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Abstract

We address the problem of state observation for a system whose dynamics may involve poorly known, perhaps even nonlocally
Lipschitz functions and whose output measurement may be corrupted by noise. It is known that one way to cope with all these
uncertainties and noise is to use a high-gain observer with a gain adapted on-line. The proposed method, while presented for a
particular case, relies on a “generic” analysis tool based on the study of differential inequalities involving quadratic functions
of the error system in two coordinate frames plus the gain adaptation law. We establish that, for bounded system solutions,
the estimated state and the gain are bounded. Moreover, we provide an upper bound for the mean value of the error signals
as a function of the observer parameters. Since due to perturbations the gain adaptation law may drive the observer/plant
interconnection to nearby the boundary of its stability region, oscillatory behavior may emerge. To overcome this issue, we
suggest an adaptive procedure based on a space averaging technique involving several copies of the observer.

1 Introduction

We consider nonlinear systems in the form 1

ż = fz(x1, . . . , xn, z, t),

ẋ1 = x2 + f1(x1, z, t),

ẋ2 = x3 + f2(x1, x2, z, t),
...

ẋn−1 = xn + fn−1(x1, x2, . . . , xn−1, z, t),

ẋn = fn(x1, x2, . . . , xn, z, t),

y = x1 +m.

(1)

For such systems, we are interested in estimating the
components x1 to xn of any solution that is bounded in
positive times.

To that end, we propose a high-gain observer with adap-
tive gain that measures the plant’s output y perturbed

1 The time dependence allows the presence of inputs.

by m and is given by

˙̂x1 = x̂2 + f̂1(x̂1, t)− k1r(ŷ − y),

˙̂x2 = x̂3 + f̂2(x̂1, x̂2, t)− k2r
2(ŷ − y),

...

˙̂xn−1 = x̂n + f̂n−1(x̂1, . . . , x̂n−1, t)− kn−1r
n−1(ŷ − y),

˙̂xn = f̂n(x̂1, x̂2, . . . , x̂n, t)− knr
n(ŷ − y),

ŷ = x̂1,

ṙ = φ(r, y − ŷ),

where the functions f̂i and the positive constants ki,
which are the nominal gains, are to be chosen, r is the
observer’s gain, which is introduced to increase the nom-
inal gain if needed, and φ defines the adaptation law.

The domain of application of traditional, constant high-
gain observers ([11,10]) has been enlarged by incorpo-
rating dynamic gain adaptation; see, e.g., [15,6,16,3,2].
Dynamic gain adaptation is reminiscent of what has
been proposed in the adaptive control literature for on-
line tuning of control parameters; see, e.g., [9,14,12,18].
When it is known that the gain r should be larger
than some function of the state that is observable (see
[3,2,21,20] for instance), then it is easy to design a sat-
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isfactory gain adaptation law. When we only know the
effect or the properties that r can guarantee when it is
large enough, (see [15,6,16,3]-[7]), then it is more diffi-
cult to design an adaptation law guaranteeing robust
performance. Indeed, typically this adaptation is such
that the gain r is nondecreasing along solutions. Unfor-
tunately, it is known in various contexts that such a gain
adaptation may lead to serious growth problems when
perturbations such as measurement noise are present
(see, e.g., [9, Example 4.2], [19, Figure 6.a], and [18]). A
wide variety of fixes have been proposed in the literature
to stop r from increasing without bound. For instance,
there exist the dead-zone [9,19] or λ-tracking approach
[17], the sigma modification [13], and, more recently, in
the context of output feedback stabilization, the hybrid
approach proposed in [23] consisting of decreasing (in-
creasing) r by resetting it to a smaller (larger) value
when the output of the system decreases (respectively,
increases). The point is that, instead of keeping the gain
r at large values when it is not needed, more sophis-
ticated mechanisms that tune r to the local (in time)
plant’s data are needed in real-world applications. In
fact, it has been established in [25,4] that for the con-
stant high-gain case, measurement noise introduces an
upper limit for the gain when good performance is taken
into account. Gain adaptation laws aiming at satisfying
this objective have been proposed recently in [1,5]. In
[1], the authors are in a context in which a bound on
the fi’s in (1) is known. This allows them to let the gain
r switch between two appropriate values depending on
the magnitude of the error ŷ − y. In [5], the authors
design an adaptation law for r relying on the knowledge
of an upper bound for r and of the Lipschitz constant
of the fi’s.

We design an adaptation law φ for r that does not re-
quire information on the upper bound for r nor of the
Lipschitz constant of the fi’s. Our approach consists of
analyzing the following set of inequalities resulting from
the interconnection between the plant in (1) and the ob-
server proposed above:

V̇r(ε)

r
≤ −α1(r)Vr(ε) + β1(r),

ṙ = φ(r, y − ŷ),

V̇s(ξ)

s
≤ −θ1Vs(ξ) + θ2 + α2(r)(y − ŷ)2,

β2(r) (x1 − x̂1)
2 ≤ Vr(ε) ≤ α3(s)Vs(ξ).

(2)

The functions Vr and Vs are quadratic in ε and ξ, re-
spectively, while V̇r and V̇s are their derivatives along
solutions, where ε and ξ are two different coordinates
obtained from the same error state e := x̂−x. The func-
tions α1, α2, and α3 are increasing whereas β1 and β2 are
decreasing. The constants θ1 and θ2 are positive, and s is
a positive analysis parameter. Particular constructions
of these functions are given in Section 4.3. With these

definitions, (2) induces the following mechanism. From
the last inequality, if Vr is large, then Vs is also large.
This is possible only if α2(r)(y − ŷ)2 has been large for
some time as the third inequality indicates. If it was r
that was large, then, with the first inequality, using the
monotonicity properties of α1 and β1, this contradicts
that Vr is large. So it has to be that ‖ŷ − y‖ is large. If
φ takes positive values when ‖ŷ− y‖ is large, then, from
the second inequality, r will also become large, forcing
Vr to decrease via the first inequality. Since this does not
put any constraint on φ when ‖ŷ − y‖ is small, our idea
is to let φ take nonpositive values in such case.

The paper is organized as follows. Section 2 presents the
construction of the observer as well as the main result.
Its proof along that of technical lemmas are in Section 4.
Section 3 is devoted to the presentation of an illustrating
academic example.

Notation

For notation convenience, we utilize the following sym-
bols and definitions throughout the paper:

• K̃ := [k1 k2 . . . kn]
⊤, where ki ∈ R for all i ∈

{1, 2, . . . , n}.
• diag(a11, a22, . . . , ann) denotes the diagonal matrix
with entries aii, i = 1, 2, . . . , n.

• Λ(r) = diag(r, . . . , rn).
• Nn−1 = diag(0, 1, . . . , n− 1).
• Given b ∈ R, define R = bI +Nn−1.

• R̃(r, s) = diag
(
1−

(
r
s

)
, 1−

(
r
s

)2
, . . . , 1−

(
r
s

)n)
.

• Given x ∈ R
n, ‖x‖ denotes the Euclidean norm of x.

• Given A ∈ R
n×n, ‖A‖ denotes the induced 2-norm of

A.
• Given a function t 7→ f(t), ‖f‖∞ denotes esssupt‖f(t)‖.
• Given a matrix P ∈ R

n×n, λmin(P ) and λmax(P ) de-
note the minimum and maximum values of its eigen-
values, respectively.

2 Observer expression and main result

System (1) can be compactly written as

ż = fz(x1, . . . , xn, z, t),

ẋ = Ax+ F (x, z, t),

y = x1 +m,

(3)

2



where

A :=




0 1 0 . . . . . . 0

0 0 1 0 . . . 0
...
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0

0 0
. . .

. . .
. . . 1

0 0 0 . . . . . . 0




,

F (x, z, t) :=




f1(x1, z, t)

f2(x1, x2, z, t)
...

fn−1(x1, x2, . . . , xn−1, z, t)

fn(x1, x2, . . . , xn, z, t)




,

(z, x) ∈ R
m × R

n is the plant’s state, y ∈ R is the
perturbed plant’s output, and m represents the noise in
the measurements of x1.

We study the high-gain observer discussed in Section 1
for (1) with the particular gain adaptation law defined
by

φ(r, ŷ − y) := p1

(
((ŷ − y)2 − p2)r

1−2b +
p2
r2n

)
,

with p1 and p2 parameters to be chosen positive and
b to be taken in (0, 1

2 ). As discussed in Section 1, it is

such that the gain r increases at least when (ŷ − y)2 is
larger than p2, but it decreases when (ŷ− y)2 is smaller
than p2

(
1− 1

r2n+1−2b

)
. Note that our adaptation law

makes the interval [1,+∞) forward invariant for the r-
component of any solution.

The above expression for φ has some resemblance with
the one corresponding to an update law with dead zone;
cf. [9,19]. More precisely, in the most standard case and
in our context, an update law with dead zone would
assume the form

ṙ = p1 max
{
0, (ŷ − y)2 − p2

}
r1−2b , (4)

in which case, ṙ is always nonnegative.

With the definitions above, the proposed observer for
the components x1 to xn of (1) becomes

˙̂x=Ax̂+ F̂ (x̂, t)−K(r)(ŷ − y), (5)

ṙ = p1

(
((ŷ − y)2 − p2)r

1−2b +
p2
r2n

)
, (6)

ŷ= x̂1, (7)

where x̂ ∈ R
n, ŷ ∈ R,

F̂ (x̂, t) :=




f̂1(x̂1, t)

f̂2(x̂1, x̂2, t)
...

f̂n−1(x̂1, x̂2, . . . , x̂n−1, t)

f̂n(x̂1, x̂2, . . . , x̂n, t)




,

and with the notation K(r) := Λ(r)K̃ . Given b ∈ (0, 1
2 )

and using [21, Lemma 1], a vector K̃ ∈ R
n can be chosen

to guarantee the existence of real numbers d0 and d1,
and of a symmetric matrix P such that

0 < d0 , 0 < d1 , 0 < P, (8)
(
A− K̃C

)⊤
P + P

(
A− K̃C

)
≤ −2d0P, (9)

b

2
P ≤ RP + PR ≤ d1P, (10)

where C := [1 0 0 . . . 0] ∈ R
n. Unless otherwise stated,

the parameter b of the gain adaptation law is constrained
to the set (0, 1

2 ).

To establish our main result, we require F and F̂ to
satisfy the following property:

Property (∗): For each compact set C ⊂ R
m × R

n,
there exist γ, L ∈ R

n satisfying, for each i ∈
{1, 2, . . . , n} and all (x,w, z) such that (z, x+w) ∈ C,

‖fi(x1 + w1, x2 + w2, . . . , xi + wi, z, t)−
f̂i(x1, x2, . . . , xi, t)‖ ≤ γi + Li

∑i
j=1 ‖wj‖ .

(11)

for almost all t.

In particular, the constant vector γ captures a bound on
the unmodeled dynamics, both in the dynamics defined

by the functions f and f̂ , while L corresponds to a bound
on the Lipschitz constant of the mismatch between these
functions.

The following lemma introduces conditions for which
this property is guaranteed.

Lemma 2.1 Assume the function F is such that the
function (x, z) 7→ F (x, z, t) is locally bounded uniformly

in t and the function F̂ is bounded. Under this condition,
Property (∗) holds.

Proof: For a compact set C, local boundedness of
(x, z) 7→ fi(x, z, t) uniformly in t implies the existence of
γ′
i > 0 such that ‖fi(x1+e1, . . . , xi+ei, z, t)‖ ≤ γ′

i for all

3



(z, x+e) ∈ C and for all t. Boundedness of f̂i implies the

existence of γ′′
i > 0 such that ‖f̂i(x1, . . . , xi, t)‖ ≤ γ′′

i for
all (x1, . . . , xi) and for all t. Then, the claim follows with
γi ≥ γ′

i + γ′′
i , Li ≥ 0, i ∈ {1, 2, . . . , n}. Note that this

proof indicates that one could pick Li = 0 in (11). But
keeping Li gives more flexibility and less conservative
results when a Lipschitz property holds. �

Next, we state our main result. For any pair (F, F̂ )
such that Property (∗) holds, it establishes that, for
each complete 2 and bounded solution to the plant (3)
and bounded measurement noise, the interconnection
between the plant and the proposed observer, which re-
sults in the system (3),(5)-(6), is such that no finite es-
cape time occurs and that solutions are bounded. More-
over, it provides an explicit bound for the mean value of
the error signals.

Theorem 2.2 Assume the pair (F, F̂ ) is such that

Property (∗) holds. Assume further that F̂ satisfies the

Carathéodory conditions 3 . Given b ∈ (0, 1
2 ), let K̃, d0, d1

and P satisfy (9). Then, for each real number M∞ ≥ 0
and positive gain adaptation law parameters satisfying

p1 > 0, p2 ≥ 4M2
∞


1 +

2λmax(P )
∥∥∥K̃
∥∥∥
2

d0
2λmin(P )


 (12)

we have that, for each

A) Carathéodory solution t 7→ (z(t), x(t)) to (3) that is
complete and bounded,

B) Measurement noise given by a measurable function
t 7→ m(t) satisfying ‖m‖∞ ≤ M∞, and

C) Initial condition (x̂(0), r(0)) of (5)-(6) with r(0) ≥
1,

the corresponding Carathéodory solutions
t 7→ (z(t), x(t), x̂(t), r(t)) to system (3),(5)-(6)

(1) Exist and are complete,
(2) Are bounded on [0,+∞), and
(3) Satisfy

lim sup
T→+∞

1

T

∫ t+T

t

(ŷ(τ) − y(τ))2dτ ≤ p2 ∀t ≥ 0, (13)

2 A solution is complete if its domain of definition is [0,+∞)
3 A function f : Rn × R → R

n satisfies the Carathéodory
conditions if: x 7→ f(x, t) is continuous uniformly in t; t 7→
f(x, t) is measurable uniformly in x; for each compact set
A = X × [a, b] ⊂ R

n×R, there exists a function mA : [a, b] →
R≥0, Lebesgue integrable on [a, b], such that ‖f(x, t)‖ ≤
mA(t) for all (x, t) ∈ A.

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

|x̂i(τ)− xi(τ)|2dτ

≤ Bi,◦(p1, p2)

(14)

for all i ∈ {1, 2, . . . , n}, where Bi,◦(p1, p2) > 0 is
given in (15); see Remark 2.4.

Remark 2.3 Property (∗) provides an upper bound on

the mismatch F − F̂ for all (x, x̂, z, r, t) on compact sets
for the (z, x) components. Further measurability and con-

tinuity conditions on F̂ and m guarantee local existence
of Carathéodory solutions to system (5)-(6), once a so-
lution of (3) is given. Note that the assumptions do not
guarantee that complete and bounded Carathéodory so-
lutions t 7→ (z(t), x(t)) to (3) exist. In fact, such solu-
tions can fail to exist, even locally. Theorem 2.2 asserts
properties only for solutions t 7→ (z(t), x(t), x̂(t), r(t)) to
system (3),(5)-(6) associated to a complete and bounded
Carathéodory solution t 7→ (z(t), x(t)) to (3).

Remark 2.4 While expression (13) suggests that the
bound for the mean value of the output error can be made
small by picking p2 small, the bound in (14) requires that
p2 satisfies (12). That is, the bound in (14) is constrained
by the size of the measurement noise and the conditions
(8)-(10). The bounds in (13)-(14) provide an estimate of
achieved performance, in which Bi,◦(p1, p2) is given by

Bi,◦(p1, p2) = min
s > s∗





s2i
(
a1(s) + 2c1 M

2
∞

)

λmin(P )
(
d0s

2 − c0 L̂
)

+

2c1

(
B1(s, p1, p2) +

1

p2
B2

) 2n
1−2b

s2(n−i)λmin(P )
(
d0s

2 − c0 L̂
) p2





,

(15)

where c0 := 2 λmax(P )
d0

, c1 := c0

∥∥∥K̃
∥∥∥
2

, L̂ := 2
λmin(P )

∑n
i=1 i L

2
i ,

a1(s) := 2 c0
∑n

i=1
γ2
i

s2i
, a2(s) := max

{
sb, s(b+n−1)

}2 λmax(P )
λmin(P ) ,

s∗ := max

{
p1p2(2n+1)

d0
+
√

c0L̂
d0

, s, 1

}
,

B1(s, p1, p2) := B̃1(s, p1, p2)
1−2b

+

(
2d1 +

2c0 L̂

p1p2

)
B̃1(s, p1, p2) + 2,

4



B̃1(s, p1, p2) :=max



p1



4a2(s)c1M
2
∞ + a2(s) a1(s)

s2bd0λmin(P )
(
d0 − c0 L̂

s2

)





−p1p2


 2a2(s)c1

s2bd0λmin(P )
(
d0 − c0 L̂

s2

)




+

(
4c1 s

1−2b a2(s)

d0λmin(P )(2n+ 1)

)

2

(
d1p1p2 + c0 L̂

)

d0





2n+1
1+2b

,

4p1
a1(1) + c1M

2
∞

d20λmin(P )

}
,

B2 := 4
d0λmin(P )a1(1), where, for fixed parameters p2 and

γ, the constant s > 0 is constrained to satisfy 2c1p2 >
a1(s), which is always possible by picking s large enough.
Note that Bi,◦(p1, p2) is given by the minimization of
the sum of two terms. The first term is the bound that
one would obtain if the constant vector L were known
and the gain r were kept constant, and satisfying r >

max

{√
c0 L̂
d0

, 1

}
. Indeed, in this case, only the first term

of (15) remains, that is,

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

|x̂i(τ)− xi(τ)|2dτ ≤
r2i(a1(r) + 2c1M

2
∞)

λmin(P )
(
d0r2 − c0 L̂

)

for all i ∈ {1, 2, . . . , n}. The second term in Bi,◦ corre-
sponds to the effect of the gain adaptation law. Moreover,
when the bound on the mismatch F − F̂ in Property (∗)
is such that γ is zero, since a1 and B2 are identically zero
in such case, using the bound on p2 given in (12), the
bound Bi,◦ can be rewritten as

Bi,◦(p1, p2) = mins > s∗
1
2

s2ic1

λmin(P )
(
d0s

2 − c0 L̂
)




1
c1

d0λmin(P )
+ 1

+
4B1(s, p1, p2)

2n
1−2b

s2n


 p2.

(16)

The following corollary of Theorem 2.2 follows from Re-
mark 2.4 when γ is zero.

Corollary 2.5 Under the assumptions of Theorem 2.2,

given b ∈ (0, 12 ) and letting K̃, d0, d1 and P satisfy (9), if
γ = 0 then, for each real number M∞ ≥ 0, parameters of
the gain adaptation law (6) satisfying (12), there exist a
constant β > 0 such that for each Carathéodory solution
t 7→ (z(t), x(t)) to (3), measurement noise m, and ini-
tial condition (x̂(0), r(0)) satisfying conditions A), B),

and C) of Theorem 2.2, respectively, the corresponding
Carathéodory solutions t 7→ (z(t), x(t), x̂(t), r(t)) to sys-
tem (3),(5)-(6) satisfy

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

‖x̂(τ) − x(τ)‖2dτ ≤ βM2
∞. (17)

Remark 2.6 Corollary 2.5 follows from the fact that
when γ = 0 we have a1 and B2 identically zero. In such
a case, we obtain from (16)

β := 2c1
λmin(P )

min
s > s∗

(
max

i∈{1,2,...,n}
s2i
)

(
d0s2 − c0 L̂

)
(
1 + 4

(
1 +

c1
d0λmin(P )

)
B1(s, p1, p2)

2n
1−2b

s2n

)

when p2 = 4M2
∞

(
1 + c1

d0λmin(P )

)
.

Furthermore, in the absence of measurement noise, the
next corollary of Theorem 2.2 follows immediately from
the expression of the bound (14). In fact, when γ and m
are zero, the first term in (15) vanishes and the bound
can be made arbitrarily small by picking p2 small.

Corollary 2.7 Under the assumptions of Theorem 2.2,

given b ∈ (0, 1
2 ) and letting K̃, d0, d1 and P satisfy (9), if

γ = 0 andm ≡ 0 then, for every ε̃ > 0, there exists p̄2 > 0
such that, for each parameters of the gain adaptation law
(6) satisfying p1 > 0, p2 ∈ (0, p̄2], each Carathéodory
solution t 7→ (z(t), x(t)) to (3), and each initial condi-
tion (x̂(0), r(0)) satisfying conditions A) and C) of The-
orem 2.2, respectively, the corresponding Carathéodory
solutions t 7→ (z(t), x(t), x̂(t), r(t)) to system (3),(5)-(6)
satisfy

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

‖x̂(τ) − x(τ)‖2dτ ≤ ε̃. (18)

The proofs of the above results are in Section 4.

3 A Numerical Example

To illustrate the main features of our dynamic high-gain
observer it is already sufficient to consider an elementary
second order linear system. Consider the linear plant

ẋ1 = x2 + ν1 x1 + ν2, ẋ2 = 0, y = x1 +m, (19)

with ν1, ν2 > 0, ν1 being known, but ν2 unknown. Note
that the plant can be rewritten as in (3) with F (x) =

5



[ν1 x1+ν2 0]⊤ and that x = [− ν2
ν1

0]⊤ is an equilibrium.

Following Section 2, the observer (5) is designed with

F̂ (x̂) = [ν1 x̂1 0]⊤ and is given by

˙̂x1 = x̂2 + ν1 x̂1 − k1 r (ŷ − y), ˙̂x2 = −k2 r
2(ŷ − y),

ṙ = p1

(
((ŷ − y)2 − p2)r

1−2b +
p2
r4

)
, ŷ = x̂1.

(20)

With this particular choice, it follows that Property (∗)
holds with γ = [ν2 0]⊤ andL = [ν1 0]⊤. Straightforward
calculations show that (8)-(10) holds, in particular, for
the following set of parameters: d0 = 0.37, d1 = 2.66,

b = 0.183, P =

[
0.75 −0.50

−0.50 0.88

]
, K̃ =

[
k1

k2

]
=

[
2

2

]
,

p1 = 20. In the analysis to follow, we study the effect of
varying the parameter ν1 and the measurement noise m
for different values of p2. The parameter ν2 is fixed at
0.1.

First, we consider the case where ν1 = 1.9 and m is
an independently and identically normally distributed
stochastic process with mean 0.02 and standard devi-
ation 0.015. The histogram of this noise is shown in
Figure 1, where the dashed vertical lines correspond to
±√

p2 whereas the dotted vertical line corresponds to
the x1 component − ν2

ν1
of the solution. It follows that

the probability of the norm of the noise m to be larger
than

√
p2 is small but non zero.

A simulation of (19)-(20) with p2 = 0.0025 and ini-
tial conditions x(0) = [− ν2

ν1
0]⊤, x̂(0) = [1 0]⊤, and

r(0) = 1 is shown in Figure 2. In dark/blue, it shows
the first 300 sec of the trajectory of the gain r and the
tail of the x̂2 − x2 component of the resulting simula-
tion, while in light gray/magenta, it shows the simula-
tion with the dead-zone law in (4). A numerical compar-
ison of the dead-zone and the proposed gain adaptation
laws is given in the Table 1 (x̂1 − x1 denotes the mean
value). As expected, the proposed gain adaptation law

method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

dead-zone -1.99e-02 3.98e-03 1.38e-01 1.38e-02

proposed -1.99e-02 6.58e-03 1.38e-01 9.00e-03

Table 1
Numerical comparison of the dead-zone and the proposed
gain adaptation laws with p2 = 0.0025 and ν1 = 1.9.

yields a gain r(t) that decreases while guaranteeing the
estimates to converge, but the dead-zone law uses a gain
with asymptotic value that is nearly six times larger.
This is due to a large error ŷ − y during the transient
stage or a potentially bad choice of the initial condition
r(0) (for which there is no a priori information on how
to select it). As pointed out in [25,4], keeping the gain
at large values may compromise performance when mea-
surement noise is present. This is what the numbers in
Table 1 indicate.
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12
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4

Fig. 1. Measurement noise histogram. The dashed vertical
lines correspond to ±√

p2 while the dotted vertical line cor-
responds to the x1 component − ν2

ν1
of the solution.
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Fig. 2. Complete trajectory of r and final part of x̂2 − x2

for the system (19) and our observer (20) (dark/blue) and
for the one with dead-zone in (4) (light gray/magenta) when
p2 = 0.0025, ν1 = 1.9 and m = N (0.02, 0.015).

The analysis sketched in Section 1 to argue about bound-
edness does not rule out the possibility of oscillations in
x̂ and r. In fact, up to now, a goal of our adaptation
law was to bring the gain r back to one. But an unitary
value for r corresponds to an unstable equilibrium point
of the error system. In fact, note that when there is no
measurement noise, the error system is given by

ė1 = e2 + ν1 e1 − k1 r e1 − ν2,

ė2 = −k2 r
2 e1,

ṙ = p1

(
(e21 − p2)r

1−2b +
p2
r4

)
.

(21)

The point e1 = 0, e2 = ν2, r = 1 is an equilibrium to this
system. Around this point, the linearization matrix is

A :=




ν1 − k1r 1 0

−k2r
2 0 0

0 0 −p1p2(5− 2b)




∣∣∣∣∣∣∣∣
r=1

, (22)

which is Hurwitz if and only if ν1 < k1. This condition is
satisfied in the simulation described above and depicted
in Figure 2. But, when ν1 ≥ k1, unsatisfactory behavior
may appear. Indeed, for ν1 = 2.22, since k1 = 2, instead
of obtaining the trajectories shown in Figure 2, our gain
adaptation law leads to the oscillatory behavior shown
in Figure 3, where only the tail of both x̂2−x2 and r are
shown. This is confirmed by the numbers in Table 2.
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Fig. 3. Trajectories of r and x̂2−x2 (tails) when p2 = 0.0025,
ν1 = 2.22 and m = 0.

Along the same lines of Corollary 2.7, the size of the os-
cillations can be reduced by appropriately tuning the ob-
server parameters. For instance, for p2 = 0.0001, which
corresponds to the original value of p2 divided by 25,
the numerical results are given in Table 3. The tail of r
as well as the trajectories in the

(
x̂1−x1

rb
, x̂2−x2

r1+b , r
)
-space

for the case where p2 = 0.0001, ν1 = 2.22 and m = 0
are show in Figure 4. As expected, we have a (compact)
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2−x

2r 1+
b

r

(b) Set A in the
(

x̂1−x1

rb
, x̂2−x2

r1+b , r
)

-space.

Fig. 4. Trajectory of r (tail) and the asymptotic phase por-

trait of
(

x̂1−x1

rb
, x̂2−x2

r1+b , r
)

when when p2 = 0.0001, ν1 = 2.22
and m = 0.

Ω-limit set in 3-D space. But, very importantly, r is os-
cillating around the value ν1

k1
= 1.11, which would make

the matrix A in (22) marginally stable. A rather simple
solution to the oscillatory problem consists of adapting
online the appropriate value we want r to converge to.
We call this value the nominal gain and denote it r. Un-
fortunately, this value is likely to evolve with time as the

method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

dead-zone 1.62e-11 1.54e-09 1.00e-01 1.08e-08

proposed -1.22e-04 3.12e-02 1.00e-01 4.90e-02

Table 2
Numerical comparison of the dead-zone and the proposed
gain adaptation laws with p2 = 0.0025 and ν1 = 2.22.

method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

dead-zone 3.57e-11 1.31e-08 1.00e-01 1.17e-07

proposed 1.05e-05 6.20e-03 1.00e-01 9.72e-03

Table 3
Numerical comparison of the dead-zone and the proposed
gain adaptation laws with p2 = 0.0001 and ν1 = 2.22.

system solution evolves, making an adaptive procedure
based only on the time evolution of r not appropriate.
For instance, a time average could be misleading when
the oscillations are created by the system solution itself.

An alternative view of the situation is to consider that,
in the oscillatory case, the observer answer is, at each
time, not a single point, but rather the set of points A
depicted in Figure 4(b). The knowledge at each time of
what this set is and the mean value for its r component
is could provide a good estimation of the limiting value
for the nominal value r. A way to learn the set A is to
sample it, i.e., to have a sufficient (but finite) number of
points moving on this set that are as far apart as possible
in such a way that their distribution represents the set
A itself well enough. Then, the proposed approach is
to have several copies of the observer with estimates
that are sufficiently far apart from each other running
simultaneously as to provide the desired points moving
on the (compact) set A. Then, the objective is to solve
an optimization problem involving the chordal distance
as the cost function, e.g.,

max
x̂i,.∈A

min
i6=j

|x̂i,. − x̂j,.|,

where the x̂i,.’s are the state estimates given by copies
of the observer. This problem is closely related to pack-
ing 4 (see [8,24] for instance). To solve this problem, we
propose to inject a (small) disturbance in the observer
dynamics in the direction of the gradient of the above
cost. With a possible theoretical analysis in mind and in
view of the technicalities presented in the next section,
we propose the following collection of nobs observers:

˙̂xi,1 = x̂i,2 + ν1 x̂i,1 − k1 ri (ŷi − y)

+k1r
1+b
i

∑

j 6=i

(
ŷi − y

rbi
− ŷj − y

rbj

)
,

˙̂xi,2 = −k2 r
2
i (ŷi − y) + k2r

2+b
i

∑

j 6=i

(
ŷi − y

rbi
− ŷj − y

rbj

)
,

ṙi = p1

(
((ŷi − y)2 − p2)r

1−2b
i +

p2
r4i

)
, ŷi = x̂i,1,

(23)

i = 1, . . . , nobs, where the rightmost terms in the first
two equations correspond to the injection terms with

gains k1 and k2 obtained as

(
k1

k2

)
= µP−1

(
1

0

)
, with

µ to be chosen large enough to speed up the sampling
of A while keeping the observer stable. With nobs = 3,
µ = 0.026, p2 = 0.0025, ν1 = 2.22 and m = 0, the re-
sulting setA with the proposed collection of observers is
depicted in light gray/magenta in Figure 5(b) while the

4 But we are facing the extra problem of not knowing the
“manifold” where the points evolve.
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corresponding ri’s are shown in Figure 5(a). It also shows
in dark/blue the set A for the initial observer, which in-
dicates that the effect of the repellent terms in the col-
lection of observers is to increase the mean value of the
ri’s. Note that, now, the ri’s are oscillating around 1.21,
which would make the linearization matrix associated
with the error system given in (22) marginally stable,
and that their phase difference is approximately 2π

3 rad
(meaning that the separation of the points sampling A
is indeed maximized). From the collection of observers
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(a) r versus time (tail).
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(b) Set A in the
(

x̂1−x1

rb
, x̂2−x2

r1+b , r
)

-space.

Fig. 5. Trajectories of the ri’s (tails) and set A in the
(

x̂i,1−x1

rb
i

,
x̂i,2−x2

r
1+b
i

, ri

)

-space when nobs = 3, µ = 0.026,

p2 = 0.0025, ν1 = 2.22 and m = 0.

we extract, at each time t, the average value

r(t) =
1

3

3∑

i=1

ri(t), (24)

which we consider to be the right nominal value for the
gain of our initial observer. Our motivation for using this
nominal value for r emerges from the following conjec-
ture we draw from our analysis: the appropriate value of
r is in the convex hull of the values that r takes from A.
On the other hand, averaging the estimates x̂i,. to get a
better estimate may not be a good idea since there is no
guarantee that the xi,.’s would be in the convex hull of
the estimates.

Our initial observer in (5)-(7) can be rewritten in terms
of the nominal gain r by replacing the original r by the
product r r and noting that the properties established
earlier for the original observer still hold when r is con-
stant. Then, we obtain

˙̂x1 = x̂2 + ν1 x̂1 − k1 r r (ŷ − y),

˙̂x2 = −k2 r
2 r2 (ŷ − y),

ṙ = p1

(
((ŷ − y)2 − p2)r

1−2b +
p2
r4

)
, ŷ = x̂1.

(25)

Then, for the same setting as in the simulations pre-
sented in Figure 3 but with measurement noise, i.e., with
nobs = 3, µ = 0.026, p2 = 0.0025, ν1 = 2.22, and m
an independently and identically normally distributed

stochastic process with mean 0.02 and standard devia-
tion 0.015, the trajectories for r and x̂2 − x2 obtained
with r as in (24) are shown in Figure 6 (dark/blue). The
simulation for our original observer (25) is also shown
(light gray/magenta). We observe that, for the observer
in (25), the oscillations are reduced significantly, as is
confirmed by the numbers in Table 4.

method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

dead-zone -2.03e-02 4.30e-03 1.45e-01 1.57e-02

proposed -2.03e-02 2.93e-02 1.45e-01 4.59e-02

modified -2.02e-02 5.40e-03 1.45e-01 8.61e-03

Table 4
Numerical comparison of the dead-zone, proposed, and mod-
ified gain adaptation laws with p2 = 0.0025 and ν1 = 2.22.
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Fig. 6. Trajectories of r and x̂2−x2 (tails) when p2 = 0.0025,
ν1 = 2.22 and m = 0.

4 Proofs

Theorem 2.2 is about system (3), (5)-(6) with state x =
(z, x, x̂, r), whose dynamics are compactly written in the
form

ẋ = f(x, t). (26)

For any C1 function x 7→ h(x), its Lie derivative Lfh

is Lfh = ∂h
∂x
(x) f(x, t). It is useful to distinguish this

derivative with the time derivative denoted by “ ˙ ”. In
particular for a Carathéodory solution t 7→ x(t) to (26),

we have
˙︷ ︷

h(x(t)) = Lfh(x(t)), but, in general, only for
almost all t in the domain of definition of the solution.

4.1 Error dynamics

With the error state vector definition e = x̂ − x, we
obtain

Lfe = Ae + F̂ (x̂, t)− F (x, z, t)−K(r)e1 +K(r)m .

(27)

By following [20] for instance, we introduce the following
r-scaled error coordinates

ε :=
1

rb−1
Λ(r)−1e (28)
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or equivalently, for each i ∈ {1, 2, . . . , n}, εi = ei
rb+i−1 .

We obtain

Lfεi =
Lfei
rb+i−1

− (b + i− 1)εi
Lfr

r

= rεi+1 − kirε1 −
Lfr

r
(b+ i− 1)εi

+
f̂i(x̂1, x̂2, . . . , x̂i, t)− fi(x1, x2, . . . , xi, z, t)

rb+i−1
+

ki
rb−1

m.

In compact form, this reads

Lfε

r
=

(
A− K̃C −R

Lfr

r2

)
ε+∆(x, x̂, z, r, t) +

K̃

rb
m,

(29)
where C = [1 0 . . . 0]⊤ ∈ R

n and ∆ is the function
defined as

∆(x, x̂, z, r, t) :=
1

rb
Λ(r)−1(F̂ (x̂, t)− F (x, z, t)). (30)

The following bound on ∆ will be used to derive the
right-hand sides of the first and third inequality in (2).
For a proof, see [22].

Lemma 4.1 Assume Property (∗) holds. Then, for each
compact set C ⊂ R

m × R
n, and for all (x, x̂, z, r, t) such

that (z, x) ∈ C, we have

‖∆(x, x̂, z, r, t)‖2 ≤ 2

r2b

n∑

i=1

γ2
i

r2i
+

L̂

r2
ε⊤Pε, (31)

where L̂ is given by L̂ = 2
λmin(P )

∑n
i=1 i L

2
i .

Along with the r-scaled error coordinates ε, we introduce
s-scaled error coordinates, where s is a positive constant
parameter (only for analysis, not part of the observer)
which remains to be chosen. More precisely, let

ξ :=
1

sb−1
Λ(s)−1e. (32)

Then, its Lie derivative satisfies

Lfξi = sξi+1 −
ki

sb−1

(r
s

)i
(ŷ − y)

+
f̂i(x̂1, x̂2, . . . , x̂i, t)− fi(x1, x2, . . . , xi, z, t)

sb+i−1
,

where, by definition, ŷ−y = e1−m. This can be written
compactly as

Lfξ

s
=
(
A− K̃C

)
ξ+∆(x, x̂, z, s, t)+

K̃

sb
m+

R̃K̃

sb
(ŷ−y),

where we recall the notation

R̃(r, s) = diag

(
1−

(r
s

)
, 1−

(r
s

)2
, . . . , 1−

(r
s

)n)
.

Note that we have the following inequality, which we
shall use later on:

‖R̃(r, s)‖ ≤
∥∥∥1−

(r
s

)n∥∥∥ ∀s, r > 0. (33)

Also, by proceeding as in the proof of Lemma 4.1, we
have for all s ≥ 1 and (x, x̂, z, s, t) such that (z, x) ∈ C,

‖∆(x, x̂, z, s, t)‖2 ≤ 2

s2b

n∑

i=1

γ2
i

s2i
+

L̂

s2
ξ⊤Pξ. (34)

4.2 Properties of Quadratic Functions of e

With P = P⊤ > 0 satisfying (9) and (10), we define

Vr(ε) := ε⊤Pε , Vs(ξ) := ξ⊤Pξ .

From the definitions of ε and ξ, we get

Vr(ε) ≤ a2(s)Vs(ξ) ∀e ∈ R
n, r ≥ 1, b ∈ (0, 1/2), s > 0,

(35)

where a2(s) = max
{
sb, s(b+n−1)

}2 λmax(P )
λmin(P ) . We have

λmin(P ) ε21 ≤ Vr(ε) ∀ε ∈ R
n. (36)

The following properties of Vr and Vs are key in estab-
lishing our main result.

Lemma 4.2 Assume Property (∗) holds. Then, for
each compact set C ⊂ R

m × R
n, Vr(ε) satisfies, for all

(x, x̂, z, r) such that (z, x) ∈ C and almost all t, the
following property:

LfVr

r
≤ −

(
d0 −

(
d1 p1p2

r1+2b + c0 L̂
r2

))
Vr(ε)

+
a1(r)

r2b
+

c1
r2b

m2,
(37)

where the constants γ and L are obtained, for the given
compact set C, from Lemma 4.1.

Proof: We obtain

LfVr

r
= ε⊤

(
P
(
A− K̃C

)
+
(
A− K̃C

)⊤
P

)
ε

+2ε⊤P
K̃

rb
m− ε⊤

(
PR+R⊤P

)
ε
Lfr

r2
+ 2ε⊤P∆(·).
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By decomposing Lfr = rdot+ + rdot−, where rdot+ =
max{Lfr, 0} and rdot− = min{Lfr, 0}, using (9) and
Lemma 4.1, and completing squares, we get

LfVr

r
≤−2d0ε

⊤Pε− b

2

rdot+
r2

ε⊤Pε− d1
rdot−
r2

ε⊤Pε

+
d0
2
ε⊤Pε+

2λmax(P )

d0
‖∆(x, x̂, z, r, t)‖2 + d0

2
ε⊤Pε

+
2λmax(P )

d0

∥∥∥∥∥
K̃

rb
m

∥∥∥∥∥

2

.

Combining terms, using (31) and (6) yields (37). �

Lemma 4.3 Assume Property (∗) holds. For each com-
pact set C ⊂ R

m × R
n, Vs(ξ) satisfies, for all (x, x̂, z, r)

such that (z, x) ∈ C and almost all t, the following prop-
erty:

LfVs
s ≤ −

(
d0 −

c0 L̂

s2

)
Vs(ξ) +

a1(s)

s2b
+ 2

c1
s2b

m2+

2
c1
s2b

(
1−

(r
s

)n)2
(ŷ − y)2,

(38)

where the constants γ and L are obtained, for the given
compact set C, from Lemma 4.1.

Proof: We have

LfVs

s
= ξ⊤

(
P
(
A− K̃C

)
+
(
A− K̃C

)⊤
P

)
ξ

+2ξ⊤P∆(x, x̂, z, s, t) + 2ξ⊤P
K̃

sb
m

+2ξ⊤P
R̃(r, s)K̃

sb
(e1 −m).

Proceeding as in the proof of Lemma 4.2, and using (34),
it follows

LfVs

s
≤−

(
d0 −

c0L̂

s2

)
ξ⊤Pξ +

2c0
s2b

n∑

i=1

γ2
i

s2i

+
2c0
s2b

∥∥∥K̃
∥∥∥
2

m2 +
2c0
s2b

∥∥∥R̃(r, s)K̃
∥∥∥
2

(e1 −m)2.

The claim follows using the bound (33). �

4.3 Proof of Theorem 2.2

Since F̂ satisfies the Carathéodory conditions by as-
sumption, we are guaranteed that, to any Carathéodory
solution to (3) which is defined and bounded on [0,+∞),
each measurement noise satisfying ‖m‖∞ ≤ M∞, and
each initial condition (x̂(0), r(0)), with r(0) ≥ 1, there
corresponds a (maybe nonunique) Carathéodory solu-
tion t 7→ (z(t), x(t), x̂(t), r(t)) to (3),(5)-(6) defined on

some right maximal interval [0, σ). Our task here is to
prove that σ is infinite, i.e., the solution is complete, and
that the solution is bounded on [0,+∞) and satisfies
(13)-(18).

For each Carathéodory solution t 7→ (z(t), x(t)) to (3)
that is defined and bounded on [0,+∞) there exists a
compact set C such that (z(t), x(t)) ∈ C for all t ≥ 0.
This is the (solution dependent) compact set to be used
in our technical results in Section 4.1 and Section 4.2.
It follows that we have C-dependent functions L̂ and a1
such that, by combining (37), (6), (38), (35), and (36),
we have, for almost all t in [0, σ),

V̇r(ε(t))

r(t)
≤−

(
d0 −

(
d1p1p2
r(t)1+2b

+
c0 L̂

r(t)2

))
Vr(ε(t))

+
a1(r(t))

r(t)2b
+

c1
r(t)2b

m(t)2,

ṙ(t) = p1

(
((ŷ(t)− y(t))2 − p2)r(t)

1−2b +
p2

r(t)2n

)
,

V̇s(ξ(t))

s
≤−

(
d0 −

c0 L̂

s2

)
Vs(ξ(t)) +

a1(s)

s2b

+2
c1
s2b

m(t)2 + 2
c1
s2b

(
1−

(
r(t)

s

)n)2

(ŷ(t)− y(t))2,

and, for all t in [0, σ),

λmin(P )

r2b
(x1(t)− x̂1(t))

2 ≤ Vr(ε(t)) ≤ a2(s)Vs(ξ(t)).

(39)
Using the constant bound on m, these inequalities cor-
respond to a particular case of those in (2). They cap-
ture the main feature of the dynamic interconnection be-
tween the plant (1) and the proposed observer. We have
sketched in the introduction how they can be exploited
to prove Theorem 2.2. We proceed in four steps, which
are presented in the next sections.

4.3.1 No finite escape time in ε and r

Let k ≥ 0 to be fixed later. Using (37) and (6), we have,
for almost all t in [0, σ),

˙︷ ︷
kVr(ε(t)) + r(t)≤−k

(
d0 r(t) −

(
d1p1p2
r(t)2b

+
c0 L̂

r(t)

))
Vr

+k r(t)1−2ba1(r(t)) + k c1 r(t)
1−2bm(t)2

+
(
p1(ŷ(t)− y(t))2 − p1p2

)
r(t)1−2b +

p1p2
r(t)2n
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Then, with (36),

p1(ŷ(t)− y(t))2r(t)1−2b ≤
2p1r(t)

λmin(P )
Vr(ε(t)) + 2p1m(t)2r(t)1−2b .

Since the L∞ norm ofm is bounded byM∞, the function
r 7→ r1−2ba1(r) is nonincreasing, and r(t) ≥ 1 for all t
in [0, σ), by picking k ≥ 2p1

d0 λmin(P ) , we obtain for almost

all t in [0, σ)

˙︷ ︷
kVr(ε(t)) + r(t) ≤ k

(
d1p1p2 + c0 L̂

)
Vr(ε(t)) + p1p2

+r(t)1−2b
(
k c1 ‖m‖2∞ + 2‖m‖2∞p1 − p1p2

)
+ ka1(1)

≤ max
{(

d1p1p2 + c0 L̂
)
, (k c1 + 2 p1) ‖m‖2∞ − p1p2

}
×

(kVr(ε(t)) + r(t)) + ka1(1) + p1p2.

(40)

This establishes that Vr(ε(t)) and r(t) cannot grow faster
than exponentially. Since the solution t 7→ (x(t), z(t))
is known to be defined on [0,+∞), with the definition
of ε, we conclude by contradiction that the solution
t 7→ (x(t), z(t), x̂(t), r(t)) of the system (3),(5)-(6) is also
complete, i.e., σ is infinite.

4.3.2 Boundedness of ε

To prove boundedness of ε, we select s large enough.
Since for s ≥ 1, we have

∥∥∥1−
(r
s

)n∥∥∥ ≤ rn , (41)

by multiplying both sides of (6) by c1
p1 s2b

r2n and solving

for the term with factor (ŷ − y)2, we get that

2
c1
s2b

∥∥∥1−
(r
s

)n∥∥∥
2

(ŷ − y)2 ≤ 2
c1
s2b

r2nr1−2b(ŷ − y)2

= 2
c1

p1s2b
r2nLfr + 2

c1p2
s2b

r2nr1−2b − 2
c1p2
s2b

.

With (38), this leads to, for almost all t ≥ 0,

˙︷ ︷
Vs(ξ(t))

s
− c1

p1s2b
2

2n+ 1
r(t)2n+1 ≤ (42)

−s

(
d0 −

c0 L̂

s2

)(
Vs(ξ(t))

s
− c1

p1s2b
2

2n+ 1
r(t)2n+1

)
+

a1(s)

s2b
+

2c1p2
s2b

r(t)2nr1−2b − 2c1p2
s2b

+
2c1
s2b

m(t)2 −

s

(
d0 −

c0 L̂

s2

)
c1

p1s2b
2

2n+ 1
r(t)2n+1.

Now observe that p1p2(2n+1)
d0

+
√

c0L̂
d0

is the largest solu-

tion of

s2d0 − s p1p2(2n+ 1)− c0 L̂ = 0 . (43)

It follows that picking s > max

{
p1p2(2n+1)

d0
+
√

c0L̂
d0

, 1

}

implies that

c1p2
s2b

r2n+1

(
1

r2b
−
(
d0 −

c0 L̂

s2

)
s

p1p2(2n+ 1)

)
≤ 0.

Then, inequality (42) becomes, for almost all t ≥ 0,

˙︷ ︷
Vs(ξ(t))

s
− c1

p1s2b
2

2n+ 1
r(t)2n+1 ≤

−s

(
d0 −

c0 L̂

s2

)(
Vs(ξ(t))

s
− c1

p1s2b
2

2n+ 1
r(t)2n+1

)
+

a1(s)

s2b
− 2c1p2

s2b
+

2c1
s2b

m(t)2. (44)

We define ρ := 2
2n+1r

2n+1, α◦(s) =
2

2n+1s
2n+1
1+2b , and

a3(s) := −a1(s)

s2b
+

2c1p2
s2b

. (45)

Since a1(s) goes to zero as s goes to infinity there exists
s satisfying 2c1p2 ≥ a1(s). Since a1 is also monotonic,
we get a3(s) > 0 for all s > s. Note also that we have
ρ = α◦(r

1+2b).

By solving the differential inequality (44), we get for all
t ≥ 0,

Vs(ξ(t))

s
≤ c1

p1s2b
ρ(t) + exp

(
−s

(
d0 −

c0 L̂

s2

)
t

)



Vs(ξ(0))

s
− c1

p1s2b
ρ(0)−

2c1
s2b

‖m‖2∞ − a3(s)

s
(
d0 − c0 L̂

s2

)





+
2c1
s2b

‖m‖2∞ − a3(s)

s
(
d0 − c0 L̂

s2

) . (46)

By choosing

s > max





p1p2(2n+ 1)

d0
+

√
c0L̂

d0
, s, 1



 , (47)

we get the existence of σ1 > 0, solution dependent, such
that for all t ≥ σ1, we have that
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Vs(ξ(0))

s
− c1

p1s2b
ρ(0)−

2c1
s2b

‖m‖2∞ − a3(s)

s
(
d0 − c0 L̂

s2

)



×

exp

(
−s

(
d0 −

c0 L̂

s2

)
t

)
≤ 1

2

a3(s)

s
(
d0 − c0 L̂

s2

) .

Then, inequality (46) becomes

Vs(ξ(t))

s
≤ c1

p1s2b
ρ(t)+

2c1
s2b

‖m‖2∞ − a3(s)
2

s
(
d0 − c0 L̂

s2

) ∀t ≥ σ1 .

This implies, for all t ≥ σ1,

ρ(t) ≥


Vs(ξ(t))

s
−

2c1
s2b

‖m‖2∞ − a3(s)
2

s
(
d0 − c0 L̂

s2

)


 p1s

2b

c1

and therefore, with the definition of α◦, and (39)

α◦

(
r(t)1+2b

)
≥


Vs(ξ(t))

s
−

2c1
s2b

‖m‖2∞ − a3(s)
2

s
(
d0 − c0 L̂

s2

)


 p1s

2b

c1

≥



Vr(ε(t))

s a2(s)
−

2c1
s2b

‖m‖2∞ − a3(s)
2

s
(
d0 − c0 L̂

s2

)



 p1s
2b

c1
.

(48)

Since b ∈ (0, 1
2 ) and r(t) ≥ 1, for all t ≥ 0, we have that

d1p1p2
r(t)1+2b

+
c0 L̂

r2
≤
(
d1p1p2 + c0 L̂

) 1

r(t)1+2b
∀t ≥ 0 .

Then, using Lemma 4.2 and (35), we obtain, for almost
all t ≥ σ1,

1

r(t)

˙︷ ︷
Vr(ε(t))≤−d0Vr(ε(t)) +

(
d1p1p2 + c0 L̂

)

r(t)1+2b
Vr(ε(t))

+
a1(r(t))

r(t)2b
+

c1
r(t)2b

‖m‖2∞

≤ −d0Vr(ε(t)) +

(
d1p1p2 + c0 L̂

)
Vr(ε(t))

r(t)1+2b

+a1(1) + c1‖m‖2∞.

Now, for s > max

{
p1p2(2n+1)

d0
+
√

c0L̂
d0

, s, 1

}
, let v0 be

defined as

max



s a2(s)

2c1

s2b
‖m‖2

∞−
a3(s)

2

s

(
d0−

c0 L̂

s2

) +
(

c1
p1s2b

s a2(s)
2

2n+1

)
×

(
2
(d1p1p2+c0 L̂)

d0

) 2n+1
1+2b

, 2
a1(1)+c1‖m‖2

∞

d0

}
. It can be ver-

ified that we have

 v0(s)
s a2(s)

−
2c1
s2b

‖m‖2
∞−

a3(s)

2

s

(
d0−

c0 L̂

s2

)



 p1s
2b

c1

−α◦

(
(d1p1p2+c0 L̂) v0(s)

d0 v0(s)−a1(1)−c1‖m‖2
∞

)
≥ 0

and since the left-hand side defines a strictly increas-
ing function of v0, the same holds for any v ≥ v0(s).

This implies V̇r(ε(t)) < 0 for all t ≥ σ1 such that
Vr(ε(t)) > v0(s) and therefore there exists a continuous
function η1 with nonnegative values such that η1(t) goes
to 0 as t tends to ∞ and

Vr(ε(t)) ≤ v0(s) + η1(t) ∀t ≥ 0. (49)

Boundedness of ε(t) follows readily.

4.3.3 Boundedness of r

To show boundedness of t 7→ r(t), recall that (40) reads

˙︷ ︷
kVr(ε(t)) + r(t) ≤ k

(
d1p1p2 + c0 L̂

)
Vr(ε(t)) +

r(t)1−2b
(
(k c1 + 2 p1) ‖m‖2∞ − p1p2

)
+ ka1(1) + p1p2

(50)

for almost all t ≥ 0. Knowing that we have ‖m‖∞ ≤
M∞, with k = 2

d0λmin(P )p1, we choose p1, p2 > 0 in the

gain adaptation law (6) to satisfy

M2
∞ ≤ p1p2

2(kc1 + 2p1)
=

1

4

1
c1

d0λmin(P ) + 1
p2 . (51)

Then, using the inequality

(r1 + r2)
1−2b ≤ r1−2b

1 + r1−2b
2 ∀r1, r2 ≥ 0

with r1 = kVr(ε) and r2 = r, from (50), we get, for
almost all t ≥ 0,

˙︷ ︷
kVr(ε(t)) + r(t) ≤ −p1p2

2
(kVr(ε(t)) + r(t))1−2b

+
p1p2
2

(kVr(ε(t)))
1−2b +

(
d1p1p2 + c0 L̂

)
kVr(ε(t)) +

ka1(1) + p1p2 . (52)

Since t 7→ kVr(ε(t)) is bounded, this inequality implies
the same holds for t 7→ kVr(ε(t)) + r(t) and t 7→ r(t).

This completes our proof of boundedness of the solution
t 7→ (z(t), x(t), x̂(t), r(t)). Indeed, we know by assump-
tion that t 7→ (z(t), x(t)) is bounded. We have estab-
lished that t 7→ (ε(t), r(t)) is bounded. With the defini-
tion (28) of ε and e, we have proved the claim.
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4.3.4 Results in the mean

Solving for (e1(t) − m(t))2, or equivalently, for (ŷ(t) −
y(t))2 in (6), we get, for almost all t ≥ 0,

(ŷ(t)− y(t))2 =
ṙ(t)

r(t)1−2bp1
− p2

r(t)2n+1−2b
+ p2.

It follows that

(ŷ(t)− y(t))2 ≤ p2 +
ṙ(t)

r(t)1−2bp1
= p2 +

˙︷ ︷
r(t)2b

2 b p1
,

and, hence, for all t ≥ 0 and T > 0,

1

T

∫ t+T

t

(ŷ(τ) − y(τ))2dτ ≤ p2 +
1

T

supτ≥t r(τ)
2b

2 b p1
.

(53)
Inequality (13) follows from the boundedness along the
solutions of r2b established in Section 4.3.3.

Solving (38) between t and t+ τ with

s > max





√
c0 L̂

d0
, 1



 , (54)

gives

Vs(ξ(t+ τ)) ≤ exp

(
−s

(
d0 −

c0 L̂

s2

)
τ

)
Vs(ξ(t))

+ s

∫ τ

0

exp

(
−s

(
d0 −

c0 L̂

s2

)
(τ − σ)

)
×

(
a1(s)

s2b
+ 2

c1
s2b

‖m‖2∞ + 2
c1
s2b

∥∥∥∥1−
(
supu≥t+σ r(u)

s

)n∥∥∥∥
2

(ŷ(t+ σ)− y(t+ σ))2
)
dσ.

Then, integrating between t and t+ T , using the defini-

tion Vs(t) =
1
T

∫ t+T

t
Vs(ξ(τ))dτ , (53), (41), and the fact

that r(t) ≥ 1 for all t, we obtain

λmin(P )

T

∫ t+T

t

ξ(τ)⊤ξ(τ)dτ ≤ Vs(t) ≤
Vs(ξ(t))

s
(
d0 − c0 L̂

s2

)
T

+

(
a1(s)

s2b
+ 2

c1
s2b

‖m‖2∞ + 2
c1
s2b

sup
τ≥t

r(τ)2n (⋆1)

)

(
d0 −

c0 L̂

s2

) ,

where (⋆1) = p2+
1
T

supτ≥t r(τ)
2b

2 b p1
. Then, with (32), we get

1

T

∫ t+T

t

ei(τ)
2dτ ≤ s2(b+i−1)Vs(ξ(t))

λmin(P ) s
(
d0 − c0 L̂

s2

)
T

+

s2i
(
a1(s) + 2c1‖m‖2∞ + 2c1 sup

τ≥t

r(τ)2n (⋆1)

)

λmin(P )
(
d0s

2 − c0 L̂
) . (55)

To go further, we need an estimation of supτ≥t r(τ).

From (52), we get, with k = 2
d0λmin(P )p1,

sup
τ≥t

r(τ)1−2b ≤ sup
τ≥t

(kVr(ε(τ)) + r(τ))1−2b

≤ sup
τ≥t

(kVr(ε(τ)))
1−2b + 2 + η2(t) (56)

(
2d1 +

2c0 L̂

p1p2

)
sup
τ≥t

kVr(ε(τ)) +
1

p2

4

d0λmin(P )
a1(1),

where η2(t) tends to 0 as t goes to infinity.

Similarly, from (49), when

s > max

{
p1p2(2n+1)

d0
+
√

c0L̂
d0

, s, 1

}
, we get

supτ≥t kVr(ε(τ)) ≤
2

d0λmin(P )
p1 v0(s) + k η1(t)

≤ max




2p1a2(s)

(
2c1
s2b

‖m‖2∞ − a3(s)
2

)

d0λmin(P )
(
d0 − c0 L̂

s2

)

+
(

4c1 s1−2b a2(s)
d0λmin(P )(2n+1)

)(
2
(d1p1p2+c0 L̂)

d0

) 2n+1
1+2b

,

2k
a1(1)+c1‖m‖2

∞

d0

}
+ k η1(t).

Using the definition of a3(s) in (45) and replacing
k = 2

d0λmin(P )p1, we obtain

sup
τ≥t

kVr(ε(τ)) ≤ max




p1
4a2(s)c1‖m‖2∞ + a2(s) a1(s)

s2bd0λmin(P )
(
d0 − c0 L̂

s2

)

−p1p2


 2a2(s)c1

s2bd0λmin(P )

(
d0−

c0 L̂

s2

)




+

(
4c1 s

1−2b a2(s)

d0λmin(P )(2n+ 1)

)

2

(
d1p1p2 + c0 L̂

)

d0





2n+1
1+2b

,

4p1
a1(1) + c1‖m‖2∞

d20λmin(P )

}
+ k η1(t).

With the definitions of B1 and B2 in Section 2, we
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obtain from (55) and (56)

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

ei(τ)
2dτ ≤ s2i

(
a1(s) + 2c1‖m‖2∞

)

λmin(P )
(
d0s

2 − c0 L̂
)

+
2c1
(
B1(s,p1,p2)+

1
p2

B2

) 2n
1−2b

s2(n−i)λmin(P )
(
d0s

2 − c0 L̂
)p2.

Then, combining s ≥ 1, (47), (51), and (54) the claim
holds for

s > s∗ := max

{
p1p2(2n+1)

d0
+
√

c0L̂
d0

, s, 1

}

p2 ≥ 4M2
∞

(
1 + c1

d0λmin(P )

)
.

(57)

To establish Corollary 2.5, note that when a1(s) ≡ 0, we
have that B2 = 0 and from (57) that

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

ei(τ)
2dτ ≤ 2s2ic1‖m‖2∞

λmin(P )
(
d0s

2 − c0 L̂
)

+ 2c1B1(s,p1,p2)
2n

1−2b

s2(n−i)λmin(P )
(
d0s

2 − c0 L̂
)p2. (58)

The claim follows by taking p2 equal to its lower bound
in (57).

Since for γ = 0 andm ≡ 0 the first term of (58) vanishes,

B̃1 and B1 can be written as functions of p1p2 with B̃1

B̃1(s, p1p2) =
4c1 s

1−2b a2(s)

d0λmin(P )(2n+ 1)


2

(
d1p1p2 + c0 L̂

)

d0




2n+1
1+2b

and the definition of B1. Since, in this case, p2 is only
constrained to be positive, Corollary 2.7 readily follows.

4.4 On the case when L is known

As indicated in Remark 2.4, the first term of (58) is the
bound that one would obtain when the constant vectorL
is known. In fact, in such a case, the analysis parameter
s is not needed and r can be chosen to be a constant
such that

d0r
2 − c0 L̂ > 0,

in which case, from (37), we have, for almost all t

V̇r(ε(t))

r
≤−

(
d0 −

(
d1p1p2
r1+2b

+
c0 L̂

r2

))
Vr(ε(t))

+
a1(r(t))

r2b
+

c1
r2b

m(t)2.

Then, proceeding as to obtain (58), ∀i ∈ {1, 2, . . . , n}

lim sup
T→+∞

lim sup
t→+∞

1

T

∫ t+T

t

ei(τ)
2dτ ≤ r2i(a1(r) + 2c1‖m‖2∞)

λmin(P )
(
d0r2 − c0 L̂

) .

5 Conclusion

We have shown that it is possible to design an observer
to reconstruct bounded solutions of a system. We pro-
vide bounds on the mean of the error signals that can
be employed to analyze performance of the observer.
The main feature of the high-gain observer proposed is
the on-line updated gain, which is not necessarily mono-
tonic along solutions. This allows us, in particular, to
cope with measurement noise. Even though we establish
that the performance in the mean can be upper bounded
as a function of the observer and analysis parameters,
the price to be paid is likely a highly oscillatory behav-
ior of the estimates. This is expected from the analysis
of a closely related system studied in [18]. To improve
the behavior, we have presented an adaptive procedure
based on space averaging technique and involving sev-
eral copies of the observer.
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