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Abstract— We give an elementary proof of the fact that,
for continuous-time systems, it is impossible to use (even
discontinuous) pure state feedback to achieve robust global
asymptotic stabilization of a disconnected set of points or robust
global regulation to a target while avoiding an obstacle. Indeed,
we show that arbitrarily small, piecewise constant measurement
noise can keep the trajectories away from the target. We
give a constructive, Lyapunov-based hybrid state feedback that
achieves robust regulation in the above mentioned settings.

Index Terms— robust control, hybrid control, switched sys-
tems, continuous-time systems.

I. INTRODUCTION

Over the last decade, it has been made clear in the
nonlinear control literature that there are certain control
problems for which it is impossible to use (possibly even
discontinuous) pure state feedback to achieve asymptotic
stability that is robust to arbitrarily small measurement
noise. This is the motivation for the sample and hold state
feedback laws proposed in [18] and [4]. The hybrid nature
of these control laws permits some level of robustness to
measurement noise.

Included in the control problems for which robust global
asymptotic stabilization by pure state feedback is impossible
are the problems of regulation to a disconnected set of points
(the problem of choosing between targets) and regulation to
a point while avoiding an obstacle. Typically, this fact is
established by appealing to the topological properties of the
set of regularized solutions to a discontinuous differential
equation (such as those recorded in [7]) and using a result
due to Hermes [11] (see also [10] and [5]) which says that
each regularized solution can be approximated to arbitrary
precision on arbitrarily long time intervals by introducing
arbitrarily small measurable measurement noise. (For a
discussion about robustness with respect to measurement
noise, see [14].) In the first part of this paper, we will
provide a more elementary proof of the obstruction to
robust stabilization. We will not need to appeal to advanced
topological arguments, regularized solutions of discontinuous
differential equations, or measurability. The ideas we use
here are inspired by the techniques we used recently in [19]
to generate a related result for discrete-time systems that
arise in certain model predictive control problems.
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In the second part of this paper, we give explicit,
Lyapunov-based hybrid state feedback controllers that
achieve robust global asymptotic stabilization of a discon-
nected set of points and global regulation to a target while
avoiding an obstacle. The idea of using hybrid feedback
to achieve robustness with respect to measurement noise
is not a new one. As mentioned above, the sample and
hold feedback in [18] and [4] can be viewed as hybrid
feedbacks and their motivation was to achieve robustness
with respect to measurement noise. As an alternative to
sample and hold, another hybrid mechanism that has been
used to induce robustness with respect to measurement noise
is hysteresis switching. (Hysteresis switching has also been
used in nonlinear control for reasons other than robustness
to measurement noise.) Prieur has pioneered this direction of
research, with early results given in [15]. Most recently, using
the hybrid systems framework proposed in [8], [9], Prieur et
al. [16] have shown how hybrid feedback can be used to
achieve robust asymptotic stabilization for every nonlinear
system that is asymptotically null controllable with bounded
controls. Their hybrid feedback is based on the patchy vector
fields of Ancona and Bressan [1], and is thus not very
explicit in general. We take a closely related, but explicit
and Lyapunov-based hybrid feedback approach to achieve
robust global asymptotic stabilization of a disconnected set
of points or global regulation to a target while avoiding
an obstacle. Lyapunov-based hysteresis switching has also
appeared before in the literature (see for example [6], [3])
but usually it has been used for the problem of stabilizing
a single point and the robustness to measurement noise has
not been explored.

II. VULNERABILITY TO MEASUREMENT NOISE OF
CERTAIN STABILIZATION TASKS OF NONLINEAR

SYSTEMS

A. Systems with measurement noise
Consider the nonlinear system

ẋ = f(x) (1)

where x ∈ R
n is the state and f : R

n → R
n. Following

[1] and [2], we consider solutions to (1) in the sense of
Caratheodory and we assume solutions exist for every initial
condition in R

n since we want to make a point about robust
stability rather than about existence. In this paper, B denotes
the open unit ball, R≥0 := [0,+∞), and N := {0, 1, 2, . . .}.

Definition 2.1 (Caratheodory solution): A Caratheodory
solution to the system (1) on an interval I ⊂ R≥0 is an
absolutely continuous function x : I → R

n that satisfies



ẋ(t) = f(x(t)) almost everywhere on I . Given a piecewise
constant function e : I → R

n, a Caratheodory solution to
the system ẋ = f(x + e) on I is an absolutely continuous
function x that satisfies ẋ(t) = f(x(t) + e(t)) for almost
every t ∈ I; equivalently, for every t0 ∈ I , x(t) satisfies

x(t) = x(t0) +

∫ t

t0

f(x(τ) + e(τ))dτ for all t ∈ I.

A Caratheodory solution is said to be maximal if there
is no proper right extension which is also a solution to (1),
and it is said to be complete if its domain is equal to R≥0.
For this definition and control-related conditions on f that
guarantee existence of Caratheodory solutions to (1) see for
example [1]. In this section, we assume the following.

Assumption 2.2: The function f is locally bounded and
for every initial condition x(t0) = x0 at least one
Caratheodory solution to (1) exists and all solutions are com-
plete, i.e. all solutions are defined on the interval [0,+∞).

Let O ⊂ R
n be an open set and let Mi ⊂ R

n, i ∈
{1, . . . ,m}, m ∈ N≥2, be sets satisfying

⋃m

i=1
Mi = O.

Let M := ∪i,j,i6=jMi ∩Mj . We assume the following.
Assumption 2.3: Suppose that for each x ∈ M there

exist i, j ∈ {1, . . . ,m}, i 6= j, and, for each ρ > 0,
points zi, zj ∈ {x} + ρB so that there exists Caratheodory
solutions xi and xj to system (1) from zi and zj , respectively,
satisfying xi(t) ∈ Mi and xj(t) ∈ Mj for all t ∈ [0, T ], for
some T > 0.

Assumption 2.3 states in generality the scenario that arises
when a nonlinear system is globally stabilized to a discon-
nected compact set, or in the problem of global regulation
to a target with obstacle avoidance.

Example 2.4: (Global regulation to a disconnected set of
points) Given the system

ẋ = f(x, u) (2)

where x ∈ R
n and f : R

n × R
m → R

n, suppose that we
want to globally asymptotically stabilize the system to the set
A := Aa∪Ab where Aa,Ab ⊂ R

n are disjoint. Suppose that
for the control Lyapunov function Va (respectively, Vb), the
control law κa : R

n → R
m (respectively, κb : R

n → R
m)

globally asymptotically stabilizes the nonlinear system (2)
to the set Aa (respectively, Ab). One can design a locally
bounded control feedback that combines κa and κb so that
the stabilization task is accomplished. Suppose that such
a strategy exists and the system is globally asymptotically
stabilized to the set A. Stability implies that if a closed-
loop trajectory starts close to Aa (respectively, Ab), it
will stay close to that set for all time, while attractivity
implies that those trajectories actually converge to the set
Aa (respectively, Ab). This implies the existence of a set
Ma (respectively, Mb) from which there exist at least one
trajectory converging to Aa (respectively, Ab). Note that
by global asymptotic stability the union of Ma and Mb

cover the state space. Hence, the set M is defined by
M := Ma ∩Mb. This scenario is represented in Figure 1
for the planar case with Aa = {xa} and Ab = {xb}, where
xa and xb are single points in R

2.

xb
Ma

M

Mb = R2 \Ma

xa

Fig. 1. Disconnected set A and sets Ma,Mb,M. The set Ma consists of
all points that are above and on the thick line while the set Mb is the set
of points that are below the dashed line. The intersection of their closure
defines the set M, the thick line.

Example 2.5: (Global regulation to a target with obstacle
avoidance) Consider the problem of driving a vehicle from its
initial position to a specific target while avoiding obstacles.
Suppose that there exists a feedback law that achieves
stability and “global” convergence to a set A (for techniques
on designing such feedbacks using MPC, see [12], [13],
[19]). This scenario in R

2 is presented in Figure 2 where,
for simplicity, it is supposed that the trajectories are unique
and once they reach the set A, they converge to the target.
Clearly, there exist sets Ma and Mb with the properties
in Assumption 2.3 since there are points from which the
only “safe” decision to make is to go either under or above
the obstacle N . Then, we can define Ma, respectively Mb

to be the set of points from which at least one trajectory
converges to A by crossing into the set A above the obstacle,
respectively below the obstacle. By “global” convergence
they cover every point of the state space except the obstacle.
By stability and attractivity, those sets are nonempty. Then,
the set M is defined as the intersection of the closures of
the sets Ma and Mb.

x2

x1

A

N

M Mb

Ma

Fig. 2. Regulation to a target with obstacle avoidance. The target is denoted
by × and the obstacle is the region labeled as N . Once the trajectories
approach A, either from Ma or from Mb, a local controller steers them
to ×.

We now state the general principle on nonrobustness to
measurement noise when these type of tasks are considered.

Theorem 2.6: Let Assumption 2.3 hold, let ε > 0 and let
K satisfy K+2εB ⊂ O. Then, for each x0 ∈ (M+ εB)∩K
there exist a piecewise constant function e : R≥0 → εB and
a Caratheodory solution x to ẋ = f(x + e) starting at x0

such that x(t) ∈ M+εB for all t ∈ R≥0 such that x(τ) ∈ K



for all τ ∈ [0, t].
The compact set K above, in obstacle avoidance applica-

tions, sometimes defines the region of the state space where,
unless the vehicle leaves it, a crash with the obstacle will
occur.

Using the ideas in [5, Proposition 1.4], the result in
Theorem 2.6 can be extended to systems of the form ẋ =
f(x, κ(x + e)) with f(·, u) locally Lipschitz uniformly over
u’s in the range of κ.

III. HYBRID SYSTEMS

We briefly describe the hybrid systems framework we use,
which is taken from [8],[9]. In that framework, solutions
to hybrid systems can evolve continuously (flow) and/or
discretely (jump) depending on the continuous and discrete
dynamics and the sets where those dynamics apply. In
general, a hybrid system H is given by data (F,G,C,D)
where F defines the continuous dynamics on the set C and
G defines the discrete dynamics on the set D.

We treat the number of jumps as an independent variable
j and we parameterize the state by (t, j). A solution is a
function defined on subsets of R≥0×N. A subset D ⊂ R≥0×
N is a compact hybrid time domain if

D =
J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ .
It is a hybrid time domain if for all (T, J) ∈ D, D ∩
([0, T ] × {0, 1, . . . J}) is a compact hybrid domain. A hybrid
arc (or hybrid trajectory) is a pair (x,dom x) consisting of a
hybrid time domain dom x and a function x : dom x → R

n

such that x(t, j) is absolutely continuous in t for a fixed
j and (t, j) ∈ dom x. For simplicity, we will not mention
dom x explicitly, and understand that with each hybrid arc
comes a hybrid time domain.

A hybrid arc ξ is a solution to the hybrid system H if
(S1) For all j ∈ N and almost all t such that (t, j) ∈ dom ξ,

ξ(t, j) ∈ C, ξ̇(t, j) ∈ F (ξ(t, j)) (3)

(S2) For all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

ξ(t, j) ∈ D, ξ(t, j + 1) ∈ G(ξ(t, j)). (4)

In the second inclusion in (3), ξ̇(t, j) stands for the
derivative of t 7→ ξ(t, j). Some mild assumptions on the data
of H are needed to guarantee that, among other things, that
the sets of solutions to H have good sequential compactness
properties.

Assumption 3.1: The state space O is open; sets C and
D are relatively closed in O; mappings F and G are
outer semicontinuous and locally bounded1 on O; F (x) is
nonempty and convex for all x ∈ C; G(x) is nonempty for
all x ∈ D.

1A set-valued mapping G defined on an open set O is outer semicontin-
uous if for each sequence xi ∈ O converging to a point x ∈ O and each
sequence yi ∈ G(xi) converging to a point y, it holds that y ∈ G(x). It is
locally bounded if, for each compact set K ⊂ O there exists µ > 0 such
that G(K) := ∪x∈KG(x) ⊂ µB.

The general form of a hybrid system with measurement
noise is

ξ̇ ∈ F (ξ, e) ξ + m(e) ∈ C
ξ+ ∈ G(ξ, e) ξ + m(e) ∈ D .

(5)

A hybrid arc x and a measurement noise signal e are a
solution pair (ξ, e) to the hybrid system (5) if dom ξ =
dom e and

(S1e) For all j ∈ N and a.a. t such that (t, j) ∈ dom ξ,

x(t, j) + m(e(t, j)) ∈ C, ξ̇(t, j) ∈ F (ξ(t, j), e(t, j)).

(S2e) For all (t, j) ∈ dom ξ such that (t, j+1) ∈ dom ξ,

ξ(t, j) + m(e(t, j)) ∈ D, ξ(t, j + 1) ∈ G(ξ(t, j), e(t, j)).

Unfortunately, in the presence of measurement noise there is
no guarantee that solutions exist. Indeed, when there exists a
point x and sequences ξi and ξk both approaching ξ such that
ξi /∈ C and ξk /∈ D then solutions can fail to exist even for
arbitrarily small measurement noise e (see [17] for details).
To overcome this problem, at least for small measurement
noise, we require that the the flow set C and the jump set D
overlap so that for points in the intersection C∩D there exists
a neighborhood around that point that is at least included
in either set. In other words, at every point ξ ∈ O, either
ξ + e ∈ C for all small e or ξ + e ∈ D for all small e.

IV. ROBUST HYBRID CONTROLLER

In light of the previous discussions, we now study a
possible remedy to vulnerability to measurement noise. In
this section we propose a hybrid controller that grants to the
closed-loop system a margin of robustness with respect to
measurement noise.

Consider the nonlinear control system

ẋ = f(x, u), y = x + e (6)

where x ∈ R
n is the state, u ∈ R

m is the control input,
y is the output that is corrupted by measurement noise e,
and f : R

n × R
m → R

n is continuous. Let A ⊂ R
n be

a compact set that, for the system (6), is to be rendered
asymptotically stable with some margin of robustness with
respect to measurement noise e. We propose a hybrid con-
troller, denoted by Hc, that measures only the output y of
the system; it has discrete state q that takes value in the finite
set Q := {1, 2, . . . ,m}, m ∈ N; continuous dynamics

q̇ = 0 when (y, q) ∈ Cc ;

discrete dynamics

q+ ∈ Qc(y, q) when (y, q) ∈ Dc ;

and output u = κc(y, q) where κc : R
n × Q → R

m.

A. Construction of the Hybrid Controller
Assume we are given a family of open sets Oq ⊂ R

n that,
with the definition X := ∪q∈QOq are such that A ⊂ X .
Suppose we are given functions Vq : X → [0,+∞] that are
C1 on Oq , for every z ∈ R

n \ Oq we have Vq(z) = +∞,
and as x → ∞ or x → ∂Oq we have Vq(x) → ∞; a family
of C0 functions κq : Oq → R

m; functions α1, α2 ∈ K∞; a



continuous, positive-definite function ρ : R≥0 → R≥0; and
a proper indicator 2 ω of A on X such that

α1(ω(x)) ≤ min
q∈Q

Vq(x) ≤ α2(ω(x)) ∀x ∈ X , (7)

and, for each q ∈ Q,

〈∇Vq(x), f(x, κq(x))〉 ≤ −ρ(Vq(x)) ∀x ∈ Oq . (8)

Remark 4.1: In some control problems, like in the regu-
lation to a disconnected set of points (see Example 2.4), for
each q ∈ Q, there exist a proper indicator ωq of A on Oq

and functions αq
1, α

q
2 ∈ K∞ satisfying

αq
1(ωq(x)) ≤ min

q∈Q
Vq(x) ≤ αq

2(ωq(x)) ∀x ∈ Oq . (9)

The function constructed as ω(x) := minq∈Q ωq(x) for each
x ∈ X is a proper indicator of A on X and there exists
functions α1, α2 ∈ K∞ satisfying (7).

Assumption 4.2: There exists γ > 0 such that (x, q) ∈
A× Q and Vq(x) > 0 imply Vq(x) > γ.

Remark 4.3: Assumption 4.2 is automatically satisfied
when for each q ∈ Q, Vq is positive definite with respect to
A since in this case, it is impossible to have (x, q) ∈ A×Q
and Vq(x) > 0. In scenarios where Vq is non-zero on a
subset of A, for example when A is a disconnected set like
in Example 2.4, then the constant γ consists of a uniform
lower bound on Vq(x) on that subset.

Define constants µ > 1 and λ > 0, and the state space
O := X ×R. Let γ be given by Assumption 4.2. The hybrid
controller Hc defines the feedback law

u = κc(y, q) := κq(y)

when (y, q) ∈ Cc := Ca
c ∪ Cb

c where

Ca
c :=

{

(x, q) ∈ X × Q

∣

∣

∣

∣

Vq(x) ≤ µ min
q′∈Q

Vq′(x)

}

Cb
c := {(x, q) ∈ X × Q | Vq(x) ≤ γ } ,

and has discrete dynamics given by

q+ ∈ Qc(y, q) := {q′ ∈ Q | Vq(y) ≥ (µ − λ)Vq′(y)}

when (y, q) ∈ Dc where Dc is given by
{

(x, q) ∈ X × Q

∣

∣

∣

∣

Vq(x) ≥ (µ − λ) min
q′∈Q

Vq′(x)

}

. (10)

The design parameters of the controller are µ and λ.
The basic idea of the robust hybrid controller Hc is as

follows. The discrete mode q selects the control law that is to
be applied to system (6). A jump on the mode, and a potential
switch of the control law, will occur only if the Lyapunov
function for the current mode (Vq) gets larger than the
Lyapunov function for some other mode, say Vq′ , multiplied
by the parameter µ. The set of points (x, q) ∈ X × Q with
this property defines the set Dc. Note that under the presence
of measurement noise, since the jumps are triggered based

2A function ω : U → R≥0 is a proper indicator of a compact set A ⊂ U
with respect to an open set U if it is continuous, positive definite with respect
to A, and such that ω(x) → ∞ as x → ∂U (boundary of U ) or |x| → ∞.

on the measurement of the state x, the noise affects whether
the controller allows jumps and flows. To accommodate to
this situation, we use in the set Dc the parameter µ − λ as
in (10) instead of µ. This inflation of Dc guarantees that for
small enough measurement noise, solutions to the closed-
loop system Hcl exist since, as we state below, it can be
shown that for every point in (x, q) ∈ X × Q, points (y, q)
nearby are either in Cc or Dc.

B. Closed loop analysis
From the construction of Hc, the closed-loop hybrid

system, denoted Hcl, can be written as

ẋ = f(x, κc(y, q))
q̇ = 0

}

when
(y, q) ∈ Cc

x+ = x
q+ ∈ Qc(y, q)

}

when
(y, q) ∈ Dc .

Note that by construction and continuity of Vq on Oq for
each q ∈ Q, the sets Cc and Dc are relatively closed in
O. Since f and κq are continuous for each q ∈ Q, the
mapping (x, q) 7→ f(x, κc(y, q)) is continuous for each
y ∈ R

n. Moreover, by construction, for each (x, q) ∈ Dc

the set-valued mapping Qc(x, q) is nonempty and since Vq

is continuous on Oq for each q ∈ Q, it is also outer
semicontinuous. Thus, Hcl satisfies Assumption 3.1.

It follows from the construction of Hc that A × Q is
forward invariant and uniformly attractive from compact
subsets of X × Q, and that there are no Zeno solutions.
Asymptotic stability with basin of attraction X ×Q follows
from Proposition 6.1 in [9].

Theorem 4.4: (nominal asymptotic stability of Hcl) For
the hybrid system Hcl with e ≡ 0, the compact set A×Q is
asymptotically stable with basin of attraction X × Q.

When measurement noise is present in the system, for
solutions to exist it is needed that for each point (x, q) in
X × Q, there exist a neighborhood of it such that it is in
either Cc or Dc. This is stated in the following lemma.

Lemma 4.5: For each compact set K ⊂ X × Q, there
exists δ > 0 such that for each (x, q) in K either ({x} +
δB) × {q} ⊂ Cc or ({x} + δB) × {q} ⊂ Dc.

In the case that noise e corrupts the measurement of the
state x, statements on robustness of the above asymptotic
stability property can be made by perturbation analysis.
In [9, Section V], properties of perturbed hybrid systems
and their connection to robust asymptotic stability have
been discussed. For the closed loop Hcl, the robustness to
measurement noise depends on the parameters µ and ε. The
parameter µ determines the robustness margin to recurrent
jumps (this can be caused by large enough measurement
noise), while the parameter λ establishes the margin of
robustness to measurement noise that guarantees existence
of solutions. The following result characterizes the over-
all robustness margin obtained when both parameters are
combined. It follows from the global asymptotic stability
property of the nominal closed loop, the connection between
asymptotic stability and a KLL bound in Theorem 6.5, and
the KLL bound under perturbations in Theorem 6.6 in [8].



Theorem 4.6: (robustness of Hcl to measurement noise)
For given parameters µ and λ of the controller Hc, there
exists β ∈ KLL, for each ε > 0 and each compact set
K ⊂ X there exists δ∗ > 0, such that for each e such
that supt≥0 |e(t)| ≤ δ∗, solutions (x, q) to Hcl exist, are
complete, and for initial conditions (x0, q0) ∈ K×Q satisfy

ω(x(t, j)) ≤ β(ω(x0), t, j) + ε ∀(t, j) ∈ dom(x, q) .

V. EXAMPLES

Example 5.1: (robotic task) Consider the problem of
transporting objects from a source to two isolated destina-
tions with a controlled robotic arm. Suppose that there exist
control algorithms that can transport the objects from the
source to each destination but the switching rule between
the algorithms is to be designed. Suppose also that full
measurement of the state of the robotic arm is available
but it is corrupted with noise. Our goal is to design a
switching control strategy between the control algorithms
that is robust to measurement noise. Since we will focus
on the problem of switching between the control algorithms
we will assume simple dynamics for the robotic arm. Then,
consider a planar model for the robotic arm given by ẋ = u,
x = [x1, x2]

T , u = [u1, u2]
T . Let A1 and A2 define sets

in R
2 that correspond to the location of each destination,

where A1 = {(−1, 0)} and A2 = {(1, 0)}, and let the
source be located on the x2 axis and represented by a small
neighborhood around it. With this formulation, our task is to
design a switching rule between two control algorithms that
robustly steers the trajectories of the robotic arm system to
the compact set A := A1 ∪ A2 (c.f. Example 2.4).

We will consider quadratic Lyapunov functions V1, V2,
zero at A1,A2, respectively, and steepest descent control
laws κi(x) = −∇Vi(x), i = 1, 2. A simple switching rule
is the following. If x ∈ M2 =

{

x ∈ R
2 | x1 ≥ 0

}

then
u = κ2(x) while if x ∈ M1 =

{

x ∈ R
2 | x1 < 0

}

then
u = κ1(x). This switching strategy globally asymptotically
stabilizes the system to A. However, for initial conditions
arbitrarily close to the set M =

{

x ∈ R
2 | x1 = 0

}

, there
exists arbitrarily small measurement noise that causes the
trajectories to stay in a neighborhood of that set for all time.

One possible solution is to apply the hybrid controller
discussed in Section IV. Let Q = {1, 2}, µ = 2, λ = 0.7, and
γ = 0.5. Figure 3 depicts the resulting sets Cc := Cc1 ∪Cc2

and Dc := Dc1 ∪ Dc2 as well as level sets of the Lyapunov
functions and a sample trajectory. The set Cc1 is the subset
of Cc for mode q = 1 and defines the set of points for which
solutions in that mode can flow. The set Dc1 defines the set
of points when jumps are enabled while in mode q = 1.
Similarly for the sets Cc2

and Dc2 with mode q = 2. For
example, when a solution flows with q = 1 and hits the
boundary of the set Cc1

and the closed-loop vector field is
such that flowing in that set is no longer possible, a jump
occurs mapping q to the value two. Note that just before the
jump, solutions can fail to exist if the measurement noise
is large enough so that the measurement of the state falls
to the left of the set Dc1 since neither the flow nor the
jump condition are true. Therefore, the largest the noise can
be is determined by the separation between the boundary

of Cc1 and Dc1. This separation determines the robustness
to existence of solutions under measurement noise which
is ≈ 0.1, i.e. the noise level should be below that value.
Now consider the solution that starts with q = 1 and is very
close to the boundary of the set Dc1. Small measurement
noise can trigger a jump at which the mode switches to
q = 2. After this jump, for the measurement noise to trigger
another jump, its magnitude should be large enough so that
the measurement reaches the boundary of Dc2. Therefore,
the largest noise that the system tolerates is determined by
the separation between the boundaries of Dc1 and Dc2. This
corresponds to the robustness margin for asymptotic stability
of the set A and it is ≈ 0.12.
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Fig. 3. Sets Cc and Dc for the hybrid controller Hc and a trajectory with
x(0) = (−0.005, 1). Noise levels with larger magnitude that the level of
robustness of the system would cause the trajectories fail to exist or to
approach A, specially at points nearby the origin.

Example 5.2: (target acquisition and obstacle avoidance)
Suppose that we want to steer a vehicle from its initial
location to a target while avoiding obstacles. In addition,
suppose that we can measure the state of the vehicle but that
it is corrupted by small exogenous noise. We consider the
setting depicted in Figure 4. We will take simple dynamics
for the vehicle given by ẋ = u where x, u ∈ R

2 since we
will focus on the target acquisition and obstacle avoidance
mission rather than the control of systems with complex
dynamics. Then, the goal is to drive the vehicle to the target
at (xt1, xt2) with the knowledge that there is an obstacle on
the plane, and at the same time, to perform the task in the
presence of noisy measurements.

First let us consider a potential solution to the problem.
The idea is to define a Lyapunov function that is positive
definite with respect to the target and assumes large value at
points nearby the obstacle, and then steer the vehicle to the
target with a steepest descent controller. We have performed
this for the Lyapunov function defined by

V (x) =
1

2
(x1 − xt1)

2 +
1

2
(x2 − xt2)

2 + B(d(x)) (11)

where B : R≥0 → R is a barrier function defined as B(z) :=
(z − 1)2 ln 1

z
if z ∈ [0, 1] and B(z) := 0 if z > 1, and

d : R
2 → R≥0 measures the distance from any point in the

space to the obstacle given by d(z) :=
√

((z1 − r)2 + z2
2)−δ

if z := [z1, z2]
T satisfies (z1 − r)2 + z2

2 > δ2 and d(z) := 0
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Fig. 4. Obstacle avoidance task on the plane and trajectories. The vehicle is
denoted by . and its position relative to the coordinate system is given by
(x1, x2), the target is denoted by x with coordinates (xt1, xt2) = (3, 0),
and the obstacle (static) by the circular gray area with coordinates (r, 0) =
(1, 0) and radius δ = 1/(20

√
2). Trajectories (without noise) starting at

x0

0
and x1

0
converge to the target while the trajectory starting at x2

0
(with

noise) approaches the saddle node point denoted by ◦.

otherwise. Note that V is continuously differentiable. The
control law is given by the steepest descent control u =
−∇V (x). In Figure 4 we present simulation results of the
closed-loop system. Without noise, the trajectories starting at
x0

0 = (0,−0.01) and x1
0 = (0.1, 0.05) avoid the obstacle and

arrive to the target. In Figure 4 we denote by ◦ the saddle
point present in the function V . Trajectories starting from
that point do not reach any other point when no external
perturbation is present. The same behavior arises for nearby
points to ◦ under the presence of measurement noise. A
possible measurement noise that prevents the trajectories
from reaching the target is the measurement noise that locally
stabilizes the closed-loop system to ◦. The trajectory starting
at x2

0 = (0.824, 0.1) was generated with such controller.
One possible remedy to this is given by our hybrid

controller. We define a box around the obstacle and two
regions, O1 and O2, as depicted in Figure 5 where Lyapunov
functions Vq : O1 ∪ O2 → R≥0, q ∈ Q := {1, 2}, given
by (11) with d replaced by dq which is a continuously
differentiable function that measures the distance from any
point to the set R

2 \ Oq . In Figure 5 we show the main
elements of the hybrid controller and two trajectories. Note
that in this case, by construction, there is no saddle point.
For the particular selection of the parameters µ and λ, for
each q ∈ Q, the boundary of the set Cc practically coincides
with the boundary of the corresponding region. For every
point away from the obstacle, the margin of robustness with
respect to measurement noise is nonzero and gets larger as
the vehicle is pushed away from the obstacle.
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