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Abstract—We study the problem of designing controllers and a constrained jump inclusion
to track time-varying state trajectories for plants modeled
as hybrid dynamical systems, which are systems with both &F e Gy&u) (&,u) € Dy, @)
continuous and discrete dynamics. The reference trajectees ) ) )
are given by functions that may exhibit jumps. The class of With outputy = . For this class of hybrid systems, a
controllers considered are also modeled as hybrid systems. controller assigning the inpui and measuring is to be

These are designed to guarantee stability of tracking and designed so that the difference betweeand the reference
that the difference between the plant’s state and the referce trajectoryr, which may both flow and jump, is well behaved.

trajectory converges to zero. Using recently developed td® for - ) . . . .
the study of asymptotic stability in hybrid systems, we recat Without being precise about a notion of tracking, it showgd b

the tracking problem as the problem of stabilizing a closed st ~ €Xpected that the tracking controller guarantees bothilisyab
and derive conditions for the design of tracking controlleis for ~ and attractivity properties relative to the referencesttayry.

hybrid reference trajectories with the property that the jump ~ The former consists of the property that solutions to the

times of the plant coincide with those of the given reference pjant starting close to the reference stay close to it while

trajectories. The approach is illustrated in examples. the latter consists of the property that the distance betwee
. INTRODUCTION the plant’s solution component and the reference decreases

. - . S symptotically. A challenge in guaranteeing these prageert
The literature on stability analysis and stabilization Oﬁ)ryhy%rid sysy,/tems is disgusse?j in Sectiongll The %r?pised
equilibria for systems with state jumps is relatively wed-d :

veloped. On the other hand, in many control problems SUCehoproach in this note consists of recasting a state tracking

: . o problem for hybrid systems, which is defined in Section IV,
as tracking, output regulation, synchronization, and nlese L7
i - e : —~ as the stabilization of a closed set that embeds the referenc
design, the goal consists of stabilizing time-varyingecap-

. . . trajectory. Exploiting sufficient conditions for asymptot
ries. To effectively taf:](Ie such propl_em§ for hyb.”d sy5$e.m stability of closed sets for hybrid systems, in Section V we
results on the stability and stabilization of time-varyin

trajectories of such systems are imperative Unfortuyategllpresem sufficient conditions for a class of hybrid tracking
' controllers enforcing that the jump times of the plant to

general results for ;tab|!|2|ng.|mpuIS|ve/d|scont|nupo§ coincide with those of the given reference trajectory. The
more generally, hybrid trajectories are not currently a@e. L . i .
approach is illustrated in examples in Section VI.

Notable specific solutions to stabilization of such trajeiets
are given by the work in [11], [10], [4], in which the state II. AN OBSTACLE TO TRACKING CONTROL DESIGN FOR
estimation and tracking problems for particular classes of HYBRID SYSTEMS

_mechar_lical s_ystems with impacts_are addressed, the workcgpsider a scalar, single-valued hybrid plant as in (1)-
in [7], in which the observer design problem for a clasgp) with y — ¢ and the reference trajectory to be tracked
of complementarity systems is studied, the work in [9], iyiven by the sawtooth signal shown in Figure 1, which
which a tracking control for a class of measure diﬁ?‘re”“gas discontinuities when reaching Trajectories¢ to the
inclusions is solved, the work in [1], [2], [3], in which @ hjant can be defined as functions defined on hybrid time
tracking problem for a class of mechanical systems WitQomainsiom ¢, which are subsets @ x N := [0, +00) x

unilateral constraints is addressed, and the work in [16]y 1 9 . 1 and parameterize the trajectories by flow time
considering the juggling problem as a tracking problem. ; anq jump timej [6]; see Section Iil for more details. A

_ In this paper, We_present sufficier_n conditions charac—teri;ypicm approach used in tracking control of continuouseti
ing controllers solving a state tracking control problene W 5 giscrete-time plants consist of defining the trackimgrer
consider plants given in terms of a constrained flow equatioghq then analyzing the resulting time-varying error dyrami

E=f (& u) (&u) €C (1) Following this approach, the reference trajecteryn the
i P hybrid time domaindom r is given by
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denote the fixed values @f, j) at whichr jumps. Then, the D, andtimeqt, j) € 7, G. updates: to |e*| = e+1, which

dynamics of the tracking error

e=y—r(tj)=&—r(t7j)

are given by the flow equation

é=fple+rt,j)u) -1 ()
when
(e+r(t,j),u) € Cp and teti,tiq],  (6)
and by the jump equation
et =Gele+1(t,j),u,t,j) 7

when
(e+7(t,j),u) € D, or (t,5) € 7, (8)

whereG, is defined at every point satisfying (8) as

Gple+r,u)—r (e+ru) € Dy (t,75) &7,
G.=¢ e+r (e4+r,u) & Dy, (t,j) €1,
Gple+r,u) (e+r,u) € Dy, (t,7) €T,.

(For notational convenience, we removed the arguments

some of the functions.)

(a) Hybrid arcr. (b) Projection ontdR>q.

Fig. 1. Reference trajectory for the tracking control pesblin Section II.

(&,7,Ge) = (0.99,1,0.99)
‘\\

is far from zero. In fact, Figure 1 depicts a particular ndap

as a function of¢ andr(t,j) when the jumps of the plant
occur when¢ = 1, that is, D, := {({,u) : £=1}, and
with G,(&,u) = &+ u, ke(y,r) = —&. Since, for the given
reference, conditiorit, j) € 7, is equivalent tor(¢,j) = 1,

the jump mapG. is written as a function of¢, ) only and

is defined at every point satisfying (8), which is the set of
points (£, 7) in (R x {1}) x ({1} x [0,1]). Note that when
(t,7) € 7, (equivalently,r(t,7) = 1) if £ =1 thene™ =0

but if ¢ is slightly below1, then|e™| will be close tol after
the jump. This “peaking phenomenon,” which is due to the
jump instants of plant and reference not coinciding, hag als
been recognized in [8], [11], [3] and imposes a difficulty in
guaranteeing that the norm efconverges to zero.

We consider tracking controllers that avoid the issue of
an increasing error signal by ensuring that jumps of the
plant occur at the same instant as the jumps of the reference
trajectories. For the illustrative example above, a cdlaro
designed with the said approach will assignso that the
jumps of the plant and the reference trajectory occur jgintl
Eer this purpose, we recast the tracking control problem as
the stabilization of a closed set which embeds the time-
varying reference trajectory. For the design of the tragkin
controllers we exploit sufficient conditions for asymptoti
stability of hybrid systems in [5] (see also [14] and [15]).
An alternative approach based on generating the reference
trajectories from an exosystem was proposed in [13].

IIl. PRELIMINARIES

Below, given a sef, S denotes its closure; given a vector

x € R", |z| denotes the Euclidean vector norm; given a set
S C R and a pointz € R”, and|z|s := infyegs |z — y|.

A function « : R>¢9 — Rx( is said to belong to clask-

(o« € K) if is continuous, zero at zero, and strictly increasing
and to belong to claskx, (a € K) if it belongs to classe

and is unbounded®D denotes the set of real-valued positive
definite functions.

A hybrid systemH with statez, inputu, and outputy is
modeled as

{ = flz,u) (x,u)eC
H ¢ 2zt € Gz,u) (z,u) € D 9)
y = M),

whereR" is the space for the state ¢/ C R™ is the space
for inputsw, the set”’ C R™ x U is theflow sef the function

Fig. 2. A resulting jump may. for the error system in the tracking control f : C' — R™ is the flow map the setD C R" x U is the

problem of Section Il wherG (&, v) =0 andDy = {(§,u) : £€=1}.
The mapG. is defined for each{¢,r) € (R x {1}) x ({1} x [0, 1]).

jump setG : D = R" is thejump mapandh : R® — RP is
the output map The data of the hybrid systef is given by

First, note that, in particular, the constraints (6) and (8)C, f, D, G, h). Solutions to hybrid systen& are defined
cannot be written in terms of the tracking error solely. NowRy hybrid arcs on hybrid time domains, which are functions
suppose that a feedback law= «.(y, ) is designed to map defined on subsets &>, x N given by the union of intervals

the error to zero when both the plant’s statandr jump

simultaneously, that is, the third case in the definitiorGGof
is zero. It is possible that, from poingsn C,, that are nearby

of the form [t;,t;41] x {j}, t; < t;41; see [6] for more
details.

We define stability and Lyapunov functions for closed



hybrid systems (no inputs and outputs) given by

i f(z)
H { v e G(x)
The following definition introduces stability for generalts
of the state space. Givef(0,0) € R", Sx(¢(0,0)) denotes
the set of maximal solutiong to H with ¢(0,0).

Definition 3.1 (stability): A set. A C R" is said to be

« uniformly globally stable(UGS) if there existsa €
K~ such that each solution € Sy (¢(0,0)) satisfies
|6t 7)|a < al|6(0,0)].4) for all (z,j) € dom ¢

« uniformly globally attractive(UGA) if for eache > 0
and\ > 0 there existd” > 0 such that, for any solution
6 € Sn(6(0,0)) with [$(0,0)[4 < A, (£.) € dom¢
andt +j > T imply [6(t, j)| < ;

« uniformly globally asymptotically stabl@GAS) if it is
both uniformly globally stable and uniformly globally
attractive.

zeC
e D.

(10)

Definition 3.2 (Lyapunov function candidateA function
V :domV — R is said to be dyapunov function candidate
for the hybrid systent = (C, f, D, G) with respect to the
closed set4 if the following conditions hold:

1) CUDUG(D) C domV,

such that for every solutiop to H with |¢(0,0)|4 €
(0, A] we have that(t, j) € dome¢, t + j > T imply
JZ(T) = Ny;

B) Condition(11b) holds,

V(g)—V(z) < 0 VexeD, geGz), (13)

and, for each\ > 0, there existyy € Koo, Ny > 0
such that for every solution to H with |¢(0,0)|4 €
(0, \] we have that(t,j) € dome¢, t +j > T imply
t = (T) — Na;

then A is uniformly globally asymptotically stable.

This corollary states that uniform attractivity can be as-
serted as long as the Lyapunov function decreases, along
solutions, over sufficiently long hybrid time intervals. ko
precisely, A) is about the Lyapunov function being nonin-
creasing during flows but strictly decreasing during jumps
and the jumps occur frequently enough while B) is about
the Lyapunov function being nonincreasing during jumps but
strictly decreasing during flows and the flows occur for long
enough.

IV. PROBLEM STATEMENT
We consider plants{, modeled as hybrid systents with

2) V is continuously differentiable on an open set constate¢ € R™», inputu € R™», and outputy = ¢ given by

taining C.

The following result for asymptotic stability of closed
sets will be employed in the design of hybrid controllers

é fP(Evu)

S (E,u)écp
€ Gp&u)

(Evu) GDP

(14)

o |

for tracking. It is a Lyapunov stability theorem for hybridwith data (C,, f,, D, Gp). We consider hybrid arcs :

systems.

Theorem 3.3: (Lyapunov theorem [5]) Let{
(C,f,D,G) be a hybrid system and led C R"™ be
closed. IfV is a Lyapunov function candidate fét with
respect to4 and there existvy, as € K, and a positive
definite and continuous functignsuch that

a1(|zla) < V(z) < as(|z|a) Ve e CUDUG(D),

(11a)

(VV(2), f(2)) < —p(|2|a) vz € C, (11b)
V(g) = V(z) < —p(lzfa) VzeD, geG),

(11c)

then A is uniformly globally asymptotically stable fét.

The following result introduces relaxed Lyapunov condi-

tions.

Corollary 3.4: (relaxed Lyapunov conditions [5]) Let
H = (C, f,D,G) be a hybrid system and led C R" be
closed. Suppose that is a Lyapunov function candidate
for H with respect to4 and there existv, as € K, and
a continuousp € PD such that(11la)and either A) or B)
below holds:

A) Condition(11c) holds,
(VV(x), f(x)) (12)

and, for each\ > 0, there existy, € Ko, Ny > 0

< 0 VxeCl,

domr — R" defining reference trajectories to be tracked.
The following class of tracking hybrid controllers with ta
n € R™ and data(C., f., D., G, k.) is considered:

no = fenyr) (n,y,r) € Ce
He ¢ nt € Ge(n,y,r) (n,y,r) € D. (15)
U = ke(ny,m).

The input ofH. has been assigned (g, ) while its output
u to the input of the plant{,. The closed-loop system (14)-
(15) resulting from the interconnection 6{, and H. is
denotedH,;, has state

x:= (£, n) € R™ x R"

and is given by

3 fol& ke(n, & 7)) } (& ke(n,&,1)) € Cp

77+ - fc(nagvr) and (nagvr) 6 Cc

S len e e nmen) e, )
=8 } (n,&,7) € D

7toe Gelnén) et

where, for notational simplicity, we have omitted the argu-
ment(t, j) of the time-varying reference

Using the above definitions, we state a tracking control
problem for hybrid systems.

IWhen the jump conditioné, s (n, £,7)) € Dy and(n, &,7) € D, are
satisfied simultaneously, either jump map can be used. BEnide captured
with a set-valued jump map; see the model in Section V-A.



Tracking Control Problem (x): Given a plant H, The next ingredient of the approach is to guarantee, by
and a complete reference trajectory design the data design of the controller, that the jumps of the plant and of
(Ce, fe, D¢, G, k) Of the controllerH. so that the set of the reference trajectory occur simultaneously. This wél b
points¢ satisfying a constraint in the design of the controller, which, while it

E=r(t,j) (17) restricts the type of systems for which the tracking problem
can be solved, it allows for a solution to certain tracking
problems as Section VI illustrates.

Problem §) asks for a controller such that the set of points With a controller satisfying such a property, our approach

(17) has the UGS and UGA properties (see Definition 3.1§ to recast the problem under study as the stabilization of
for the closed-loop system. The attractivity property iiepl the setA for the resulting closed-loop system

is uniformly globally asymptotically stabfe.

that complete solutions t#{.; satisfy E = (& ke, &, 7(7, K))) €l . 7(rK))) € G
i 165 = r(t, )| = 0. 1o mere ) and (1. €. r(r.k)) € C..

Moreover, the stability property implies that solutionsthe i = 0 andr € [t} tiy, ).k €N

plant with initial conditions{(0,0) = 7(0,0), if they exist, ¢+ < G, (&, ke(n, &, 7(7,k))) (€. ko(n, £, 7(1.K))) € D

satisfy o=t =7 ’Hca?l’d,(: 7l;) €T
(t,7) =r(t,J) for all (¢,j) € dom¢. e =

Note that unless further conditions are imposedrorthe n™ € G.(n,&,r(7,k)) (n,&,r(t,k)) € D..

set in (17) is time varying and not compact. Furthermore;™ = 7, kT = &k (19)

boundedness of the state of the controller is not guarante

by UGAS of (17) and has to be established separately. %He resulting closed-loop system, denotefj, can be mod-

eled by data(C, f, D, G) given by

V. A CLASS OFHYBRID CONTROLLERS FORSTATE C = {(z,7,k) : (&kc(n,&r(r,k))) € Cp,
TRACKING WITH KNOWN REFERENCETRAJECTORIES T € [th,thp1], k€N, (n,&,r(1, k) € Ce},
A. Main Approach fo(& Ke(n, & r(T, k)
In smooth systems, a well-known approach is to introduce Flo,m k) = fe(n,&,7(7,k)) 7
the coordinate transformation= ¢ — r and then analyze 1
the resulting system. This approach is used for systems with 0
time-triggered state jumps in [12]. However, in generag th . Dy U Dy
flow and jump sets as well as the flow and jump maps of theD1 = {(z,7k) ¢ (& ke(n, & (T, k))) € D
error dynamics become time dependent. To avoid this issue, o e (Tp}g) €T

we recast Problemx], which pertains to the stabilization
of a time-varying set, as the stabilization of a closed, not

{(CC,T,k) : (& (1, k) € De }a

necessarily bounded, time-invariant set. To this end,rgve [Gp(& ke(n, &, 7(T, K)))

referencer : domr — R"», following (4), we define the set G, 7 k) = n

7, collecting all of the pointg¢, ) in the domain ofr at 1 TR T

whichr jumps, that is, every poirit’, j) € domr for which i kE+1

(t7,j+1) € domr. Auxiliary variablesr € R, andk € N ~ (@,7,k) € D1\ Dy,

are incorporated as states to parametrize a given referencg(x k) = £

trajectoryr. That is, evolves continuously according to the e G 5 Ge(n, &, r(1, k)

flow time parametet, while k evolves discretely according 2(, 7, k) = T

to the jump time parameter at jumps ofr. In this setting, k

the set to be stabilized is given by  (z,7,k) € Dy \ Dy,

. - {Gl(.%',T,k),GQ(.T,T,k)}

A={(x,7,k) : £E=r(1,k) }, (18) (.7, k) € D1 M Ds.

which is a subset oR™ x R"< x R>o x N. For instance, then asymptotic stability ofd can be asserted using the

for the example of Section I, the set to be stabilized withy ¢icient conditions provided by Theorem 3.3 and Corol-
the proposed approach is given by lary 3.4.

{(x77—7k) DS+t =T E [t ;+1]7(;,k)€(0,0)U7;~},
whereZ, is given in (4). This set is closed and unbounde: Characterization of Hybrid Controllers
in the 7 and k£ components. The data(C.., f., D., G., k.) is designed so that:

2The definiton of UGAS for a time-varying hybrid system falls « There exist a Lyapunov funCtion candiddte: Rnf X
Definition 3.1; see [14]. R™ xR>oxN — R for H*, with respect ta4, functions



a1, as € Ko, and a continuoug € PD such that VI. EXAMPLES

o (|(z, 7, k)|a) < V(w7 k) < ao(|(z, 7, k)|a) (20) Example 6.1 (Tracking a square wave signaDonsider

V(z,7,k) € CUDUG(D), the scalar hybrid plantt,
PVl e < ~plle DL g E - bt mz0gs0. @)
o 7 & = btuw §ur <0,[§[ >0, (26)
Vig) = V(w7 k) < —p (@7, k)l4) (22) wheré a,b > 0, and consider the problem of tracking the
Y@, 7,k) € D1\ Do, g € Gu(2, 7 k), square wave signal
V) e S e T, @ i) = () te ] e, =
Vig) = Viz, 7 k) < —p(|(z, 7, k)|a) Then, following the approach proposed in Section V, the

V(z,7,k) € D1 N Dy, g€ {G1(x,7,k),Ga(z,7,k)}. 90alis to solve Problemd with A given by the points such
thaté = (—1)%, 7 € [t7, ¢,.,], (7, k) € (0,0) U Z.. For

(24)  this purpose, we consider the static controller
Remark 5.1:The conditions above imply that com- (7 )
plete solutions to the closed-loop system are such thaE“l} = ke(&,7(1, k) = ar\T, 7
(&, 7, k) (£, )4 — 0 @st + j — oo, that is, U2 —b—r(r k) + M — (. k)

. . . . with A € [0, 1). It follows that, for everys(0,0) < 0, ever
1€t 7) = r(r(t, 7). k(t, 7)) = 0 ast+j — oo jump of r[ trig)gers a jump of the plant.yglr(1 fagt, §(0,0) <y
This includes all possible solutions with unconstrainetiah 0, sinceu; = ar(r, k), we have that£(0,0)r(0,0) > 0
conditions ofr and k, in particular,7(0,0) = k£(0,0) = 0, and solutions initially flow. Flows of will not trigger a
for which r(7 (¢, 5), k(t, 7)) = r(¢,j) and, consequently, jump since the sign of remains constant. Jumps of the
. , ) closed-loop system occur only whenchanges sign, which
£t 5) —r(t, )l =0 ast+j— oo is at(t,j)'s in T, T, = {(1,0), (2,1),(3,2),...}. Then, the
Note that complete solutions t,; have the property that closed-loop systert = (C, f, D, G) given by
7(t,j)+ k(t, 7) is unbounded as+ j — oo. Furthermore, it : _
implies that(t, j) = r(¢,j) on the domain of definition ¢ _ a(i +_T(g’ ") } afg&’rkirz (])’L€|€>NO’
of solutions starting fromé(0,0) = ~(0,0),7(0,0) = e o= ko ThLD ’
%(0,0) = 0, when solutions from such points exist. While & = —7(7.k) + A€ — (7, k))} alr(r, k) <0,
the conditions above could have been expressed in terms f T = 7, k¥ = k+1 €] > 0,(r. k) € T,

the traCking errork, as illustrated in Section Il it is l’al’ely Captures all of the solutions to the 0rigina| System withiahi
the case that its dynamics can be written as a function ofconditions¢(0,0) < 0, 7(0,0) = k(0,0) = 0. To establish

andrn only. asymptotic stability of4, consider the Lyapunov function
The following result summarizes the discussion above on 1 )
characterization of tracking controllers. V(T k)= 5(5 —r(7,k))",

Theorem 5.2: Given a complete reference trajectory  for which condition (20) holds trivially. For eactt, 7, k)
domr — R"» and associated closed set, if there exists a  gatisfyinga ¢ r(r, k) > 0,[¢] > 0,7 € [ty b, 1), keN
hybrid controller H. guaranteeing that the jumps efand
H,, occur simultaneously and there exist a Lyapunov function (VV (& 1. k), f(& T k) = —2aV(E,7 k)
candidatel” : R™» xR™ xR>qxN — R for 1, with respect ‘r
to A as in (18), functionsa;,as € Koo, ar{ld a positive gn(dT Lo)ree;ct\:v(g,gé\ljg satistying a&r(r.k) < 0| >
definite and continuous functignsuch that(20»(24) hold, "’ "
thenH,. provides a solution to Problemx). V(G T, k) = V(€. k) = —(1 = NV (E, 7, k).

. Remark 5'_3:Theorem 5.2 Chara(_:t_enze_s controllers solv- 3Condition |£| > 0 removes solutions that only jump at the origin.
ing the tracking problem. The conditions in Theorem 5.2 can
be relaxed according to items A) and B) of Corollary 3.4. In 0
general, the data of the hybrid controller has to be chosens | |
that (21)-(24) hold. In particular, condition (21) depemos .~
fe, Ce andk; (22) depends or..; and (23) depends ofi,. “*
and D., which are all to be chosen in the design. We forese: ’
that for specific classes of hybrid systems (such as those wi
linear flow and jump maps), constructive controller desigr.
techniques can be developed. The examples in the next () (b

section illustrate the feasibility of the design of conleeg 9 3 Reference and closed-loop system trajectory fompta 6.1. The

e o Lyapunov function along the trajectories is also shown.aRaters:a =
satisfying the conditions of the theorem. b=1,A=0.9.

e — = 0.05|

e 0 g (] 1 2 3 4 5 6



Then, Theorem 5.2 implies uniform global asymptotic stasuch that both (20) and (21) are satisfied. Moreover, the
bility of A for the closed-loop system. Figure 3(a) depicthybrid time domain of each solution to the closed-loop
a closed-loop system trajectory converging to the refaensystem is unbounded in thedirection. Hence, following
asymptotically, both along flows and jumps. Figure 3(bRemark 5.3, global uniform asymptotic stability of the set
depicts the Lyapunov function along the trajectory. A for the closed-loop system follows using Theorem 5.2
Example 6.2 (Tracking for a motion control system): ~ and Corollary 3.4. In Figure 4, a closed-loop trajectory is
Consider a particle with mass/ actuated by a force input shown for parameter/ =1, A\; =1 andA; = 0.5.
u. The position of the particle is denoted Ry and its VIl. CONCLUSION

velocity by &>. The controller force: contains a Lebesgue We state a tracking control problem for tracking of refer-

integrable part,; and an impulsive part, with impulses . s : .
: . . ence signals with jumps. The proposed technique consists of
at instantst;. The plant is impulsive and modeled as . ; ;
embedding the reference trajectory into a set and then apply
Lyapunov stability tools to the closed-loop system. Thagla

| &2 et 0 —
&= [“1} whent #ti, & =&+ |, | whent =t of controllers considered have to guarantee the strictgutgp

™ M

whereM > 0, the state is completely measured. The input
u Will be designed, such that the stataracks a reference .

r o= ;1 , given in Figure 4. The componemt jumps
2

at times(t,j) € 7, = U;en(j + 1,J). Such a reference
trajectory can be desirable for the position of the end &dfec
of a robot system. A controller that stabilizes the gefor
the given reference trajectory is given by

(1]
(2]

(31

uy = —Ai(§&1 —11) — X2 (§e —12)
07 (t7j) ¢ 7;‘7 [4]
M, (t.5) € | (4k + 3,4k +2) U (4k + 4,4k + 3)
U2 = keN
M, (t,5) € [ J(@k+1,4k) U (4k + 2,4k +1), |5
keN

where A1, \» > 0. Using the change of coordinates=
¢ —r(r, k), the closed-loop systef = (C, f, D, G) is

0 1 . i TE[tz, Z_H]
|:_% _%] Z, T 1, I{ = O} keN,
2t =z 7 kY = k+1} (1,k)eT,.

(6]
(7]

5 = =

+
(8]
The feedforward signali, assures that is not affected
by the jumps of the reference. Furthermore, if the initial
conditions aré&(0,0) = r(0,0), 7(0,0) = k£(0,0) = 0, then
the solution satisfies(t, j) = &(¢,7) for all (¢,7) € domr.
TakeV(z,7,k) = 2z Pz with P = PT > 0 such that

(VV(z,7,k), f(z,7,k)) < =V (z,7,k).

El

[10]
Such a matrixP is guaranteed to exist due to the continuous
dynamics ofz. Sincez does not change at jumps, we get [11]

V(G(z,71,k) = V(z,7,k) =0 Y(z, 7, k). (27) 2]

By the properties ofl/, there exist functionsy;, s and p

T
12 —&

. 7 na)
[14]

[15]

t [16]

a b
Fig. 4. Referenc(:e) and closed-loop trajectory for E(xa)lmplb Barameters:
M =1, 1 =1,and A2 = 0.5.

of jump times of the plant coinciding with those of the given
reference trajectories. Relaxation of this stringent ol
is part of current research.
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