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Abstract— For a class of hybrid systems given in terms of about asymptotic controllability to general closed sedther
constrained differential and difference equations/inclisions, we than the origin, were given in [14] for continuous-time
define control Lyapunov functions, and study their existene time-invariant systems, in [15] for continuous-time time-

when compact sets are asymptotically stable as well as the . t d in 1161 for di te-ti ¢ |
stabilizability properties guaranteed when they exist. Reent varying systems, and in [16] for discrete-time systems. In

converse Lyapunov theorems for the class of hybrid systems Particular, the approach in [14], [16] consists of recastime
under study enable us to assert that asymptotic stabilizality =~ continuous-time and discrete-time problem as a diffeabnti

of a compact set implies the existence of a smooth control and difference inclusion, respectively, and then applyang
Lyapunov function. When control Lyapunov functions are weak converse Lyapunov theorem [17]. Constructions of

available, conditions for the existence of continuous staet . .
feedback control laws, both providing practical and global control Lyapunov functions have been proposed for diserete

stabilizability properties, are provided. time and hybrid systems in [18].
In this paper, we consider control Lyapunov functions for

hybrid systems given in terms of constrained differentiad a
Control Lyapunov functions have been instrumental in thdifference inclusions with inputs modeled as
study of nonlinear control systems as they reveal the féasib . c
ity of control design through Lyapunov inequalities. Intfac % { x+ € Fzu) (@, uc) € Q)
the existence of control Lyapunov functions is directhkéa vt € Gloud) (@, uq) € D,
to the problem of stabilizability of and controllability ta  where(C, F, D, G) defines the data of the hybrid system; see
set. Pioneering work by Artstein in [1] established that, foSection II-B for more details. We address two questions: 1)
continuous-time systems, the existence of a smooth contmtistence of control Lyapunov functions when an asymptotic
Lyapunov function is equivalent to stabilizability of thei-o stability property holds, and 2) existence of continuoasest
gin with relaxed controls. This stabilizability result,dwin as feedback asymptotically stabilizing laws when a control
Artstein’s theorem, was made explicit in [2], where a geherd.yapunov function is available. To establish the former, we
formula for the construction of stabilizing state-feedbac exploit recent results on robustness of hybrid systemsah [1
laws was proposed. This construction is knownSasitag’'s (see also [20]), which, under mild regularity conditions of
formula Motivated by pointwise minimum norm control the hybrid system data, enabled the generation of converse
laws, an optimal stabilizing state-feedback constructi@s Lyapunov theorems in [21], [22] for hybrid systems with
proposed in [3]. The importance of these constructions asymptotically stable compact sets. In Section 1V, we show
that, under boundedness conditions, they provide robsstnehat for the class of hybrid systems considered, asymptotic
to input uncertainties [3], [4]. This has enabled the awghorstabilizability of a compact set implies the existence of a
in [5] to apply the domination redesign technique; see alsoontrol Lyapunov function with respect to the said compact
[6]. Further constructions of state-feedback laws were alsset.
given in [7] when Lipschitz control Lyapunov functions are The second result is in Section V and pertains to the ex-
available and in [8] for nonaffine systems with polynomiaistence of stabilizing state-feedback laws for hybrid eyt
structure. when a control Lyapunov function is available. Due to the
Control Lyapunov functions provide a link between stainterest in hybrid systems of stabilizing subsets of théesta
bilizability and asymptotic controllability to the origifor  space (rather than simply the origin — see [20] for a discus-
nonlinear systems, which is the property that for every poirsion), we determine under what conditions on the data of
in the state space there exist a control signal steeringale s the hybrid system there exist continuous state-feedbaek la
to zero. In [9], through the construction of a nonsmooth corasymptotically stabilizing a given compact set of the state
trol Lyapunov function, the authors show that every asymmpace. The derived conditions reveal key properties under
totically controllable to the origin continuous-time syist  which such control laws exist and are expected to guide the
can be globally stabilized by a (discontinuous) feedbagk la modeling and systematic design of feedback laws for hybrid
see also [10]. Further results on existence and equivadencsystems with inputs. The reason of insisting on continuous
between nonsmooth control Lyapunov functions and asymfeedback laws is that, when using such feedbacks to control
totic controllability appeared in [7], [11], [12], [13]. Relts hybrid systems with regular data, results on robustness of

L ) stability in [19] can be applied to the closed-loop system.
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regulation map that appropriately incorporate the cormtirsu Definition 2.3 (solution):Given hybrid inputs u,

and discrete dynamics. Our results also cover the discretéem u. — U,, ug : domuyg — Uy definingu and an initial
time case, for which, to the best of the author’s knowledgeondition&, a hybrid arcy : dom ¢ — R™ defines asolution
results on existence of continuous stabilizers do not seepair (¢, u) to the hybrid systeri if the following conditions
available in the literature. hold:

S0) (£,u.(0,0)) € C or (£uq(0,0)) € D, and
Il. PRELIMINARIES (doin(giéom)g; (€, a(0,0))

A. Notation
(S1) For each j € N such that I; =

R™ denotes:-dimensional Euclidean spadg,denotes the {t : (t,j) € dom(¢,u) } has nonempty interior
real numbersR>, denotes the nonnegative real numbers, int(Z,), we have
i.e.,R>o = [0,0). N denotes the natural numbers including
0, i.e., N = {0,1,...}. B denotes the closed unit ball in (¢(t, 1), uc(t, j)) € C for all ¢ € int(I;),
a Euclidean space. Given a skt K denotes its closure.

) . and, for almost alt € I;, we have
Given a vectorz € R”, |z| denotes the Euclidean vector

norm. Given a sefk C R™ and a pointz € R, |z|x := i(b( i) € F(o(t, ), uclt, 5));

inf,cx |z — y|l. A function o : Ry — Rsg is said to dt ’

belong to classe if it is continuous, zero at zero, strictly  (s2) For each(t, j) € dom(e,w) such that(,j + 1) €
increasing, and unbounded. dom(¢, u), we have

B. Hybrid Systems (¢(t,5),ua(t, j)) € D,

A hybrid system?{ is modeled as (1), wherR" is the o(tj +1) € Glo(t,3), ualt, J)):
space for the state, ¢, C R™< andi/y; C R™< are convex A solution pair (¢,u) to H is said to becompleteif
sets defining the space for the inputsandu,, respectively, dom(¢,u) is unboundedZeno if it is complete but the
as well as the spaée¢ C R™ for the inputu = [u} u;]",the projection of dom(¢,u) onto R, is bounded discreteif
setC' C R" xU. is theflow set the functionF” : R" xR™e = their domain is{0} x N, andmaximalif there does not exist
R™ is theflow map the setD C R™ x Uy is thejump set  another pair(¢, u)’ such that$, u) is a truncation of ¢, u)’
andG : R" x R™? = R" is thejump map to some proper subset @fom(¢,u)’. For a solution pair

The data of the hybrid systef is given by(C, F, D,G).  (¢,u) with ¢(0,0) = &, we denote bys(t, j, &, u) its value

Definition 2.1 (hybrid time domain)A setE ¢ Ryox N at (t,j) € dom(e,u).

is a compact hybrid time domain if The following definition introduces a concept of stability
for hybrid systems without inputs, e.g., the hybrid system
o U resulting from assigning its inputs via a state-feedbaek la
il It is stated for general compact sets of the state space.
for some finite sequence of timés= ty < t; < tg... < Definition 2.4 (stability): For a hybrid systeni{ (without
ts. It is a hybrid time domain if for al(T,J) € £, E N inputs), a compact sed C R" is said to be
([0, 7] x {0,1,...J}) is @ compact hybrid time domain. . stableif for eache > 0 there existsy > 0 such that
Solutions to hybrid system# will be given in terms of each maximal solutiop from ¢ with [¢] 4 < ¢ satisfies
hybrid arcs and hybrid inputs. These are parameterized by |¢(t, )[4 < ¢ for all (t,7) € dom ¢;
pairs(t, j), wheret is the ordinary-time component ands « attractive if every maximal solutionp is bounded and
the discrete-time component that keeps track of the number if it is complete satisfies
ofumps. | | | dm () =0
Definition 2.2 (hybrid arc and input)A function = : (t,5)€dom ¢, t+j—00

domz — R™ is a hybrid arc ifdomz is a hybrid time asymptotically stabléf stable and attractive.

domain and, for eacli € N, the functiont — z(t,j) is

absolutely continuous on the intervil : (¢,7) € doma }. C. Set-valued Analysis

A function u : domwu — U is a hybrid input ifdomu is A set-valued mags : R™ = R™ is outer semicontinuous

a hybrid time domain and, for each € N, the function atz € R™ if for each sequencgr; }2, converging to a point

t— u(t,j) is Lebesgue measurable and IocaIIy essentially c R"™ and each sequengg € S(QCZ) convergmg to a pomt

bounded on the intervdlt : (t,j) € domwu }. y, it holds thaty € S(x); see [24, Definition 5.4]. Given a set
With the definitions of hybrid time domain, and hybrid arcX C R", it is outer semicontinuous relative t§ if the set-

and input in Definitions 2.1 and 2.2, respectively, we defingalued mapping fronR” to R™ defined byS(x) for z € X

a concept of solution for hybrid systerfs! and( for x ¢ X is outer semicontinuous at eache X. Itis

locally boundedf, for each compact set” C R there exists

! .—
IFor simplicity, we will drop the dependence on inputs on aata of a compact sef’ C R such thatS(K) " L.JwEKS(CC) C
the data(C, F, D, G) that are input independent. K'. For locally bounded set-valued maps with closed values,



outer semicontinuity coincides with what is usually calledAt such events, the jump map takes the form
upper semicontinuityA set-valued mapS : R" = R™

is lower semicontinuous if for each: € R™ one has of =zt ppey, @y = —e(u)a,

thatliminf,, ,, S(z;) D S(x), whereliminf,, ,, S(z;) = where the functiong ande are continuous and capture the
{# @ Vai = 2,3z — 2z sit.z; € S(w;) } is theinner limit  effect of pendulum compression and restitution at impacts,
of S (see [24, Chapter 5.B]). respectively, as a function af The functionp captures rapid

The following version of a selection theorem due tadisplacements of the pendulum at collisions whilenodels
Michael reported in [23] will be used to establish thethe effect of the anglg. on energy dissipation at impacts.
stabilizability result in Section V. For a vertical surfacei{= 0), these functions are taken as

Theorem 2.5: Given a lower semicontinuous set-valuge0) = 0 ande(0) = eo, whereeg € (0,1) is the nominal
map S : R* = R™ with nonempty, convex, and closed(no gravity effect) restitution coefficient. For slantedfages
values, there exists a continuous selectionR” — R™. (u € [-%,0)), when conditions (6) holdp is chosen as
x1+p(p)xy > x1, p(p) € (—1,0), so that, after the impacts,

1. CONTROL LYAPUNOV FUNCTIONS the pendulum is pushed away from the contact condition.

In this section, we define control Lyapunov functionsThe functione is chosen as a nondecreasing functionu.of
(CLFs) for hybrid systemg{. Given a setk’ C R"™ x U,  satisfyingey < e(u) < 1 at such angles so that, due to the
with x being eitherc or d, define effect of the gravity force at impacts, less energy is dessg

I(K) = {z : Ju, €U, st (z,u,) € K} as|u| increases.

Vi K) = {u: (zu) ek} The model above can be captured by the hybrid system
That is, given a sek, II(K) denotes the “projection” of¢ M given by

onto R™ while, givenz, ¥(z, K) denotes the set of values i = z
u such that(z,u) € K. Then, for eachz € R", define the By = —asinmy — bry + Ues } =t f(@, uc)
set-valued map¥9. : R" =2 U,, ¥, : R" = U, as
('r7 uC) 6 O? (7)
Vo(r) = W(2,C),  Wy(x):=V(,D). @ T = mtpudn \_ o
vy = —e(ug)ws ' ’
Definition 3.1 (control Lyapunov function)Given a (z,uq) € D,

nonempty setA < R”, a continuously differentiable
function V : R™ — R is a control Lyapunov function with ~ el
U controls for 4 if there existay, as, ag € Koo such that %4 = H €[-3,0]

— 2 Doy >
aillzla) € V@) < as(lala) Ci= {(wu0) € R xUe 5 212 wen }
Vo € TI(C) UTI(D) U G(D), (3) D= {(z,uq) € R* XUy : z1 = ug,22 <0 }.
) eigf(z) sup (VV(x),&) < —as(|x]a) Note that the definitions af’ and D impose state constraints
cC€¥el®) ¢eF(zuc) on the inputs.
va € 11(C), (4)

nf s V() - Vi) < —as(al)
wa€¥a(T) ¢eG(z,uq)

’U/C,Q]T =[ru’ € Rx [-5,0] =: U,

Let A = {(0,0)} and consider the candidate control

Ve € TI(D). (5) Lyapunov function withi/ controls forH given by

We illustrate the definition of control Lyapunov functions V(z) =z Pz, P= [2 1] ) (8)
for hybrid systems. 11

Example 3.2:Consider a point-mass pendulum impactingPuring flows, we have that
on a controlled slanted surface. Denote the pendulum’sang|

: . \A% ) = 4 273
(with respect to the vertical) by; and the pendulum’s (VV(z), (@, ue)) .I1I2+ 2
velocity (positive when the pendulum rotates in the clodewi +2(—asinzy — bwy + ve) (w2 + 1)
direction) byx,. Whenz; >y with 1 denoting the angle for all (z,u.) € C. It follows that (4) is satisfied withy
of the surface, its continuous evolution is given by defined ass(s) := s? for all s > 0. In fact, note that, for
2
@1 = X9, 4o = —asinx; — bry + T, eachz € R%,
wherea > 0, b > 0 capture the system constants (e.g., V.(z) _{ }é%x (=, min {z1,0}] il € [:g’ﬂ
gravity, mass, length, and friction) and corresponds to ! 270
torque actuation at the pendulum’s end. For simplicity, wand thatll(C) = [-F, 7] x R. Then
assume that; € [, 7] andu € [—-Z,0]. Impacts between

. _ T
the pendulum and the surface occur when ucég{(m)w‘/(x), S

1 =p, x2<0. (6) for all z € TI(C) such thatr; + x5 = 0, while whenz; +



x2 # 0, we have to [20], [19] (see also [27]) and [28] for details on and
) consequences of these conditions.
ucégf(m)wv(x)’ flw,ue)) = —oo. The following lemma is a straightforward consequence of
continuity of the feedback paifx., «4) and the regularity

2
Note that, for eaclr < R®, we have properties of the hybrid system.

Uy(z) = { {z1} =€ [—%,O],$2 <0 Lemma 4.2: Suppose. and x4 are continuous ané{ =
0 otherwise, (C,F,D,G) is such that
and thatII(D) = [-%,0] x (—o0,0]. Then, during jumps, (A1) C andD are closed subsets &" x U/, andR™ x
we have Uy, respectively.

inf  V(g(x,uq)) —V(z) = V(g(a,z1)) — V(x) (A2) F : R™ x R™e = R™ is outer semicontinuous

wievale) . , , . relative toC' and locally bounded, and for allz, u.) €

< —min{2(1 — p*(z1)), 1 —e*(z1)}z @ C, F(z,u.) is nonempty and convex.

for all 2 € TI(D). Then, condition (5) is satisfied with (A3) G : R" x R™ = R" is outer semicontinuous

az defined asas(s) := Xs? for all s > 0, A =
minmle[_%m{2(1—p2(171)), 1—e2(x1)}. It follows that both
(4) and (5) hold with this choice afs.

relative to D and locally bounded, and for allz, ug) €
D, G(x,uq) is nonempty.
Then# satisfies the hybrid basic conditions.

V. STABILIZABILITY IMPLIES EXISTENCE OF CLF The next result establishes that the asymptotic stabiliz-

. . . ability of a compact set implies the existence of a control
For continuous-time nonlinear systems, standard Converf)?apunov function

Lyapunov theorems, like those in [25], [26], can be used to _ _
establish that asymptotic stabilizability of the originglies Theorem 4.3: Given a compact sétC R™ and a hybrid
the existence of a control Lyapunov function. A similarSyStem?#, suppose there exist functions : R" — U.
result holds for hybrid systeni® satisfying the regularity @nd #a : R" — Uy such that# satisfies the hybrid basic
conditions given in Definition 4.1 below, for which the cond|t|or_1§ and that renders4 asymptotically stable. Then,
converse Lyapunov theorems in [21], [22] are applicable. Wi1€re exists a smooth control Lyapunov functiénwith ¢/
consider hybrid system& under the effect of the feedback CONtrols for#i.

laws Example 4.4:The hybrid systenﬁ resulting from using
ket R" = Ue, ka : R™ — Uy, (9)  zero controls in (7) is such that the hybrid basic conditions
hold and that4 = {(0,0)} is asymptotically stable (glob-

hich lead to the closed-I hybrid syst
which fead fo the Closed-loop hybrid system ally). This property can be established using the function

gli e F(x) := F(x,kc(x)) reC (10) defined as .
€ G(z) =Gz, ka(2)) €D V(z) :=a(l —cosxy) + Exg (11)
with and the invariance principle [29, Theorem 4.3]. However, as
C = {2€R" : (z,r(z))€C Y}, a difference td/ in (8), note that sincéVV (z), f(z,u.)) =

T —ba2 + zyu.q, V is not a CLF for the hybrid system (7)
D = {zeR" : (z,kq4(z)) €D }. with respect taA.

The required regularity conditions on the data of the hybrid . ExisTENCE OECLE IMPLIES STABILIZABILITY

systems are stated next. When a CLF is available, the problem of existence of a

Definition 4.1 (Hybrid Basic Conditions)A hybrid sys-  state-feedback law hinges upon the possibility of making a
tem # is said to satisfy thénybrid basic conditionsf its selection(k., x4) from the CLF inequalities (4) and (5). It

data(C, F, D,G) is such that amounts to determings., x4) such that, for somés € Ko,

(A1) C and D are closed sets. we have
(A2) F:R"™ = R" is outer semicontinuous and locally . A% < &

bounded, and’(x) is nonempty and convex for all ﬁeF(b:BEc(z))< (@),6) = —as(lzla)

c. V(z, ke(z)) € C,
(A3) G : R™ = R" is outer semicontinuous and locally ) B <

bounded, and-(x) is a nonempty subset @&" for all EGG(bml,llE)d(z)) VI =Vie) = —as(lzla)

z€D. V(x, kq(x)) € D.

These conditions assure that (closed) hybrid systems
well posed in the sense that they inherit several go
structural properties of their solution sets. These inglu
sequential compactness of the_ solution set, closedness 03‘Note that, in particular, due to Lemma 47, satisfies the hybrid basic
perturbed and unperturbed solutions, etc. We refer theereadtonditions when(x., x4) are continuous.

%%en such a state-feedback pair exists, we say that the
qsystemH is stabilizable with respect tol.



Below, we provide conditions under which stabilizingR3) For everyr > 0, we have that, for every € II(C) N
feedback laws that are continuous exist for hybrid systems. Z(r), the functionu,. — T'.(x, u., r) is convex onv.(z)
For simplicity, we consider hybrid systems with single- and that, for every: € II(D)NZ(r), the functionu, —
valued flow and jump maps. Building from ideas in [3] and Te(x,ug,r) is convex ond ;(z).

[8] for continuous-time systems, our approach consists inen, 7/ is practically asymptotically stabilizable with re-
m_akmg continuous s_elect|0ns from a ‘.‘rggulatmn map.” Th'%pect to.A by continuous feedback.

differs from the work in [2], where explicit constructionba

stabilizing state feedback laws for continuous-time syste ~ Remark 5.2:Condition R2) holds when the top functions
are given. Here, we first establish conditions under whictit the piecewise definitions df . andI'; are upper semi-
a selection of a feedback pa(km,{d) is possib|e away continuous and the sets and D are closed. This follows
from the compact set of interest. Hence, no special propertigm the following result.

nearby the compact set is needed. After that, we show thatl emma 5.3: (usc of piecewise function) Given an upper
under furthelsmall controlconditions nearby4, a (globally) semicontinuous functiorf; : R™ — R and a closed set
continuous state-feedback pair exists. When specialiaed K - R”, the function defined for eache R" as

C = (0 andD = R", the results below cover the discrete-time

case, for which results on existence of continuous stadiz o) = { filz) zeK
do not seem available in the literature. - otherwise

A. Practical asymptotic stability IS upper semicontinuous.

Given a compact setl and a control Lyapunov function A
V' satisfying Definition 3.1 withns € K, define, for each Example 5.4:The data of the hybrid system (7) satis-
r € R>g, the set fies the hybrid basic conditions. The set-valued maps
and ¥; computed in Example 3.2 have convex values.

L) = fw R V(z) 2r}. Moreover, they are lower semicontinuous at everyFor
Moreover, for eactiz, u.) € R” x R™ andr € Rx(, define eachz; € [-F,n], we haveliminf,, ,, ¥.(z;) = R x
the function [~5,min{x1,0}] = V.(r) and at everyz with z; €

(VV (), f(z,uc)) + as(|2].0) =5, 0}, 22 < 0, we haveliminfy, o Wa(z,) = {z1} =
To(z,ue,r) = if (z,uc) € CN(Z(r) x R™<) \I{d(z). Then, condition R1 of P_rop95|t|0n 5.1 holdg. Con-
o otherwise Sider the control Lyapunov functiov in (8) andas defined

. at the end of Example 3.2. The smoothness/off, and
and, for eact{z, ug) € R" xR™* andr € R>o, the function  ; the closedness of and D, and Lemma 5.3 imply that

V(g(z, uq)) — V(z) + as(|z|4) I'. andI'; are upper semicontinuous. For the particular case
Ta(z,uaq,r) = if (z,uq) € DN (Z(r) x R™a) when the functionSp. ande are convex Od_%i 0], f and
o0 otherwise. ¢ are convex functions ofi. and ug4, respectively. Then,

conditions R2 and R3 of Proposition 5.1 hold, from where

The following proposition establishes conditions guaransaciical asymptotic stabilizability with continuous éack
teeing that, for each > 0, there exists a continuous feedbackys 7/ with respect taA follows.

pair (k., kq) rendering the compact set
{zeR” : V(z)<r} (12) B. The global case

asymptotically stable. When such a feedback pair exists, we The result in the previous section guarantees a practical
say thatH is practically asymptotically stabilizable with Stabilizability property. For global stabilizability, &= con-
respect toA by continuous feedbaclour approach consists ditions are required to hold nearby the compact.detor

of restricting the flow and jump sets of the hybrid syst&m continuous time systems, such conditions c_:orrespond to the
by the setZ(r) for givenr > 0. Such a restriction is given SO-calledsmall control property2], [3], [6], which guarantee

by the hybrid systent; the existence of a continuous control selection at the rorigi
) . Given a compact setl and a control Lyapunov function
Hy { x+ = flzue)  (x,uc) € CN(Z(r) x Rmc) V satisfying Definition 3.1 withns € Ko, define, for each
et = g(@,ua) (2,u¢) €DN(ZI(r) xR d()1-3) (z,r) € R" x Rxg, the set-valued map
Proposition 5.1: Given a compact set C R" and a g _f S.(x,r) ifxzel(C)NI(r),r>0 14
hybrid systen® = (C, f, D, g) satisfying the hybrid basic *<(*") = " (" it o 11(C) 1 7(0) (14)
conditions, suppose there exists a control Lyapunov fancti = .
X s ) Sa(z,r) ifzell(D)NZI(r),r >0
V with ¢/ controls forH. Furthermore, suppose the following Sq(z,7) := { kaolz) if @€ T(D)NZ(0), (15)

conditions hold:
R1) The set-valued maps— V.(z) andz — ¥4(z) in (2
) | . plS e( ')h dl( ) in(2) 3Note that if eitherTI(C)) or TI(D) do not intersect the compact s
are Owerlsem'contmuous wit Convexlva U?S' then neither the existence of the functionso or x4 o, respectively, nor
R2) The functiond’. andT'; are upper semicontinuous.  lower semicontinuity ai- = 0 are needed.



where for each{z,r) € R™ x Ry,
Se(x,7r) = {ue € Uo(x)
Sa(z,r) = {uq € Vy(z)
and the functions:. o : R" — R and kg : R" — R™¢

induce forward invariance ofl, that is,
R4) Every maximal solutiom to

&= f(xa ’ic(x))

starting from.A satisfies|¢(¢,0)| 4 = 0 for all (¢,0) €
dom ¢.
R5) Every maximal solutiom to

(31
(4]
(5]

Te(z,ue,7) <0},
Fd(CC,’LLd,T) < 0 }

(16)
(17)

(6]
(7]

z € II(C) -

El

T =

g(z, ka(x)) x € II(D)

starting from.A satisfies|#(0, j)|.4 = 0 for all (0,7) €

dom ¢.
Under condition R2) of Proposition 5.1, the maps (14) and
(15) are lower semicontinuous for every> 0. To be able to [12]
make continuous selections, these maps are further require
to be lower semicontinuous for= 0, i.e., for everyz such [13]
that V(z) = 0. These conditions resemble those already
reported in [3] for continuous-time systems. [14]

Theorem 5.5: Under the conditions of Proposition 5.1, if
there exist continuous functions o : R” — R™< and xq.p :
R™ — R™a such that conditions R4) and R5) hold, and
R6) The set-valued mayl4) is lower semicontinuous at

eachz € II(C) N Z(0),
R7) The set-valued magl5) is lower semicontinuous at
eachz € II(D) N Z(0),
then # is globally asymptotically stabilizable with respect[is]
to A.

[10]

[11]

[15]
[16]

[17]

VI. CONCLUSIONS [19]

By exploiting recent results for robustness of hybrid
systems, conditions for the existence of control Lyapunot®!
functions and for asymptotic stabilizability of compacetss 54
were derived. The result on existence of a CLF relies on a
converse Lyapunov theorem and only mild regularity condi[-zz]
tions are needed. The stabilizability result imposes géiirt
conditions needed for the application of Michael's setatti
theorem so that a continuous feedback pair can be extractéd
from the CLF inequalities — these conditions parallel thosgy,
already reported in [3] and are the price to pay when ingjstin
on continuity. (25]
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