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Abstract— For a class of hybrid systems given in terms of
constrained differential and difference equations/inclusions, we
define control Lyapunov functions, and study their existence
when compact sets are asymptotically stable as well as the
stabilizability properties guaranteed when they exist. Recent
converse Lyapunov theorems for the class of hybrid systems
under study enable us to assert that asymptotic stabilizability
of a compact set implies the existence of a smooth control
Lyapunov function. When control Lyapunov functions are
available, conditions for the existence of continuous state-
feedback control laws, both providing practical and global
stabilizability properties, are provided.

I. I NTRODUCTION

Control Lyapunov functions have been instrumental in the
study of nonlinear control systems as they reveal the feasibil-
ity of control design through Lyapunov inequalities. In fact,
the existence of control Lyapunov functions is directly linked
to the problem of stabilizability of and controllability toa
set. Pioneering work by Artstein in [1] established that, for
continuous-time systems, the existence of a smooth control
Lyapunov function is equivalent to stabilizability of the ori-
gin with relaxed controls. This stabilizability result, known as
Artstein’s theorem, was made explicit in [2], where a general
formula for the construction of stabilizing state-feedback
laws was proposed. This construction is known asSontag’s
formula. Motivated by pointwise minimum norm control
laws, an optimal stabilizing state-feedback constructionwas
proposed in [3]. The importance of these constructions is
that, under boundedness conditions, they provide robustness
to input uncertainties [3], [4]. This has enabled the authors
in [5] to apply the domination redesign technique; see also
[6]. Further constructions of state-feedback laws were also
given in [7] when Lipschitz control Lyapunov functions are
available and in [8] for nonaffine systems with polynomial
structure.

Control Lyapunov functions provide a link between sta-
bilizability and asymptotic controllability to the originfor
nonlinear systems, which is the property that for every point
in the state space there exist a control signal steering the state
to zero. In [9], through the construction of a nonsmooth con-
trol Lyapunov function, the authors show that every asymp-
totically controllable to the origin continuous-time system
can be globally stabilized by a (discontinuous) feedback law;
see also [10]. Further results on existence and equivalences
between nonsmooth control Lyapunov functions and asymp-
totic controllability appeared in [7], [11], [12], [13]. Results
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about asymptotic controllability to general closed sets, rather
than the origin, were given in [14] for continuous-time
time-invariant systems, in [15] for continuous-time time-
varying systems, and in [16] for discrete-time systems. In
particular, the approach in [14], [16] consists of recasting the
continuous-time and discrete-time problem as a differential
and difference inclusion, respectively, and then applyinga
weak converse Lyapunov theorem [17]. Constructions of
control Lyapunov functions have been proposed for discrete-
time and hybrid systems in [18].

In this paper, we consider control Lyapunov functions for
hybrid systems given in terms of constrained differential and
difference inclusions with inputs modeled as

H

{
ẋ ∈ F (x, uc) (x, uc) ∈ C

x+ ∈ G(x, ud) (x, ud) ∈ D,
(1)

where(C,F,D,G) defines the data of the hybrid system; see
Section II-B for more details. We address two questions: 1)
existence of control Lyapunov functions when an asymptotic
stability property holds, and 2) existence of continuous state-
feedback asymptotically stabilizing laws when a control
Lyapunov function is available. To establish the former, we
exploit recent results on robustness of hybrid systems in [19]
(see also [20]), which, under mild regularity conditions of
the hybrid system data, enabled the generation of converse
Lyapunov theorems in [21], [22] for hybrid systems with
asymptotically stable compact sets. In Section IV, we show
that for the class of hybrid systems considered, asymptotic
stabilizability of a compact set implies the existence of a
control Lyapunov function with respect to the said compact
set.

The second result is in Section V and pertains to the ex-
istence of stabilizing state-feedback laws for hybrid systems
when a control Lyapunov function is available. Due to the
interest in hybrid systems of stabilizing subsets of the state
space (rather than simply the origin – see [20] for a discus-
sion), we determine under what conditions on the data of
the hybrid system there exist continuous state-feedback laws
asymptotically stabilizing a given compact set of the state
space. The derived conditions reveal key properties under
which such control laws exist and are expected to guide the
modeling and systematic design of feedback laws for hybrid
systems with inputs. The reason of insisting on continuous
feedback laws is that, when using such feedbacks to control
hybrid systems with regular data, results on robustness of
stability in [19] can be applied to the closed-loop system.
Inspired by [3] and [8], the results here are derived using a
selection theorem due to Michael [23] and the definition of a



regulation map that appropriately incorporate the continuous
and discrete dynamics. Our results also cover the discrete-
time case, for which, to the best of the author’s knowledge,
results on existence of continuous stabilizers do not seem
available in the literature.

II. PRELIMINARIES

A. Notation

R
n denotesn-dimensional Euclidean space,R denotes the

real numbers.R≥0 denotes the nonnegative real numbers,
i.e.,R≥0 = [0,∞). N denotes the natural numbers including
0, i.e., N = {0, 1, . . .}. B denotes the closed unit ball in
a Euclidean space. Given a setK, K denotes its closure.
Given a vectorx ∈ R

n, |x| denotes the Euclidean vector
norm. Given a setK ⊂ R

n and a pointx ∈ R
n, |x|K :=

infy∈K |x − y|. A function α : R≥0 → R≥0 is said to
belong to class-K∞ if it is continuous, zero at zero, strictly
increasing, and unbounded.

B. Hybrid Systems

A hybrid systemH is modeled as (1), whereRn is the
space for the statex, Uc ⊂ R

mc andUd ⊂ R
md are convex

sets defining the space for the inputsuc andud, respectively,
as well as the spaceU ⊂ R

m for the inputu = [u⊤
c u⊤

d ]
⊤, the

setC ⊂ R
n×Uc is theflow set, the functionF : Rn×R

mc ⇉

R
n is the flow map, the setD ⊂ R

n × Ud is the jump set,
andG : Rn × R

md ⇉ R
n is the jump map.

The data of the hybrid systemH is given by(C,F,D,G).

Definition 2.1 (hybrid time domain):A setE ⊂ R≥0×N

is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2... ≤
tJ . It is a hybrid time domain if for all(T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

Solutions to hybrid systemsH will be given in terms of
hybrid arcs and hybrid inputs. These are parameterized by
pairs(t, j), wheret is the ordinary-time component andj is
the discrete-time component that keeps track of the number
of jumps.

Definition 2.2 (hybrid arc and input):A function x :
domx → R

n is a hybrid arc ifdomx is a hybrid time
domain and, for eachj ∈ N, the functiont 7→ x(t, j) is
absolutely continuous on the interval{t : (t, j) ∈ domx }.
A function u : domu → U is a hybrid input ifdomu is
a hybrid time domain and, for eachj ∈ N, the function
t 7→ u(t, j) is Lebesgue measurable and locally essentially
bounded on the interval{t : (t, j) ∈ domu }.

With the definitions of hybrid time domain, and hybrid arc
and input in Definitions 2.1 and 2.2, respectively, we define
a concept of solution for hybrid systemsH.1

1For simplicity, we will drop the dependence on inputs on elements of
the data(C, F,D,G) that are input independent.

Definition 2.3 (solution):Given hybrid inputs uc :
domuc → Uc, ud : domud → Ud definingu and an initial
conditionξ, a hybrid arcφ : domφ → R

n defines asolution
pair (φ, u) to the hybrid systemH if the following conditions
hold:

(S0) (ξ, uc(0, 0)) ∈ C or (ξ, ud(0, 0)) ∈ D, and
domφ = domu;

(S1) For each j ∈ N such that Ij :=
{t : (t, j) ∈ dom(φ, u) } has nonempty interior
int(Ij), we have

(φ(t, j), uc(t, j)) ∈ C for all t ∈ int(Ij),

and, for almost allt ∈ Ij , we have

d

dt
φ(t, j) ∈ F (φ(t, j), uc(t, j));

(S2) For each(t, j) ∈ dom(φ, u) such that(t, j + 1) ∈
dom(φ, u), we have

(φ(t, j), ud(t, j)) ∈ D,

φ(t, j + 1) ∈ G(φ(t, j), ud(t, j)).

A solution pair (φ, u) to H is said to becompleteif
dom(φ, u) is unbounded,Zeno if it is complete but the
projection of dom(φ, u) onto R≥0 is bounded,discrete if
their domain is{0}×N, andmaximalif there does not exist
another pair(φ, u)′ such that(φ, u) is a truncation of(φ, u)′

to some proper subset ofdom(φ, u)′. For a solution pair
(φ, u) with φ(0, 0) = ξ, we denote byφ(t, j, ξ, u) its value
at (t, j) ∈ dom(φ, u).

The following definition introduces a concept of stability
for hybrid systems without inputs, e.g., the hybrid system
resulting from assigning its inputs via a state-feedback law.
It is stated for general compact sets of the state space.

Definition 2.4 (stability):For a hybrid systemH (without
inputs), a compact setA ⊂ R

n is said to be

• stable if for each ε > 0 there existsδ > 0 such that
each maximal solutionφ from ξ with |ξ|A ≤ δ satisfies
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• attractive if every maximal solutionφ is bounded and
if it is complete satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• asymptotically stableif stable and attractive.

C. Set-valued Analysis

A set-valued mapS : Rn
⇉ R

m is outer semicontinuous
atx ∈ R

n if for each sequence{xi}∞i=1 converging to a point
x ∈ R

n and each sequenceyi ∈ S(xi) converging to a point
y, it holds thaty ∈ S(x); see [24, Definition 5.4]. Given a set
X ⊂ R

n, it is outer semicontinuous relative toX if the set-
valued mapping fromRn to R

m defined byS(x) for x ∈ X

and∅ for x 6∈ X is outer semicontinuous at eachx ∈ X . It is
locally boundedif, for each compact setK ⊂ R

n there exists
a compact setK ′ ⊂ R

n such thatS(K) := ∪x∈KS(x) ⊂
K ′. For locally bounded set-valued maps with closed values,



outer semicontinuity coincides with what is usually called
upper semicontinuity. A set-valued mapS : R

n
⇉ R

m

is lower semicontinuous if for eachx ∈ R
n one has

that lim infxi→x S(xi) ⊃ S(x), wherelim infxi→x S(xi) =
{z : ∀xi → x, ∃zi → z s.t. zi ∈ S(xi) } is the inner limit
of S (see [24, Chapter 5.B]).

The following version of a selection theorem due to
Michael reported in [23] will be used to establish the
stabilizability result in Section V.

Theorem 2.5: Given a lower semicontinuous set-valued
map S : R

n
⇉ R

m with nonempty, convex, and closed
values, there exists a continuous selections : Rn → R

m.

III. C ONTROL LYAPUNOV FUNCTIONS

In this section, we define control Lyapunov functions
(CLFs) for hybrid systemsH. Given a setK ⊂ R

n × U⋆

with ⋆ being eitherc or d, define

Π(K) := {x : ∃u⋆ ∈ U⋆ s.t. (x, u⋆) ∈ K }

Ψ(x,K) := {u : (x, u) ∈ K } .

That is, given a setK, Π(K) denotes the “projection” ofK
onto R

n while, givenx, Ψ(x,K) denotes the set of values
u such that(x, u) ∈ K. Then, for eachx ∈ R

n, define the
set-valued mapsΨc : R

n
⇉ Uc, Ψd : Rn

⇉ Ud as

Ψc(x) := Ψ(x,C), Ψd(x) := Ψ(x,D). (2)

Definition 3.1 (control Lyapunov function):Given a
nonempty setA ⊂ R

n, a continuously differentiable
function V : Rn → R is a control Lyapunov function with
U controls forH if there existα1, α2, α3 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A)

∀x ∈ Π(C) ∪ Π(D) ∪G(D), (3)

inf
uc∈Ψc(x)

sup
ξ∈F (x,uc)

〈∇V (x), ξ〉 ≤ −α3(|x|A)

∀x ∈ Π(C), (4)

inf
ud∈Ψd(x)

sup
ξ∈G(x,ud)

V (ξ)− V (x) ≤ −α3(|x|A)

∀x ∈ Π(D). (5)

We illustrate the definition of control Lyapunov functions
for hybrid systems.

Example 3.2:Consider a point-mass pendulum impacting
on a controlled slanted surface. Denote the pendulum’s angle
(with respect to the vertical) byx1 and the pendulum’s
velocity (positive when the pendulum rotates in the clockwise
direction) byx2. Whenx1 ≥ µ with µ denoting the angle
of the surface, its continuous evolution is given by

ẋ1 = x2, ẋ2 = −a sinx1 − bx2 + τ,

where a > 0, b ≥ 0 capture the system constants (e.g.,
gravity, mass, length, and friction) andτ corresponds to
torque actuation at the pendulum’s end. For simplicity, we
assume thatx1 ∈ [−π

2 , π] andµ ∈ [−π
2 , 0]. Impacts between

the pendulum and the surface occur when

x1 = µ, x2 ≤ 0. (6)

At such events, the jump map takes the form

x+
1 = x1 + ρ(µ)x1, x+

2 = −e(µ)x2,

where the functionsρ ande are continuous and capture the
effect of pendulum compression and restitution at impacts,
respectively, as a function ofµ. The functionρ captures rapid
displacements of the pendulum at collisions whilee models
the effect of the angleµ on energy dissipation at impacts.
For a vertical surface (µ = 0), these functions are taken as
ρ(0) = 0 and e(0) = e0, wheree0 ∈ (0, 1) is the nominal
(no gravity effect) restitution coefficient. For slanted surfaces
(µ ∈ [−π

2 , 0)), when conditions (6) hold,ρ is chosen as
x1+ρ(µ)x1 > x1, ρ(µ) ∈ (−1, 0), so that, after the impacts,
the pendulum is pushed away from the contact condition.
The functione is chosen as a nondecreasing function ofµ

satisfyinge0 ≤ e(µ) < 1 at such angles so that, due to the
effect of the gravity force at impacts, less energy is dissipated
as |µ| increases.

The model above can be captured by the hybrid system
H given by

ẋ1 = x2

ẋ2 = −a sinx1 − bx2 + uc,1

}
=: f(x, uc)

(x, uc) ∈ C,

x+
1 = x1 + ρ(ud)x1

x+
2 = −e(ud)x2

}
=: g(x, ud)

(x, ud) ∈ D,

(7)

whereuc = [uc,1 uc,2]
⊤ = [τ µ]⊤ ∈ R × [−π

2 , 0] =: Uc,
ud = µ ∈ [−π

2 , 0] =: Ud,

C :=
{
(x, uc) ∈ R

2 × Uc : x1 ≥ uc,2

}
,

D :=
{
(x, ud) ∈ R

2 × Ud : x1 = ud, x2 ≤ 0
}
.

Note that the definitions ofC andD impose state constraints
on the inputs.

Let A = {(0, 0)} and consider the candidate control
Lyapunov function withU controls forH given by

V (x) = x⊤Px, P =

[
2 1
1 1

]
. (8)

During flows, we have that

〈∇V (x), f(x, uc)〉 = 4x1x2 + 2x2
2

+2(−a sinx1 − bx2 + uc,1)(x2 + x1)

for all (x, uc) ∈ C. It follows that (4) is satisfied withα3

defined asα3(s) := s2 for all s ≥ 0. In fact, note that, for
eachx ∈ R

2,

Ψc(x) =

{
R× [−π

2 ,min {x1, 0}] x1 ∈ [−π
2 , π]

∅ x1 6∈ [−π
2 , π].

and thatΠ(C) = [−π
2 , π]× R. Then

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 = −x⊤x

for all x ∈ Π(C) such thatx1 + x2 = 0, while whenx1 +



x2 6= 0, we have

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 = −∞.

Note that, for eachx ∈ R
2, we have

Ψd(x) =

{
{x1} x1 ∈ [−π

2 , 0], x2 ≤ 0
∅ otherwise,

and thatΠ(D) = [−π
2 , 0] × (−∞, 0]. Then, during jumps,

we have

inf
ud∈Ψd(x)

V (g(x, ud))− V (x) = V (g(x, x1))− V (x)

≤ −min{2(1− ρ2(x1)), 1 − e2(x1)}x
⊤x

for all x ∈ Π(D). Then, condition (5) is satisfied with
α3 defined asα3(s) := λs2 for all s ≥ 0, λ :=
minx1∈[−π

2
,0]{2(1−ρ2(x1)), 1−e2(x1)}. It follows that both

(4) and (5) hold with this choice ofα3.

IV. STABILIZABILITY IMPLIES EXISTENCE OF CLF

For continuous-time nonlinear systems, standard converse
Lyapunov theorems, like those in [25], [26], can be used to
establish that asymptotic stabilizability of the origin implies
the existence of a control Lyapunov function. A similar
result holds for hybrid systemsH satisfying the regularity
conditions given in Definition 4.1 below, for which the
converse Lyapunov theorems in [21], [22] are applicable. We
consider hybrid systemsH under the effect of the feedback
laws

κc : R
n → Uc, κd : Rn → Ud, (9)

which lead to the closed-loop hybrid system

H̃

{
ẋ ∈ F̃ (x) := F (x, κc(x)) x ∈ C̃

x+ ∈ G̃(x) := G(x, κd(x)) x ∈ D̃
(10)

with

C̃ := {x ∈ R
n : (x, κc(x)) ∈ C } ,

D̃ := {x ∈ R
n : (x, κd(x)) ∈ D } .

The required regularity conditions on the data of the hybrid
systems are stated next.

Definition 4.1 (Hybrid Basic Conditions):A hybrid sys-
tem H̃ is said to satisfy thehybrid basic conditionsif its
data(C̃, F̃ , D̃, G̃) is such that

(A1) C̃ andD̃ are closed sets.
(A2) F̃ : Rn

⇉ R
n is outer semicontinuous and locally

bounded, and̃F (x) is nonempty and convex for allx ∈
C̃.

(A3) G̃ : Rn
⇉ R

n is outer semicontinuous and locally
bounded, and̃G(x) is a nonempty subset ofRn for all
x ∈ D̃.

These conditions assure that (closed) hybrid systems are
well posed in the sense that they inherit several good
structural properties of their solution sets. These include
sequential compactness of the solution set, closedness of
perturbed and unperturbed solutions, etc. We refer the reader

to [20], [19] (see also [27]) and [28] for details on and
consequences of these conditions.

The following lemma is a straightforward consequence of
continuity of the feedback pair(κc, κd) and the regularity
properties of the hybrid system.

Lemma 4.2: Supposeκc andκd are continuous andH =
(C,F,D,G) is such that

(A1’) C andD are closed subsets ofRn×Uc andRn×
Ud, respectively.

(A2’) F : R
n × R

mc ⇉ R
n is outer semicontinuous

relative toC and locally bounded, and for all(x, uc) ∈
C, F (x, uc) is nonempty and convex.

(A3’) G : R
n × R

md ⇉ R
n is outer semicontinuous

relative toD and locally bounded, and for all(x, ud) ∈
D, G(x, ud) is nonempty.

ThenH̃ satisfies the hybrid basic conditions.

The next result establishes that the asymptotic stabiliz-
ability of a compact set implies the existence of a control
Lyapunov function.

Theorem 4.3: Given a compact setA ⊂ R
n and a hybrid

systemH, suppose there exist functionsκc : R
n → Uc

and κd : Rn → Ud such thatH̃ satisfies the hybrid basic
conditions2 and that rendersA asymptotically stable. Then,
there exists a smooth control Lyapunov functionV with U
controls forH.

Example 4.4:The hybrid systemH̃ resulting from using
zero controls in (7) is such that the hybrid basic conditions
hold and thatA = {(0, 0)} is asymptotically stable (glob-
ally). This property can be established using the function
defined as

Ṽ (x) := a(1− cosx1) +
1

2
x2
2 (11)

and the invariance principle [29, Theorem 4.3]. However, as
a difference toV in (8), note that since〈∇Ṽ (x), f(x, uc)〉 =
−bx2

2 + x2uc,1, Ṽ is not a CLF for the hybrid system (7)
with respect toA.

V. EXISTENCE OFCLF IMPLIES STABILIZABILITY

When a CLF is available, the problem of existence of a
state-feedback law hinges upon the possibility of making a
selection(κc, κd) from the CLF inequalities (4) and (5). It
amounts to determine(κc, κd) such that, for somẽα3 ∈ K∞,
we have

sup
ξ∈F (x,κc(x))

〈∇V (x), ξ〉 ≤ −α̃3(|x|A)

∀(x, κc(x)) ∈ C,

sup
ξ∈G(x,κd(x))

V (ξ)− V (x) ≤ −α̃3(|x|A)

∀(x, κd(x)) ∈ D.

When such a state-feedback pair exists, we say that the
systemH is stabilizable with respect toA.

2Note that, in particular, due to Lemma 4.2,̃H satisfies the hybrid basic
conditions when(κc, κd) are continuous.



Below, we provide conditions under which stabilizing
feedback laws that are continuous exist for hybrid systems.
For simplicity, we consider hybrid systems with single-
valued flow and jump maps. Building from ideas in [3] and
[8] for continuous-time systems, our approach consists of
making continuous selections from a “regulation map.” This
differs from the work in [2], where explicit constructions of a
stabilizing state feedback laws for continuous-time systems
are given. Here, we first establish conditions under which
a selection of a feedback pair(κc, κd) is possible away
from the compact set of interest. Hence, no special property
nearby the compact set is needed. After that, we show that
under furthersmall controlconditions nearbyA, a (globally)
continuous state-feedback pair exists. When specialized to
C = ∅ andD = R

n, the results below cover the discrete-time
case, for which results on existence of continuous stabilizers
do not seem available in the literature.

A. Practical asymptotic stability

Given a compact setA and a control Lyapunov function
V satisfying Definition 3.1 withα3 ∈ K∞, define, for each
r ∈ R≥0, the set

I(r) := {x ∈ R
n : V (x) ≥ r } .

Moreover, for each(x, uc) ∈ R
n×R

mc andr ∈ R≥0, define
the function

Γc(x, uc, r) :=





〈∇V (x), f(x, uc)〉+ α3(|x|A)
if (x, uc) ∈ C ∩ (I(r) × R

mc)
−∞ otherwise

and, for each(x, ud) ∈ R
n×R

md andr ∈ R≥0, the function

Γd(x, ud, r) :=





V (g(x, ud))− V (x) + α3(|x|A)
if (x, ud) ∈ D ∩ (I(r) × R

md)
−∞ otherwise.

The following proposition establishes conditions guaran-
teeing that, for eachr > 0, there exists a continuous feedback
pair (κc, κd) rendering the compact set

{x ∈ R
n : V (x) ≤ r } (12)

asymptotically stable. When such a feedback pair exists, we
say thatH is practically asymptotically stabilizable with
respect toA by continuous feedback. Our approach consists
of restricting the flow and jump sets of the hybrid systemH
by the setI(r) for given r > 0. Such a restriction is given
by the hybrid systemHI

HI

{
ẋ = f(x, uc) (x, uc) ∈ C ∩ (I(r) × R

mc)
x+ = g(x, ud) (x, ud) ∈ D ∩ (I(r) × R

md).
(13)

Proposition 5.1: Given a compact setA ⊂ R
n and a

hybrid systemH = (C, f,D, g) satisfying the hybrid basic
conditions, suppose there exists a control Lyapunov function
V with U controls forH. Furthermore, suppose the following
conditions hold:
R1) The set-valued mapsx 7→ Ψc(x) andx 7→ Ψd(x) in (2)

are lower semicontinuous with convex values.
R2) The functionsΓc andΓd are upper semicontinuous.

R3) For everyr > 0, we have that, for everyx ∈ Π(C) ∩
I(r), the functionuc 7→ Γc(x, uc, r) is convex onΨc(x)
and that, for everyx ∈ Π(D)∩I(r), the functionud 7→
Γc(x, ud, r) is convex onΨd(x).

Then,H is practically asymptotically stabilizable with re-
spect toA by continuous feedback.

Remark 5.2:Condition R2) holds when the top functions
in the piecewise definitions ofΓc and Γd are upper semi-
continuous and the setsC andD are closed. This follows
from the following result.

Lemma 5.3: (usc of piecewise function) Given an upper
semicontinuous functionf1 : R

n 7→ R and a closed set
K ⊂ R

n, the function defined for eachx ∈ R
n as

f2(x) :=

{
f1(x) x ∈ K

−∞ otherwise

is upper semicontinuous.

△

Example 5.4:The data of the hybrid system (7) satis-
fies the hybrid basic conditions. The set-valued mapsΨc

and Ψd computed in Example 3.2 have convex values.
Moreover, they are lower semicontinuous at everyx. For
eachx1 ∈ [−π

2 , π], we havelim infxi→x Ψc(xi) = R ×
[−π

2 ,min {x1, 0}] = Ψc(x) and at everyx with x1 ∈
[−π

2 , 0], x2 ≤ 0, we havelim infxi→x Ψd(xi) = {x1} =
Ψd(x). Then, condition R1 of Proposition 5.1 holds. Con-
sider the control Lyapunov functionV in (8) andα3 defined
at the end of Example 3.2. The smoothness ofV , f , and
g, the closedness ofC andD, and Lemma 5.3 imply that
Γc andΓd are upper semicontinuous. For the particular case
when the functionsρ and e are convex on[−π

2 , 0], f and
g are convex functions ofuc and ud, respectively. Then,
conditions R2 and R3 of Proposition 5.1 hold, from where
practical asymptotic stabilizability with continuous feedback
of H with respect toA follows.

B. The global case

The result in the previous section guarantees a practical
stabilizability property. For global stabilizability, extra con-
ditions are required to hold nearby the compact setA. For
continuous time systems, such conditions correspond to the
so-calledsmall control property[2], [3], [6], which guarantee
the existence of a continuous control selection at the origin.

Given a compact setA and a control Lyapunov function
V satisfying Definition 3.1 withα3 ∈ K∞, define, for each
(x, r) ∈ R

n × R≥0, the set-valued map3

Ŝc(x, r) :=

{
S̃c(x, r) if x ∈ Π(C) ∩ I(r), r > 0
κc,0(x) if x ∈ Π(C) ∩ I(0)

(14)

Ŝd(x, r) :=

{
S̃d(x, r) if x ∈ Π(D) ∩ I(r), r > 0
κd,0(x) if x ∈ Π(D) ∩ I(0),

(15)

3Note that if eitherΠ(C) or Π(D) do not intersect the compact setA,
then neither the existence of the functionsκc,0 or κd,0, respectively, nor
lower semicontinuity atr = 0 are needed.



where for each(x, r) ∈ R
n × R>0,

S̃c(x, r) := {uc ∈ Ψc(x) : Γc(x, uc, r) < 0 } , (16)

S̃d(x, r) := {ud ∈ Ψd(x) : Γd(x, ud, r) < 0 } . (17)

and the functionsκc,0 : Rn → R
mc andκd,0 : Rn → R

md

induce forward invariance ofA, that is,

R4) Every maximal solutionφ to

ẋ = f(x, κc(x)) x ∈ Π(C)

starting fromA satisfies|φ(t, 0)|A = 0 for all (t, 0) ∈
domφ.

R5) Every maximal solutionφ to

x+ = g(x, κd(x)) x ∈ Π(D)

starting fromA satisfies|φ(0, j)|A = 0 for all (0, j) ∈
domφ.

Under condition R2) of Proposition 5.1, the maps (14) and
(15) are lower semicontinuous for everyr > 0. To be able to
make continuous selections, these maps are further required
to be lower semicontinuous forr = 0, i.e., for everyx such
that V (x) = 0. These conditions resemble those already
reported in [3] for continuous-time systems.

Theorem 5.5: Under the conditions of Proposition 5.1, if
there exist continuous functionsκc,0 : R

n → R
mc andκd,0 :

R
n → R

md such that conditions R4) and R5) hold, and

R6) The set-valued map(14) is lower semicontinuous at
eachx ∈ Π(C) ∩ I(0),

R7) The set-valued map(15) is lower semicontinuous at
eachx ∈ Π(D) ∩ I(0),

then H is globally asymptotically stabilizable with respect
to A.

VI. CONCLUSIONS

By exploiting recent results for robustness of hybrid
systems, conditions for the existence of control Lyapunov
functions and for asymptotic stabilizability of compacts sets
were derived. The result on existence of a CLF relies on a
converse Lyapunov theorem and only mild regularity condi-
tions are needed. The stabilizability result imposes stringent
conditions needed for the application of Michael’s selection
theorem so that a continuous feedback pair can be extracted
from the CLF inequalities – these conditions parallel those
already reported in [3] and are the price to pay when insisting
on continuity.
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