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Abstract—We study how convergence of an observer whose contraction property of the flow generated by the observer.
state lives in a copy of the given system’s space can be estabéd  Study of contracting flows has a very long history and has

using a Riemannian metric. We show that the existence of an been proposed independently by several authors; see, e.g
observer guaranteeing the property that a Riemannian distace ’ e

between system and observer solutions is nonincreasing irigs [17], [9], [7]. [29], [18] (see IIIB]_ fora h_lstorlcal _dlscum'l).
that the Lie derivative of the Riemannian metric along the sgtem [N the context of observers, Riemannian metrics have been

vector field is conditionally negative. Moreover, we estaligh that  used in [1], [3], [4], for instance, with the objective of
the existence of this metric is related to the observabilityof guaranteeing that the Riemannian distance between thensyst
the system’s linearization along its solutions. Moreover,f the and observer solutions decreases to zero. In these papers

observer has an infinite gain margin then the level sets of the th th id t h d ics foll f
output function are geodesically convex. Conversely, we @blish € authors consider systems whose dynamics Toflow irom a

that, if a complete Riemannian metric has a Lie derivative abng Principle of least action involving a Riemannian metricclisu
the system vector field that is conditionally negative and isuch as Lagrangian systems with a Lagrangian that is quadratic

that the output function has a monotonicity property, then there  jn the generalized velocities. The observer design therein
exists an observer with an infinite gain margin. exploits some properties of this metric and local convecgen
is established via some ad-hoc modification of this metric or
|. INTRODUCTION choice of coordinates.

For a nonlinear system of the form
. This paper advocates that, since the observability of the
& = flx), y = h@) @) system linearized along each of its solutions may vary sig-
with € R™ being the system’s state and € R™ the hificantly from one solution to another, the native Euclidea
measured system’s output, we study the problem of obtainiigometry of the state space may not be appropriate to study
an estimates: of the stater by means of the dynamical systemconvergence properties of an observer. Instead of ingistin

called observer using a Riemannian metric associated to the system’s dynam-
. R ics, we propose to study Riemannian metrics incorporating
X = Fly, &= Hy) () information on the system’s dynamics and observability. In

with y € R” being the observers state and € R” the Section1I-B, we show that if for a given Riemannian metric
observer's output, used as the system’s state estimateoalig f & Observer whose state lives in a copy of the given

on the case where the statef the observer evolves in a copySyStem's state space and makes the Riemannian distangg alon
of the space of the system’s statei.e., they both belong to SyStem and observer solutions nonincreasing then, neitgssa
R™, with, moreover, an output functiofl such thati = . the Lie derivative of the metric along the system solutions

We consider the following observer design problem: satisfies an inequality involving the output function. $@met
[M=C] shows that if the same conditions hold and the observer

has an infinite gain margin then, necessarily, the level sets
of the output function are geodesically convex. In Section
i = f(x), & = F(&h()), (3) [EDJwe establish that if a Riemannian metric with a Lie
derivative satisfying the inequality mentioned above is, i
some coordinates, uniformly bounded away from zero and
A= {(z,2) eR" xR" : z =3} (4) upper bounded then the system’s linearization along each of
) ) its solution must be detectable. With the insight provided
is globally asymptotically stable (see the text beldW (8)hy these necessary conditions, Secfioh Il proposes a set of
Many contributions from different viewpoints have beerufficient conditions guaranteeing the existence of anrubse
made to address problen)( While a summary of the very whose flow leads to a decreasing Riemannian distance between
rich literature on the topic is out of the scope of this pafier, system’s state and estimated state.
is important to point out the interest of exploiting a potsib

(¥) Given functionsf and h, design a function¥" such that
for the system

the zero estimation error set
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and forward completeness of the syst@ms are suitable for studying asymptotic stability of the zerme
This paper is devoted to analysis. In a companion papeet A in {@). We start by recalling some basic facts on

we focus on observer design, namely, on the construction Riemannian distance.

a Riemannian metric satisfying the desired inequality en it Let P : R” — R™*™ be aC® symmetric covariant two-

Lie derivative and making the level sets of the output fumtti tensor (see, e.g.[ [23, Page 17]).dfand z are two sets

possibly totally geodesic. of coordinates related byt = ¢(z) with ¢ being a
Example 1.1 (Motivational example)Ve illustrate our re- diffeomorphism, then” expressed in: coordinates as’(z)
sults in the following academic system and inz coordinates asP(z) are related by (see, e.gl, [23,
Example 11.2
T1 = T2 \/14—17%’ To = _LQI; Yy = 21 - (5) b ]) ) o
VI ap P) = @) PE) (). ©
For this system[{5), by followind [15], we get the observer oz Oz
. _ _ . _ If P takes positive definite values then the length &f'apath
= 2= (B—y), &2 = —(I—y), ~ between points; andz, is defined as
T = 21, 22 = S — © 52 %2 fdy dry
Vity o) = | J () P(y(s)Fh(s)ds,  (10)

This observer is in the fornii2), but cannot be written in the
form of (@) with the (iy,4») coordinates since this would Where

involve z». Nevertheless, with the Lyapunov function v(s1) = =1, V(s2) = w2 .
V(g a) = (81—a1)2 — (&1 —21) (F2 — 22) /1 + 22 With such a definition,” is also called a Riemannian met-
+ (2 _x2)2 (1 +x§) ric. The Riemannian distancé(x1,x2) is the minimum of

@) L(w)r2 among all possible piecewis@! pathsy between
we obtain for the system-observer interconnectidn((b)-(6) ., andu,. To relate the Riemannian distance with geodesics,
m = V(i z) . we invoke t_he Hopf-Rinow Theorgm (§ee, e.n.l[23, Tr_]eorem
[1.1.1]), which asserts the following: if every geodesicnca
be maximally extended t& then the minimum ofL(y)r2 is
(&1 — 1) + (22 — 22)* <V(#,1) actually given by the length of a (maybe nonunique) Sleodesic
2 - ’ which is called aminimal geodesicfor more details, see, e.g.,

SinceV satisfies, for all(z, 2) € R? x R?,

< 3 [(&1 — 21)? + (39 — xz)z] (1+ I%) ’ 5] a.nd [E]. In th_e appendix we show t.hat, in our context, this
2 maximal extension property holds &# if there exist globally
this implies that, for alk > 0 and all (z, Z) € R? x R?, defined coordinates in whick satisfies
| X (z,t) — X((2,2),t)]> < 3exp(—t)(1 4+ 22)|z — #* , (8) 0 < P(z) YzeR", limr’p(r) = +oo,  (11)

where(X (z,t), X ((Z,x),t)) is the solution issued from pointswhere, for any positive real numbey
(z,%) for the system-observer interconnectid (5)-(6). This .
establishes that the set is globally asymptotically stable p(r) = | Sr Amin (P(2))

(nonuniformly in2 but uniformly in 2z — ). . . . .
As it will be shown in SectiohTI=A, the key point here is thaWlth Amin (P(x)) der_lotlng the minimum _e|genva!ue d?f(:v).
. . : . N n this case, the Riemannian metric given Byis said to
V is the square of a Riemannian distance betweandz that ! = .
. . . : . be complete and, denoting by* a minimal (normallzeﬁj
is associated to ar-dependent Riemannian metric. Moreover codesic betweern “(0) and i “(3), with § > 0
as justified in Sectiof 1I-B, no matter what the observert|s,(1fJ 7 T =78 5=

is impossible to find a standard quadratic form expressedtpne Riemannian distana§(z, z) is

the given coordinates (i.e., a Riemannian distance agsdcia . L .
. . . ; ) : . d(z,z) = L(y*)| = §. (12)
with a constant Riemannian metric) that is nonincreasiogal 0
solutions. This is a motivation for the analysis of obsesver gxample 2.1:As an illustration, consider the symmet-
using z-dependent Riemannian metrics. U ric covariant two-tensor expressed im coordinates as
2,2 1 2
e A L A
II. NECESSARY CONDITIONS FOR HAVING ARIEMANNIAN P(z) = Vita? 1 . Since
DISTANCE BETWEEN SYSTEM AND OBSERVER SOLUTIONS _ /14t 4 2129 14 22
2 1
TO DECREASE condition [I1) holds withp(r) = L for all » > 0, it
A. Riemannian Distance is a complete Riemannian metric. Moreover, usifg (9), it

As discussed in Sectiofl I, the notions of nonexpank €asy to check that in the coordinates = ¢(z) =
ing/contracting flow and geodesically monotone vector §eld

2A normalized geodesig* satisfies %(s)TP(y*(s)) ddi*(s) =1 for
1A system is said to béorward completef each of its solutions exists on all s in its domain of definition. In the ?ollowing, the adjectivedrmalized”
[0, 4+00). is omitted.



1 - B. Necessity of geodesic monotonicity in the directiongeanh
et its expression isP(z) = to the level sets of the output function
xor/1+ x% ’ _l 1 : p
= . . o 2

S'”Ce}j(z) Is constant, any mlgnma! ge_od?gﬁj takes the  gjnce the Riemannian distance betweeand x is locally
form 3*(s) = & + sv with v € R* satisfyings ' P(Z)v = 1. | ipschitz, its upper right-hand Dini derivative is given by

Then, a minimal geodesic in: coordinates is given by

v*(s) = ¢~ (z + sv). Accordingly, the Riemannian distance D+d

N =

A X (&, 2),t), X (x,t)) — d(Z, x)

(Z,2) = limsup

betweent andz is t—04 t
P - ) . (15)
Io \/dJs ()T P(y*(s )dJs (s)ds = d(&,z) = d(@,Z)  for each(#,r) € R" x R™. Itis nonpositive when the function
_ foé \/ddz* (S)Tp(ﬁ*(s))djs* (s) ds t— d(X((2,2),t), X(x,t)) is nonincreasing.
. = T D/o\/Z = Theorem 2.3: Assume there exists a compléteRieman-
= \/(:v—x)TP(:C)(:v—x) . .
_ ___ _ nian metric P such that, for eachiz, z) € R" x R",
= V((&) — é(x)) T P(z)(6(2) - ¢(x)) .
= /V(%,2), Dd(z,z) <0 (16)
whereV is given in [T) andi = ¢(%). g holds along any solution of3), then
v ' LyP(z)v < 0 V(z,v) € R x R"
17
Having a Riemannian distance, we say that a system such that ?(m)v =0. (A7)
T

& = f(x), with solutions X (z,¢), generates a nonexpanding ) ) _
(respectively, contracting) flow if, for any paitry,zs) in Furthermore, if there exists afunctuz_m: R™xRR™ —>.[0,—|—oo)
R" x R", the functiont — d(X(x1,t), X (2s,t)) is non- Such that(z,z) = d(#,z)w(#, ) is a C* function on a
increasing (respectively, strictly decreasing); see,, di@]. NneighborhoodV,4 of A with the property that, for some> 0,
Also, the vector fieldf is said to be geodesically monotonic 9% (dw) .

(respectively, strictly monotonic) if we have 952 (&) 2eP(x)  VzeR (18)

L¢P(x) <0 (respectively < 0) Vz € R, (13) and, for each(z,z) € N4,

where £ ;P is the Lie derivative of the symmetric covariant Dtd(2,2) < —w(2,7) (19)

two-tensorP, whose expression im coordinates is . . .
P holds along any solution of3), then there exists a continuous

v LiP(z)v functionp : R™ — R satisfying
. I+ 72 (x TPz +rf(z I+ 72 ()
oy [ BN P @ G @] Ok 0 e
r—0 T ox ox 2 20
v P(z)v (20)
T Proof: To simplify the notation, lettV : R" x R" —
o [ + T of [0, +00) be the function defined as the square of the Rieman-
~ or (” P(z) “) f(x) + 20 P(x) <%(I) “) nian distance, i.eV (2, z) = d(2,z)?, and notice thBt

(14)
for all v € R™; see[[5, Exercise V.2.8]_[23, Page 17], br][16].
We have the following result (see, for instanc¢e,| [12][or [d] f
a proof).

DMV (i, 7) = DVd*(2,x) < 2d(2,2) DVd(z,z). (21)

Pick an arbitrary point: in R™. From [14, Theorem 3.6],
there exists a (normal coordinate) neighborhdéddsuch that

R !
Lemma 2.2: A geodesically monotonic (respectively, igtrictV is % on N, x N, From [21) and[(I6) (respectively, from

monotonic) vector field generates a nonexpanding (respé]@) and [(1B), or(Ne x Vi) NN4), we have

tively, contracting) flow. DTV (&,2) <0 (respectively < —2d(#, z)w(z, x) ).

If inequality (I3) holds for the observer vector field then Let r, be a strictly real number such that, for anyin S”,

t — d(X((#1,),t), X ((Z2,2),t)) is (respectively, strictly) the unit sphere, and for all € [0,7.), (Z + rv,z) are the

decreasing; however, this property is more than what ise@edoordinates of a point iV, x M) NN 4. We havel

for the zero estimation error set to be (respectively, asymp- 92V 92V

totically) stable. Actually, it is sufficient to have an obser W(I’x) = W(x’x) = 2P(x) (22)

giving rise to a (respectively, strictly) decreasing fuoot r t

t — d(X((#,x),t), X (z,t)) for all pairs (i, z) in R™ x R™.

That is, we do not insist on having a Riemannian distance

between any two arbitrary observer solutions to decreasge, b 3Sincelimsup(a b) < limsup a - lim sup b.

only to have a decreasing Riemannian distance between an“)}'his follows from the fact t_hatafirst order appro>_<imat_iontkné qeodesic
. . . L i57(s) = x45v+0z,0(s?) with v P(z)v = 1, which yieldsV (¢, z) =

observer solution and its corresponding system solutidolw ;. ;)2 — 52 — (7—2)T P(x) (—2) + Ou..(5%), where the subindex

is a particular observer solution). in O, indicates dependence dm, v).



an(ﬁ
V(z,z) = ,a—V(:C,:C) = g—‘{(x,x) =0
o2 o2v oy T oy
9z B0+ 5aa, (B 2) = Gaz(@2) + Fon (@ e) =

and, for allr € [0,7*) andv € S™,

v
%(éx +rv,x) fx)

+
0
( respectively —2d(x+rv,x)w(z +1rv,2) ).

With the definition of d, this implies that.A is forward
invariant, i.e., the solutions td](3) with = 2 as initial
condition remain inA for all ¢t > 0. This implies

F(xz, h(x)) = f(z) .
By differentiating this identity with respect to, we get

DTV (z +rv,z)

5% (x 4+ rv,z) F(x + rv, h(x))

<
<

(24)

G h@) + S @he)GHe) = ). @)
Forr in (0,r.), we obtain
1 oV oV
5 —(z+rv,2) + 5% (x +rv,x)| fla)+

r r
. 2
(respectively< —T—Qd(:v +rv,x)w(z + v, x)).

To compute the limit forr approaching) note that we have
the following Taylor expansion around:, =)

V(z+rv,x) V(z,z) + T, x)v

3\/(
i
2

2
—|—T— T V(:v )V + Oy o (r

2" 92 %)

ov
9%

W o &V
oz T 9z

F(z+rv,h(z)) — f(z) _ F(z,h(x)) —
T T
—i—glf‘(x h(x))v + Ogu(r).
DefineW (z) = V(x + rv,2) and note that
ow oV
o =5
Wwith (22) and [(2B), we get

—(z +rv,x)

= (z,2) v+ Oy (1?)

f(z)

(x +rv,z) + g—‘;(x—l—rv,x).

2 vTP(:zr) v+ Omyv(rg) ,

LoV 2 ’UTP(,T) + Oy u(r),

r 0%

(x 4+ rv,z)

5This follows froma = & being a minimizer ofi’ for all x.

and with [24)
F(z +rv,h(z) - f(x) = OF
This yields
1 [oV
}1_% 7‘2 %(I —|—T1},I) + _(I +Tvaf) f(I)
1 oW dv'P
=t L0V ) = 2 ) @ |
Also, with (24), we get
oV
G B 4o, h(x) = £ (@)
L - ; (28)
= 20" P(x) g—i(x,h(x)) v.
Similarly, we can obtain
2 0?(dw)
lim —d(z +rv,z)w(r +rv,z) = v ——(x,x)v .
i 012 (29)

Then, combining[(27)[(28), anf{29), we have that inequal-
ity @8) gives

-
20 )10 + 2P 2 o < 0
(respectively < —v " F(dw) (z,x)v VYvesS")
p y— a:i.2 3 3
or, equivalently, using(25) anf {114),
oF oh
v Ly P(x)v — ZUTP(x)a—y(:zr, h(a:))%(:c)v < 0 (30)
T0*(dw)

(respectively < —v

(z,z)v Yo e S"™). (31)

012
It follows that [30) already implies[ {17). Also, wheh {19)
holds, by completing squares and using Cauchy-Schwarz
inequality, we get successively, for any functipn: R" —

(0, +00) and all (z,v) in R™ x S,

20" P(a) G (o () s (a)o

2

oh
5g 2V

oF

(?_y(%h(x))

< plz)v’ %(@T o

9 0.2 P) 3 01|
p(x)

Equation [(2D) follows from[{118) by picking as any contin-
uous function satisfying

< plx)

2

+ v P(x)

b
p(x)
(x)v

+ v P(x)v

2 |0OF
2|5 ) PO G @) < o)

for all x € R".

When compared with[{13), which saysis (respectively,
strictly) geodesically monotonic, the necessary condi{iog)
(respectively,[(200)) says only that the vector figlés geodesi-
cally (respectively, strictly) monotonic in the directon




satisfying %(z)v = 0, i.e., in the directions tangent to the The necessary conditions in Theoréml]2.3 can be used to
level sets of the output functioh. characterize the family of Riemannian metrics possiblgileg
to a Riemannian distance that is nonincreasing (via (17)) or
Birictly decreasing (via[{20)) along solutions. For ins@n
condition [1T) can be used to justify that, for systéin (5¢r¢h

Remark 2.4:Theorem 2B can be interpreted as an exte
sion of [20, Proposition 3]. In this reference(&° function
V" depending OT“V_O’I - h called astate_-_lndepende_:nt €Ol is no such a Riemannian metric that is constant.
Lyapunov functionis obtained from stability properties of. L .

. . . Example 2.5 (Motivational example — continueépr the
In such a case, the conditions [n]23) yield a constant matrfg(mil of constant Riemannian metrics of the forf —
P. Then, Theorenh 213 implies that, for all € R", P is a 4 o

semidefinite positive matrix that satisfies, for ale R, 5 Z .p,r >0 ,pr > ¢* for @), for eachv € R? such

of 0 T Oh, .+ Oh € that

P —(x)"P < () =(z) — =P.
It follows that, for allz € R™ andc € [0, 5], we have the . * °
implication we obtain
af af
oh 0 Tp~J TXJ) T
%(x)vzo = v'P a—i(m)v < —cv'Pv. (32) Y Pax(x)v tv («)x(x) Py
. : 1+ 22

Whenc = 0, this property corresponds to the one established _ 2 TP xl;? o
in [20, Proposition 3]. It is worth pointing out that a limiian 1+ 22 7 2o 2719
of the work in [20] is that the results are extrinsic, i.egyh ) ) t 2
depend on the coordinates since a quadratic form may not be _ va(2q (1 +x7) — 47z 29) 7
quadratic after a nonlinear change of coordinates. On ther ot V1+ad

hand, the necessary conditions in Theofem 2.3 are intrinsjghich cannot be nonpositive for eagh On the other hand, it
In fact, let¢ be a diffeomorphism of™ leading to the new ¢4 he shown that the family of Riemannian metrics satigfyin

coordinates (I7) can be described as
T = 7 = T . 33 T1X2 s i
o fli ‘bEI) ) T o(2) (33) Pla) = 1 N |:p(x) q(x):| 11112 0 _

Let h, d,w, p, f, andP beh, d, w, p, f, and P, respectively, 1+22| [4(@) 7(@)] | Axs Vv 14z
in the new coordinates. We havg (9) and (34)

) 5k o 90 with (21, 22) = (21,22 /1 + 1) and 7 (z) = a(z)?, q(z) =
h(z) = h(z) , 8_x(x) = %(:E)%(:C), —b(z)? — %aa—g,crl(fc)ig, p(z) = c(z)? + qf((:;)) , wherea, b, ¢ :

B 9o R? — R are sufficiently smooth functions with and ¢ not
f(@) = %(3@) f(@), vanishing. A particular choice i8(z) = 1, b(z) = —L—,

o - 9 (1"'11)4
d@,z) =d@z), ©(&72)=w ) andce(z)2 =1+ (—lfwz + —lerZ) , which leads to

9*(dw) _0¢, 10*dw), 9 S

072 (z,2) = a_x(x) 922 (, x)%(‘r) ) _ 2+ CL‘% 122 — 1

o £op 09 Tﬁ,p—a‘b T2 —1 1427

p@) = p(a)  LiP() = Go(@) LpP@)50 (@) .
Substituting these expressions [in](20), we get

- T

—(x P(z)=L(z) < p(z) | == (2)==(x X . Necessity of geodesic convexity of the level sets of the
g TL; g¢ gh g(b C f d f the level f th

r 9 rooor output function

Oh ,_ 0¢ 10¢, +0%(dw), . 0¢
5793, — 55, @ 022 (@,7)5 () In TheoreniZB, we studied the implications of the existence

YV o of an observer making — d(X((&,x),t), X (x,t)) nonin-

and sincezZ (z) is invertible it gives creasing, in particular, whefi converges tar (in the proof,

- oh oh 19%(dw) (z+rv,z) approachesée, x)). Now we study the implications
L;P(z) < p(z) F(j)TF(j) ~ 3 o (z,7), of the existence of such an observer for the case vihisrfar
o ) "TC_ v * away fromz. To this end, for eack in [0, 5], let ¢ — I'(s, t)

which is inequality [[2D) inz coordinates. be aC'! function satisfying
Furthermore, from the definition of P and with com- 0X
pletion of squares as in the proof of TheorEm] 2.3, it can be E(x’t) = fX(@1), X(,0) =z,

checked that conditio(20) is preserved, but with a modified 5% . .

function p, after an output-dependent time scaling of the —(%,1) = F(X(2,1),h(X(z,1))) , X(2,0) = &,
system, i.e., wherf is replaced byf(x) = 6(h(x)) f(x) with ar i

¢ taking strictly positive values. O (&1 = FI(s,1), A(X(2,1))) , T(5,0) = 77(s),



with v* a minimal geodesic betweenandi. Then, we have minimal geodesic, within a cone whose aperture is less than
X((,2),t) = I'(3,t) and hence, at timg s — T'(s,t) isa =. As stated in LemmA2.7 below, this property implies that

path betweenX (z,¢) and X ((%,z),t). Also, we have $H(y) is geodesically convex; see |22, Definition 6.1.1] and
B [10, Section 9.4].
d(z,z) = d(T'(s5,0),I(0,0)) = L(F(.,O))’O . Definition 2.6 (geodesic convexity): A subsgetof R™ is

) . said to be geodesically convex if, for any pair of points
Also, we know from the first order variation formula (see, foExth) € §x S, there exists a minimal geodesj¢ between

instance, [[24, Theorem 6.14] dr [12, Theorem 5.7]) that WE — »*(s,) andzs = 7*(s2) satisfying

have
d E v (s) € S Vs € [s1, s2].
= L(0(..1)) | ) |
(U] P Lemma 2.7: LetP : R — R"*" be a complete Rieman-
d % [or or nian metric. Assume is a subset oR™ such that, for any
I \/a(saf)TP(F(Sat))a(Sat) ds Z in R™\ S, there exists a unit vectar; such that, for any
. 0 t=0 2 in S and any minimal geodesig* betweenr = *(0) and
=) PO ) O 6).) £=177(3), with 5 > 0, we have
S
d7 * * 5T i 2 .
== (0)TP(" (0) F(°(0).9). gs &) P®vs < 0

Then, S is geodesically convex.
Proof: Assume thatS is not geodesically convex. Then,
there is a paifz1, z2) € S such that, for any minimal geodesic

On the other hand, in general, for eathn the domain of
definition, we have only

]

d(X(2,1), X(z,t)) = d(T(5,1),0(0,t)) < LT(.,1)| . M between:vl_ = 77(0) and Ty = v (s2), there existss; in
0 (0, s2) for which ~;(81) is notin S. Letz = ~7(51) € S.

Then, the upper right-hand Dini derivative of the distancdote thaty;(s) = i (s2 — s) defines a minimal geodesic
betweenz andz in (I5) satisfies betweenzy = ~5(0) € S andi = ~5(52) ¢ S, with §; =
d 3 s9 — §1 > 0. With our assumption, since; andx, are in S,

Dtd(&,z) < pn L(T(.,t)) ol there exists a unit vectar; satisfying
< dczs (§)TP(’)/*(§)) F(v*(é),y) %(él)TP(i) v < 0 %(§2)TP(:%) vy < 0.
_ar (0)T P(v*(0)) f(v*(0)) . (36) But this impossible since we ha\i'gg(él) = —ddif(ég). [ |
ds For Examplé_1J1, we shall see in the following section that,

Even thoughl[(36) is an inequality condition, we proceed asifith the help of item 2a of Propositidn_A.3, for any the

it were an equality. In such a case, if the observer makes tagel set$(y) = {(z1,22) : x1 = y} is geodesically convex

distancel(z, x) nonincreasing along solutions then necessarifgr the Riemannian metric given ifL(B35).

the right-hand side oE(36) has to be nonpositive. To get@bet As announced above, we conclude from Lenima 2.7 that

understanding of what this means, consider the casefvheryeodesic convexity of the levels sets of the output function
d~* is a necessary property in the “general situation” wheré (37

—d—l(O)TP(’Y*(O)) f(v(0)) = 0. (37)  holds (and wher((36) is an equality). Actually, it is necegsa

Then, for the right-hand side o {86) to be nonpositive witWithOUt any extra condition, when the observer has an iefinit

Z = ~*(8), we must have gain m"’.‘r_gi”- o . . .
' Definition 2.8 (infinite gain margin): The observer =

ﬂ(é)TP(i)F(:i’y) <0. (38) F_(:i:,y) for & = f_(:c) is said to have an infinite gain margin
ds with respect taP if (24) holds for everyr € R™ and, for any

At this point, it is important to note th&f-" () is the direction 9€0desicy” minimal onl0, 3), we have

in which the state estimate“sees” the system statealonga  dy* . . . .

minimal geodesic. Such a direction is unknown to the observeE(S)P('V (5)) [F(v" (), A(v"(0)) = F(v"(s))] < 0 (39)
The only known information is that, for given = belongs to

) : for all s € (0, 3).
the following y-level sdf of the output function:

The terminfinite gain marginfollows from the fact that, if
Hy) = {z:hx)=y}. the pbservt_ar% = F(&,y) mak(_est = d(X((Z,2),t), X (x,t))
nonincreasing (for each solution) afd](39) holds, then éinges

Hence, [(3B) implies the following property: giverandy, the  holds for the observek = f(i) + ¢ [F(#,y) — f(2)] for any
level set of the output functiof(y) is “seen” fromz along a ezl number’ > 1.

SFor a givenz € R™, this condition holds for every minimal geodesic

~* such thatddis(o) belongs to the closed half spadev € R™ : D. Necessity of Uniform Detectability
wT P(z)f(x) < 0}. L L o
"By y-level set ofh we mean the intersection, for ea¢h= 1,2,...,m, The necessary condition i {20) is linked to an observapbilit

of the sets{z € R™ : h;(z) = y;}. property of the family of linear time-varying systems obtzd



from linearizing [[1) along its solutions. Assuming the syst (33) whose eigenvalues satisfy
(@) is forward complete, for each the corresponding solution 2 2 2
2 1 — -1
to @) t — X(x,t) is defined on|0, +o0). For eachz, the — Amin(P(x)) > (2+23)(+27) — (@22 - 17 _

2 2
linearization of f and /. evaluated along a solutioX (x, ) 1+;§ifc2c J:EU}C )2 1 (45)
gives the following functions defined df, +occ) 1t ree) s
3+ a2 +2° 3
of oh Amax(P(z)) < 3422 +273 o
Ag(t) = - (X(z,1) , Calt) = - (X(x,1)). max = 2o
ox ox
Thege functions dgfine the following family of linear time- Exponential stability of the origin of [32) is a detectatyili
varying systems with stat¢ € R" and output) € R™: property for [40). The necessity of this property for the
£ = A€, 1 = Co(t)E (40) existence ofP can be exploited to actually construct it, as

it will be shown in the companion paper.
Systems[(40) are parameterized by the initial conditioof

the chosen solutioX (x, ¢). I11. A SUFFICIENT CONDITION

The following theorem establishes a relationship between a, ihe previous section, we assumed the existence of an
detectability property of{{40) and the exister_me of a_bOdnd%bserver making the function s d(X((:%,x),t),X(x,t))
away from zero, upper bounded symmetric covariant Wepnincreasing (respectively, strictly decreasing) witheing
tensor whose Lie derivative satisfi¢s(20). the distance associated with a Riemannian meffic We

Theorem 2.9: Assume systdfl) is forward complete and showed thatP has to satisfy a (respectively, strict) inequality

that there exist aC' symmetric covariant two-tensaP : involving the output function. In this section, we startrfro
R™ — R™" and strictly positive real numbergp and 7 the data of such a metric and investigate the possibility of
satisfying(20) and designing an observer making the corresponding Riemannian

distanced(z, =) strictly decreasing along solutions.

In view of Theoreni 213, we assume thAatsatisfies
Then, for eachr € R", there exists a continudiisunction Oh, .+0h "
t € [0, +00) — K, (t) such that the origin of the linear time- LsP(x) < plz) 3_:0(5”) %(5‘) —qP(z) VzeR
varying system

0 <pl < P(x)<pl, VreR" (41)

with ¢ a strictly positive real number. But, also, willing to be

€ = (Au(t) — K, (H)Co(t)) € (42) in a“general situation” in whicH (37) holds and motivated by
S _ Lemmd2Y, we restrict our attention to the case where tte lev
is uniformly exponentially stable. set of the output functiosh(y) is geodesically convex for any

Proof: To anyz € R", we associate the functiod$, : ¥ in R™. Actually, we ask for the stronger (see Proposition
[0,400) — R™ " K, :[0,+00) — R", andV, : R" x property that the set§(y) are totally geodesic (sekl [6,

[0, +00) — R defined as Section V.11]).
T Definition 3.1 (totally geodesic set): Given @' function
IL(t) = PE))gEx’g;’ Vu(&it) = & IL(DE, (43) ¢ :R" — R™ and a closed subse&t of R", the set
Ko(t) = 220 -t o, )7 .

2 S ={zeR": px)=0}NC

We have is said to be totally geodesic if, for any paie, v) in S x R”

pIEP < Vul(&t) < BIEP V(x,t,6)  (44) suchthat

0
and, with [20), [(IB),[{14), and the definitions [n]43), we get a—i(x)v =0 , v P(x)v = 1,
d 0 o
T (’UTHI(t) u) = 3 (’UTP(X) v) (%) 7 any geodesiey with
X x=X (z,t) dry

< —%vTHm(t)v
— 20 T, (t) (Ap(t) — K. (t)Cp(t)) v

Then, with [42), we havelV,(¢,t) < —5V, (& t). The
conclusion follows with [(44).

satisfies
p(y(s)) =0 Vsed,,

where J,, is the maximal interval containing so thatvy(.J,)
is contained inC.

It follows from this proof that, if we do not have the uppeln the appendix, we establish a necessary and sufficient
boundp in (1)), we still have exponential stability, but wecheckable condition for the sefs(y) to be totally geodesic.
loose the uniformity property. This would be the case, for Example 3.2 (Motivational example — continue@pr the
instance, for the systerl(5) of Example]1.1 withgiven by system in Exampld 1.1, it is sufficient to check that the
Christoffel symboll'i, (see[[6#%)) associated with the particular
choice of P in (@5) for the family [3#) is zero. In fact, we

1 1 2 0y _
8We do not ask the functior,, to be bounded. havel';, = T2+ (z1+22)2 (1 LE T xlx?) (0) =0.0



The following theorem gives a sufficient condition for the  the solutions. In other words, this result establishes that

existence of an observer for the single output case. the function(z, x) — d(&,«) can be used as a Lyapunov
Theorem 3.3: Assume there exist a complete Riemannian function for the zero error se and guarantees this
metric P and a setC C R™ such that function has an exponential decay along the solutions. But

it does no say thad(i1,22) decays along two arbitrary

H1: C is geodesically convex, closed, and with nonempty X
solutions of the flow generated by the observer. O

interior;
H2 : there exist a continuous functign: R — [0, +oc) and ) ) )
a strictly positive real numbeq such that Theoreni 3B is a direct consequence of the following lemma
(for which there is no restriction on the number of outputs)
%(@T%(x) —qP(2) vz e ¢, and the fact that, when the number of outputsnis= 1,
Oz Oz (46) assumption H3 implies the assumption H3’ of the lemma; see
H3 : The number of outputs is: = 1 and, for eachy in PropositiorLA3. _ . .
h(C), the sets(y) N C is totally geodesic. Lemma 3.6: Assume there exist a complete Riemannian
metric P, a setC C R", a continuous functiop : R" —
[0,+00), and a strictly positive real number satisfying H1
and H2 of Theoref3.3. Assume also there exigté &unction

LiP(x) < p(z)

Then, for any positive real numbér there exists a continuous
functionkg : R™ — R such that, with the observer given by

Pla) = £(2) = ke@) P@) V@) g (bla).y) 0 R RT = [04o0) satisting
4D s n@) =0 . 20 >0
where h y1=y2=h(z)
Sy y2) = |y —v2l* s (48) (50)

for all z € C, and, such that
H3': for any pair (z1,22) in C x C satisfying
Dtd(i,z) < —% d(z, )

- W) # hizs)
V(@,2) € {(z,2) : d(&,2) < F} m (Int(€) mt(C()igj and for any minimal geodesig* betweenr; = v*(s1)

and zo = ~*(s2) satisfying~y*(s) € C for all s €
[s1, s2], with s; < s2, we have

the following holds (sed (15)):

Moreover, expressiorl_(#7) is intrinsic (i.e., coordinatele-
pendent) and gives an observer with infinite gain margin.
Example 3.4 (Motivational example — continuetlye d * *
have already checked that, for the systdém (5) and #ith ds (RO (), A (51))) > 0 Vs € (51, 52] -
given in [3%) all the conditions of Theordm B.3 hold globally (51)
i_e_, withC = RQ_ Hence’ the observer given m47) become-ghen, the claim of Theorems holds true with a function
satisfying H3' (instead of as in [48)).

( &y ) Bo/1+ 2] Remark 3.7:

5 52

T —&{2 o Property H3' says that we can find a “distance-like” func-
V94 tion ¢ in the output space allowing us to express that the
_ 2kgp(2) ( 1+ 37 ) (1 — ) output functionh preserves some kind of monotonicity.
14324+ (21 +22)2 \ 1 - 2122 S Namely, as the distance increases along a geodesic in the
O state space, the same holds in the output space measured

by 6. This property has some relationship with the notions
of metric-monotone function introduced ih]21] and of
Remark 3.5: geodesically monotone function defined[inl[22, Definition

« Theoreni3B gives a (nonglobal) solution to probled ( 6.2.3]. In the appendix, we establish a connection with
When the assumptions of Theordm]3.3 hold globally, fotally geodesic sets and geodesic convexity.
i.e., they hold forC = R™, the observer given by With such a property, by following a descent direction
@7) guarantees convergence of the estimated state to fOr the “distance” in the output space, we are guaranteed
the system state, semiglobally with respect to the zero to decrease the distance in the state space. This feature
estimation error set. is exploited in the observer given bl_{47) via a high-
The fact that we do not get global asymptotic stability is ~ 9in term which enforces that such a descent direction is
likely due to the elementary form of the obsenferi(47) and ~dominating. .
its infinite gain margin. We expect that other choices for * Property H3' withd(yy, y>) = [y1—y»|* has been invoked
this observer are possible to obtain a global asymptotic already in [25] but for the case whef is constant. O
stability result. Proof: The Riemannian metrid® being complete, any

 As discussed il 1-B, we do not claim in Theorédml3.3eodesic is defined of-oo, +00) and the Riemannian dis-
that the flow generated by the observer has a contraanced(z, z2) is given by the length of a minimal geodesic
tion property but simply that the Riemannian distance* betweenz; and xz,. Since(C is geodesically convex by
between estimated state and system state decays albiig for any pair(x1,z2) in C x C, there exists a minimal



geodesicy* betweenr; = v*(s1) andxe = 7y*(s2) satisfying
~v*(s) € C for all s € [s1,s2].

Let (&, 2) be any pair inC x C and~* denote a minimal
geodesic between = v*(0) andi = v*(§) satisfyingy*(s) €
C for all s € [0, 5]. With y = h(z), take F' as in [4T). It gives

< = kel@) L2 6T 2 e (3).0)”
Sp(v*(s) |dhoyt q ..
_|_/O 5 s (s)| ds — id(:c,:zr) .(56)

To proceed it is appropriate to associate two functiorsdb
to any triple(z, z,v*) with (Z,z) in C x C and~*, a minimal

dy* a * (A * (A * (A H * -, *(a H H *
J (3) TP () [F(v*(8),y) — F(7*(3))] geodesic between= v*(0) andz = v*(3) satisfyingy*(s) €
5 dy* C for all s € [0, 8]. These functions are defined ¢ 5] as
s 0)TP(y*(0) [F(v*(0),y) — f(7*(0))] followsfd
~dho~y* + 06 . . _ ldhov* Tﬂ * * T
= —kp(f) ———(3 TT% (v (3)),y).  (52) G@anm)(T) R Byl( (v*(r)), h(v*(0)))
On the other hand, we have if 0<r <3, and
B &7 P@) @) - L) P@) fa) = “man0) =
" S d (i 2 0)7 20 i o)), )T o
| (P67 o) ) ds. & O gt O)Re T
0
(53) .o .o
Also the Euler-Lagrange form of the geodesic equation reads 5, () — 1 / p(v*(s)) ‘dhov (s)| ds
for the i-th coordinate, (&77) r Jo 2 ds
* if 0 <r<s, and
2 — Pir(v"(s))—=(s =
ds <; k( ( )) ds ( )) . (0) p(’)/*(o)) dho~* (O) 2
Z %(S)T aPkl ( *(S)) dﬁ)/l* (S) @77) 2 ds
ds ds '

ox;
k.l v

Then, with the definition of the Lie derivativé; P and [46),

We remark with [(BD) that reaches its global minimum at
y1 = y2 = h(x). This implies

we get d0 « .
dg ] gy (O @) (0) =
’Y* T * *
(@ Pe e 167 ) Lo dhoy
as < s [/ (W(h(fy*(m‘)),’y*(O)) 21 (ar)) da} "
LD ()T, P () 2 () o X
= = — : s s
2 ds ) IV ds ’ for all » € [0, §]. As a consequence, the functiomsn b are
p(v*(8)) |Oh, ,, . dv* 2 continuous or{0, §|. Moreover the property H3' gives readily
< 2 8_50(7 ()5 () the implication
—gdd—(s)TP(v*(s))a;l(s) h(z) # h(E) = a@e,() >0 Vre(0,3.
S S
* )2 In the case wheré(z) = h(&), then either
< p(v*(s)) |[dho~y o -4 Gy P A N A .
2 ds 2 CL T and then %(z,m*x(i) = ) (0):
where, in the last inequality we have used So, with [50), we have eithet; 4,)(0) > 0

*

G ()T P(y"()) % =1

With d(2,2) = §

(s)

since v* is normalized.

yields
%(é)TP(v*(é)) FOy*(3) — dd? 0)TP(+*(0)) £(v*(0))
B /0 p(v’;(s)) dhdiv* ol s gd(j’x). -

Then, from [[36), using(32) anf (b5), we obtain
Dtd(z,x)
< | SO O FEGE0 - 1676
—@(O)TP(”Y*(O)) (F(v(0),y) — f(v*(O)))]

ds
O TP 6 E) - T 07 P )67 )]

*

dy”
ds

as given in[(IR), replacind_(54) int6_(53)

or %(O) 0. The latter condition implies

(3,24 (0) = bz ,zq(0) = 0.
e Or x # 2. Then, we consider the following two cases:

1) h o v* is constant on|0,3]. Then we have

dher” (s) 0 for all s € [0,5] and therefore
a(j)wﬂ*)(r) = b(i7m77*)(T) = 0 forall re [O, §]
h o ~* is not constant orf0, §]. Then, there exists
somesy in (0, 8] such thati(v(s1)) # h(vy*(0)) =
h(zx). With H3’, this implies that the function
s = 0(h(v*(s)),h(y*(0))) is not constant on
[0, §]. But since we have(h(v*(3)), h(y*(0))) =
d(h(~*(0)), h(v*(0))) = 0, this function must reach
a maximum at some point,, in (0,5) where we
have

2)

5(h(v"(sm)), h(77(0))) > 0,

SWhen s = 0 the functionsa s 4+ and bz . ~+) are only defined at

Zero.



d * *

750(h(7"(5m)), h(v7(0))) = 0,
and thereforeh(v*(s)) # h(v*(0)). But this
contradicts H3'. So this case is impossible.

In any case, we have established that . - (3) is non

negative and if it is zero they; .« (r) = 0 for allr € [0, 3].
Now, let # be an arbitrary point irC. Call it origin. For

each integet, we introduce the set

Ki = {(z,2) e CxC : d(Z,2) < E, i <d(z,z) <i+1}.

From the Hopf-Rinow Theoreni_[23, Theorem II.1.A] is
compact.

To conclude it is sufficient to prove the existence of a real

10

is upper bounded, say hi. Consequently we have

q A

1 + nag, 2,4 (80) < B.
Since a(s, «,x)(8,) is nonnegative, this implies
A(3y.207.,)(5w) = 0. But we have seen that this implies
bz wuz)(30) = 0. On the other hand[($7) yields

% < b(au,2..42)(80) Whereg is strictly positive. So we have
a contradiction. This establishes the existencé;of
Finally, in (52), we have, with(81),

dho~*  + 06 N
= (S)T@(h(v (3),v)
d

= 0(h(¥*(9),(v"(5))) > 0

numberk; such that, for any paifz, z) in ; and any minimal andF(y*(0),y) = f(v*(0)). So [39) holds and the observer

geodesicy* betweenaz = ~*(0) and & = ~*(8) satisfying
~v*(s) € C for all s € [0, §], we have
q N .
1 + k; a(iymy,y*)(s) > b(iymy,y*)(s).
Indeed, with this inequality, the definitions efandb and [56)
whered(#,z) = §, we obtain [4P) provided the functioh
satisfies

kp(#) > ki VieC:i<d(®a)<i+1.

If k; would not exist, we could find a sequence

(8ny Ty Ty i), With 8, > 0, (a,,2,) In K;, and v a
minimal geodesic between,, = ~}(0) and &, = ~}(5,)
satisfying~;:(s) € C for all s € [0, §,,] and

q

Z + na(inwznw'}’:b)(én) S b(in,mn,'y;;)(gn) :

We have that(z,, Z,) is in the compact seX’; and~;: is a
minimal geodesic taking values thwhen restricted t40, s,,].

(57)

Also v, = %(0) is in a compact set independentrofsince
we have : I I
Tn T Tn
—(0)" P(zy, =1
—(0)" P(aa) = (0)

where P is continuous and,, = +;:(0), satisfying
d(Z,z,) < d(Z,8,) + d(@n,zn) < i+1 + E,
is in a compact set independentof. Finally we have :

n = d(Gn,an) < B .

has an infinite gain margin.

To prove the last point of Theorem B.3, lét define a
diffeomorphism as in[(33). Lek, kg, f, F and P be the
expressions oh, kg, f, F' and P respectively in the new co-
ordinates. We hav€l9L. (B4), akg () = kp(z), F(Z,y) =
98 (x) F(z,y). This implies

Flan) = 5200 |£@) - kel@) @) GH@) ¢
06 .
Foi(@))]
= @) - kel (Gr@P@) Se@T)

¢, 1 "on, a5 .
%(50) } oz 8_y1( (@),v)
- - _ L Oh -+ 06 -,
_ =\ - e N
Therefore, the expression of the observer remains the same
after the change of coordinates. |

IV. CONCLUSION

If for a Riemannian metrid® and an observer such that the
distance between estimated state and system state decrease
along the solutions, then the Lie derivative Bf along the
systems solutions satisfies the inequality in Theofem 2.3

Hence the sequencer,,un,$,) is in a compact set and iNvolving the output function. Also, the satisfaction ofcéu

therefore admits a cluster poifit,,, v,,, $,). It follows from
[23, Lemma 111.4.2] that there exists a geodesic which is
minimal on [0, §,,] and such thati, = ~.(3,) is a cluster
point of the sequencg,,. On the other hand, we have

A&, 7,(5)) < d(@,20) + d(En, 7 (5))
< i+1+ FE Vs € 0,38, .

an inequality together with the existence of upper and lower
bounds forP (see[(4ll)) imply detectability of the linear time-
varying systems obtained from linearizing the given sysfmn
along its solutions. Moreover, we have seen how the geodesic
convexity of the output function level sets is necessaréf t
observer has an infinite gain margin and, in a general sitmati
when the Riemannian distance between estimated state and
system state decreases along the solutiong]of (3).

Conversely, from the data of a Riemannian metric satisfying

It follows that~y,; : [0,3,] — R" takes its values in a compactthe necessary conditions in TheorEm] 2.3 (41), and when

set independent af and the functions:, p and 2 restricted the level sets of the output function are totally geodesic,
to this compact set are continuous and bounded. Also, frage showed how to construct, for the single output case, an
the geodesic equation and completeness, the same holddigserver guaranteeing convergence of the estimated state t
Yoo % and 2 restricted to [0, 8,]. With the definition the system state, semiglobally with respect to zero estimat

ds?

of b(z, x4+, this implies that the right-hand side df {57)error setA.
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Also, although in Sectioh]ll we have given an expression afoc. Then, with assumptiori_ (58) and {61), we get
an observer, at this time, we consider this only as an existen
result and not as an observer design interesting for apijolica o~ — 2| = 8111_{27 p([v(s12)]) [v(s12) = v(s2)] =
Actually we have investigated mainly only the possibilityda )
interest of studying observer convergence via a Riemannian Jim o /p(fy(s12)D (1 (s12)] = [r(s2)l) = +oo.
metric, crystallizing the idea of using a contraction pniype L . )
In a companion paper, we focus on observer design, Whél'rl"eus is adcontrad|ct|on. Then, Wg are Ieft. with the. case
we study several scenarios in which it is possible to constrdims: o ‘ ds (31)‘ = +oo. But this contradicts[(60) since
a Riemannian metric satisfying the desired inequality en iwe just established thatis bounded orfo_, s2), which, with

Lie derivative and making the level sets of the output fuorcti (88), implies thatP o v is bounded away fror.
possibly totally geodesic. The same arguments apply to show that= +oc. [ |

As a final remark, we observe that extensions of the results
to nonautonomous systems, in particular those with inputs,
seem possible using the proof techniques proposed here. Als
time scaling exploiting the concept of unbounded obsefvabi Proposition A.2: LetP be a complete Riemannian metric
ity, as in [2], is expected to be useful in relaxing the systeon R™ and C be a geodesically convex subsetRof.
completeness assumption. 1) If there existsz, in C satisfying 9% (zo) = 0 and all

the setsi(y) NC for y in h(C) are totally geodesic then
h is constant orC.
APPENDIX 2) Let O be the following open subset Bf*:

ON TOTALLY GEODESIC SETS AND PROPERTH3’

. oh
The following lemma provides conditions af that guar- 0= {x €int(C) : Rank(ax( )) - m} - (62)
antee that geodesics can be maximally extendeg. to
Lemma A.1l: Suppose that a symmetric covariant two-
tensorP : R™ — R™*"™ satisfies

0 < P(z) YeeR", lim r?p(r) = +oo, (58)
T—00 -

If all the setsH(y)NC for y in h(C) are totally geodesic
then we have, for al(j, k,1) and allz € O,

0?h; Oh,;

8Ika«rl(x)_i:1 ax ( ) kl( ) -

where, for any positive real number, p(r) = " oh; oh;
Mill,. |y (<, Amin (P(z)) . Then, withP as Riemannian metric > <9jik(117) 2, - (z) + gju(x )ax (2 )> :
on R™, any geodesic can be maximally extendedRto i=1 63)
Proof: Let z; and 2, be any point in the ballB,. in whereg;i, : © — R are continuous arbitrary functions
R™ centered at the origin and with radius The Euclidean and T}, are the Christoffel symbols
distancelx; — 5| SatISerSfS2 ’d”( ) ds > |x1—x2|, where Lo 5P
7 is any piecewiseC! path betweernr; and z,. Using [10), t(r) = 5 Z (P(x)7"), ( amk( )
this implies that, for any positive number m=1 op T op
ml kl
. 52 + S () — —(:v)) .
> ’/B(T)/ — > y/p(r)|r1—z2]. (59) Oxy, Oxp, (64)

Conversely, if[(63) holds for anyin C, then all the sets

Let v be any normalized geodesic maximally defined on #(y) N for y in h(C) are totally geodesic.

(o—,04). By definition, it satisfies
d d
dZ( s) P(V(S))d—Z(S) =1 Vse(o-,04). (60) Proofof iten(l
The setC being geodesically convex, for any there
exists a minimal geodesig* betweenz, = ~*(0) and
z = v*(s) satisfyingy*(o) € C Vo € [0, s]. Since we have

Let [s1, s2] be any closed interval contained (B, 0,). The
function v : [s1,s2] — R™ is bounded (with the Euclidean

norm). We denotey,, ,,) = max,cs,,s,) [7(s)[- By continu- on P : )
ity, there existssi2 in [s1, so] satisfyingr(s, s, = [v(s12)]. 9= (z0) G5 (0) = 0 and the sefy (h(xo))NC is totally geodesic,
Then, from [59) and(80), we obtain we geth(z) = h(zg), = being arbitrary inC, h must be
o constant orC.
p([v(s12)]) [v(s12) =(s2)] < L(v)| = [s12 — s2] .

S12

(61)  Proof of item2
Because(o—, 0., ) is the maximal interval of definition of  Necessity:If © is empty, the statement holds vacuously. If

7, if o is finite, we must have O is nonempty, let: be in O. It is in the totally geodesic set
limg, o | (7(81), ‘;5 (s1 )‘ = +o0. Now in the case where §(h(z)) NC. Then, for anyv in R™ satisfying
we havelimg, ,_ |v(s1)] = +oo the definition of s19 oh

implieslimg, .o maxse[s, 5,1 [7(5)| = lims, 5o [V(512)] = 3:6( rjv =0 , v P(x)v =1, (65)



consider a geodesig satisfying

W) = . D) =

with values inC on an intervalo_, o). We haveh(vy(s)) =
0 for all s € (¢_,04). This implies that we have

(66)
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Proposition A.3: LetP be a complete Riemannian metric

onR™ andC be a geodesically convex subsetRsf.

1) If property H3' holds then all the set§(y) NC for y in
h(C) are

a) totally geodesic,
b) and geodesically convex.

dh o~y d*h o~
ds 0) = 52 (0) = 0. (67) 2) If m =1 and all the setsh(y) NC for y in h(C) are
But, with the geodesic equation, if we l&@;y(z) = totally geodesic then
9%h; o i a) they are all geodesically convex,
r , we have
Jerge (T) — Dl 811( ) Iy, () b) and property H3’ holds with
d? h 07 d% dy 2
. d(y1, = - .
;;%z —(s) =2 (s) . (68) (y1:92) = |y — 2l
Then, using[(86) and (67), we have
n n Proof of iten[1h
;;Qikl(@vkvl =0 vie{l2...om} (89 o (z,v) be an arbitrary pair i€ x R" satisfying
wherewy, is the kth component ofv. Hence, we have estab- 8h( Yo =0 v ' P(z)v = 1. (70)
lished o O
Consider the geodesig, satisfyin
ZZQ;M x)vpu = 0 g e fydg
Pl w(0) = z %(0) — v (71)
for all (j,v = (vi),7) j e {L,2,...,m}, (%( v =

0,z € O . The result follows from the S-Lemma (sdEI[ll]S'”C‘aP is completesy, is defined on(—oo +OO) Let J,, be

satisfying I(EB) as, for eacjn the entries of the matrix in C.
If .J,, is reduced to a point, there is nothing to prove. In the

-1
{8h( )3h( ) ] ‘%( )Qiee ()% other case, for the sake of getting a contradiction, asshate t
].. . . . . .
Oz~ "0z h is not constant along this geodesic.fy), i.e., there exists,
7 %(:v) [2’; ()% (2) "]~ 2 (x) in J,,, say positive, satisfying (v, (so)) # h(z), v.(c) € C
B 2 : for all o € [0, s9]. Let s; be the infimum of the real numbers

s in [0, so] satisfyingh(vy,(s)) # h(z). By continuity s; is
Sufficiency: For anyy in h(C), let (z,v) be any pair in in [0,s0) and we havei(v,(s1)) = h(z). Also, the definition
(H(y) N C) x R™ satisfying h(xz) = v, %(w)v = 0, of s; implies that, for anys in (0,so — s1], there exitss.
v 'P(z)v = 1 and lety be any geodesic satisfyingin [si,s; + ¢] such thath(v,(s.)) # h(7.(s1)). Also, when
v(0) = =, Z—Z(O) = wv. Let J, be the maximal interval s; = 0, the functions — h(v,(s)) being constant of0, s1],
containing0 so thaty(J,) is contained irC. If J, is reduced we have
to a point, there is nothing to prove. If nat, is an interval
with a non empty interior. Then, with_(68) and {63), for any

oh dryy

T ols2) T (s1) = 0. (72

interior points of .J,, we have, for eachi in {1,...,m}, Note that, with [ZD) and (1), the same holds when= 0.
n n Now let B.(,(s1)) be a geodesic ball centered af(s;)
EM( ) = ZZ ikl (7(5))&7’“( )dW (s) with geodesic radius sufficiently small to ensure that each
ds  ds 1 =1 ds ds geodesic between, (s;) and any point in this ball is minimal.
n See [5, Theorem VI1.7.2]. With, associated witlk as shown
= 22 above, we define a function® as~y*(s) = ~,(s. — s) for
i=1 all s € [0, s. — s1]. It is a minimal geodesic betweeyi (0) =

Let M be the matrix wit
[Zk 1 9ik (Y d”’“ for eachs € int(.J,). The linear

s1)). So, according to H3’, we have
time varying systemd— M (s)z has unique solutions. The

only one satlsfymgz( ) = 0 |s identically 0. So with the 15(h(7*(5)),h(7*(0))) > 0
unigueness of the solution of the geodesic equation we must ds

also have d}g%(s) = 0 Vs € int(J,) and therefore for all s € (0,s. — s1]. In particular, we have
hj(v(s)) = y; for eachs € int(J,) and eachj. Also, 95

by continuity, if the upper boundr, (respectively lower a—(h(’y*(ss—81)),h(7*(0)))><

boundos_) of J, is in J,, then we have alsé,;(c;) = Yy on dv

y; (respectively hj(ot) = y; ). a—x(y*(sa — 1)) I

entries/;; defined asMj;(s) = Tv(se) @nd " (sc — s1) = y(s1) satisfyingy*(s) € €N

[E:%m ﬁf(ﬂdﬁj”ew
th e
] B-(v»(s1)) forall s € [0, s. —s1] andh(y*(0)) # h(v*(s-—

(se —s1) > 0.
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But (72) gives must be the same as the onelgf) — h(x). We conclude that
oh dry* oh e we have

(7 (sc = 1)) ==(sc =s1) = ———(w(s1)) —=(s1) o y*

o s _ A SR ()-GO = () -G O)] T () > 0

Hence we have a contradiction.

Proof of item_Ib a

Let (z1,22) € C x C be any arbitrary pair of points
satisfying h(z1) h(x2) y. Since C is geodesi- 2]
cally convex, there exists a minimal geodesit between
z1 = 7*(s1) and xs = ~*(s2) satisfying v*(s) € C
for all s € [s1,s2]. We haved(h(v*(s2)), h(v*(s1)))
22 25 (h(y*(s)), h(v*(s1)) 22" (s) ds. But (G3) implies

ds
the left-hand side of this equation is zero if and only if weda

h(v*(s)) = h(y*(s1)) for all s € [s1, s2], that is, the geodesic
~* remains in the sef(h(x1)) NC for all s in [sy, s2].

Proof of item[Zh [7]

Let (21, 22) € CxC be any arbitrary pair of points satisfying
h(z1) = h(z2) = y. SinceC is geodesically convex, there {g]
exists a minimal geodesig* betweenz; 7*(s1) and (1]
xo = v*(s2) satisfying~*(s) € C for all s € [s1, s2]. For
the sake of getting a contradiction, assume &) N C is
not geodesically convex. Then, there exists [s, s2] such
that v*(s) ¢ $H(y) N C. But v*(5) being inC, this implies
Ih(v*(8)) — h(z1)|> # 0. By continuity and compactness,|
the functions € [s1,s2] — [h(v*(s)) — h(z1)]* admits a [14]
maximum at some,.x in (s1, s2) and, hence, we have

(11]

[12]

[15]

h("Y*(SmaX)) ;éh(:cl), (73) (16]

. [17]

(B (sm)) — )T LT (5000 = s

T % dy* [19]

(h(Y" (Smax)) — h(z1)) o (7*(SmaX))E(SmaX) =0
When the dimensionm of outputs is one, this implies
I (7* (Smax)) G- (Smax) = 0. Since the se§(h(Y* (Smaz)))N  [21
C is totally geodesic ang* takes its values i@ on the interval
[s1, s2] containingsmmaz, We conclude that* takes actually [22]
its values inf (7 (7" (smax))) N C 0N [s1, s2]. This contradicts |3
(73), and sof(y) N C must be geodesically convex.

[20]

[24]

Proof of itemZb (25]

Let (&, 2) be an arbitrary pair of points i x C satisfying
h(z) # h(z) . SinceC is geodesically convex, there exists
a minimal geodesie/* betweenz = 4*(0) and & = ~*(3)
satisfying~*(s) € C for all s € [0,5]. Assume there exists

s in [0,3] satisfying 220" (s) = h(y*(s)) L(s) = 0,
B (5)T P(v*(s)) L= (s) = 1. Then, sinced(h(y*(s)) NC is

totally geodesic, and* takes its values i@ on [0, 5], we have
hoy*(s) = hoy*(0) = h(z) for all s € [0, §] which contradicts

hov*(3) = h(3) # h(x). Then, 227"
But, since we havé.(&) — h(zx)

has a constant sign.
ds

_ S dhoy*
—Jo ds

(s) ds, this sign

for all s € (0, §].
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