
hsbook December 16, 2011 6x9

Chapter One

Introduction

The model of a hybrid system used in this book is informally presented in this
section. The focus is on the data structure and on modeling. Several examples
are given, including models of hybrid control systems. The model of a hybrid
system is then related to other modeling frameworks, such as hybrid automata,
impulsive differential equations, and switching systems. A formal presentation
of the model, together with a rigorous definition of the solution, is postponed
until Chapter 2.

1.1 THE MODELING FRAMEWORK

The model of a hybrid system used in this book can be represented in the
following form: 




x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G (x) .
(1.1)

A reader less familiar with set-valued mappings and differential or difference
inclusions may choose to keep in mind a less general representation involving
equations: 




x ∈ C ẋ = f (x)

x ∈ D x+ = g (x) .
(1.2)

This representation suggests that the state of the hybrid system, represented
by x, can change according to a differential inclusion ẋ ∈ F (x) or differential
equation ẋ = f(x) while in the set C, and it can change according to a difference
inclusion x+ ∈ G(x) or difference equation x+ = g(x) while in the set D. The
notation ẋ represents the velocity of the state x, while x+ represents the value
of the state after an instantaneous change.

A rigorous statement of what constitutes a model of a hybrid system and
what is a solution to the model is postponed until Chapter 2. This chapter
focuses on modeling of various hybrid systems in the form (1.1) or (1.2).

To shorten the terminology, the behavior of a dynamical system that can
be described by a differential equation or inclusion is referred to as flow. The
behavior of a dynamical system that can be described by a difference equation
or inclusion is referred to as jumps. This leads to the following names for the
four objects involved in (1.1) or (1.2):

1

Copyrighted Material

2

hsbook December 16, 2011 6x9

CHAPTER 1

• C is the flow set.

• F (or f) is the flow map.

• D is the jump set.

• G (or g) is the jump map.

This book discusses hybrid systems in finite-dimensional spaces, that is, the flow
set C and the jump set D are subsets of an n-dimensional Euclidean space Rn.
For consistency in the model, it will be required that the function f , respectively
g, be defined on at least the set C, respectively D. In the case of set-valued flow
and jump maps, it will be required that F , respectively G, have nonempty values
on C, respectively D.

As the model in (1.2) or (1.1) suggests, the flow set, the flow map, the jump
set, and the jump map can be specialized to capture the dynamics of purely
continuous-time or discrete-time systems on Rn. The former corresponds to a
flow set equal to Rn and an empty jump set, while the latter can be captured
with an empty flow set and a jump set defined as Rn.

1.2 EXAMPLES IN SCIENCE AND ENGINEERING

Many mechanical systems experience impacts. Examples range from elaborate
systems such as walking robots, through colliding billiard balls or the New-
ton’s cradle, to a seemingly simple bouncing ball. Such systems flow in between
impacts. A rough approximation of the impacts suggests considering them as
instantaneous, and hence, as leading to jumps in the state of the system. Con-
sequently, systems with impacts can be viewed as hybrid systems.

The first example is the mentioned bouncing ball. This example, and some
of the later ones in this chapter, reappear throughout the book as illustrations
of various properties and results.

Example 1.1. (Bouncing ball) Consider a point-mass bouncing vertically
on a horizontal surface. In between impacts the point-mass flows, experiencing
acceleration due to gravity. At impacts, when the point-mass hits the surface,
the change in velocity is approximated as being instantaneously reversed and
possibly diminished in magnitude due to dissipation of energy.

The state of the point-mass can be described with

x =

(
x1
x2

)
∈ R

2,

where x1 represents the height above the surface and x2 represents the vertical
velocity. It is natural to say that flow is possible when the point-mass is above
the surface, or when it is at the surface and its velocity points up. Hence, the
flow set is

C =
{
x ∈ R

2 : x1 > 0 or x1 = 0, x2 ≥ 0
}
.

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

3

The choice of a flow map is delicate at one point in C, that is, at x = 0. First,
it is natural to say that

f(x) =

(
x2
−γ

)
when x1 > 0 or x1 = 0, x2 > 0,

where −γ is the acceleration due to gravity. Second, it is natural to say that
f(0) = 0; it has to be accepted, though, that the resulting flow map f is not
continuous at 0. Impacts happen when the point-mass is on the surface with
negative velocity. Hence, the jump set is

D =
{
x ∈ R

2 : x1 = 0, x2 < 0
}
.

The jump map is given, for some λ ∈ (0, 1), by

g(x) =

(
0

−λx2

)
.

An alternative choice for g is the vector −λx since this function agrees with g(x)
on the set D. Figure 1.1 illustrates the data of the bouncing ball system.

C

D

f(x)

x1

x2

xx′

g(x′)

Figure 1.1: Flow and jump sets for the bouncing ball system in Example 1.1.

In the bouncing ball model above, every jump is followed by a period of flow.
In other words, consecutive jumps do not happen. Consecutive jumps can hap-
pen in other systems with impacts, like in a model of Newton’s cradle. Newton’s
cradle consists of at least three identical steel balls, each of which is suspended
on a pendulum. At the stationary state, the balls are aligned along a horizontal
line. Lifting a ball from one end of the alignment and releasing it leads to a
collision of the lifted ball with the remaining balls. After the collision, the ball
that was lifted and released becomes stationary and the ball on the other end
of the alignment swings up. One way to model this interaction is to consider a
sequence of collisions between pairs of adjacent balls.

A number of biological systems, such as groups of fireflies or crickets, are able
to produce synchronized behavior, flashing or chirping, respectively, through a
dynamical mechanism that can be viewed as hybrid.

Copyrighted Material

4

hsbook December 16, 2011 6x9

CHAPTER 1

Example 1.2. (Flashing fireflies) The timing of flashes of a firefly is de-
termined by the firefly’s internal clock. In between flashes, the internal clock
gradually increases. When it reaches a threshold, a flash occurs and the clock
is instantly reset to 0. In a group of fireflies, the flash of one firefly affects
the internal clock of all other fireflies. That is, when a firefly witnesses a flash
from another firefly, its internal clock instantly increases to a value closer to the
threshold.

To model the internal clocks of n fireflies, normalize units so that each firefly’s
internal clock, denoted xi, takes values in the interval [0, 1], i.e., every threshold
is 1. The flow set is then

C = [0, 1)n := {x ∈ R
n : xi ∈ [0, 1), i = 1, 2, . . . , n} .

In between the flashes, every clock state flows toward the threshold according
to the differential equation ẋi = fi(xi), where fi : [0, 1] → R>0, i = 1, 2, . . . , n,
is continuous. This defines the flow map f .

Jumps occur when one of the internal clocks reaches the threshold. Thus,
the jump set is

D =
{
x ∈ [0, 1]n : max

i
xi = 1

}
.

One method to model the (instantaneous) changes in internal clocks during a
flash is through the jump map defined by

g(x) =




g1(x1)
g2(x2)

...
gn(xn)


, gi(xi) =

{
(1 + ε)xi, when (1 + ε)xi < 1,

0, otherwise,

where ε > 0. This indicates that the internal clock xi of a firefly witnessing a
flash increases to (1 + ε)xi, unless this would result in reaching or exceeding
the threshold, in which case the internal clock is reset to 0 together with the
internal clock of the flashing firefly. Figure 1.2 illustrates the evolution of the
clock variable x for n = 2 and n = 10 when fi ≡ 1 for each i.

Example 1.3. (Power control with a thyristor) Consider the electric circuit
in Figure 1.3(a) for controlling the power delivered to a load. The load consists
of a resistor R and an inductance L that is connected to a power source through
a thyristor with a gate control port. A simple model describing the operation
of the thyristor is as follows. When in conduction mode, which can be triggered
through the gate port, the thyristor allows flow of current from anode to cathode,
which are the terminals denoted as a+ and c− in Figure 1.3(a), respectively. It
will turn off once the current from anode to cathode becomes zero. The load
current is denoted by iL, its voltage by vL, and the capacitor’s voltage by v◦.
The sinusoidal input voltage with angular frequency ω is denoted by vs and is
generated by the output vs = z1 of the system

ż1 = ωz2, ż2 = −ωz1. (1.3)

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

5

x

t1 t2 t3 t4

0

0 2

1

1

(a) n = 2

x

0

0 5 10 15

1

t[s]

(b) n = 2

x

0

0 5 10 15

1

t[s]

(c) n = 10

Figure 1.2: Evolution of coupled impulsive oscillators in fireflies with unitary
threshold and fi ≡ 1 for each i.

A discrete state q ∈ {0, 1} is used to indicate whether the thyristor is on (q = 1)
or off (q = 0), while a continuous state τ ∈ R is used to model the firing events
in the gate port, given as a function of the firing angle parameter α ∈ (0, π).

Copyrighted Material

6

hsbook December 16, 2011 6x9

CHAPTER 1

a+ c−

vs = z1
R◦

C◦

R

L
gate

thyristor

load

v◦ vL

iL

(a) Circuit diagram.

−8

−6

−4

−2

2

4

6

8

12

20

z 1
,i

L
q,
τ

t[s]

t[s]

0

0

0

0

5

10

10

15

50

50

100

100

200

200

250

250

300

300

(b) System trajectories. Parameters: R =
1, L = 0.5, C◦ = 10, R◦ = 0.25, ω =
0.1/(2π), α = 20ω, x(0, 0) = [0 1 0 0 0 0]⊤.

Figure 1.3: Power control circuit with thyristor.

By defining the state of the system to be

x := (z1, z2, iL, v◦, q, τ) ∈ R
6,

the continuous dynamics are defined by

F (x) =




ωz2

−ωz1
q
(
v◦−R iL

L

)

− 1
C◦R◦

v◦ +
1

C◦R◦
z1 − 1

C◦
iL

0

1




.

These equations can be derived applying electrical circuit theory for each mode
of operation. Note that q̇ = 0 indicates that the discrete state remains constant
during flows, and that τ̇ = 1 enforces that τ counts the flow time in between
switches. Assuming that when the thyristor is in off mode the load current is
zero, two conditions trigger switches of the thyristor mode:

• When the thyristor is off (q = 0, iL = 0), the firing angle has been reached
(τ ≥ α/ω), and the capacitor voltage is positive (v0 > 0), then switch to
on (q = 1).

• When the thyristor is on, the load current is zero and decreasing (iL = 0,
i̇L < 0), then switch to off.

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

7

These conditions can be captured with the flow and jump sets

C :=
{
x : q = 0, τ <

α

ω
, iL = 0

}
∪ {x : q = 1, iL > 0} ,

D :=
{
x : q = 0, τ ≥ α

ω
, iL = 0, v0 > 0

}
∪ {x : q = 1, iL = 0, v0 < 0} ,

and the jump map

G(x) := (z2 z1 iL v◦ 1− q 0)
⊤
.

At every jump, q is toggled and the timer is restarted to trigger the next jump
to on mode at the programmed firing angle. The top plot in Figure 1.3(b) shows
the input voltage with ω = 0.1/(2π) rad/sec and the resulting load’s current
with a firing angle of 20ω rad, while the bottom plot shows the associated logic
and timer states.

1.3 CONTROL SYSTEM EXAMPLES

The control of a continuous-time system with state feedback faces both practical
and theoretical obstacles: precise information about the state may not be avail-
able at all times, even if frequent measurements of the state are available; the
behavior of the closed-loop system may be very sensitive to errors in the state
measurements; or satisfactory performance of the closed-loop system may not
be achievable by using just one state-feedback controller. These issues provide
motivation for the use of hybrid control, several simple instances of which are
described below.

Example 1.4. (Sample-and-hold control) Given a continuous-time control
system and a state-feedback controller, associating with each state of the sys-
tem the control to be applied there, a sample-and-hold implementation of the
feedback is essentially as follows:

• sample: measure the state of the system, and use the feedback controller
to obtain the control value based on the measurements;

• hold: apply the computed constant control value for certain amount of
time;

and repeat the procedure infinitely many times. The processes of sampling and
computing the control can be modeled as an instantaneous event. This leads
to a continuous behavior of the closed-loop system in between the sampling
times, according to the continuous-time dynamics of the control system and the
constant value of the control, and an instantaneous change at every sampling
time, when the control value is instantly updated.

A schematic example of a sample-and-hold control system is in Figure 1.4,
where a digital device controls an analog plant. The basic operation of the
system is as follows. The output of the plant is sampled by an analog-to-digital

Copyrighted Material

8

hsbook December 16, 2011 6x9

CHAPTER 1

ZOH
A/DD/A

T

T

analog
plant

algorithm

Figure 1.4: Digital control of a continuous-time nonlinear system with sample-
and-hold devices.

converter, denoted A/D. The digitized output is processed by the algorithm, and
the result is applied to the plant through a digital-to-analog converter, denoted
D/A. For a periodic A/D sampler and a zero-order hold (ZOH) type of D/A,
the output samples and control input updates occur at a fixed sampling period
T .

To model such a system as a hybrid system, suppose that the control system
is given by

ż = f̃(z, u), (1.4)

where z ∈ Rnp is the state of the system, u ∈ Rnc is the control variable, and
f̃ : Rnp ×Rnc → Rnp is a function. Let the state-feedback controller be given by
u = κ(z). The standard closed-loop, without a sample-and-hold strategy, leads
to a continuous-time closed-loop system

ż = f̃(z, κ(z)).

A sample-and-hold implementation can be modeled as a hybrid system, with
the state variable

x =



z
u
τ


 ∈ R

np+nc+1.

Note that, for simplicity, the control input u itself is taken to be a state variable
for the closed-loop system resulting from sample-and-hold control. Suppose that
the sampling period is T . Flow occurs when the timer variable τ belongs to the
interval [0, T). During flow, the variable u remains constant, τ keeps track of
elapsed time, and the state of the plant z evolves according to the dynamics in
(1.4). Thus, the flow set and the flow map can be taken to be

C = R
np × R

nc × [0, T), f(x) =



f̃(z, u)

0
1


. (1.5)

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

9

Jumps occur when the timer variable reaches T . At jumps, the variable u is
updated to κ(x), the timer is reset to 0, and the state of plant does not change.
Hence the jump set and the jump map can be taken to be

D = R
np × R

nc × {T }, g(x) =




z
κ(z)
0


. (1.6)

Example 1.5. (A quantized control system) Some control systems that
use quantized measurements include a mechanism for adjusting quantization
parameters on-line. These adjustments are made to vary the accuracy of the
measurements at different locations in the state space. For example, consider
the control system

ζ̇ = ζ + u (1.7)

with measurements
y = µq(ζ/µ),

where q : R → R is a function that represents measurement quantization and
µ is a positive parameter that can be adjusted discretely as part of a control
algorithm. The main requirement on the function q is that there exist positive
real numbers ∆ and M with ∆ ≪M such that

|z| ≤M implies |q(z)− z| ≤ ∆

|q(z)| ≤M −∆ implies |z| ≤M .

In this way, the value q(z) gives some rough information about the value of z.
An adaptive, quantized hybrid feedback law could consist of

• a feedback rule u = −ky, where k > 1, designed to steer the state ζ of
(1.7) to zero;

• a discrete-time update rule for the parameter µ;

• a specification of sets where flows are allowed because µ does not need to
be adjusted;

• a specification of sets where jumps are allowed because the parameter µ
should be increased or decreased to put the argument of q into an accept-
able range.

For example, letting the positive real numbers ℓin, ℓout, λin, and λout satisfy
ℓin < ℓout and λin < 1 < λout, consider taking the flow set to be

C = {(ζ, µ) ∈ R× (0,∞) : |q(ζ/µ)| ∈ [ℓin, ℓout]} ,

the jump set to be

Din = {(ζ, µ) ∈ R× (0,∞) : |q(ζ/µ)| < ℓin}
Dout = {(ζ, µ) ∈ R× (0,∞) : |q(ζ/µ)| > ℓout}
D = Din ∪Dout,

Copyrighted Material

10

hsbook December 16, 2011 6x9

CHAPTER 1

and the jump map to be

g(ζ, µ) =

{
λinµ ∀(ζ, µ) ∈ Din

λoutµ ∀(ζ, µ) ∈ Dout.

The hybrid control algorithm increases or decreases the size of µ in an attempt to
drive the state to the flow set. Depending on the initial value of (ζ, µ), multiple
consecutive jumps may be required to reach the flow set. Ideally, ℓin and ℓout
are chosen based on M and ∆ so that, after some point in time, the system
no longer reaches Dout, it repeatedly reaches Din, and |q(ζ/µ)| ≤ M − ∆ so
that |ζ/µ| ≤ M . In this case, µ repeatedly shrinks by the factor λin and the
convergence of µ to zero implies that ζ also converges to zero.

Example 1.6. (Reset linear control systems) In classical control theory, the
output of a controller of a continuous-time plant evolves continuously in time.
Reset control systems differ from those traditional controllers as their output
experiences jumps caused by resets of the controller state. These resets may
depend on the value of the controller inputs. In some scenarios, in comparison
to (non-reset) classical controllers, reset controllers lead to improved system
performance.

The first reset controller that appeared in the literature is the so-called Clegg
integrator, a single-input/single-output linear controller that resets its output to
zero when its input and output do not have the same sign. Figure 1.5 shows the
response of the Clegg integrator to a sinusoidal input. During flows, the Clegg
integrator’s output is the integral of its input. Since the Clegg integrator does
not permit the signs of its input and output to differ from one another, it forces
a jump in its state when the input changes sign. After such a jump, the system
flows again.

A schematic example of a plant controlled by a reset control system is in
Figure 1.6. If the controller’s input, which in Figure 1.6 is the error between
the plant output and the reference input, and the controller’s output satisfies
a reset condition then the controller state is reset to a pre-specified value. The
closed-loop system is a hybrid system with flows interrupted by state-dependent
jumps, which are triggered when the reset condition is satisfied.

Consider a reset linear control system where the plant state is xp and the
controller state is xc. The closed-loop system state is

x =

(
xp
xc

)
∈ R

np+nc .

Since the closed-loop system without resets is linear, the flow map is a linear
function

f(x) = Afx.

The resetting mechanism is also linear, so that the jump map has the form

g(x) = Agx.

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

11

y

t[s]

0

0

1

−1

5 10 15

Figure 1.5: Output response y (solid) of Clegg integrator to a sinusoidal input
(dashed).

reference Controllere
Plant

reset condition

reset

Figure 1.6: Closed-loop system with reset controller.

Resets typically occur when the state x satisfies some quadratic inequality, per-
haps coming from insisting that two variables are always related by having the
same sign. Thus, the jump set may have the form

D =
{
x ∈ R

np+nc : xTMx ≤ 0
}

where M = MT , that is, M is a symmetric matrix. One then may consider
taking C = Rnp+nc \ D. A particular construction of these sets is depicted in
Figure 1.7.

Notice that the origin does not belong to the flow set but belongs to the
jump set and that g maps the origin back to the origin. Thus, from the origin
it is only possible to jump without ever flowing. To address this situation, one
may consider forcing a small amount δ > 0 of flow time between jumps. This
can be done with a technique called “temporal regularization.” In this case, one

Copyrighted Material

12

hsbook December 16, 2011 6x9

CHAPTER 1

C

C

D

D

xp

xc

Figure 1.7: Examples of flow and jump sets for reset control with plant output
y = xp and input u = xc (np = nc = 1). The matrix M ∈ R2×2 is given by
(0, 1; 1, 0), which enforces that flows occur when the components of x = (xp, xc)
have the same sign.

augments the state with a timer variable τ and takes the jump set to be

D :=
{
x ∈ R

np+nc , τ ∈ R : xTMx ≤ 0 , τ ≥ δ
}
.

The flow set is taken to be

C :=
{
x ∈ R

np+nc , τ ∈ R : xTMx > 0 or τ ∈ [0, δ]
}
.

The jump map is augmented with the equation τ+ = 0 and the flow map is
augmented with the equation τ̇ = 1 for τ ∈ [0, 2δ), τ̇ = 0 for τ = 2δ, which, in
particular, keeps τ bounded.

Example 1.7. (Combining local and global controllers) In several control
applications, the design of a continuous-time feedback controller that performs
a particular control task is not possible. For example, in the problem of globally
stabilizing a multi-link pendulum to the upright position with actuation on the
first link only, topological constraints rule out the existence of a continuous-time
feedback controller that accomplishes this task globally and robustly. However, it
is often possible to overcome such topological obstructions using hybrid feedback
control to combine continuous-time feedback controllers that achieve certain
subtasks.

To illustrate this idea, consider the task of combining a high-performance
controller that works only near a reference point with a controller that is able to
steer every trajectory toward the reference point, but does not have very good
performance near that point. We refer to these controllers as local and global
controllers, respectively.

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

13

reference

supervisor

local

global

controller

controller

e
plant

Figure 1.8: Closed-loop system combining local and global controllers.

Figure 1.8 depicts a block diagram of the control mechanism being described.
Each controller measures the error signal given by the plant output and reference
input. The controller selection is performed by a supervisor and is based on
the plant’s output and on the controller currently applied. Switching from one
controller to the other results in a jump in the logic variable. In between the
jumps, continuous evolution of the state of the system occurs.

More precisely, suppose that each of the two state feedback control laws,
κ1 and κ2, asymptotically stabilizes the origin for the control system (1.4).
Furthermore, suppose that κ1 produces efficient transient responses, but works
only near the origin, while κ2 produces less efficient transients but works globally.
The goal is to build a hybrid feedback law that globally asymptotically stabilizes
the origin while using κ1 near the origin and κ2 far from the origin.

D1

D2

C1

C2

q = 1 q = 2

originorigin

Figure 1.9: Sets for the hybrid controller combining control laws κ1 and κ2.

To eliminate the possibility of several instantaneous switches between con-
trollers, a hysteresis mechanism is used. With the sets Ci, Di, i = 1, 2 as in
Figure 1.9, the switching idea is as follows: if κ1 is being used and z ∈ C1, do
not switch, but if z ∈ D1 , switch to κ2; while if κ2 is being used and z ∈ C2, do
not switch, but if z ∈ D2, switch to κ1. Thus, when κ1 is used, continuous evolu-
tion takes place when z ∈ C1 and is described by ż = f̃(z, κ1(z)), while a jump

Copyrighted Material

14

hsbook December 16, 2011 6x9

CHAPTER 1

takes place when z ∈ D1 and results in q toggled to 2. When κ2 is used, con-
tinuous evolution takes place when z ∈ C2 and is described by ż = f̃(z, κ2(z)),
while a jump takes place when z ∈ D2 and results in q toggled to 1. A general
approach to modeling systems of this kind, where a logical variable (here equal
to either 1 or 2) determines the hybrid dynamics, is given in Section 1.4.1. Here,
it is illustrated that this can be modeled by including a logical variable q, taking
values in {1, 2}, in the state

x =

(
q
z

)
∈ R

np+1,

and with the following sets and functions:

C = ({1} × C1) ∪ ({2} × C2), f (x) =


 0

f̃(z, κq(z))


,

D = ({1} ×D1) ∪ ({2} ×D2), g (x) =


3− q

z


.

(1.8)

In fact, since 3 − q = 2 when q = 1 and 3 − q = 1 when q = 2, the state q is
toggled when z enters the set Dq.

Finally, in order for the hybrid feedback law to work as intended, there should
be a relationship betweenD2 and C1. In particular, if solutions to ż = f̃(z, κ1(z))
start in D2, they should remain in a closed set that is a strict subset of C1;
moreover, any trajectory of this system that starts in C1 and remains in C1

should converge to the origin. Since the local controller is locally asymptotically
stabilizing, both of these properties can be induced by first picking C1 to be a
sufficiently small neighborhood of the origin and then picking D2 to be another
sufficiently small neighborhood of the origin strictly contained in C1.

To illustrate this hybrid feedback construction, consider a positioning con-
trol system used for data read/write in hard disk drives. The objective of the
control algorithm is to provide precise positioning of the magnetic heads to read
and write information from the disk’s tracks. A technique utilized in commer-
cial devices for this purpose is called mode-switching control. It combines two
controllers for stabilizing the position of the magnetic head to a desired position
p∗ on the disk with zero velocity: a controller (global) capable of steering it to
a neighborhood of p∗ and a controller (local) capable of stabilizing it to p∗ with
high precision. The plant can be modeled as a double integrator ṗ = v, v̇ = u
with state z = (p, v), where p ∈ R is the position, v ∈ R the velocity of the
magnetic head of the hard disk drive, and z∗ = (p∗, 0) is the point to stabilize.
Suppose that the global controller is given by κ2 and the local controller by κ1.
The hybrid control scheme leading to the closed-loop system in (1.8) can be
employed to accomplish the control objective. The set C1 can be taken to be a
compact neighborhood of z∗ that is contained in the basin of attraction for z∗

when using κ1, and D2 can be taken to be a compact neighborhood of z∗ such

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

15

that solutions using κ1 that start in D2 do not reach the boundary of C1. Then,
C2 = R2 \D2 and D1 = R2 \ C1.

1.4 CONNECTIONS TO OTHER MODELING FRAMEWORKS

The models (1.1) and (1.2) can describe several classes of hybrid systems that are
frequently modeled in different frameworks. These different frameworks include
hybrid automata, impulsive differential equations or inclusions, and switching
systems. This section illustrates how models from these frameworks can be trans-
lated to (1.1) or (1.2). The benefit of passing to (1.1) or (1.2) is that the asymp-
totic stability theory developed in this book can then be applied to a broader
class of systems. For example, as described in Section 8.5, invariance principles
for hybrid systems can be applied to switching systems.

1.4.1 Systems with explicit “discrete states” or “logical modes”

The state in several hybrid systems can be decomposed into a “continuous state”
and a “discrete state.” The discrete state takes values in a discrete, often finite,
set. It may represent a mode in which the system, or part of the system, is
operating. For example, the discrete state can take values representing modes
such as “on” or “off”; “first gear,” “second gear,” “third gear”; “controller 1”
or “controller 2” as in Example 1.7; and so on. The discrete state, by its na-
ture, can change only via a jump. The continuous state can change via flow
and, sometimes, via a jump too. It may represent position, velocity, and other
continuous-valued variables. For example, in a temperature control system, a
discrete state can indicate whether a thermostat is “on” or “off” while a con-
tinuous state can indicate the temperature. In such a case, the continuous state
may not change via a jump. If the discrete state represents whether a connection
in an electrical circuit is “open” or “closed,” as it does in Example 1.3, and the
continuous variable represents the current in some part of the circuit, it may be
natural to allow for instantaneous changes in the continuous variable that are
simultaneous with changes in the discrete variable.

A system with continuous and discrete states usually can be represented by
a set Q = {1, 2, . . . , qmax}, and for each q ∈ Q, a flow set Cq ⊂ Rn, a flow map
Fq : Rn ⇉ Rn, a jump set Dq ⊂ Rn, and a jump map Gq : Rn ⇉ Q × Rn. The
suggestive form to represent such a system, parallel to (1.1), is





z ∈ Cq ż ∈ Fq (z)

z ∈ Dq (q, z)
+ ∈ Gq (z) .

(1.9)

When the discrete variable q has the value q∗ ∈ Q and the continuous variable
z is in the flow set Cq∗ , flow is possible according to the inclusion ż ∈ Fq∗(z).
During flow, the discrete variable remains constant. The condition q̇ = 0 is not
explicitly mentioned in (1.9). When the discrete variable has the value q∗ ∈ Q

Copyrighted Material

16

hsbook December 16, 2011 6x9

CHAPTER 1

and the continuous variable z is in the jump set Dq∗ , a jump is possible, with
both q and z changing values according toGq∗ . For systems where the continuous
variable does not change via jumps, the inclusion (q, z)+ ∈ Gq(z) can be replaced
by the simpler q+ ∈ Gq(z), in which case the equation z+ = z is usually not
mentioned explicitly.

The system (1.9) can be formulated in the form (1.1). To this end one takes

x =

(
q
z

)
∈ R

n+1

and

C =
⋃

q∈Q

({q} × Cq) F (x) = (0, Fq(z)),

D =
⋃

q∈Q

({q} ×Dq) G (x) = Gq(z).
(1.10)

This construction covers the one used in Example 1.7.

Example 1.8. (Combining local and global controllers - revisited) The flow
and jump maps of Example 1.7 can be written as in (1.10) by defining

Fq(z) := f̃(z, κq(z)), Gq(z) :=

(
3− q
z

)
.

The flow and jump sets were already defined in Example 1.7 as in (1.10).

The following example illustrates the use of a discrete state to explicitly
model an on/off mechanism.

Example 1.9. (Thermostat) On/off control of a heater for temperature
control of a room can be modeled with an explicit discrete state. The evolution
of the room’s temperature z can be approximated by the differential equation

ż = −z + z0 + z∆q , (1.11)

where z0 represents the natural temperature of the room, z∆ the capacity of the
heater to raise the temperature in the room by always being on, and q the state
of the heater, which can be either 1 (“on”) or 0 (“off”). Typically, it is desired
to keep the temperature between two specified values zmin and zmax, given in
Fahrenheit units, satisfying the following relationship

z0 < zmin < zmax < z0 + z∆ .

For purposes of illustration, consider the case when zmin = 70 and zmax =
80. A control algorithm that attempts to keep the temperature between such
thresholds is the following:

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

17

if q=1 and z >= 80 then

q = 0

elseif q = 0 and z <= 70 then

q = 1

end

This algorithm implements the following logic: if the heater is “on” and the
temperature is larger than 80, then turn off the heater, while if the heater is
“off” and the temperature is smaller than 70, then turn on the heater. With
this algorithm, the temperature of the system evolves as shown in Figure 1.10,
where parameters z0 = 60 and z∆ = 30 were used.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0

10

20

30

40

50

60

70

80

90

100

t[s]

z

Figure 1.10: Temperature control. Evolution of temperature with control algo-
rithm.

The control logic above results in a hybrid system of the form (1.10) with

Fq(z) := −z + z0 + z∆q, Gq(z) :=

(
1− q
z

)
,

C0 := {z : z > 70} , C1 := {z : z < 80} ,
D0 := {z : z ≤ 70} , D1 := {z : z ≥ 80} .

1.4.2 Hybrid automata

Systems with explicit “discrete states” or “logical modes” where, in each logical
mode, different jump maps are specified on different subsets of a jump set, or
where the jumps are modeled by an automaton, can also be molded into the
framework of (1.1). Such systems are usually given by

• a set of modes Q, which is identified here with {1, 2, . . . , qmax};

Copyrighted Material

18

hsbook December 16, 2011 6x9

CHAPTER 1

• a domain mapping Domain, giving for each q ∈ Q a set Domain(q) in
which the continuous state z may evolve;

• a flow map f : Q×Rn → Rn, which describes the continuous evolution of
the continuous state variable z; in fact, it is enough that f(q, ·) be defined
on Domain(q), for each q ∈ Q;

• a set of edges Edges ⊂ Q×Q, identifying pairs (q, q′) such that a transition
from q to q′ is possible;

• guard conditions which identify, for each edge (q, q′) ∈ Edges, the set
Guard(q, q′) to which the continuous state z has to belong for transitions
from q to q′ to be enabled;

• reset map Reset : Edges×Rn → Rn, which describes, for each edge (q, q′) ∈
Edges and continuous state z ∈ Rn, the jump of the continuous state
during a transition from q to q′; in fact, it is enough for Reset(q, q′, ·)
to be defined on Guard(q, q′). When the continuous variable z remains
constant at jumps from q to q′, the reset map Reset(q, q′, ·) can be taken
to be the identity.

To capture the dynamics resulting from such a set of data in the format (1.9),
for each q ∈ Q, consider

Cq = Domain(q),

Fq(z) = f(q, z) ∀ z ∈ Cq,

Dq =
⋃

(q,q′)∈Edges

Guard(q, q′),

Gq(z) =
⋃

{q′:z∈Guard(q,q′)}


 q′

Reset(q, q′, z)


 ∀ z ∈ Dq.

(1.12)

The values of Fq and Gq outside of Cq and Dq, respectively, can be taken to
be empty. Such a definition of Gq naturally introduces set-valuedness. Indeed,
Gq(z) is a set whenever z is an element of two different guard sets Guard(q, q′)
and Guard(q, q′′). In fact, Gq(z) is a set in such a case even when all reset maps
are identities, in other words, when z does not change during jumps.

Example 1.10. (Modeling a hybrid automaton) Consider the hybrid au-
tomaton shown in Figure 1.11, with the set of modes Q = {1, 2}; the domain
map given by

Domain(1) = R≥0 × R, Domain(2) = R× R≥0;

the flow map, for all z ∈ R
2, given by

f(1, z) =

(
1
0

)
, f(2, z) =

(
z2
−z1

)
;

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

19

the set of edges given by Edges = {(1, 1), (1, 2), (2, 1)}; the guard map given by

Guard(1, 1) = {0}×R≥0, Guard(1, 2) = {0}×R≤0, Guard(2, 1) = [1, 3]×{0};

and the reset map, for all z ∈ R2, given by

Reset(1, 1, z) = (−1, 0), Reset(1, 2, z) = z, Reset(2, 1, z) = −z.

ż = f(1, z) ż = f(2, z)

z ∈ Guard(1, 2) ⇒ z+ = Reset(1, 2, z)

z+ = Reset(2, 1, z) ⇐ z ∈ Guard(2, 1)

z ∈ Domain(1) z ∈ Domain(2)

z ∈ Guard(1, 1) ⇒ z+ = Reset(1, 1, z)

Figure 1.11: Two modes of the hybrid automaton.

The sets Guard(1, 1) and Guard(1, 2) overlap, indicating that in mode 1, a
reset of the state z to (−1, 0) or a switch of the mode to 2 is possible from
z = 0. Formulating this hybrid automaton as a hybrid system with explicitly
shown modes (1.9) leads to C1 = Domain(1) = R≥0 × R, C2 = Domain(2) =

R×R≥0, F1(z) = f(1, z) =

(
1
0

)
, F2(z) = f(2, z) =

(
z2
−z1

)
, D1 = Guard(1, 1)∪

Guard(1, 2) = {0} × R, a set-valued jump map G1 given by

G1(z) =





(1,−1, 0), if z1 = 0, z2 > 0,
(1,−1, 0)∪ (2, z), if z = 0,

(2, z), if z1 = 0, z2 < 0,

and G2(z) = (1,−z). Formulating the system with explicitly shown modes just
described as (1.1) leads to a hybrid system in R

3, where x1 corresponds to q, x2

Copyrighted Material

20

hsbook December 16, 2011 6x9

CHAPTER 1

corresponds to z1, x3 corresponds to z2, and the data is given by

C = ({1} × R≥0 × R) ∪ ({2} × R× R≥0) ,

F (x) =

{
(0,−1, 0), if x1 = 1,

(0, x3,−x2), if x1 = 2,
,

D = ({1} × {0} × R) ∪ ({2} × [1, 3]× {0}) ,

G(x) =









(1,−1, 0), if x2 = 0, x3 > 0,

(1,−1, 0) ∪ (2, x2, x3), if x2 = 0, x3 = 0, if x1 = 1,

(2, x2, x3), if x2 = 0, x3 < 0,

(1,−x2,−x3), if x1 = 2.

Figure 1.12 gives a pictorial representation of the data of the hybrid automaton
as a hybrid system.

−1 31

Guard(2, 1)

Guard(1, 1)

Guard(1, 2)

Domain(1)

Domain(2)

x2 x2

x3 x3

x1 = 1 x1 = 2

Figure 1.12: Data for the hybrid system in Example 1.10.

1.4.3 Impulsive differential equations

Consider the differential equation

ż = f(z),

for some f : Rn → R
n, with impulses leading to instantaneous change at pre-

determined times t1, t2, t3, . . . , according to

∆z(ti) = g(z, ti),

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

21

for some g : Rn × T → Rn and T = {t1, t2, . . . }. For simplicity, suppose that
{ti}∞i=1 is an increasing and divergent to ∞ sequence of positive numbers. Such
impulsive differential equations can be modeled in the format (1.1). The straight-
forward approach is to consider x = (z, τ) ∈ Rn+1 and the hybrid system

C = R
n × (R≥0 \ T) F (x) =


f(z)

1




D = R
n × T G (x) =


z + g(z, τ)

τ




and consider initial conditions with τ = 0, so that the τ -variable represents time.
The discussion in Chapter 4 will show that such a formulation is not robust to
perturbations. A preferred approach may be to consider x = (z, τ1, τ2) ∈ Rn+2

and the hybrid system

C = R
n × R≥0 × R≥0 F (x) =




f(z)

1

−1




D = R
n × T × {0} G (x) =




z + g(z, τ1)

τ1

ti+1 − ti


 when τ1 = ti.

Here the variable τ1 represents time and variable τ2 is a timer that ensures,
robustly, that flow does not occur when τ1 ∈ T .

1.4.4 Switching systems

Broadly speaking, switching systems are continuous-time systems given by a
family of differential equations, where the particular differential equation that
governs the evolution of the state at any given time instant is determined by a
switching rule/signal. That is, consider a set Q and, for each q ∈ Q, a function
fq : Rn → Rn. When the switching signal σ, which takes on values in Q, re-
mains constant, the variable z evolves continuously according to the differential
equation

ż = fσ(z).

When a switch in the switching signal occurs, it can be described by σ+ ∈ Q.
This can be modeled by the following hybrid system:





z ∈ Rn, q ∈ Q ż = fq(z)

z ∈ R
n, q ∈ Q q+ ∈ Q

(1.13)

Copyrighted Material

22

hsbook December 16, 2011 6x9

CHAPTER 1

with the state

x =

(
z
q

)
∈ R

n+1.

In (1.13), q remains constant during flow and z remains constant during jumps.
More rigorously, (1.13) fits the framework of hybrid systems with

(
ż
q̇

)
= F (x) :=

(
fq(z)
0

)
,

(
z+

q+

)
∈ G(x) :=

(
z
Q

)
,

while C = D = Rn ×Q.
The model (1.13) is not very helpful in practice. For example, when a switch-

ing signal is given, a switching system is just a time-varying differential equa-
tion. Similarly, questions about behavior of a switching system under all possible
switching signals are better handled in a framework of differential inclusions and
not through the analysis of (1.13). This is further justified by Corollary 4.24 and
the discussion surrounding it.

On the other hand, a hybrid systems approach to the analysis of switching
systems is useful when only switching signals from certain classes are allowed.
For example, when the frequency of switching is limited, a clock state can be
introduced to limit how many switches occur in a given time interval. Modeling
such cases is presented in Section 2.4, where the relationships between solutions
to switching systems and to hybrid systems that model them are also discussed.

1.5 NOTES

The model (1.1) or (1.2), identifying the data of a hybrid system as consisting of
a flow set, flow map, jump set, and jump map, was proposed in Goebel et al. [37]
and more formally stated in Goebel and Teel [40]. Models closely related to (1.1),
also involving set-valued dynamics, appeared previously in Aubin and Haddad
[8] and Aubin et al. [9], and concurrently in Collins [29]. Early consideration of
set-valued dynamics in hybrid systems is found in Puri and Varaiya [98] and
Aubin [5].

Notable early references with models of hybrid systems that distinguish be-
tween “continuous states” and “discrete states” or use the language of hybrid
automata include Witsenhausen [128], Tavernini [116], Alur et al. [1], Henzinger
[51], doctoral dissertations by Branicky [18] and Lygeros [78], and the book by
van der Schaft and Schumacher [123]. A thorough discussion of numerous early
models of hybrid systems is included in [18]. References for impulsive differential
equations, as summarized here, include several books: Bainov and Simeonov [13],
Lakshmikantham et al. [66], Yang [129], and Haddad et al. [45]. The standard
reference for switching systems is Liberzon [73].

A different approach to modeling the behavior of mechanical systems with
friction, unilateral constraints, and impacts is visible in Moreau [93], Monteiro
Marques [86], and Brogliato [20], with an extensive review of mathematical liter-
ature in Stewart [114]. The approach often leads to dynamical complementarity

Copyrighted Material

INTRODUCTION

hsbook December 16, 2011 6x9

23

systems, which mix differential equations and complementarity systems com-
mon in optimization. Relation of such dynamical systems to hybrid systems is
discussed by van der Schaft and Schumacher [122] and, in the linear case, by
Heemels et al. [50]. See also Heemels and Brogliato [49]. Numerous references in
the area are listed by Brogliato [21]. Closely related is the framework of measure-
driven differential equations and inclusions; see Dal Maso and Rampazzo [30]
and Silva and Vinter [111].

A detailed discussion of the Newton’s cradle can be found in [123]. The
flashing fireflies model in Example 1.2 draws inspiration from the hybrid model
used by Strogatz and Mirollo [92]. The adjustment mechanism in the quantized
control system and the typical conditions on the quantizer used in Example 1.5
are taken from Liberzon [72]. Further analysis of reset systems can be found
in Beker et al. [15] and Nešić et al. [95]. The idea behind the hybrid control
strategy in Example 1.7 applies to arbitrary nonlinear control systems and state-
feedback laws by Prieur [97], and also motivated the hybrid control strategy
in Sanfelice and Teel [106] combining state-feedback and open-loop laws. The
illustration of the hybrid control strategy in this example on mode-switching
control algorithms for hard disk drives follows the algorithms reported in Goh
et al. [43], Venkataramanana et al. [124], and Taghirad and Jamei [115].

Copyrighted Material

	Introduction
	The modeling framework
	Examples in science and engineering
	Control system examples
	Connections to other modeling frameworks
	Notes

