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Abstract—We apply recent results on robust global asymptotic
stabilization of the attitude of a single rigid body to the problem
of globally synchronizing the attitude of a network of rigid bodies
using a decentralized strategy. The proposed hybrid feedback
scheme relies on the communication of a binary logic variable
between each pair of neighboring rigid bodies that determines
the orientation of a torque component acting to reduce their
relative error. Through a hysteretic switch of this logic variable,
the hybrid feedback achieves global synchronization underthe
assumption that the network is connected and acyclic. The
hysteresis eliminates chattering while preventing the “unwinding
phenomenon” apparent in some quaternion-based attitude con-
trol schemes. The results are exercised in a numerical example.

I. I NTRODUCTION

The problem of attitude synchronization among multiple
rigid bodies has received attention in the recent literature [1]–
[8] due to the promise of multiple spacecraft missions in deep
space exploration [9], [10]. Although a number of attitude
synchronization schemes have been presented, these designs
are either non-global, subject to the “unwinding phenomenon”
described below, or are not robust to measurement noise. These
issues stem from the underlying state space of rigid body
attitude,SO(3), whose topological complexities preclude the
existence of smooth globally stabilizing feedbacks [11].

When smooth state-feedback is applied to stabilize the
attitude of a rigid body, the best achievable result isalmost
global asymptotic stability, where the basin of attractionfor a
desired attitude excludes only a nowhere dense set of measure
zero. Such results have been achieved, for example, in [12].
These topological problems directly affect the problem of
attitude synchronization. We note that feedbacks for attitude
synchronization that are similar to [12] appear in [7], where
only local results are claimed, although the authors of [7] noted
a “large” basin of attraction in simulations.

The topological complexity ofSO(3) further affects control
laws based on parameterizations ofSO(3). In fact, every three-
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parameter parametrization ofSO(3) is not globally nonsingu-
lar [13], which hinders their use for global synchronization
of rigid-body attitude. Often, unit quaternions are used to
parametrizeSO(3) by means of a two-to-one covering map.
When this parametrization is used, it creates the need to
stabilize a two-point set of in the quaternion space [14].
Quaternion-based attitude control laws often neglect thisdou-
ble covering, sometimes resulting in an undesirable symptom
termedthe unwinding phenomenon[11] where the control law
may unnecessarily rotate the body through a full rotation.
Quaternion-based control schemes that induce this behavior
may achieve a global synchronization result (i.e. convergence
to a synchronized state); however, this synchronized statecan
be stable, or unstable, depending on the controller’s quaternion
representation of attitude [11], [14].

Unwinding can be avoided by a judicious selection of
control law. For example, [5] proposes a synchronization
scheme that causes unwinding, then reveals how to modify
the proposed feedback in a smooth fashion to avoid this
problem. The resulting feedback is closely related to the
feedbacks used in [7], which achieve almost global asymptotic
stability of the synchronized state. Other results, such asthose
in [8], use a memoryless quaternion-based feedback that is
discontinuous at attitudes of180◦. Such a feedback avoids
unwinding and results in global asymptotic stability of the
desired synchronization, but it is not robust to arbitrarily small
measurement disturbances [15].

In this paper, we propose a hybrid feedback that achieves
rigid-body synchronization in connected and acyclic networks
from any initial condition. The strategy enjoys robustness
to measurement disturbances and also avoids the unwinding
phenomenon. Here, we apply the main ideas of [15] to
the quaternion-based attitude synchronization scheme in [3].
The enabling mechanism for our results is a logic variable
associated with each relative attitude error that determines
the sign of a potential-based torque component. The logic
variable is updated hysteretically in a way that manages
a trade-off between robustness to measurement disturbances
and the “amount” of unwinding. Thus, the proposed scheme
necessitates the communication of this logic variable between
neighboring rigid bodies.

Finally, we remark that whether or not unwinding occurs,
whether one should avoid the180◦ rotation, and the correct-
ness of many stability and convergence results, including the
results in this paper, largely depend onhowone maintains the
quaternion parameterization of attitude. We refer the reader to
the recent study [14], where it is shown that a simple (hy-
brid) dynamic mechanism can smoothly lift attitude measure-



ments onto the unit-quaternion space and seamlessly translate
quaternion-based feedback controllers with their asymptotic
stability properties to the actual rigid-body state space ex-
tended by an extra quaternion memory state. As in related
literature, we assume that this mechanism is working in the
background and omit it from the analysis.

The remainder of the paper is organized as follows. Sec-
tion II discusses our multi-agent framework borrowed from
[3], [16], attitude representation by unit quaternions, attitude
kinematics and dynamics, relative error coordinates, and our
hybrid system framework borrowed from [17]. Section III
introduces the decentralized hybrid synchronization scheme
and proves the robust global synchronization result, whichis
illustrated by simulation in Section IV. Finally, we make some
concluding remarks in Section V.

II. PRELIMINARIES

A. Multi-agent framework

Following [3], [16], we consider a network ofN rigid bod-
ies (agents), whose inter-agent information flow is represented
by a graph. When two rigid bodies in the network have access
to relative attitude information and can communicate a single
binary logic variable, we let them be connected by a link of
the graph. For each link connecting two agents, we arbitrarily
assign an index, a positive end, and a negative end. LetM
denote the total number of graph links, letN = {1, . . . , N}
denote the set of agents, and letM = {1, . . . , M} denote the
set of graph links. We defineM+

i ⊂ M as the set of links
for which agenti is the positive end andM−

i ⊂ M as the set
of links for which nodei is the negative end. We define the
N × M incidence matrixB as

bik =







+1 k ∈ M+
i

−1 k ∈ M−
i

0 otherwise.

(1)

We note that the rank ofB is N − 1 when the graph
is connected and that the columns ofB are linearly in-
dependent when no cycles exist in the graph. Finally, let
1 = [1 · · · 1]⊤ ∈ R

N . It follows from (1) thatB⊤
1 = 0,

that is,1 is in the null space ofB⊤.

B. Attitude kinematics, dynamics, and unit quaternions

The attitude of a rigid body is represented by a3×3 rotation
matrix with positive determinant: an element ofSO(3), the
special orthogonal group of order three, defined as

SO(3) = {R ∈ R
3×3 : R⊤R = RR⊤ = I, detR = 1}.

The cross product between two vectorsy, z ∈ R
3, can be

written as the matrix multiplication:y × z = [y]× z, where

[y]× =





0 −y3 y2

y3 0 −y1

−y2 y1 0



 .

The attitude of theith agent is denoted asRi, whereRi

rotates vectors expressed in body coordinates of theith agent
to their inertial frame coordinates. We letωi denote the angular

velocity of theith agent andJi = J⊤
i > 0 is the inertia matrix

of the ith agent. Whenτi is a vector of external torques, the
kinematic and dynamic equations for each agent are

Ṙi = Ri [ωi]× (2a)

Jiω̇i = [Jiωi]× ωi + τi. (2b)

A unit quaternion is defined as

q =
[
η ǫ⊤

]⊤ ∈ S
3, (3)

where S
3 = {(η, ǫ) ∈ R × R

3 : η2 + ǫ⊤ǫ = 1}. A unit
quaternionq ∈ S

3 is mapped to an element ofSO(3) through
the Rodrigues formula,R : S

3 → SO(3), defined as

R(q) = I + 2η [ǫ]× + 2 [ǫ]
2
× . (4)

For convenience in notation, we will often write a quaternion
as q = (η, ǫ), rather than in the form of a vector. With
the identity elementi = (1, 0) ∈ S

3, each unit quaternion
q ∈ S

3 has an inverseq−1 = (η,−ǫ) under the quaternion
multiplication rule

q1 ⊙ q2 =

[
η1η2 − ǫ⊤1 ǫ2

η1ǫ2 + η2ǫ1 + [ǫ1]× ǫ2

]

,

where, for eachi ∈ {1, 2}, qi = (ηi, ǫi) ∈ R × R
3.

When representingRi with a unit quaternionqi, we must
“lift” the attitude kinematic equation (2a) ontoS3. In this
direction, we defineν : R

3 → R
4 as the map

ν(x) =
[
0 x⊤

]⊤
. (5)

Then, the quaternion kinematic equation for agenti satisfies

q̇i =

[
η̇i

ǫ̇i

]

=
1

2
qi ⊙ ν(ωi) =

1

2

[
−ǫ⊤i

ηiI + [ǫi]×

]

ωi. (6)

C. Relative attitude error coordinates and synchronization

For everyk ∈ M, we define the relative attitude and angular
velocities for each graph link as

q̃k = q−1
j ⊙ qi ω̃k = ωi −R(q̃k)⊤ωj (7)

wherek ∈ M+
i ∩M−

j , for i 6= j. That is, agenti and agent
j are the positive and negative vertex for linkk, respectively,
and q̃k is a relative attitude between them. We group these
variables together as

q̃ = (q̃1, . . . , q̃M ), ω̃ = (ω̃1, . . . , ω̃M ), ω = (ω1, . . . , ωN ).
(8)

With this definition, it is well known [2]–[4], [15] that the
error quaternioñqk satisfies the kinematic equation

˙̃qk =
1

2
q̃k ⊙ ν(ω̃k) ∀k ∈ M. (9)

An important property of (7) is that we can expressω̃ in
terms of the3N × 3M Rotational Incidence MatrixB̃(q̃),
which we define in terms of its3 × 3 sub-matrices as

b̃ik(q̃k) =







I k ∈ M+
i

−R(q̃k)⊤ k ∈ M−
i

0 otherwise,

(10)



wherei ∈ N andk ∈ M. From (7), (8), and (10) we have

ω̃ = B̃(q̃)⊤ω. (11)

To synchronize the angular rate of each agent to a constant
desired angular rate,ωd, we assume that each agent has access
to ωd. The angular rate error for each agent is defined as

ω̄i = ωi − ωd, (12)

wherei ∈ {1, . . . , N}. This definition yields the angular rate
error dynamics for each agent as

Ji ˙̄ωi = [Jiωi]× ω̄i + [Jiωi]× ωd + τi. (13)

For an efficient notation, we define

J = diag (J1, . . . , JN ) τ = (τ1, . . . , τN )

S (ω) = diag
(
[J1ω1]× , . . . , [JNωN ]×

)
ω̄ = (ω̄1, . . . , ω̄N)

Given X ∈ R
n×m and Y ∈ R

p×q, we let X ⊗ Y denote
their Kronecker product, defined as thenp × mq matrix

X ⊗ Y =






x11Y · · · x1mY
...

. . .
...

xn1Y · · · xnmY




 .

Then, we can write the plant error dynamics as

J ˙̄ω = S (ω)ω̄ + S (ω)(1 ⊗ ωd) + τ, (14)

where, recalling (12),̄ω can be written compactly as

ω̄ = ω − 1 ⊗ ωd. (15)

We group the plant error states together and denote their
dynamics, given by (9) and (14), as

x̄p = (q̃, ω̄) ˙̄xp = Fp(xp, τ). (16)

Finally, we let

Xp = S
3N × R

3N xp = (q, ω) ∈ Xp

denote the plant state space and state, respectively. Then,the
synchronization objective is to globally and asymptotically
stabilize the compact set

Ap = {xp ∈ Xp : q̃k = ±i ∀k ∈ M, ω̄ = 0}. (17)

D. Hybrid systems framework

A hybrid system is a dynamical system that allows for both
continuous and discrete evolution of the state. In this paper,
we follow the framework of [17], where a hybrid systemH is
defined by four objects: aflow map, f , governing continuous
evolution of the state by a differential inclusion, ajump map,
G, governing discrete evolution of the state by a difference
inclusion, aflow set, C, dictating where flows are allowed,
and ajump set, D, dictating where jumps are allowed. Given
a statex ∈ R

n, we write a hybrid system in the compact form

H
{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D.

In this paper, the closed-loop system has the flow map continu-
ous, the jump map outer semicontinuous1and locally bounded,

and the flow and jump sets closed. These properties ensure
that asymptotic stability is robust to small perturbations[18].
We refer the reader to [19] for solutions to hybrid systems
subjected to disturbances.

III. ROBUSTLY SYNCHRONIZING HYBRID CONTROLLER

A. The hybrid controller

We define a hybrid controller for each agent as follows. Let

h = (h1, . . . , hM ) ∈ {−1, 1}M =

M times
︷ ︸︸ ︷

{−1, 1} × · · · × {−1, 1}
denote a vector of binary logic variables, wherehk is associ-
ated with link k ∈ M. The controller for theith agent will
define the dynamics for allhk such thatk ∈ M+

i . We define
the state space and state, respectively, as

X = Xp × {−1, 1}M x = (xp, h) ∈ X .

The controller utilizes a hysteresis parameterδ ∈ (0, 1). Then,
we define the flow and jump sets for theith agent as

Ci = {x ∈ X : ∀k ∈ M+
i hkη̃k ≥ −δ}

Di = {x ∈ X : ∃k ∈ M+
i hkη̃k ≤ −δ}. (18)

We define the set-valued mapsgn : R ⇉ {−1, 1} as

sgn(s) =

{

s/|s| s 6= 0

{−1, 1} s = 0.
(19)

Let α ∈ [0, δ). The hybrid controller for theith agent is

∀k ∈ M+
i

ḣk = 0 x ∈ Ci

h+
k ∈ hksgn(hkη̃k + α) x ∈ Di,

(20a)

which takesωi, ωd and q̃k, k ∈ M+
i ∪ M−

i as input and
produces the torque output

Ti(x) = − [Jiωi]× ωd −
M∑

k=1

bikhkℓkǫ̃k − Kiω̄i, (20b)

whereℓk > 0 for all k ∈ M andKi = K⊤
i > 0 for all i ∈ N .

B. The closed-loop system

We define flow and jump sets for the network as

C =
N⋂

i=1

Ci D =
N⋃

i=1

Di. (21)

That is, a jump occurs when at least one agent’s controller
jumps, but otherwise, the network flows. When there exist
i, j ∈ N , with i 6= j and x ∈ Di ∩ Dj , multiple jumps can
occur at the same time instant in no particular order.

Each agent’s controller (20) operates on only a subset of
the variables inh. We model this as follows. Letγik : X ⇉

{−1, 1} andγi : X ⇉ {−1, 1}M be defined as

γik(x) =

{

hksgn(hkη̃k + α) k ∈ M+
i

hk k /∈ M+
i

γi(x) =
[
γi1(x) · · · γiM (x)

]
.

(22)

1A set-valued mapG : X ⇉ Y (⇉ denotes a map to the subsets of
the codomain) is outer semicontinuous if for allx ∈ X and all sequences
xi → x, yi ∈ G(xi) such thatyi → y, we havey ∈ G(x).



We define a set-valued aggregate jump map as

I(x) = {i ∈ N : x ∈ Di} Γ(x) =
⋃

i∈I(x)

{γi(x)}. (23)

We define the aggregate variables

K = diag (K1, . . . , KN ) η̃ = (η̃1, . . . , η̃M )

H = diag (h1, . . . , hM ) ǫ̃ = (ǫ̃1, . . . , ǫ̃M )

L = diag (ℓ1, . . . , ℓM ) .

Then, with the aggregate feedbackτ = T (x), where

T (x) =






T1(x)
...

TN (x)




 = −S (ω)(1⊗ωd)− (BHL ⊗I)ǫ̃−K ω̄,

with entries defined in (20b), the closed-loop error system is

˙̃qk =
1

2
q̃k ⊙ ν(ω̃k) ∀k ∈ M

J ˙̄ω = S (ω)ω̄ − (BHL ⊗ I)ǫ̃ − K ω̄

ḣ = 0
︸ ︷︷ ︸

x ∈ C

q̃+ = q̃

ω̄+ = ω̄

h+ ∈ Γ(x)
︸ ︷︷ ︸

x ∈ D.

(24)
We denote the flow and jump maps of (24) as

F (x) =

[
Fp(xp, T (x))

0

]

G(x) =

[
{x̄p}
Γ(x)

]

and condense (24) into the compact form

x̄ = (x̄p, h)
˙̄x = F (x) x ∈ C

x̄+ ∈ G(x) x ∈ D.

Before proceeding to the main results, we slightly generalize
[3, Lemma 2] by introducing a diagonal matrix.

Lemma 1. For any diagonal matrix

D = diag(d1, . . . , dM ),

the rotational incidence matrix satisfies

B̃(q̃)(D ⊗ I)ǫ̃ = (BD ⊗ I)ǫ̃, (25)

whereB̃ is as defined in(10).

Proof: Let B̃i(q̃) =
[

b̃i1 · · · b̃iM

]
. Expanding the left-

hand side of (25) by means of (10), we see that

B̃i(q̃)(D ⊗ I)ǫ̃ =
∑

k∈M
+

i

dk ǫ̃k −
∑

p∈M
−

i

R(q̃p)
⊤dpǫ̃p. (26)

Now, applying the fact thatR(q̃p)
⊤ǫp = ǫp, it follows from

(1) and matching terms in (26) that

∑

k∈M
+

i

dk ǫ̃k −
∑

p∈M
−

i

R(q̃p)
⊤dpǫ̃p =

M∑

k=1

bikdk ǫ̃k

so that for everyi ∈ N , B̃i(q̃)(D ⊗ I)ǫ̃ = (BiD ⊗ I)ǫ̃, where
Bi =

[
bi1 · · · biM

]
. This proves the result.

We can now prove stability of the compact set

A = {x ∈ X : q̃ = H1⊗ i, ω̄ = 0}

and global attractivity of the set

E = {x ∈ C : (BHL ⊗ I)ǫ̃ = 0, ω̄ = 0}.
First we note that if the graph is connected and acyclic,E = A.

Lemma 2. If 0 < δ < 1, ℓk > 0 for all k ∈ M, and B is
connected and acyclic, then,E = A.

Proof: If B is connected and acyclic, then it has full
column rank. Then, sinceℓk > 0 for all k ∈ M, it follows
that (BHL ⊗ I)ǫ̃ = 0 implies that ǫ̃ = 0 and |η̃k| = 1 for
all k ∈ M. If x ∈ C, then for all k ∈ M, it follows that
hkη̃k ≥ −δ > −1. Finally, sincehk ∈ {−1, 1}, it follows that
hkη̃k = 1 for all k ∈ M. This means that̃qk = (η̃k, ǫ̃k) =
(hk, 0) = hki for all k ∈ M, or equivalently,̃q = H1⊗ i.

Theorem 3. Suppose that0 ≤ α < δ < 1, ℓk > 0 for all k ∈
M, andKi = K⊤

i > 0 for all i ∈ N . Then, the compact set
A is stable and the compact setE ⊃ A is globally attractive
for the closed-loop hybrid system defined by(6), (2b), (20a),
(20b), with error dynamics(24). WhenB is connected and
acyclic,A = E so thatA is globally asymptotically stable.

Proof: Consider the Lyapunov function

V (x) = 21⊤L (1− Hη̃) + 1
2 ω̄⊤J ω̄.

Sinceℓk > 0 for all k ∈ M andJi = J⊤
i > 0 for all i ∈ N ,

V (x) > 0 for all x ∈ X \A andV (x) = 0 for all x ∈ A. We
now examine the evolution ofV along solutions of (24).

First, we calculate the change inV along flows as

〈∇V (x), F (x)〉 = ω̃⊤(HL ⊗ I)ǫ̃

+ ω̄⊤ (S (ω)ω̄ − (BHL ⊗ I)ǫ̃ − K ω̄) .

Recalling from (11) that̃ω = B̃⊤(q̃)ω and noting thatHL
is diagonal, we apply Lemma 1 and see that

ω̃⊤(HL ⊗ I)ǫ̃ = ω⊤B̃(q̃)(HL ⊗ I)ǫ̃ = ω⊤(BHL ⊗ I)ǫ̃.

Then, noting thatS ⊤(ω) = −S (ω), it follows that
ω̄⊤S (ω)ω̄ = 0, and

〈∇V (x), F (x)〉 = −ω̄⊤K ω̄ + ω⊤(BHL ⊗ I)ǫ̃

− (ω − 1⊗ ωd)
⊤ (BHL ⊗ I)ǫ̃.

Finally, applying the property that

(1⊗ ωd)
⊤(BHL ⊗ I) = (1⊤BHL ⊗ ωd),

and recalling that1⊤B = 0, it follows that

〈∇V (x), F (x)〉 = −ω̄⊤K ω̄.

SinceKi = K⊤
i > 0 for all i ∈ N , 〈∇V (x), F (x)〉 ≤ 0 for

all x ∈ C \ A and soV is nonincreasing along flows.
ExaminingV over jumps, we see that for allg ∈ G(x),

V (g) − V (x) ∈
⋃

i∈I(x)

{

2

M∑

k=1

ℓk(hk − γik(x))η̃k

}

,

whereI(x) was defined in (23). Then, since

M∑

k=1

ℓk(hk − γik(x))η̃k =
∑

k∈M
+

i

ℓkhkη̃k(1 − sgn(hkη̃k + α))



1 2 3 4
1 2 3

4

Fig. 1. Serial network with four agents. Addition of fourth link makes a
three-agent cycle.

and fori ∈ I(x), there existsk ∈ M+
i such thathkη̃k ≤ −δ,

it follows that

max
w∈G(x)

V (w) − V (x) ≤ −4ℓkδ ≤ −4δ min
k∈M

ℓk < 0

so thatmaxw∈G(x) V (w)−V (x) < 0 for all x ∈ D. It follows
from [20, Theorem 7.6] thatA is stable.

Applying an invariance principle for hybrid systems, [20,
Theorem 4.7], we see that closed-loop trajectories approach
the largest weakly invariant set contained in

W = {x ∈ C : 〈∇V (x), F (x)〉 = 0} = {x ∈ C : ω̄ = 0}.

Since holdingω̄ ≡ 0 implies that ˙̄ω = 0, it follows from (24)
thatx must converge toE = {x ∈ C : (BHL ⊗I)ǫ̃ = 0, ω̄ =
0}. The result then follows from Lemma 2.

We assert the robustness of stability to measurement and ac-
tuation disturbances in terms of aKL estimate. The following
result is a direct consequence of [18, Theorem 6.6] and the fact
that the closed-loop system satisfies the hybrid basic condi-
tions [17, A1-A3]. In what follows,σB = {x ∈ R

n : |x| ≤ σ}
(n is determined by context) and|x|A = inf{|x−y| : y ∈ A}.

Theorem 4. Under all assumptions of Theorem 3, there exists
a class-KL functionβ : R≥0×R≥0 → R≥0 such that for each
γ > 0 and each compact setK ⊂ R

3N there existsσ > 0 such
that each solution(xp, h, e) to the closed-loop system defined
by (6), (2b), (20a), (20b), and τ = T (xp + e, h), with error
dynamics satisfying

˙̄xp = Fp(xp, T (xp + e, h))

ḣ = 0
︸ ︷︷ ︸

(xp + e, h) ∈ C

x̄+
p = x̄p

h+ ∈ Γ(xp + e, h)
︸ ︷︷ ︸

(xp + e, h) ∈ D,

e : dom e → σB measurable, andx(0, 0) ∈ S
3N × K ×

{−1, 1}M satisfies

|x(t, j)|A ≤ β (|x(0, 0)|A, t + j) + γ ∀(t, j) ∈ domx.

IV. SIMULATION STUDY

In this simulation study, we consider a network of four
identical agents whereJi = diag(4.35, 4.33, 3.664) (as in [1])
andKi = I for i = 1, 2, 3, 4. In each simulation,ωd = 0. For
eachk ∈ M, lk = 1. The initial angular velocities,ωi(0), and
the initial attitude errors,̃qk are specified on a per-simulation
basis later in the section; however,hk(0) = 1 for all k ∈ M.
The network is shown in Fig. 1; whether or not link 4 is
enabled is specified on a per-simulation basis. All simulations
were conducted in MATLAB /Simulink using a fixed-step solver
with step size of1/100s. The unit-quaternion statesqi were
first normalized before subsequent calculations.

For each simulation, we provide plots depicting relative
attitude errors and jumps of the hybrid controller. Thehkη̃k

plot shows, for each link, the logic variablehk multiplied by
η̃k. Discontinuities in this plot occur whenhk changes its sign
over a jump. Theθ(q̃k) plot shows, for each link, the error
angle between two agents across a link. For some quaternion
q = (η, ǫ), its angle from±i is defined asθ(q) = 2 cos−1 (|η|).
Due to space constraints, angular velocity errors are not shown.

The simulations in Figs. 2, 3, and 4 were conducted with
four agents having initial conditions







q⊤1 (0)
q⊤2 (0)
q⊤3 (0)
q⊤4 (0)







=
1√
2







1 1 0 0
−1 1 0 0
1 0 1 0
1 0 1 0







(27)
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
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ω⊤
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





=
9

10







1 1 −1
2 −2 2
1 −1 −1
−1 1 1







(28)

The simulations in Figs. 2 and 4 were conducted with the serial
graph structure pictured in Fig. 1 (i.e.without the dashed link
4). The simulation in Fig. 3 was conducted with the cyclic
graph structure illustrated in Fig. 1 (i.e.with the dashed link
4). With this graph, the initial relative attitude errors are







q̃⊤1 (0)
q̃⊤2 (0)
q̃⊤3 (0)
q̃⊤4 (0)







=







0 −1 0 0
−1/2 1/2 1/2 1/2

1 0 0 0
−1/2 1/2 −1/2 −1/2







. (29)

The simulations in Figs. 2 and 3 illustrate the efficacy of
the proposed hybrid scheme and show how synchronization
can be compromised by cycles within the graph. From the
initial condition described above, the proposed hybrid scheme
synchronizes the attitude of each agent when the graph is
connected and acyclic, as depicted in Fig 2. The introduction
of the 4th (dashed) link from agent 1 to 3 in Fig. 1 destroys
this global synchronization property. As shown in Fig. 3, only
one relative error angle corresponding to the link outside of the
cycle converges to zero. As discussed in [3], the three agents in
the cycle (agents 1,2, and 3) settle into a configuration where
∑3

k=1 θ (q̃k) = 2π. Both simulations haveδ = 0.45.
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Fig. 2. Synchronization with hybrid controller on serial network.

To illustrate how the hybrid scheme avoids unwinding with
δ ∈ (0, 1), we repeated the simulation of Fig. 2 (the serial,
connected, and acyclic network) with one crucial change: we
set δ = 2. This change disables switching of anyhk, since
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Fig. 3. Convergence to non-synchronized state on cyclic network.
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Fig. 4. Link that exhibits unwinding after disabling hysteretic jumps.

η̃khk ≤ −δ can never be satisfied. Then, for eachk ∈ M,
q̃k is driven towardshk(0)i = i. Fig. 4 shows the two
situations in parallel: the plot labeled “Hybrid” showshkη̃k

and θ (q̃k) from Fig. 2, while the plot labeled “Unwinding”
shows the same values whenδ = 2, with the same initial
conditions and parameters, other thanδ. Note thathkη̃k = η̃k

for the “Unwinding” plot, sincehk(0) = 1 and hk cannot
switch during the simulation. Fig. 4 shows that the unwinding-
inducing controller causes large angular oscillations in the
response as it forces̃q3 towardsi. In this case, the relative
angle between the agents increases from zero toπ/2 in
approximately 2s and continues to rotate. The hybrid controller
with δ = 0.45 switches the value ofhk as hkη̃k passes−δ.
In contrast, the unwinding-inducing controller remains set on
forcing q̃3 to i, despite the fact that̃q3 is closer to−i.

V. CONCLUSION

Existing attitude-synchronization schemes fall victim to
topological difficulties: any continuous control will failto
be globally asymptotically stabilizing [11] and discontinuous
quaternion-based state-feedback control laws are not robust
to measurement disturbances [15]. To solve these issues, we
employed a hybrid control law that utilizes a single binary
logic variable associated with each relative attitude error that
hysteretically switches the sign of a torque component applied
by neighboring agents. For connected and acyclic graphs, the
result is a robust global asymptotic synchronization scheme
that manages a trade-off between unwinding and robustness to
measurement disturbances through the hysteresis width. While
we have treated the case when the desired angular velocity
is constant, it is possible to extend the results to the time-
varying case using a similar procedure to [15]. The control law

proposed in this note depends upon knowledge of the inertia
matrix and it may be possible to eliminate this dependence by
the addition of adaptive mechanisms (e.g. [21]). Finally, the
synchronization scheme presented in this note requires that
neighboring agents can communicate logic variables and have
have a consistent quaternion representation of their relative
attitude error. It may be possible to relax these restrictions;
however, this is topic for future research.
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