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Abstract— Motivated by applications of systems interacting
with their environments, we study the design of passivity-
based controllers for a class of hybrid systems. Classical and
hybrid-specific notions of passivity along with detectability and
solution conditions are linked to asymptotic stability. These
results are used to design passivity-based controllers following
classical passivity theory. An application, pertaining toa point
mass physically interacting with the environment, illustrates the
definitions and the results obtained throughout this work.

I. I NTRODUCTION

Dissipativity and its special case, passivity, provide a
useful physical interpretation to stability and stabilizability
problems as they establish a relationship between the energy
injected in and dissipated by a system. Their application in
both the analysis and the design of control systems has been
the subject of several textbooks [1], [2], [3], [4] and seminal
papers [5], [6], [7], [8], [9]. Moreover, the passivity-based
control design technique has been shown to be particularly
useful in designing controllers that can be well understood
from an energetic perspective. The problem of stabilizing
a system to a given equilibrium point, in particular, is
addressed by designing a feedback controller such that the
overall energy function has the desired form and minimum,
and by selecting the input so that the energy of the system
is dissipated (see, e.g., [7]).

Dissipativity and passivity have been recently considered
for several types of hybrid systems. Passivity of switching
systems was investigated in [10]. Motivated by haptic and
teleoperation applications, a notion of passivity for systems
in which the controller switches between different operative
modes was proposed in [11]. Results about dissipativity of
switching systems appeared also in [12], where multiple
storage functions were considered. Passivity and passivity-
based control for systems undertaking impacts and unilateral
constraints have been investigated in [13]. The results are
applied to mechanical systems including robotic manipu-
lators with rigid or flexible joints. In [14], passivity-based
control techniques are employed to regulate walking for
a class of bipedal robots (see also [15]). Impact Poincaré
maps are considered as a tool to investigate stability of
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the periodic orbits characterizing the desired walking be-
havior. In [16], the authors consider dissipativity theoryfor
a class of impulsive dynamical systems. In particular, the
framework in [16] considers different inputs and outputs
maps for respectively the continuous-time evolution and the
instantaneous changes, and results linking observabilityto
asymptotic stability for the design of feedback controllers
are presented. More recently, a general notion of dissipativity
for a class of hybrid systems was linked to detectability
and used to establish asymptotic stability for large-scale
interconnections of hybrid systems in [17].

Building from the ideas in [16] and [17], and driven
by an application of a mechanical system interacting with
the environment, this paper studies the design of passivity-
based controllers for a class of hybrid systems. In particular,
we study the case of hybrid systems in which the energy
dissipation may only happen along either the continuous or
the discrete dynamics. For such systems, a weaker notion
of passivity, encompassing the definition given in [16], is
introduced and shown how it can be linked to asymptotic sta-
bility. For this purpose, a notion of detectability is employed.
The result is then applied to an application that consists of
a mechanical system capturing the dynamics of a simple
robotic manipulator (see also [18], [19]) that is required to
interact physically with the environment through the effect
of a control input affecting the continuous dynamics.

The remainder of the paper is organized as follows. In
Section II, the application is presented. Section III presents
the general definition of passivity and the conditions to
link this property to asymptotic stability. In Section IV, a
passivity-based control result is given and then applied tothe
special passivity case of the application. Numerical results
are then presented in Section V.

II. M OTIVATIONAL APPLICATION
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Fig. 1. Motivational application: a point mass interactingwith the
environment.

We consider the mechanical system depicted in Figure
1, which consists of a point mass driven by a controlled



force. The mass is constrained to move horizontally and,
during its motion, it may come into contact with a surface
located at the origin of the line of motion. The position and
the velocity of the mass have been denoted withx1 and
x2, respectively. In order to model collisions between the
ball and the surface, inspired also by [20], we consider a
discontinuous contact model that depends on the velocity
of the system at impacts. More specifically, when the impact
velocity is lower than a certain threshold, denoted asx̄2 > 0,
the mass is subject to a contact force that depends on the
viscoelastic properties of the contact material. Assuming
unitary mass for sake of simplicity, the system is described
by the following equations:

ẋ1 = x2, ẋ2 = vc − fc(x), (1)

wherevc ∈ R denotes the input force,fc(x) the contact force

fc(x) =

{
kcx1 + bcx2 if x1 > 0

0 if x1 ≤ 0

in which kc > 0 andbc > 0 are, respectively, the elastic and
damping coefficients of the compliant contact model.

On the other hand, when a collision with the surface occurs
with a velocity of the mass greater or equal thanx̄2, the
impact is assumed to be impulsive and, accordingly, the
rigid body instantaneously rebounds or jumps. The contact
condition can be modeled as

x1 ≥ 0 andx2 ≥ x̄2 (2)

in which x1 = 0 denotes the position of the vertical surface,
while the new value of the state variables after the impact,
denoted in the following with the superscript+, can be
described by the reset lawx+

1 = x1, x+
2 = −̺x2, where

̺ ∈ [0, 1] represents the restitution coefficient.
Suppose that the control goal is to stabilize this simple

mechanical system to a fixed position in contact with the
vertical surface, say, the origin. Consider the quadratic func-
tion V (x) = 1

2x
2
1 +

1
2x

2
2 and note that the following holds:

1) For eachx such that (2) holds, sincex1 = 0 and̺ ∈
[0, 1],

V (x+) =
1

2
x2
1 +

1

2
̺2x2

2 ≤
1

2
x2
1 +

1

2
x2
2 = V (x).

2) For eachx not in (2), if x1 ≤ 0
〈
∇V (x),

[
x2

vc − fc(x)

]〉
= x2(x1 + vc)

and if x1 > 0
〈
∇V (x),

[
x2

vc − fc(x)

]〉
= x2((1− kc)x1

+vc − bcx2)

Pickingvc = −x1+wc for x1 ≤ 0 andvc = −(1− kc)x1+
bcx2 + wc for x1 < 0, wherewc is a new input, makes
the right-hand side of the expressions in item 2) above to
be equal tox2wc. The resulting expressions imply that the
variation of V during flows is no larger that the product
x2wc, which can be interpreted as a passivity property of

the system with inputwc and outputyc := x2. However, a
similar passivity property does not seem to hold at jumps for
this storage function. This motivates to investigate passivity-
based control design methods for hybrid systems that are
applicable when passivity holds only during one regime only.

III. G ENERAL DEFINITIONS AND RESULTS

A. Passivity Notions

We consider hybrid systemsH as in [21] given by1

H





ẋ ∈ F (x, vc) (x, vc) ∈ C
x+ ∈ G(x, vd) (x, vd) ∈ D
y = h(x, v)

(3)

with statex ∈ R
n, input v =

[
v⊤c , v⊤d

]⊤
∈ R

m in which
vc ∈ R

mc and vd ∈ R
md are respectively the inputs acting

on the flows and jumps, and outputy ∈ R
p. The setsC ⊂

R
n×R

mc andD ⊂ R
n×R

md define the flow and jump sets,
respectively; the set-valued mappingsF : Rn × R

mc ⇉ R
n

andG : Rn × R
md ⇉ R

n define the flow map and jump
map, respectively; finally the functionh : Rn × R

m → R
p

defines the output. Since only some components of the output
y might be involved in the changes of energy during flows
and jumps, we defineyc = hc(x, vc) ∈ R

mc and yd =
hd(x, vd) ∈ R

md , which corresponds to the case when the
size of inputsvc andvd coincide with the size of the outputs
yc andyd, respectively (property that in [4] is calledduality
of the output and input space).

For this class of hybrid systems we consider the following
concept of passivity. Below,hc, hd and a compact setA ⊂
R

n satisfyhc(A, 0) = hd(A, 0) = 0.
Definition 1: A hybrid systemH for which there exists a

functionV : Rn → R≥0

• continuous onRn;
• continuously differentiable on a neighborhood ofC;
• satisfying for some functionsωc : R

mc × R
n → R and

ωd : Rmc × R
n → R

〈∇V (x), ξ〉 ≤ ωc(vc, x) ∀(x, vc) ∈ C, ξ ∈ F (x, vc) (4)

V (ξ)− V (x) ≤ ωd(vd, x) ∀(x, vd) ∈ D, ξ ∈ G(x, vd) (5)

called astorage function, is said to be

• passive with respect to a compact setA if

(vc, x) 7→ ωc(vc, x) = v⊤c yc (6)

(vd, x) 7→ ωd(vd, x) = v⊤d yd. (7)

It is then called flow-passive (respectively, jump-
passive) if it is passive withωd ≡ 0 (respectively,
ωc ≡ 0).

• strictly passive with respect to a compact setA if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − ρc(x)
(vd, x) 7→ ωd(vd, x) = v⊤d yd − ρd(x),

1At times, for simplicity in the notation, we will drop the dependency
on v on the data(C, F,D,G, h) and write, for example,F (x) instead of
F (x, v) andx ∈ C instead of(x, v) ∈ C.



whereρc, ρd : Rn → R≥0 are positive definite with
respect toA. It is then called flow-strictly passive (re-
spectively, jump-strictly passive) if it is strictly passive
with ωd ≡ 0 (respectively,ωc ≡ 0).

• output strictly passive with respect toA if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − y⊤c ρc(yc)
(vd, x) 7→ ωd(vd, x) = v⊤d yd − y⊤d ρd(yd),

where ρc : R
mc → R

mc , ρd : R
md → R

md are
functions such thaty⊤c ρc(yc) > 0 for all y with
yc 6= 0 and such thaty⊤d ρd(yd) > 0 for all y with
yd 6= 0. It is then called flow-output strictly passive
(respectively, jump-output strictly passive) if it is output
strictly passive withωd ≡ 0 (respectively,ωc ≡ 0).

The definitions of passivity above include the ones typi-
cally defined for the continuous and discrete-time settingsas
well as special cases when passivity holds only for the flow
or jump equation. These special cases, denoted respectively
as flow-passivity and jump-passivity, are motivated also by
the application introduced in Section II, in which energy
dissipation happens along flows, but not necessarily along
jumps. It will be shown in Section III-C that such notion of
passivity can be linked to asymptotic stability under weaker
conditions than when using the standard notions. Passivity-
based control techniques for such special cases will also be
provided in Section IV.

1) Application revisited:Consider the mechanical system
introduced in Section II. By considering the Filippov regu-
larization of the discontinuous contact forcefc(x) given by

f r
c (x) =





kcx1 + bcx2 if x1 > 0
con{0, bcx2} if x1 = 0

0 if x1 < 0 ,
(8)

the mechanical system of interest can then be described by
means of the following (regularized) hybrid system

HS






ẋ ∈ F (x, vc) :=

[
x2

vc − f r
c (x)

]
x ∈ C

x+ = G(x) :=

[
x1

−̺x2

]
x ∈ D

(9)
with statex = [x1, x2]

⊤ ∈ R
2, inputvc ∈ R, and setsC and

D given by

C := {x ∈ R
2 : x1 ≤ 0} ∪ {x ∈ R

2 : x1 ≥ 0, x2 ≤ x̄2}
D := {x ∈ R

2 : x1 ≥ 0, x2 ≥ x̄2} .
(10)

In the following we show how the control inputvc can
be designed to obtain a new hybrid system, denoted asHS1 ,
which, by choosing as outputyc = hc(x) := x2, is flow
passivewith respect to the compact setA = (x⋆

1, 0), where
x⋆
1 ≥ 0 denotes the desired set-point position for the mass.

The choicex⋆
1 ≥ 0 requires the mass to maintain a contact

with the vertical surface. Inspired by theenergy shaping
approach, see among others [7], which consists in assigning
a desired potential energy to the closed-loop mechanical

system, let the control inputvc in (9) be given by

vc=v⋆c (x1, wc) :=

{
kcx1 − kP (x1 − x⋆

1) + wc if x1 > 0
−kP (x1 − x⋆

1) + wc if x1 ≤ 0
(11)

in which kP > 0 andwc ∈ R is a new input. Accordingly,
the resulting hybrid system is then given by

HS1






ẋ ∈ FS1(x,wc) :=[
x2

v⋆c (x1, wc)− f r
c (x)

]
x ∈ C

x+ = G(x) x ∈ D.
(12)

By considering the storage function

V (x) =
1

2
kP (x1 − x⋆

1)
2 +

1

2
x2
2, (13)

along flows we obtain (see [22])

〈∇V (x), η〉 ≤ wcyc ∀η ∈ FS1(x,wc) .

Along jumps we haveV (G(x))−V (x) ≤ − 1
2 (1−̺2)y2c ≤ 0

for all x ∈ D. The two properties above show that system
(12) is flow-passive with respect to the compact setA with
outputyc, inputwc, and functionωc(wc, x) := wcyc.

Finally, the new inputwc in (12) can be designed to induce
flow-output strict passivity. In particular, let the control input
wc in (11) be chosen as

wc = −k1x2 + w̃c (14)

in which k1 > 0 is the damping injection gain and̃wc ∈
R is a new control input. By considering the same storage
function (13), with the choice (14) along flows it now holds

〈∇V (x), ξ〉 ≤ w̃cyc − k1y
2
c ∀ξ ∈ FS1(x,wc) .

Since we have thatV (G(x)) − V (x) ≤ 0, as shown above,
system (12) withwc given by (14) is flow-output strictly
passive with respect to the compact setA = (x⋆

1, 0) with
outputyc = x2, input w̃c, and functionsωc(w̃c, x) := w̃cyc
andρc(yc) := k1yc.

B. Stability and Detectability Notions

In this work, for a hybrid systemH, we consider the
notion of solution given in [23]. Moreover, we consider the
following stability definitions for hybrid systems when their
input is set to zero.

Definition 2: A compact setA ⊂ R
n is said to be

• 0-input stableif for each ε > 0 there existsδ > 0
such that each maximal solution pair(φ, 0) to H and
φ(0, 0) = ξ, |ξ|A ≤ δ, satisfies|φ(t, j)|A ≤ ε for all
(t, j) ∈ domφ;

• 0-input pre-attractiveif there existsµ > 0 such that
every maximal solution pair(φ, 0) to H andφ(0, 0) =
ξ, |ξ|A ≤ µ, is bounded and if it is complete satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• 0-input pre-asymptotically stableif it is 0-input stable
and 0-input pre-attractive.



When every maximal solution is complete, the prefix “pre”
can be removed. Asymptotic stability is said to be global
when the attractivity property holds inC ∪D.

We define a general detectability property for hybrid
systemsH with inputs set to zero. In the next section, this
notion will permit linking passivity with stability.

Definition 3 (see Definition 6.2 in [24]):Given sets A
andK ⊂ R

n, the distance toA is 0-input detectable relative
to K for H if every complete solution pair(φ, 0) to H such
that

φ(t, j) ∈ K ∀(t, j) ∈ domφ
⇒ lim

t+j→∞, (t,j)∈domφ
|φ(t, j)|A = 0.

(15)
If H does not have inputs, the distance toA is detectable
relative toK for H if every complete solutionφ toH satisfies
(15).

WhenK is given by the set of pointsx such thath(x, 0) =
0, the conditionφ(t, j) ∈ K for all (t, j) ∈ domφ is
equivalent to holding the output to zero. In such a case,
Definition 3 reduces to the classical notion of detectability.

C. Basic Properties

We relate different forms of passivity to asymptotic sta-
bility with zero input, that is, for the hybrid systemH with
v = 0 given by

H0





ẋ ∈ F (x, 0) (x, 0) ∈ C
x+ ∈ G(x, 0) (x, 0) ∈ D
y = h(x, 0).

(16)

Below, given a setS ⊂ R
n × R

m, let

Π0(S) := {x ∈ R
n : (x, 0) ∈ S} .

Also, we say that a set-valued mappingφ : S ⇉ R
n with

S ⊂ R
n × R

m is outer semicontinuous relative toS if
for any z ∈ S and any sequence{zi}∞i=1 with zi ∈ S,
limi→∞ zi = z, and any sequence{wi}

∞
i=1 with wi ∈ φ(zi)

and limi→∞ wi = w we havew ∈ φ(z).
For the next proposition to hold, the data ofH0 has to

satisfy the following properties:

(A1) The setsΠ0(C) andΠ0(D) are closed inRn.
(A2) The set-valued mapping(x, 0) 7→ F (x, 0) is
outer semicontinuous relative toRn × {0} and locally
bounded, and for allx ∈ Π0(C), F (x, 0) is nonempty
and convex.

(A3) The set-valued mapping(x, 0) 7→ G(x, 0) is
outer semicontinuous relative toRn × {0} and locally
bounded, and for allx ∈ Π0(D), G(x, 0) is nonempty.

Observe that property (A1) simply requires that the setC
andD are closed for the case in whichv = 0.

Proposition 1: Given a compact setA ⊂ R
n, if the hybrid

systemH satisfying (A1)-(A3) is

1) passive with respect toA with a storage functionV
that is positive definite with respect toA then A is
0-input stable forH.

2) output strict passive with respect toA with a storage
function V that is positive definite with respect toA
and the distance toA is detectable relative to

{
x ∈ Π0(C) : hc(x, 0)

⊤ρc(hc(x, 0)) = 0
}
∪{

x ∈ Π0(D) : hd(x, 0)
⊤ρd(hd(x, 0)) = 0

}

(17)
for H0 thenA is 0-input pre-asymptotically stable for
H.

3) strictly passive with respect toA with a storage func-
tion V that is positive definite with respect toA then
A is 0-input pre-asymptotically stable forH.

For the proof of the above proposition the reader is referred
to [22].

Remark. The 0-input stability property ofA in items 1
and 2 of Proposition 1 can be established without insisting
on conditions (A1)-(A3). The attractivity property in item
2 requires these conditions due to the use of an invariance
principle from [24]. Conditions (A1)-(A3) guarantee required
structural properties of the solution set toH0, in particular,
sequential compactness. The second item of Proposition
1 can also be asserted from [17, Theorem 2] (its proof
does not use an invariance principle) when specializing the
general dissipativity concept therein to the passivity case.
The purpose of Proposition 1 is to enable the special cases
that are considered in Proposition 2 below.⊳

The results given in Proposition 1 can also be applied to
the special cases of flow and jump passivity given in Defi-
nition 1. However, for these latter cases, less conservative
conditions can be obtained as shown in the following result
whose proof is available in [22].

Proposition 2: Given a compact setA ⊂ R
n, if the hybrid

systemH satisfying (A1)-(A3) is

1) flow-passive or jump-passive with respect toA with a
storage functionV that is positive definite with respect
to A thenA is 0-input stable forH.

2) flow-output strictly passive with respect toA with a
storage functionV that is positive definite with respect
to A and

2.a) the distance toA is detectable relative to
{
x ∈ Π0(C) : hc(x, 0)

⊤ρc(hc(x, 0)) = 0
}

(18)
for H0,

2.b) every complete solutionφ to H0 is such that
for someδ > 0 and someJ ∈ N we havetj+1 −
tj ≥ δ for all j ≥ J ,

thenA is 0-input pre-asymptotically stable forH.
3) jump-output strictly passive with respect toA with a

storage functionV that is positive definite with respect
to A and,

3.a) the distance toA is detectable relative to
{
x ∈ Π0(D) : hd(x, 0)

⊤ρd(hd(x, 0)) = 0
}

(19)
for H0,

3.b) every complete solutionφ to H0 is Zeno,



thenA is 0-input pre-asymptotically stable forH.
4) flow-strict passive with respect toA with a storage

functionV that is positive definite with respect toA,
and 2.b) holds, thenA is 0-input pre-asymptotically
stable forH.

5) jump-strict passive with respect toA with a storage
functionV that is positive definite with respect toA,
and 3.b) holds, thenA is 0-input pre-asymptotically
stable forH.

IV. PASSIVITY-BASED CONTROL

The concepts of flow- and jump-passivity introduced in
Definition 1 can be combined with the notion of detectability
introduced in Section III-B and the properties of the solution
given in Proposition 2 for stabilization by means of static out-
put feedback. The result given in the following theorem, in
particular, allows to directly employ passivity-based control
paradigms – see for instance [4], [7] – for the special cases
of flow and jump passivity in hybrid systems.

Theorem 1:Given a compact setA ⊂ R
n and a hybrid

systemH satisfying (A1)-(A3) with continuous output maps
x 7→ hc(x) andx 7→ hd(x) the following hold:

1) If H is flow-passive with respect toA with a storage
function V that is positive definite with respect toA
and there exists a continuous functionkc : R

mc →
R

mc , with y⊤c kc(yc) > 0 for all yc 6= 0 having defined
yc = hc(x), such that the resulting closed-loop system
with vc = −kc(yc) and vd = 0 has the following
properties:

1.1) the distance toA is detectable relative to
{
x : hc(x)

⊤kc(hc(x)) = 0, (x,−kc(hc(x))) ∈ C
}

(20)
with vd = 0,

1.2) every complete solutionφ with vd = 0 is such
that for someδ > 0 and someJ ∈ N we have
tj+1 − tj ≥ δ for all j ≥ J ,

then the control lawvc = −kc(yc), vd = 0 rendersA
pre-asymptotically stable.

2) If H is jump-passive with respect toA with a storage
function V that is positive definite with respect toA
and there exists a continuous functionkd : R

md →
R

md , with y⊤d kd(yd) > 0 for all yd 6= 0 having defined
yd = hd(x), such that the resulting closed-loop system
with vc = 0 and vd = −kd(yd) has the following
properties:

2.1) the distance toA is detectable relative to
{
x : hd(x)

⊤kd(hd(x)) = 0, (x,−kd(hd(x))) ∈ D
}

(21)
with vc = 0,

2.2) every complete solutionφ with vc = 0 is Zeno
then the control lawvd = −kd(yd), vc = 0 rendersA
pre-asymptotically stable.

For the proof of Theorem 1, the reader is referred to [22].

Remark. Theorem 1 extends the classical passivity control
results (see for instance [2], [3], [1], [4]) to the class of

hybrid systems considered in this work. With respect to
other existing approaches available in literature, such the the
ones in [16] for impulsive dynamical systems, the proposed
framework here focuses also on the special cases of flow and
jump passivity which have been shown to be relevant in some
applications. In fact, the results in [16] cannot be applied
to the application considered in this paper since the output
strict passivity property does not hold both along flows
and jumps. The approach proposed here links passivity to
asymptotic stability thought detectability and, for the special
cases, it requires also some properties of the solutions. The
detectability conditions required here are weaker than the
observability property imposed in [16].⊳

A. Application re-revisited

Consider the hybrid systemHS given in Section III-A.1.
The control goal is to stabilize the point-mass to a position
in contact with the vertical surface, namely to render the set
A = (x⋆

1, 0), with x⋆
1 ≥ 0, globally asymptotically stable

for the closed-loop hybrid system. Theorem 1 can be em-
ployed to assert that property by means of the energy-based
controller (11) (passivation by feedback and energy shaping)
in which the remaining control inputwc is synthesized as a
damping injection. This fact is established by the following
proposition for which a proof is available in [22].

Proposition 3: For the hybrid system (9) with control
input vc chosen as in (11), the control lawwc = −k1yc,
with k1 > 0, renders the compact setA = (x⋆

1, 0) globally
asymptotically stable.

Remark. Observe that asymptotically the control inputvc
in (11) is given byv⋆c (x

⋆
1, 0) = kcx

⋆
1. From a physical

viewpoint, the mass is then applying a force to the vertical
surface that can be varied according to the choice of the set-
point positionx⋆

1 ≥ 0. Passivity-based control techniques are
in fact employed in several force control schemes (see [25]
and references therein).⊳

V. SIMULATIONS

Taking advantage of the framework for numerical simula-
tions of hybrid systems available at [26], this section presents
some numerical results obtained considering the passivity-
based control law derived in Section IV for the mechanical
system described respectively in Sections II and III-A.1. The
parameters of the system and of the passivity-based control
law used in the simulations areM = 1 kg, ̺ = 1, kc = 8
N/m, bc = 10 Ns/m, kP = 10, k1 = 2, x̄2 = 0.1 m/s and
x⋆
1 = 0.1 m.
By considering as initial condition for the mass a certain

constant distance from the vertical surface, in particular
x(0, 0) = (1, 0), for the positionx1 and the velocityx2

we obtained the trajectories depicted respectively in Figures
2 and 3. Observe that att = 0, j = 0 the mass, governed
by the passivity-based control law (11) withwc = −k1yc,
starts accelerating towards the surface. Then att ≈ 0.5
sec the surface is reached with a velocity larger thanx̄2.
Accordingly, the mass instantaneously rebounds subject to



the jump map in (9). After the collision, the ball continues
to flow until another rebound occurs. It is worth to note that,
since during the continuous-time evolution the controlleris
dissipating kinetic energy, collisions are achieved with pro-
gressively decreasing impact velocities. As a consequence,
once collisions are achieved with a speed lower or equal
than x̄2, the impacts become compliant and the mass finally
remains in contact with the surface reaching asymptotically
the final desired positionx⋆

1 = 0.1 m by flowing only.
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Fig. 2. Positionx1 of the mass during a simulation.
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Fig. 3. Velocityx2 of the point mass during a simulation.

VI. CONCLUSION

In this paper we considered the design of passivity-based
controllers for a class of hybrid systems. Motivated by an
application of a mechanical systems interacting with the
surrounding environment, a weak notion of passivity, for sys-
tems in which dissipation of energy is allowed to happen only
during the continuous or the discrete time behavior respec-
tively, has been proposed and linked, through detectability,
to asymptotic stability. The proposed methodology was em-
ployed to show the effectiveness of classical passivity-based
control design in the application of interest. Future work will
be focused on showing the effectiveness of passivity-based
control paradigms for aerial vehicles physically interacting
with the surrounding environment.
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