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Abstract—We apply recent results on robust global asymptotic parameter parametrization 80(3) is not globally nonsingu-
stabilization of the attitude of a single rigid body to the problem  |ar [13], which hinders their use for global synchronizatio
of_globally synchro_nlzmg the attitude of a network of r|_g|d bodies of rigid-body attitude. Often, unit quaternions are used to
using a decentralized strategy. The proposed hybrid feedluk trize&50(3) b f a two-to- .
scheme relies on the communication of a binary logic variael Parametriz (3) y means of a two-to-one covering map.
between each pair of neighboring rigid bodies that determies When this parametrization is used, it creates the need to
the orientation of a torque component acting to reduce their stabilize a two-point set of in the quaternion space [14].
relative error. Through a hysteretic switch of this logic variable, Quaternion-based attitude control laws often neglectdbis-
the hybrid feedback achieves global synchronization undethe ble covering, sometimes resulting in an undesirable sympto

assumption that the network is connected and acyclic. The N
hysteresis eliminates chattering while preventing the “umwinding termedthe unwinding phenomengal] where the control law

phenomenon” apparent in some quaternion-based attitude go ~May unnecessarily rotate the body through a full rotation.
trol schemes. The results are exercised in a numerical exarflgp  Quaternion-based control schemes that induce this behavio
may achieve a global synchronization result (i.e. converge

to a synchronized state); however, this synchronized state

be stable, or unstable, depending on the controller’s quiate
representation of attitude [11], [14].

The problem of attitude synchronization among multiple Unwinding can be avoided by a judicious selection of
rigid bodies has received attention in the recent liteeftii— control law. For example, [5] proposes a synchronization
[8] due to the promise of multiple spacecraft missions inpdegcheme that causes unwinding, then reveals how to modify
space exploration [9], [10]. Although a number of attitudéhe proposed feedback in a smooth fashion to avoid this
synchronization schemes have been presented, these slegigblem. The resulting feedback is closely related to the
are either non-global, subject to the “unwinding phenonménofeedbacks used in [7], which achieve almost global asyriptot
described below, or are not robust to measurement noise€eThétability of the synchronized state. Other results, sucthase
issues stem from the underlying state space of rigid bogly [8], use a memoryless quaternion-based feedback that is
attitude,SO(3), whose topological complexities preclude thejiscontinuous at attitudes df80°. Such a feedback avoids
existence of smooth globally stabilizing feedbacks [11].  unwinding and results in global asymptotic stability of the

When smooth state-feedback is applied to stabilize thesired synchronization, but it is not robust to arbityesinall
attitude of a rigid body, the best achievable resultlisiost measurement disturbances [15].
global asymptotic stability, where the basin of attractiona In this paper, we propose a hybrid feedback that achieves
desired attitude excludes only a nowhere dense set of neeasigid-body synchronization in connected and acyclic nekso
zero. Such results have been achieved, for example, in [12bm any initial condition. The strategy enjoys robustness
These topological problems directly affect the problem aé measurement disturbances and also avoids the unwinding
attitude synchronization. We note that feedbacks foruattit phenomenon. Here, we apply the main ideas of [15] to
synchronization that are similar to [12] appear in [7], wherthe quaternion-based attitude synchronization schema@]in [
only local results are claimed, although the authors of ffed The enabling mechanism for our results is a logic variable
a “large” basin of attraction in simulations. associated with each relative attitude error that detezmin

The topological complexity 0$0(3) further affects control the sign of a potential-based torque component. The logic
laws based on parameterizations$5@f(3). In fact, every three- variable is updated hysteretically in a way that manages
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I. INTRODUCTION



ments onto the unit-quaternion space and seamlessly dtansvelocity of theith agent and/; = J, > 0 is the inertia matrix
guaternion-based feedback controllers with their asytigptoof the ith agent. Wherr; is a vector of external torques, the
stability properties to the actual rigid-body state spare ekinematic and dynamic equations for each agent are
tended by an extra quaternion memory state. As in related .
literature, we assume that this mechanism is working in the R; = R; [wi] (2a)
background and omit it from the analysis. Jiwi = [Jiwi]  wi + 5. (2b)
The remainder of the paper is organized as follows. Sec-
tion Il discusses our multi-agent framework borrowed from
[3], [16], attitude representation by unit quaternionsitade q= [77 ET]T € S?, (3)
kinematics and dynamics, relative error coordinates, amd o
hybrid system framework borrowed from [17]. Section lIWhereS® = {(n,¢) € R x R® : > +¢'e = 1}. A unit
introduces the decentralized hybrid synchronization sehe quaternion; € S* is mapped to an element 60(3) through
and proves the robust global synchronization result, wigchthe Rodrigues formulaR : §* — SO(3), defined as
illustrated by simulation in Section IV. Finally, we makense _ 2
concluding remarks in Section V. Rla) =T+ 2 el +21ex - @)

A unit quaternion is defined as

For convenience in notation, we will often write a quatemio
II. PRELIMINARIES as q¢ = (n,e), rather than in the form of a vector. With
the identity elemeni = (1,0) € S*, each unit quaternion

. ) L q € S? has an inversg ! = (5, —¢) under the quaternion
Following [3], [16], we consider a network a¥ rigid bod- multiplication rule

ies (agents), whose inter-agent information flow is represik .

by a graph. When two rigid bodies in the network have access 4 Og = mnz — € €

to relative attitude information and can communicate alsing mez + neer + [e1], €2
binary logic variable,.we let them be connected by a Ii.nk %here, for eachi € {1,2}, ¢i = (i, ;) € R x R3,
the_graph. For each I|nk. _connectlng two age”t?" we arblyrari When representind?; with a unit quaterniory;, we must
assign an index, a positive end, a_nd a negative end.Met “lift” the attitude kinematic equation (2a) ont83. In this
denote the total number of graph links, l&t = {1,..., N} direction, we define’ : R — R* as the map

denote the set of agents, and Jet = {1, ..., M} denote the

set of graph links. We defing1 c M as the set of links v(z) = [0 xT]T_ (5)
for which agent is the positive end and1; C M as the set ] ) ] ] o

of links for which nodei is the negative end. We define thel hen, the quaternion kinematic equation for agesatisfies

A. Multi-agent framework

)

N x M incidence matrixB as 5 1 1 el
[l ewmififul o
41 kEMj qi é 2QZ i D) ni1+[€i]>< i -
bir =< -1 ke Ml_ (1)

0 otherwise C. Relative attitude error coordinates and synchronizatio

For everyk € M, we define the relative attitude and angular

We note that the rank oBB is N — 1 when the graph velocities for each graph link as

is connected and that the columns &f are linearly in-
dependent when no cycles exist in the graph. Finally, let qr = qj’1 ©q W = w; — R(qk)ij @)
1=[1 --- 1T € RM. It follows from (1) thatB"1 = 0,

that is, 1 is in the null space oB. wherek € M N M, for i # j. That is, agent and agent

j are the positive and negative vertex for likk respectively,
_ . . _ i ) and g is a relative attitude between them. We group these
B. Attitude kinematics, dynamics, and unit quaternions | 5riables together as

The attitude of a rigid body is represented b¥>a3 rotation

matrix with positive determinant: an element 0(3), the 4~ (@10 dy), @ = (@1, 00), W= (@100 W)
special orthogonal group of order three, defined as i ) L o (8)
With this definition, it is well known [2]-[4], [15] that the
SOB3)={RecR**.:RTR=RR" =I,detR=1}. error quaterniony,, satisfies the kinematic equation
Th_e cross product_ betwe_eq tvv_o YeCtQISZ € R3, can be G = lfjk © v(@r) VE € M. (9)
written as the matrix multiplicationy x z = [y],, z, where 2
0 _ An important property of (7) is that we can expressn
B Ys b2 terms of the3N x 3M Rotational Incidence MatrixB(q),
Wl = y;g y01 —0y1 which we define in terms of it8 x 3 sub-matrices as
The attitude of theith agent is denoted aB;, where R; . I ke M:r
rotates vectors expressed in body coordinates oftthagent bik(@r) = —R(@) " ke M; (10)

to their inertial frame coordinates. We let denote the angular 0 otherwise



where: € N andk € M. From (7), (8), and (10) we have and the flow and jump sets closed. These properties ensure
=T that asymptotic stability is robust to small perturbati¢bg].
w=1B(g) w (11) We refer the reader to [19] for solutions to hybrid systems
To synchronize the angular rate of each agent to a constadbjected to disturbances.
desired angular rate;;, we assume that each agent has access
to wa. The angular rate error for each agent is defined as  !!l- ROBUSTLY SYNCHRONIZING HYBRID CONTROLLER
A. The hybrid controller

We define a hybrid controller for each agent as follows. Let
wherei € {1,..., N}. This definition yields the angular rate M times

d ics f h t
error dynamics for each agent as h= (b, har) € L M = 1 % (L 1)

(13) denote a vector of binary logic variables, whérngis associ-
For an efficient notation, we define ated with link k € M. The controller for theith agent will
define the dynamics for ali;, such thatk € /\/lj. We define

Wi = w; — W, (12)

Jiw; = [Jiwl-]x w;i + [Jiwi]x wq + T;.

= di e = e .
s 18 (1, Jy) ’ (7:1’ TN ) the state space and state, respectively, as
S (w) = diag ([Jrwn]y s ..., [Ivwn]y) @ = (@1,...,@N) o
. X=X, x{-1,1} z = (zp,h) € X.
Given X € R"™™ andY € RP*9, we let X ® Y denote - )
their Kronecker product, defined as the x mgq matrix The controller utilizes a hysteresis parameter (0, 1). Then,
v v we define the flow and jump sets for thth agent as
oy T11 th C’i:{xeX:VkGMz_hkﬁkZ—(S} (18)
B : D;={x € X :3k e M} hyij, < —6}.
Tn1Y o TamY ]
] ] We define the set-valued mapn : R = {—1,1} as
Then, we can write the plant error dynamics as
. _ s/l|s s#0
So= St s@Ioe) 14 e = {{ﬂﬂ 1} s=0 (9

where, recalling (12)v can be written compactly as Let « € [0,6). The hybrid controller for theth agent is
W=w-—1Q wy. (15) —
eMf i

K3

reC;

N - (20a)
hy € hisgi(hgiy + o) x € D;,

We group the plant error states together and denote their

dynamics, given by (9) and (14), as which takesw;, wq and g, ¥ € M; U M; as input and

Zp = (¢, ) Ty = Fp(xp, 7). (16) produces the torque output
M
’];(:c) = — [Jiwi]x wq — Z birhpli€, — K;w;, (20b)
Xp = s3Y x R3N zp = (qw) € &, k=1
wherel;, > 0 forall k e M andK; = Kf >0 foralli e N.

Finally, we let

denote the plant state space and state, respectively. Ten,
synchronization objective is to globally and asymptotical
stabilize the compact set

A, ={z, € X, : G =+iVk e M, @ =0}. (17)

B. The closed-loop system
We define flow and jump sets for the network as

N N

_ c=(¢ Dp=JD. (21)
D. Hybrid systems framework i1 i1

A hybrid system is a dynamical system that allows for botfihat is, a jump occurs when at least one agent’s controller
continuous and discrete evolution of the state. In this pappimps, but otherwise, the network flows. When there exist
we follow the framework of [17], where a hybrid systekhis i, € A/, with i # j andz € D; N D;, multiple jumps can
defined by four objects: How map f, governing continuous occur at the same time instant in no particular order.
evolution of the state by a differential inclusionjuamp map Each agent’s controller (20) operates on only a subset of
G, governing discrete evolution of the state by a differenghe variables inh. We model this as follows. Lef;, : X =
inclusion, aflow set C, dictating where flows are allowed,{-1,1} and~; : X = {—1,1}™ be defined as

and ajump set D, dictating where jumps are allowed. Given L n
a stater € R™, we write a hybrid system in the compact form (@) = hisg(hiil, +a) k€ M;
i +
hy, k & M; (22)
i P eed @ = [ (@) (@)
zt € G(z) zeD. K it i

. . IA setvalued mapG : X = Y (= denotes a map to the subsets of
In this paper, the closed-loop system has the flow map COﬂt'QMe codomain) is outer semicontinuous if for alle X and all sequences

ous, the jump map outer semicontinutarsd locally bounded, z; — z, y; € G(;) such thaty; — y, we havey € G(x).



We define a set-valued aggregate jump map as and global attractivity of the set

I(x)={ieN:zeD} T = [J {nu@} 23 E={reC:(BHZ ®1)é=0, © =0}

i€Z(z) First we note that if the graph is connected and acy€lis; A.

Lemma 2. f0<d < 1,4 >0forall ke M, andB is
K =diag (K1,...,Kn) 71= .- 0M) connected and acyclic, thefi,= A.
g:

We define the aggregate variables

H = diag (h1,...,hum) (€1, €M) Proof: If B is connected and acyclic, then it has full
& =diag (b1,...,4r) - column rank. Then, sincé, > 0 for all k¥ € M, it follows
. that (BH.Z ® I)é = 0 implies thate = 0 and|7;| = 1 for
Then, with the aggregate feedback= 7 (x), where all k € M. If z € C, then for allk € M, it follows that
Ti(z) hgfr > —6 > —1. Finally, sinceh;, € {—1,1}, it follows that
T(z) = : = — P()(10w)— (BHL @ )i— X @, hipm = 1 for all k € M. This means thafj, = (7, &) =

(hk,0) = hii for all k € M, or equivalentlyg = H1 ®i. B

Tn ()
Theorem 3. Suppose thal < a < d < 1,4, >0forall ke
with entries defined in (20b), the closed-loop error system 'M and K, — I?g ~ 0 for all ?e N Therl: the compact set

L1 - T A is stable and the compact sét> A is globally attractive
G = 50 O V(@r) k€M i for the closed-loop hybrid system defined(6y, (2b), (20a)
Jw=Sw)w— (BHY QI)é— Hw wo=uw (20b) with error dynamics(24). When B is connected and
h=0 ht e (x) acyclic, A = £ so thatA is globally asymptotically stable.
— N———— . .
reC x € D. Proof: Consider the Lyapunov function
(24) V(z) =217 2(1 - Hij) + o7 76
We denote the flow and jump maps of (24) as (z) ( e S
F T _ Since/l;, > 0 for all k € M andJi=JiT > 0 for all i € NV,
Flz) = { orp, (‘”))] Glz) = EIP}] V(z) > 0forallz € X\ AandV(z) = 0 for all = € A. We
() now examine the evolution df along solutions of (24).
and condense (24) into the compact form First, we calculate the change n along flows as
= (1) i=F(x) z€C (VV(2), F(z)) =& (HL @ I)é
TV it e G(zx) ze€D. +o0" (S (w)o—(BHL @1)é— H ).
Before proceeding to the main results, we slightly geneealiRecalling from (11) thato = BT (§)w and noting thatH.%
[3, Lemma 2] by introducing a diagonal matrix. is diagonal, we apply Lemma 1 and see that
Lemma 1. For any diagonal matrix W HYoNi=w B({HY ®)é=w' (BHZ ® I).
2 = diag(ds,...,dwm), Then, noting that.¥"(w) = —.7(w), it follows that

o' (w)w =0, and
(VV(z),F(z)) = @' #o+w' (BHY @ I)é

the rotational incidence matrix satisfies

B(§)(2® 1)E= (B2 @ )¢, (25) (w-1%w) (BHL ® )¢
where B is as d~efined irElO). i Finally, applying the property that
Proof: Let B;(§) = [bn e biM]. Expanding the left- 1® wd)T(BHf ®1) = (1TBH.$ ® wq)

hand side of (25) by means of (10), we see that
and recalling thatt " B = 0, it follows that
(VV(x),F(z)) = —o" # .

SinceK; = K,;” > 0 for all i € N, (VV (z), F(x)) <0 for
all z € C'\ A and soV is nonincreasing along flows.
ExaminingV" over jumps, we see that for gfl€ G(x),

Bi(q)(2 @ I)é = Z d€r — Z R(Gp) " dpép- (26)
kemf pEM;

Now, applying the fact thaR(g,) "¢, = ¢,, it follows from
(1) and matching terms in (26) that

M

& — 0p) | dyép = ikdi€ S
Z dré€y Z R(qp) dpép Zbkdk k V(g)—V(z) € U {2Z€k(hk—%k($))ﬁk}v

kemM;f peEM; k=1
ieZ(z) k=1

so that for everyi € NV, Bi(§)(2 ® I)é = (B; 2 ® I )¢, where whereZ(z) was defined in (23). Then, since
Bi = [bix -+ bin]. This proves the result. ]

. M
We can now prove stability of the compact set Z&c(hk — in ()i = Z Cehwiin (1 — SE( il + @)
k=1

A={zeX:G=H1®i, =0} keMm;



FTTTTTTTTTTTTTToTTo 14 For each simulation, we provide plots depicting relative
attitude errors and jumps of the hybrid controller. Thgjy
1 2 3 plot shows, for each link, the logic variablg, multiplied by
7. Discontinuities in this plot occur whely, changes its sign
Fig. 1. Serial network with four agents. Addition of fourtind makes a over a jump. Thed(gx) plot shows, for each link, the error
three-agent cycle. angle between two agents across a link. For some quaternion
q = (n,¢), its angle fromti is defined ad(q) = 2 cos™* (|n]).
Due to space constraints, angular velocity errors are rmvgh
The simulations in Figs. 2, 3, and 4 were conducted with
four agents having initial conditions

and for: € Z(x), there exists: € /\/l:r such thath, 7, < —9,
it follows that

mgx V(w) = V(x) < —40,6 < —45 ;nl/\r/ll l, <0 q; (0)] 1 1 0 0
wes © WO 1 ]-1 100 o7
so thatmax,,cg(z) V(w) =V (z) < 0forall z € D. It follows CI?,T(O) V2|1 010 (€0
from [20, Theorem 7.6] tha# is stable. a4 (0)] 1 010
Applying an invariance principle for hybrid systems, [20, Wl (0)] 1 1 -1
Theorem 4.7], we see that closed-loop trajectories approac wil’(o) 92 _2 9
the largest weakly invariant set contained in wa (0) 011 -1 -1 (28)
W={zeC:(VV(z),F(z)) =0} ={zeC:o=0} wj (0)] -1 1 1

The simulations in Figs. 2 and 4 were conducted with the lseria
graph structure pictured in Fig. 1 (i.eithoutthe dashed link
4). The simulation in Fig. 3 was conducted with the cyclic
raph structure illustrated in Fig. 1 (i.aith the dashed link
" With this graph, the initial relative attitude errorgar

Since holdingo = 0 implies thatw = 0, it follows from (24)
thatz must convergeté = {z € C : (BHL®I1)é=0, @ =
0}. The result then follows from Lemma 2.

We assert the robustness of stability to measurement and
tuation disturbances in terms ofta. estimate. The following

result is a direct consequence of [18, Theorem 6.6] and tte fa g1 (0) o -1 0 0

that the closed-loop system satisfies the hybrid basic eondi @ (0)| _ (-1/2 1/2 1/2 1/2 (29)
tions [17, A1-A3]. In what followsgB = {z € R" : |z| < o} g3 (0) 1 0 0 0

(n is determined by context) and| 4 = inf{|z—y| : y € A}. q4 (0) -1/2 1/2 -1/2 -1/2

Theorem 4. Under all assumptions of Theorem 3, there exists 1h€ Simulations in Figs. 2 and 3 illustrate the efficacy of
a classiCL function : Rso x Rso — R such that for each the proposed hybrid scheme and show how synchronization
~ > 0 and each compact s& c R3N there existsr > 0 such €an be compromised by cycles within the graph. From the

that each solutior(z,, , ¢) to the closed-loop system definedhitial condition described above, the proposed hybricesot
by (6), (2b), (20a) (20b) and T = T(z, + e, h), with error  Synchronizes the attitude of each agent when the graph is

dynamics satisfying connected and acyclic, as depicted in Fig 2. The introdactio
) of the 4th (dashed) link from agent 1 to 3 in Fig. 1 destroys
Ty = Fp(zp, T (zp +e,h)) f; Tp this global synchronization property. As shown in Fig. 3lyon
h=0 ht €T (x, +e,h) one relative error angle corresponding to the link outsidb®
cycle converges to zero. As discussed in [3], the three agent
(zp +e,h)€eC (zp +e,h) €D, the3 cycle (agents 1,2, and 3) settle into a configuration &her
_10(Gx) = 27. Both simulations havé = 0.45.
e : dom e — oB measurable, and:(0,0) € S3Y x K x 2= 0(0)
{~1,1}M satisfies 1\ —
. . . & \
2t Dl < B(2(0,0lat+7) +7 Vit edoma. 5 o NS
_1 L 1 L
IV. SIMULATION STUDY .0 10 20 30 40
In this simulation study, we consider a network of four 7= . /I - \ .
identical agents wherg; = diag(4.35,4.33,3.664) (as in [1]) T 2 ‘\/'\- ~

andK; = I fori =1,2,3,4. In each simulationy; = 0. For 0 . .
eachk € M, I, = 1. The initial angular velocitiesy;(0), and 0 10 Tirr?(e) ) 30 40

the initial attitude errorsg;, are specified on a per-simulation

basis later in the section; howevey,(0) = 1 for all k € M. Fig. 2. Synchronization with hybrid controller on seriattwerk.

The network is shown in Fig. 1; whether or not link 4 is

enabled is specified on a per-simulation basis. All simofeti  To illustrate how the hybrid scheme avoids unwinding with
were conducted in MTLAB/Simulink using a fixed-step solver§ € (0, 1), we repeated the simulation of Fig. 2 (the serial,
with step size ofl/100s. The unit-quaternion states were connected, and acyclic network) with one crucial change: we
first normalized before subsequent calculations. setd = 2. This change disables switching of ahy, since



40
40
Time (s)
Fig. 3. Convergence to non-synchronized state on cycliworét
1 ~ T T
. i ———— Hyhbrid
< 0Of 4
<= / — — - Unwinding
_l — L L L
0 10 20 30 40
i
. JA ~
Sk \\ .
= \/
0 ) —_—
0 10 20 30 40
Time (s)
Fig. 4. Link that exhibits unwinding after disabling hysgc jumps.

mhry < —4& can never be satisfied. Then, for edche M,
gr is driven towardshi(0)i = i. Fig. 4 shows the two
situations in parallel: the plot labeled “Hybrid” showiig
and 6 (¢x) from Fig. 2, while the plot labeled “Unwinding”
shows the same values whén= 2, with the same initial
conditions and parameters, other thiarNote thathy 7, = 7
for the “Unwinding” plot, sinceh(0) = 1 and h;, cannot
switch during the simulation. Fig. 4 shows that the unwigdin
inducing controller causes large angular oscillations e t
response as it forceg towardsi. In this case, the relative
angle between the agents increases from zerort® in
approximately 2s and continues to rotate. The hybrid cdletro
with § = 0.45 switches the value ok as h;7, passes—d.
In contrast, the unwinding-inducing controller remains @e
forcing ¢s to i, despite the fact thajs is closer to—i.

V. CONCLUSION

proposed in this note depends upon knowledge of the inertia
matrix and it may be possible to eliminate this dependence by
the addition of adaptive mechanisms (e.g. [21]). Finalg t
synchronization scheme presented in this note requirds tha
neighboring agents can communicate logic variables and hav
have a consistent quaternion representation of theirivelat
attitude error. It may be possible to relax these restmngtio
however, this is topic for future research.
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