ¢hé +7. Now, written in terms of the input
vector U;, we have that

(VVi(@), Fi(2;,U;)) =
T

w'o =1
—¢hé T ug+ @' o i=2 (36)
75iL€TU2 +wlo+ ETU3 1= 3.

To see this, we note from (4) and (14) thzt(1 — hi) =
chw " e. Furthermore, recalling that™ Sz = 0 for anyz € R?

1A set-valued mappingF is outer semicontinuous$f its graph, the set
{(z,y) : y € F(x)}, is closed. LetB C R™ denote the closed unit ball
centered at the origin, thel’ is locally boundedif for any compact set
K C R™, there existan > 0 such thatF'(K) C mB.

{1,2,3}, applying [44, Theorem 4.7] asserts that must
converge to the largest invariant setliri,. We proceed with
this argument fori = 3, as it is the most involved and note
that the cases for= 1,2 are quite similar.

Constrainingé = 0 implies thatg = +1. Sincefzﬁ > =9,
it must follow thatg = h1. Continuing, we must have that
¢=0. Then, sinceR(§)" = R(h1)T = I, from (34), we see
that this can only occur when = 0 and so = 0. But, since
O—wg=0and®—wg = &—b, it follows thatb = 0. Finally,
from the evolution ofdw, it follows that é = 0, and since
hip > —6, we haveg = h1. This proves thatds is globally
attractive and hence, globally asymptotically stable.ifBirty,
it follows that A, and .4, are also globally asymptotically
stable for their respective closed-loop systems. ]

Solutions to hybrid systenid are parametrized in terms of
both ¢, the amount of time spent flowing, and the number
of jumps; hence the value of the solution @t;) is given
by z(t,j). The domain of a solutior: is a subset ofR x
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{0,1,2,...} and is called ahybrid time domainwhile the Then, since the family of perturbed systef$ satisfies the

function defining the value of the solution is callechgbrid convergence property [39, (CP)], we invoke [39, Theorem

arc. We denote the set of solutions starting from a painbr 6.6] to arrive at theCL bound onV;(z$(t, j)). Then, since

a compact sefX as Sy (zo) and Sy (K), respectively. Zeno V;(z%(t,5)) — [0,7] C [0,40 min{¢,¢}) ast + j — oo, we

solutions—those with an infinite number of jumps in a finitean use similar arguments to Theorem 5.3 to arrive at a bound

amount of time—do not appear in the controllers designee. heon the number of jumps. [ ]

In fact, for any solution, the number of jumps is bounded.  Note that we can always choo$¢ to include the entirety
Theorem 5.3: For anyi = 1,2,3, and any compact set Of §3 for the stategq, g, andg; hence, theC L estimate holds

K; C X;, there existsJ; € Z-, such that for anyz; e for any initial orientation of the rigid body. On the othemitg

Sy, (K;), domT; C Rsg x {0, 1...,Ji}. K cannot be chosen to include all initial angular velocities,

. e
Proof: SinceV; is continuous andy; is compact for each since they evolve iR which is not compact.

i €{1,2,3}, letV;* = max V;(K;). Then, it follows from (37)

and (38) that for anyt; € Sg, (&;) and any(t, j) € dom z;,
B ) B o When the hybrid controller is subjected to measurement
0 < Vi(zi(t, 7)) < Vi(2i(0,0)) — 49 min{z, e}J. noise, it is possible for chattering to occur, which mariges
It follows that for anyz; € S;; (K;) and any(t, j) € dom z;, the closed-loop hybrid system as the possibility of muttipl
. jumps occurring at the same time. This is possible when
J<Ji= [“m‘:mw ; jumps can map the state back into the jump set, that is, when
G(D) N D # (. To eliminate the possibility of chattering

where[-] denotes the ceiling function. for a bounded noise signal, we compute a lower bound on

Theorem 5.3 gives a uniform bound on the number ofjum%e distance betwee@q(DQ) and D, defined in (40). We

occurring along solutions that begin from a given Compaﬁ'ovide these bounds fér= 1, 2, 3, but only provide the proof
set. The number of jumps is linked to initial kinetic eNergy . ; _ 9 3 as the case f01'r,—71 ’is similar and simpler. We
of the system: as initial bias and angular velocity errorssea state_thezse, bounds in the foﬂowing theorem '

the rigid body to rotateg and ¢ can make many revolutions L

aroundS3. During each revolution, it is possible far or 7 Theggem 5.5: For every € [0, 3) and everys € (2a,1),

to initiate jumps. After some of the kinetic energy has beels N Gi (D) = 0.

dissipated, the rigid body can no longer rotate past® and Proof: (i = 2, 3) First, we note a helpful characterization

cause jumps to occur. of @?(D?). Using properties of quaternions, a calculation
We now state a theorem asserting the robustness of #iews that

asymptotic stability property asserted in Theorem 5.2 to a

general “outer” (see [39]) perturbation that includes both

measurement and modeling error. We pertitpas follows, Since states other thal, », g and ¢ do not enter into the

resulting in a hybrid inclusion. Let,, ; denote theunknown constraints definind>® and sincej andg do not change over

states for each = 1,2,3, i.e.,x,1 =0, 242 = w, T,3 =b. jumps, we only examine the jump equations foand 2 when

Then, letT; : X; — &; denote the invertible transformationperturbed by measurement noise. As before, we can employ

satisfying 7’ (z;) = =, for eachi = 1,2,3. Now, we define, basic properties of quaternions to arrive at

H: = (F;,G.,C* D), wherea > 0 and - =
i ( i i i i ) o h+ c @(ﬁ + OzB) h+ S @(ﬁ + O[]B) (41)

E. Measurement Noise and Chattering

DY ={i; € X : hij < —6 +a or hij) < —6 + a}.

Fu T; :@Fi fi,’Ci i+0[B7£B i,u.l + aB . . . e T
f;(f ) ( < - ks Ga) ) ) It is helpful to note that (41) is equivalent to writing"7 >
G (T:) ={z € Xi: 2 € Gi(2;, Ki(y; + aB, xp5,0a)) } —a andhtij > —a.

C={z; € X : Ti(yi + aB,xy 4, 25,;) NC; # 0} With this observation, we can writ; (D%) as

G (D) ={z; € X : hij > —a and hi) > —a}

D;—l = {ffl S Xz : Tz(yz + aIB%,:cuyi,xk,i) N .Dz # @}
4l
( N{zZ;,eX;: |7 >d—aor|n >d—a}.

0)
Theorem 5.4: LetV; be defined as in(35) and let the -

conditions of Theorem 5.2 hold. Then, for eack 1,2,3, In preparation for computing disb?, G; (D)), we decom-

there exists a clask:£ function3; such that for each compactpose D? and G; (D2) into the unions

set K; C A; and everyy; > 0, there existsy} > 0 such that o ra a A ay o o

for all a € (0, o;], every solutionz§ € Sy« (K;) satisfies Dif = A7 UAT, G (D7) =15, U5,

Vi(zi (t,5)) < Bi(Vi(7(0,0)), t+5) +v V(¢ j) € domz.

Moreover, ify < 4dmin{c, ¢}, then there existsl; € Zx>
such thatdom z& C R> x {0,1,...,J;}.
Proof: Given Lemma 5.1 and Theorem 5.2, [39, Theorem

where

APy ={%; € X;: hi < =6 + a}

Ay ={z; € X : hi) < =6 + a}

I'Y) ={z; € X;: hiy > —a and hij > —a}

6.5] asserts the existence 6f € KL such that for allz; € N{z; € X; : || > —a}
Sx, (&), ¢y = {2 € X : hij > —a and hij > —a}
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Intending to break the distance computation into simpler VI. SIMULATION STUDY

pieces, we note that In this section, we present a simulation study contrasting
. o FC . . o T the proposed hybrid control scheme with both a discontisuou
dist(D', & (D7) = j,klg{l?,z}dlst(Aivj’ i) controller and a controller that induces unwinding. We castt
these controllers in two scenarios that illustrate how unalivig
~ ~ can cause undesirable behavior and how the discontinuous
I ={z; € X : hi) > —a and hi) > —a}. controller is sensitive to measurement noise. The follgwin
simulations correspond to the full-state-measuremeng,cas
where bothg and w are measured without any additive bias
dist(D?,@f(D?)) > dist(D?,T%) = min_dis(A2,, %), on w, as in Section V-A. In each case, tr_le rigid body is
je{1,2} ’ commanded to come to rest at a specified attitude. In paaticul
i we let ¢4(0) = 1, wq(0) = 0, andwy = 0 (note thatg = ¢
Using the normjh; — g2|, for elementshy, hy € H and here). Further, let = [1 2 3], v = ¥/||¥||2. Then, the inertia
lar = a2l for g1,¢2 € 5%, it follows that forg, = (11.€1)  matrix and control parameters are given &s= diag(10v),
andgy = (92, €2), [lar — qell2 = | —me|. Then, it follows = _ "1 anq ¢() = w. The simulations were conducted

Let

Then, it follows thatG; (D¢) ¢ ¢ and

that in MATLAB/Simulink using a variable-step solver (ode45)
dist(A$,, T¢) > min |h — k| + |7 — €| constrained to a maximum step size fl000s. While the
’ _’fjij;iélia norm of quaternion states may drift fromin a numerical im-
__a<]E§_<1 plementation, the effects of numerical drift were negligim
. s ~ 42 i i i ioni
dis(A%,T%) > min 7 — k| + |7 — €] (42)  the foIIowmg S|mulat|on§. Regardless,_all quaternionalales
’ h,ke{—1,1} corresponding to an attitude were projectedstobefore used
—1<his—dta in any manner.
—a<ké<l

Each plot in the following simulations is labeled as either
Note that the right-hand sides of the expressions in (4Rybrid, discontinuous or unwinding For each plot labeled

are identical. In this direction, we examine only one of thenfiybrid, the hysteresis half-width is chosends- 0.4. When

Since h,k € {—1,1}, we break the minimization into four the hysteresis width becomes zefo< 0), the control reduces

cases. First, suppose that= k. It follows that —2 < h(; — 1O the discontinuous scheme, essentially replacingvith

£) < —8 + 2a. Now suppose thab € sgn(7 — ) so that sgn(77). Whend > 1, jumps are completely disabled, since

—2 < |7 — €] < =6 + 2a, in which case, In| < 1. In this caseh is a constant corresponding to its initial
condition. In each of the following simulation$,(0) = 1,
. == _ 0 §>2 which, whené > 1, has the effect of stabilizing = +1 only.
,QSWE%IQ,HM [h = K[+ |7 —¢] = 0 §<2a. In this direction, plots labeled as discontinuous have: 0

and plots labeled as unwinding have> 1.
Now supposing thak € —sgn(7—¢€), it follows that2a —§ < Finally, each figure has 4 plotsin, 6(g), ||«|2, and

7 —¢& <2 and W. The plot of 7 is shown to illustrate its con-
. A - 0,20 — ). vergence towards and _jumps ink. In the unwinding case,
2%621772552 | 17 = & = max(0,2a = 9) becausé. = h(0) = 1, this corresponds to a plot gf The plot

) o ] of () = 2cos~! 7| is the angle between the current attitude
We handle the other two cases in a similar fashion. Let ) . T
h = —k and suppose that € sgn(ij — £), then—1 — a < and the desired attitude. The plots [ab||> and y/ [, 7T 7dt

H—€ <1+a-6and show convergence of angular rate error and the use of control
N effort, respectively.
min |h—k|+ |7 —¢&l =2 Fig. 3 illustrates noise sensitivity wheht = 0 (i.e. for
~l-asp—¢|<ita—d discontinuous feedback including terms liken(7)€). In this

simulation,¢(0) = (0,v) andw(0) = 0. The measured value
of ¢ is gm = (¢ + me)/|lq + me||2, wheree = é&/||€]|2, each
element of¢ was drawn from a zero-mean Gaussian distri-
min \h—k|+|7—¢& =2 bution with unit variance, and: was drawn from a uniform
6—1—a<|7—€|<1+a distribution on the interval0, 0.2]. This causes a chattering
behavior, visible in the plot of7 for the discontinuous control

Similarly, whenh € —sgn(7j — £), it follows thats —1 —a <
|7—¢ <1+« and

Finally, since law. In this case, the excessive chattering causes a lag in
dist(pggéf(pg)) > min dist(A;fj, re) response and unnecessarily wasted control effort. On tiex ot
7€{1.2} hand, the hybrid controller is largely impervious to theseoi
> min(max(0, 2a — 4),2) (concerning the decision of which way to rotate), owning to
= max(0, 2a — §), the sufficiently large selection of. In this simulation, the

- unwinding controller is not shown, as the resulting trajegt
selectingd > 2a yields distD®, G; (D#)) > 0 and D¢ N is identical to the hybrid controller (this is becauseloesn’t

G; (D) = 0. m change in this simulation ankl(0) = 1).
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Fig. 4. Effects of unwinding.

Fig. 4 shows how control laws that exhibit unwinding can

resist a “beneficial” initial angular velocity. In this sitation,
q(0) = (=0.2,v/1 —0.22v) and w(0) = 0.5v. So, the initial
angular velocity is in a direction thadecreaseshe angle
between the initial rigid body attitude and the desiredwd®,
i.e.,, n (and also7 in this case) will initially decrease from
—0.2 towards—1. In this simulation, the discontinuous contro
law immediately pulls the attitude towardgs= —1. Due to
the hysteresis and the fact that= 1, the hybrid control law
initially pulls the attitude towardg = +1, but after the initial
angular velocity pushes the attitude past the hysteresighwi
(at approximately 2s), its value afswitches and then pulls the
attitude towards; = —1. On the other hand, the unwinding-
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inducing control lanalwayspulls the attitude towardg = +1
and in this simulation, expends more control effort doing so

VIl. CONCLUSION

We reviewed the topological problems associated with
global attitude control and illustrated how quaternioisdzh
discontinuous control laws that are intended to solve the
global asymptotic stabilization problem are susceptille t
measurement noise. In fact, we illustrated how malicious
measurement noise can enter into the closed-loop system and
have an asymptotically stabilizing effect on the manifofd o
180° rotations.

We proposed a hybrid control solution to these problems
that achieves robust global asymptotic tracking for sdvera
measurement scenarios. Drawing on previous work, the thybri
control scheme employs a logic variable that defines the
desired direction of rotation. By using a hysteretic switgh
law, the hybrid scheme can mitigate the unwanted effects of
unwinding and chattering due to measurement noise. More-
over, the hybrid scheme allows the control designer to ahoos
the hysteresis width, which effectively manages a tradie-of
between robustness to measurement noise and hysteresis-
induced inefficiency.

These results were supported by simulation, where the pro-
posed hysteretic controller was compared to a discontsuou
controller and a controller that induces unwinding. As dabi
the proposed hybrid controller was seen to avoid unwinding
and eliminated extreme measurement noise sensitivityeptes
in discontinuous feedbacks that can delay control respande
waste energy.
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