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Abstract

The problem of robustly, asymptotically stabilizing a point (or a set) with two output-feedback hybrid controllers is considered.
These control laws may have different objectives, e.g., the closed-loop systems resulting with each controller may have different
attractors. We provide a control algorithm that combines the two hybrid controllers to accomplish the stabilization task. The
algorithm consists of a hybrid supervisor that, based on the values of plant’s outputs and (norm) state estimates, selects the
hybrid controller that should be applied to the plant. The accomplishment of the stabilization task relies on an output-to-state
stability property induced by the controllers, which enables the construction of an estimator for the norm of the plant’s state.
The algorithm is motivated by and applied to robust, semi-global stabilization problems uniting two controllers.

1 Introduction

Background and Motivation

Many control applications cannot be solved by means of
a single state-feedback controller. As a consequence, con-
trol algorithms combining more than one controller have
been thoroughly investigated in the literature. Particu-
lar attention has been given to the problem of uniting
local and global controllers, in which two control laws
are used: one that is supposed to work only locally, per-
haps guaranteeing good performance, and another that
is capable of steering the system trajectories to a neigh-
borhood of the operating point, where the local control
law works; see, e.g., [30]. Different strategies are possi-
ble to tackle this issue. In [20], this uniting problem is
solved by patching together a local optimal controller
and a global controller computed using backstepping. In
[16], a static time-invariant controller was computed by
smoothly blending global and local controllers. In [2],
two control-Lyapunov functions are combined to design
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a global stabilizer for a class of nonlinear systems.

The use of discrete dynamics may be necessary when
piecing together local and global controllers (e.g., see
the example in [21], where local and global continuous-
time controllers cannot be united using a continuous-
time supervisor). This additional requirement leads to a
control scheme with mixed discrete/continuous dynam-
ics, see [30], [21], and [10], where controllers to piece
together two given state-feedback laws are proposed.
Based on these techniques to piece together different
state-feedback laws, different applications have been
considered such as the stabilization of the inverted pen-
dulum [27] and the position and orientation of a mobile
robot [26]. These ideas have been extended in [25] to
allow for the combination of multi-objective controllers,
including state-feedback laws as well as open-loop con-
trol laws. More recently, they have also been extended to
the case when, rather than state-feedback, only output-
feedback controllers are available [23]. A trajectory-
based approach for the design of robust multi-objective
controllers that regulate a particular output to zero
while keeping another output within a prescribed limit
was introduced in [9]. In the context of performance, a
trajectory-based approach was also employed in [8] to
generate dwell-time and hysteresis-based control strate-
gies that guarantee an input-output stability property
characterizing closed-loop system performance.

Preprint submitted to Automatica 3 March 2013



In this paper, we study the robust stabilization of non-
linear systems of the form

P : ξ̇ = fp(ξ, up) ξ ∈ R
np , up ∈ R

mp (1)

via the combination of two hybrid controllers that use
only measurements of plant’s outputs. The motivation
of such a problem is twofold. On the one hand, the im-
possibility of robustly stabilizing an equilibrium point
(or set) with smooth or discontinuous control laws (see,
e.g., [24,3]) precludes utilizing uniting controllers that
combine smooth or discontinuous (non-hybrid) state-
feedback laws. On the other hand, the typical limitation
of measuring all of the plant variables for state-feedback
control demands the use of output-feedback controllers
as well as the use of multiple controllers that can be com-
bined in a systematic manner to accomplish a given task.
These challenges emerge in stabilization problems with
information and actuation constraints. For instance, in
motion planning of autonomous vehicles for navigation
in cluttered environments, in addition to unavoidable
input constraints, obstacles introduce topological con-
straints that restrict the sensing range. In such scenar-
ios, control algorithms may combine information from
multiple sensors and select the most appropriate control
strategy to execute. Due to the different properties in-
duced by the individual controllers in such applications,
we refer to the problem studied in this paper as the prob-
lem of uniting two output-feedback hybrid controllers with
different objectives, where one of the controllers steers
the trajectories to a set (this is the objective of the global
controller) and another controller asymptotically stabi-
lizes a different target set (this is the objective of the
local controller); cf. [9].

Contributions

We propose a hybrid controller to solve the problem
of uniting two output-feedback laws with different ob-
jectives. Figure 1 depicts the proposed solution, which
consists of supervising the two output hybrid con-
trollers, which are denoted by K0 and K1, with “local”
and “global” stabilizing capabilities, respectively. By
combining a discrete and several continuous states, for
any bounded set of initial conditions, we design a ro-
bustly stabilizing supervisory algorithm with a basin of
attraction containing the given bounded set of initial
conditions, i.e., the controller renders a target set semi-
globally asymptotically stable. The supervisory algo-
rithm consists of a hybrid controller, which is denoted by
Ks, and uses logic-based switching to unite controllers
K0 and K1. Our approach builds from the ideas in [23]
on uniting output-feedback continuous-time controllers
and in [17,18,14,26] on supervisory control algorithms.

The features of the proposed hybrid supervisor include:

• Uniting of hybrid controllers: controllers K0 and K1

are not restricted to being continuous-time controllers;
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Fig. 1. Proposed control approach for Problem (⋆).

instead, they can be hybrid controllers involving con-
tinuous and discrete variables. In this way, the pro-
posed solution extends the technique of uniting two
continuous-time controllers available in the literature
to the case when the individual controllers are hybrid,
which, in turn, permits applying the uniting method
to plants that cannot be robustly stabilized by smooth
or discontinuous control laws.

• Controllers with different objectives: controllers K0

and K1 can have different objectives in the sense that
they may stabilize different attractors. This enables
the systematic design of controllers that steer trajec-
tories to a certain point (or set) from where local con-
trollers can take over and stabilize the desired point
(or set). This procedure has been heuristically used in
robotic applications [4].

• Output feedback without underlying input-output-to-
state stability assumption on the plant: for the solution
of the uniting problem of interest (see Problem (⋆)
in Section 3) the proposed hybrid supervisor requires
an output-to-state stability property for each of the
closed-loop systems resulting when the individual con-
trollers are used. This assumption is weaker that the
input-output-to-state stability condition on the plant
in [23]. The mechanism enabling this relaxation is a
timer state included in the proposed hybrid supervi-
sor.

In this work, each of the output-feedback hybrid con-
trollers is known to confer certain properties to each
of the resulting closed-loop systems: the first controller
renders, for the plant state, a target compact set locally
asymptotically stable, while the second controller ren-
ders a particular compact set attractive. As a difference
to the controllers in [25,9,8], the individual controllers
can be hybrid and their objectives given in terms of
compact sets rather than equilibrium points (the latter
feature actually enables the use of hybrid controllers as
these typically stabilize sets larger than a single point;
see [12] for a discussion). Note that as a difference to [8],
where switching times are optimally computed, the ob-
jective of the proposed hybrid supervisor is to robustly
stabilize a desired compact set. Our construction ex-
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ploits the fact that, as established in [29] for continuous-
time nonlinear systems and generalized to hybrid sys-
tems in [6,5], this property implies the existence of an
estimator of the norm of the state. We work within the
hybrid systems framework of [12] (see also [11,13]) and
employ results on robust asymptotic stability reported
in [13]. Two examples involving systems with input con-
straints and limited information are used throughout the
paper to illustrate the application of our results.

Organization of the paper

The remainder of the paper is organized as follows. Af-
ter basic notation is introduced, Section 2 presents a
short description of the framework used for analysis. The
main result follows in Section 3. This section starts by
introducing the problem to be solved, the proposed for-
mulation of a solution, and the required assumptions.
In addition to presenting a design procedure for the su-
pervisor, it establishes a robust stability property of the
closed-loop system. Examples are introduced through-
out the paper to illustrate the ideas. In Section 4, the
proposed hybrid supervisor is applied to the systems in
these examples.

We use the following notation and definitions throughout
the paper. Rn denotes n-dimensional Euclidean space.
R≥0 denotes the nonnegative real numbers, i.e., R≥0 =
[0,∞). N denotes the natural numbers including 0, i.e.,
N = {0, 1, . . .}. B denotes the open unit ball in Euclidean
space. Given a vector x ∈ R

n, |x| denotes the Euclidean
vector norm. Given a set S, S denotes its closure. Given
a set S ⊂ R

n and a point x ∈ R
n, |x|S := infy∈S |x− y|.

The notation F : S ⇉ S indicates that F is a set-valued
map that maps points in S to subsets of S. For simplicity
in the notation, given vectors x and y, we write, when
convenient, [x⊤y⊤]⊤ with the shorthand notation (x, y).
A function α : R≥0 → R≥0 is said to belong to the classK
if it is continuous, zero at zero, and strictly increasing. A
function α : R≥0 → R≥0 is said to belong to the classK∞
if it belongs to the class K and is unbounded. A function
β : R≥0×R≥0 → R≥0 is said to belong to classKL if it is
nondecreasing in its first argument, nonincreasing in its
second argument, and limsց0 β(s, t) = limt→∞ β(s, t) =
0. A function β : R≥0 × R≥0 × R≥0 → R≥0 is said to
belong to class KLL if, for each r ∈ R≥0, the functions
β(·, ·, r) and β(·, r, ·) belong to class KL.

2 Hybrid Systems Preliminaries

In this paper, we consider hybrid systems as in [12] (see
also [11], [13]) where solutions can evolve continuously
(flow) and/or discretely (jump) depending on the con-
tinuous and discrete dynamics of the hybrid systems,
and the sets where those dynamics apply. In general, a
hybrid systemH is given by data (h,C, F,D,G) and can

be written in the compact form

H :






χ̇ ∈ F (χ) χ ∈ C

χ+ ∈ G(χ) χ ∈ D

y = h(χ),

where χ ∈ R
n is the state taking values in a Euclidean

space R
n, the set-valued map F defines the continuous

dynamics on the set C and the set-valued map G defines
the discrete dynamics on the set D. The notation χ+ in-
dicates the value of the state χ after a jump 3 . The func-
tion h defines the output. Solutions to H will be given
on hybrid time domains, which are subsets E of R≥0×N

that, for every (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . J})

can be written as
⋃J−1

j=0 ([tj , tj+1], j) for some finite se-
quence of times 0 = t0 ≤ t1 . . . ≤ tJ . A solution to H
will consist of a hybrid time domain domχ and a hy-
brid arc χ : domχ → R

n, which is a function with the
property that χ(t, j) is locally absolutely continuous on
Ij := {t : (t, j) ∈ domχ} for each j ∈ N, satisfying the
dynamics imposed by H. More precisely, the following
hold:

(S1) For each j ∈ N such that Ij has nonempty interior

χ(t, j) ∈ C for all t ∈ [min Ij , sup Ij)

χ̇(t, j) ∈ F (χ(t, j)) for almost all t ∈ Ij ;
(2)

(S2) For each (t, j) ∈ domχ such that (t, j + 1) ∈
domχ,

χ(t, j) ∈ D, χ(t, j + 1) ∈ G(χ(t, j)). (3)

Hence, solutions are parameterized by (t, j), where t is
the ordinary time and j corresponds to the number of
jumps. A solution χ to H is said to be complete if domχ
is unbounded, Zeno if it is complete but the projection
of domχ onto R≥0 is bounded, and maximal if there
does not exist another hybrid arc χ′ such that χ is a
truncation of χ′ to some proper subset of domχ′. For
more details about this hybrid systems framework, we
refer the reader to [12].

When the data (h,C, F,D,G) of H satisfies the condi-
tions given next, hybrid systems are well posed in the
sense that they inherit several good structural proper-
ties of their solution sets. These include sequential com-
pactness of the solution set, closedness of perturbed and
unperturbed solutions, etc. We refer the reader to [13]
(see also [11]) and [28] for details on and consequences
of these conditions.

Definition 2.1 (Well-posed hybrid systems) The
hybrid systemHwith data (h,C, F,D,G) is said to bewell

3 Precisely, χ+ = χ(t, j + 1).
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posed if it satisfies the following hybrid basic conditions:
the sets C and D are closed, the mappings F : C ⇉ R

n

and G : D ⇉ R
n are outer semicontinuous and locally

bounded, 4 F (x) is nonempty and convex for all x ∈ C,
G(x) is nonempty for all x ∈ D, and h : Rn → R

m is
continuous.

3 Uniting Two Output-Feedback Hybrid Con-
trollers Using a Hybrid Supervisor

3.1 Problem statement, solution approach, and as-
sumptions

We consider the stabilization of a compact set for non-
linear control systems of the form (1) with only measure-
ments of two outputs yp,0 and yp,1 given by functions of
the state h0 and h1, respectively, where fp is a contin-
uous function. That is, we are interested in solving the
following problem:

(⋆) Given compact sets A0,M0 ⊂ R
np and continuous

functions h0, h1 defining outputs yp,0 = h0(ξ) and
yp,1 = h1(ξ) of (1), design an output feedback con-
troller Ks that renders A0 asymptotically stable with
a basin of attraction containing M0.

5

As shown in Figure 1, the proposed approach to solve this
problem consists of supervising two output hybrid con-
trollers, which are denoted by K0 and K1, with “local”
and “global” stabilizing capabilities, respectively, which
are properties that will be made precise below. The su-
pervisory algorithm consists of a hybrid controller,which
is denoted by Ks, that uses logic-based decision mak-
ing to unite controllers K0 and K1. The individual con-
trollers K0 and K1 have state ζ0 and ζ1, both in R

nc ,
respectively. 6 For each i ∈ {0, 1}, the hybrid controller
Ki = (κc,i, Cc,i, fc,i, Dc,i, gc,i) is given by

Ki :





ζ̇i = fc,i(uc,i, ζi) (uc,i, ζi) ∈ Cc,i

ζ+i ∈ gc,i(uc,i, ζi) (uc,i, ζi) ∈ Dc,i

yc,i = κc,i(uc,i, ζi),

(4)

where ζi ∈ R
nc is the i-th controller’s state, uc,i ∈ R

mc,i

the i-th controller’s input, Cc,i and Dc,i are subsets of

4 A set-valued mapping G defined on R
n is outer semi-

continuous if for each sequence xi ∈ R
n converging to a

point x ∈ R
n and each sequence yi ∈ G(xi) converging to

a point y, it holds that y ∈ G(x). It is locally bounded if,
for each compact set M ⊂ R

n there exists µ > 0 such that
∪x∈MG(x) ⊂ µB.
5 It is desired that the basin of attraction containsM0 when
projected onto R

np .
6 The case where the hybrid controllers have a dynamical
state ζ0 (respectively, ζ1) in a set Rnc0 (respectively, Rnc1) of
different dimension nc0 6= nc1 can be treated by embedding
both sets into the set of larger dimension.

R
mc,i × R

nc , κc,i : Rnc → R
mp is the i-th controller’s

output, fc,i : Cc,i → R
nc , and gc,i : Dc,i ⇉ R

nc . For
each i ∈ {0, 1}, the i-th controller Ki measures the
plant’s output yp,i = hi(ξ) only and, via the assignment
uc,i = yp,i, up = yc,i defines the hybrid closed-loop sys-
tem denoted by (P ,Ki) = (hi, Ci, fi, Di, gi) with state
(ξ, ζi) ∈ R

n, n = np + nc, and given by

[
ξ̇

ζ̇i

]
= fi(ξ, ζi) :=

[
fp(ξ, κc,i(hi(ξ), ζi))

fc,i(hi(ξ), ζi)

]
(ξ, ζi)∈Ci,

[
ξ+

ζ+i

]
∈ gi(ξ, ζi) :=

[
ξ

gc,i(hi(ξ), ζi)

]
(ξ, ζi)∈Di,

yi = hi(ξ),

(5)
where yi is the output,

Ci := {(ξ, ζi) : ξ ∈ R
np , (hi(ξ), ζi) ∈ Cc,i} ,

Di := {(ξ, ζi) : ξ ∈ R
np , (hi(ξ), ζi) ∈ Dc,i} .

(An assignment different from uc,i = yp,i, up = yc,i will
be employed when a hybrid supervisor is used – see The-
orem 3.5.) We say that the controller Ki is well posed
when the resulting closed-loop system from controlling
the plant (1) with continuous right-hand side is well
posed as in Definition 2.1.

The controllers Ki are assumed to induce the properties
that, for i = 0, a compact set A0 × Φ0 ⊂ R

n, where
Φ0 ⊂ R

nc , is locally asymptotically stable for (P ,K0)
and, for i = 1, a compact set A1 × Φ1 ⊂ R

n, Φ1 ⊂ R
nc ,

is attractive for (P ,K1). For a combination of both con-
trollers to work, the set A1 will have to be contained in
the basin of attraction of K0. In such a case, the said
properties of K0 and K1 readily suggest that, when far
away from A0, K1 can be used to steer the plant’s state
to a region from where K0 can be used to asymptotically
stabilize A0. However, these controllers cannot be com-
bined using supervisory control techniques in the liter-
ature (see, e.g., [26] and the references therein) due to
being hybrid and to the lack of full measurements of ξ.
We resolve this issue by designing two norm observers.
The existence of such observers is guaranteed when the
hybrid controllers induce an output-to-state stability
(OSS) property. More precisely, this OSS property as-
sures the existence of an (smooth) exponential-decay
OSS-Lyapunov function Vi with respect to Ai × Φi for
(P ,Ki); see [6, Theorem 3.1]. As defined in [6, Definition
2.2], Vi : Rn → R≥0 is such that there exist class-K∞
functions αi,1, αi,2, class-K function γi, and εi ∈ (0, 1]
satisfying: for all (ξ, ζi) ∈ R

n,

αi,1(|(ξ, ζi)|Ai×Φi
) ≤ Vi(ξ, ζi) ≤ αi,2(|(ξ, ζi)|Ai×Φi

);

(6)
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for all (ξ, ζi) ∈ Ci,

〈∇Vi(ξ, ζi), fi(ξ, ζi)〉 ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|); (7)

for all (ξ, ζi) ∈ Di,

maxg∈gi(ξ,ζi) Vi(g)− Vi(ξ, ζi) ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|).

(8)
The next assumption guarantees that the resulting
closed-loop systems (P ,K0) and (P ,K1) satisfy these
properties.

Assumption 3.1 Given a compact set A0 ⊂ R
np and

continuous functions fp : Rnp×R
mp → R

np , h0 : Rnp →
R

mc,0 , h1 : Rnp → R
mc,1 , where h0(ξ) = 0 for all ξ ∈ A0,

assume there exist compact sets A1 ⊂ R
np , Φ0,Φ1 ⊂

R
nc , where h1(ξ) = 0 for all ξ ∈ A1, such that:

(1) A well-posed hybrid controller K0 =
(κc,0, Cc,0, fc,0, Dc,0, gc,0) for the plant output yp,0 =
h0(ξ) inducing the following properties exists:
(a) Stability: For each ε > 0 there exists δ > 0

such that every solution (ξ, ζ0) to (P ,K0)
with |(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ δ sat-
isfies |(ξ(t, j), ζ0(t, j))|A0×Φ0

≤ ε for all
(t, j) ∈ dom(ξ, ζ0);

7

(b) Attractivity: There exists µ > 0 such that every
solution (ξ, ζ0) to (P ,K0) with
|(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ µ is complete and
satisfies

lim
t+j→∞

|(ξ(t, j), ζ0(t, j))|A0×Φ0
= 0;

(c) Output-to-state stability (OSS): The hybrid sys-
tem (P ,K0) with output yp,0 = h0(ξ) is output-
to-state stable with respect toA0×Φ0. Let V0 de-
note an OSS-Lyapunov function associated with
this property, and let γ0 ∈ K and ε0 > 0 satisfy
(7) and (8) with i = 0. Let ε0,b > 0 define an es-
timation of the basin of attraction B0 of (P ,K0)
of the form {(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b}.

(2) A well-posed hybrid controller K1 =
(κc,1, Cc,1, fc,1, Dc,1, gc,1) for the plant output yp,1 =
h1(ξ) inducing the following properties exists:
(a) Attractivity: Every maximal solution (ξ, ζ1) to

(P ,K1) is complete and satisfies

lim
t+j→∞

|(ξ(t, j), ζ1(t, j))|A1×Φ1
= 0;

(b) Output-to-state stability: The hybrid system
(P ,K1) with output yp,1 = h1(ξ) is output-to-
state stable with respect to A1 × Φ1. Let V1

7 The plant state ξ is parameterized by (t, j) since it is a state
component of the hybrid system (P ,K0), whose solutions are
defined on hybrid time domains.

denote an OSS-Lyapunov function associated
with this property.

(3) There exist ε0,a, ε1,b > 0 such that ε0,a < ε0,b and,
for each solution (ξ, ζ0) to (P ,K0) from

{ξ ∈ R
np : V1(ξ, ζ1) ≤ ε1,b, ζ1 ∈ Φ1} × Φ0,

we have

γ0(|h0(ξ(t, j))|) < ε0,aε0 ∀(t, j) ∈ dom(ξ, ζ0). (9)

Remark 3.2 Assumption 3.1 assures the existence of
individual controllers with enough properties so that the
uniting problem of interest is at all solvable and the pro-
posed approach provides a solution to it. More precisely,
items 1.a and 1.b are required so that the local stability re-
quirement in Problem (⋆) is attainable while 2.a is needed
so that the semi-global stability requirement therein can
be met. The other assumptions are particular to our pro-
posed solution. Items 1.c and 2.b are imposed so that
norm observers can be constructed. Item 3 permits the
combination of the two controllers using a hybrid super-
visor by ensuring that the compact set A1, which is part
of the set rendered attractive with the controller K1, is in-
cluded in the basin of attraction of the closed-loop system
with the controllerK0. In this way,A0×Φ0 can be asymp-
totically stabilized once K1 steers the plant state nearby
A1. Note that items 1.a, 1.b, and 2.a are the hybrid ver-
sion of the assumptions in [23]. Items 1.a, 1.b, and 2.b
relax the assumptions in [23] as rather than asking for
input-output-to-state stability (IOSS) of the plant, they
impose OSS properties of the closed-loop systems (P ,K0)
and (P ,K1).

The stabilizing property induced by controllerK0 in As-
sumption 3.1 holds when the nonlinear system is locally
stabilizable to the set A0 by hybrid feedback. Note that
hybrid feedback permits stabilizing a larger class of sys-
tems than standard continuous feedback. Examples of
systems that can be asymptotically stabilized by hybrid
feedback include the nonholonomic integrator and Art-
stein circles [22], the pendubot [25], and rigid bodies [15].
The attractivity property induced by the controllerK1 in
Assumption 3.1 holds when the trajectories of the plant
can be asymptotically steered to the set A1 (contained
in the basin of attraction of the local controller). Note
that, as a difference to controller K0, it is not required
for controller K1 to render the said set stable. This fea-
ture of the proposed controller allows for the design of
K0 and K1 separately, being item 3 of Assumption 3.1 a
common design constraint.

Next, we introduce an example and associated control
problem for which the supervision of two controllers with
properties as in Assumption 3.1 will be applied.
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Example 3.3 Consider the stabilization of the point
{ξ∗} for the point-mass system ξ̇ = up, where ξ ∈ R

2 is
the state and up = [u1 u2]

⊤ is the control input. (See [9]
where the problem of stabilizing a unicycle while ensur-
ing obstacle avoidance is studied.) A controller is to be
designed to solve the following control problem: guaran-
tee that the solutions to the plant avoid a neighborhood
around the point ξ, which is given by N = ξ + α̂B and
represents an obstacle, and that converge to the target
point ξ∗. Convergence to the target can be attained by
steering the solutions in the clockwise or in the counter-
clockwise direction around the obstacle, depending on
the initial condition. Measurements of the distance to the
target may not be available from points where the target
is not visible due to the presence of the obstacle. Due to
the topological constraint of the stabilization task and the
limited measurements, a single controller or a controller
uniting two controllers with the same objectives would
be difficult to design.

To solve the stated control problem, functions defining
potential fields including the presence of the obstacle and
vanishing at some point ξ◦ from where the target is visi-
ble, i.e., from points where there is a “line-of-sight,” can
be generated. Using these measurements, a gradient de-
scent controller can be designed to steer the solutions to
nearby the intermediate point ξ◦. In this way, the point
ξ◦ would define the set A1 and the gradient-descent con-
troller would define K1. This controller would use mea-
surements of the functions defining the potential fields
as well as their gradients. These functions would define
the plant’s output yp,1. A particular construction of a hy-
brid controller implementing a robust gradient-descent-
like strategy and satisfying the conditions in Assump-
tion 3.1.2 is given in Section 4.2. To satisfy the condi-
tions in Assumption 3.1.1, a “local” controller capable of
asymptotically stabilizing ξ∗ from nearby ξ◦ would play
the role of the controller K0 above, withA0 given by {ξ∗}.
Due to ξ◦ being at a location unobstructed by the obstacle,
this controller could use relative position measurements
to the target, which would define the plant’s output yp,0.
Item 3 of Assumption 3.1 will be satisfied by placing A1

in the basin of attraction induced by K0. △

As pointed out in Remark 3.2, items 1.c and 2.b in As-
sumption 3.1 assure OSS the existence of exponential-
decay OSS-Lyapunov functions with respect to Ai ×Φi

for (P ,Ki). As stated in [5, Proposition 2], a norm esti-
mator for the state (ξ, ζi) (and, hence, for ξ) exists. A
particular construction is

żi = −εizi + γi(|hi(ξ)|) (ξ, ζi) ∈ Ci,

z+i = (1− εi)zi + γi(|hi(ξ)|) (ξ, ζi) ∈ Di.
(10)

In fact, given a solution (ξ, ζi) to (P ,Ki), using (7) and
(8), for each j ∈ N and for almost all t ∈ Ij , Ij with
nonempty interior, (t, j) ∈ dom(ξ, ζi), we have

d
dt (Vi(ξ(t, j), ζi(t, j))− zi(t, j))≤

−εi (Vi(ξ(t, j), ζi(t, j))− zi(t, j)) ,

and, for each (t, j) ∈ dom(ξ, ζi) such that (t, j + 1) ∈
dom(ξ, ζi)

Vi(ξ(t, j + 1), ζi(t, j + 1))− zi(t, j + 1) ≤

(1− εi)(Vi(ξ(t, j), ζi(t, j))− zi(t, j)).

Using the upper bound in (6), it follows that, for
all (t, j) ∈ dom(ξ, ζi), Vi(ξ(t, j), ζi(t, j)) ≤ zi(t, j) +
exp(−εit)(1 − εi)

j (Vi(ξ(0, 0), ζi(0, 0))− zi(0, 0)) ≤
zi(t, j)+exp(−εit)(1−εi)

j (αi,2(|(ξ(0, 0), ζi(0, 0))|Ai×Φi
)

−zi(0, 0)) . Assuming, without loss of generality, that
αi,2(s) ≥ s for all s ≥ 0 and defining βi(s, t, j) :=
2 exp(−εit)(1 − εi)

jαi,2(s) gives for any solution (ξ, ζi)
to (P ,Ki)

Vi(ξ(t, j), ζi(t, j)) ≤ (11)

zi(t, j) + βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi
+ |zi(0, 0)|, t, j).

The following bound on |(ξ(t, j), ζi(t, j))|Ai
follows with

(6):

|(ξ(t, j), ζi(t, j))|Ai×Φi
≤ (12)

α−1
i,1 (zi(t, j) + βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi

+ |zi(0, 0)|, t, j))

for all (t, j) ∈ dom(ξ, ζi).

The following example illustrates the construction of a
norm observer for a nonlinear system. This observer will
be used in the design of a hybrid supervisor in Sec-
tion 4.1.

Example 3.4 Consider the nonlinear system

ξ̇ = fp(ξ, up) :=

[
−ξ1 + (u1 − ξ2)ξ

2
1

−ξ2 + ξ21 + α+ u2

]
, (13)

where ξ ∈ R
2 is the state and up = [u1 u2]

⊤ is the control
input. An output-feedback controller has been designed
for this system in [1]. 8 Measurements of ξ1 and ξ2 are
available but not simultaneously. Consider a controller
K0 given by a static feedback controller that measures
h0(ξ) := ξ1 to stabilize ξ to A0 = {(0, 0)}. Following
(4), an example of such a controller is defined by nc = 0,
κc,0(ξ) := [0, −α]⊤, and no dynamical state (i.e., Cc,0 =
Dc,0 = ∅ and fc,0, gc,0 are arbitrary). For V0(ξ) =

1
2ξ

⊤ξ,

8 For the case α = 0, dynamic output feedback laws for out-
puts given by ξ1 or ξ2 that globally asymptotically stabilize
the origin in R

2 have been proposed in [1].
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it follows that, for all ξ ∈ R
2, 9

〈∇V0(ξ), fp(ξ, κc,0(ξ))〉=−ξ21 − ξ31ξ2 − ξ22 + ξ21ξ2

≤−V0(ξ) + ξ41(1 + ξ21). (14)

Then, a norm observer for |ξ|A0
is given by ż0 = −z0 +

γ0(|h0(ξ)|) with γ0(s) = s4(1 + s2) for all s ≥ 0. This
norm estimator and the controller K0 above are such that
Assumption 3.1.1 holds. △

In the next section, we provide a solution to Problem (⋆)
that consists of a hybrid supervisor coordinating, using
control logic and norm observers, the two (well-posed)
output-feedback hybrid controllers K0 and K1.

3.2 Proposed Control Strategy

As depicted in Figure 1, we propose a hybrid controller
Ks to supervise K0 and K1. This hybrid controller, re-
ferred to as the hybrid supervisor, is designed to perform
the uniting task as follows:

A) Apply the hybrid controller K1 when the estimate
of |ξ|A1

is away from the origin.
B) Permit estimate of |ξ|A1

to converge.
C) ApplyK0 when the estimate of |ξ|A1

is close enough
to zero.

To accomplish these tasks, the supervisor has a discrete
state q ∈ Q := {0, 1} and a timer state τ ∈ R with reset
threshold τ∗ > 0. The constant τ∗ is a design parameter
of the hybrid supervisor. The dynamics of the state q are
designed to indicate that the controller Kq is connected
to the plant. While the accomplishment of tasks A)-
C) with the proposed hybrid supervisor requires finitely
many jumps in the state q, the number of jumps in q
depends on the initial conditions as well as on the dy-
namics of the closed-loop system. These points and the
mechanisms in the hybrid supervisor implementing tasks
A)-C) are presented next.

3.2.1 Supervision of Controller K1 (q = 1)

Item 2.a of Assumption 3.1 implies that for every solu-
tion (ξ, ζ1) to (P ,K1) we have

lim
t+j→∞

γ1(|h1(ξ(t, j))|) = 0.

Using (10) for i = 1, it follows that z1 also approaches
zero, and that, eventually, when t or j are large enough,
|ξ|A1

is small enough. This suggests that the supervisor
should apply K1 until, eventually, z1 is small enough.
This can be implemented as follows:

9 Using Young’s inequality to obtain ξ31ξ2 ≤ ξ61 + 1

4
ξ22 and

ξ21ξ2 ≤ ξ41 + 1

4
ξ22 .

• Flow according to

ξ̇ = fp(ξ, κc,1(h1(ξ), ζ1)), ζ̇0 = 0, ζ̇1 = fc,1(h1(ξ), ζ1),

ż0 = 0, ż1 = −ε1z1 + γ1(|h1(ξ)|), q̇ = 0, τ̇ = 1

(15)
when, for a design parameter ε1,a > 0, either one of
the following conditions hold:

(ξ, ζ1) ∈ C1, ζ0 ∈ Φ0, z0 = 0, z1 ≥ ε1,a, q = 1,
(16)

or

(ξ, ζ1) ∈ C1, ζ0 ∈ Φ0, z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ∗.
(17)

• Jump according to

ξ+ = ξ, ζ+0 ∈ Φ0, ζ+1 ∈ Φ1,

z+0 = 0, z+1 = 0, q+ = 0, τ+ = 0
(18)

when

ζ0 ∈ Φ0, z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ∗.
(19)

The flows defined in (15) enforce, in particular, that q re-
mains constant and that the estimate of |ξ|A1

converges.
Condition (16) allows flows when the estimate of |ξ|A1

is
not small enough, while, when condition (19) holds, the
state q is set to 0 so that K0 is applied. The state ζ0 is
updated to any value in Φ0 and the estimator state z0 is
reset to zero. These selections are to properly initialize
K0. However, to guarantee that the state ζ1 converges
to Φ1, the state is reset to any point in Φ1.

Due to the impossibility of measuring ξ, it is not possible
to ensure that ξ is such that (ξ, ζ0) is in the basin of
attraction B0 after jumps from q = 1 to q = 0 occur.
Hence, it could be the case that there are jumps from
q = 0 back to q = 1. The logic in (15)-(19) uses the
timer τ to guarantee convergence of the state to B0. The
condition τ ≤ τ∗ in (17) allows the estimate |ξ|A1

to
converge by enforcing that, perhaps after a few jumps
to q = 0 and back to q = 1, ξ eventually is so that
(ξ, ζ0) is in the said basin of attraction. The conditions
involving z0 in (16), (17), and (19) force z0 to remain at
zero along solutions with q = 1. These choices facilitate
the establishment of our main result in Section 3.3. A
procedure to design the controller parameters is given in
Section 3.4.

3.2.2 Supervision of Controller K0 (q = 0)

From item 1 of Assumption 3.1 and (10) for i = 0, it
follows that z0(t, j) approaches γ0(|h0(ξ(t, j))|)/ε0 along
solutions. Furthermore, when z0 ≤ ε0,a, ζ0 ∈ Φ0, and t
or j are large enough, it follows from (11) for i = 0 and
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items 1.b and 3 in Assumption 3.1 that after jumps to
q = 0, (ξ, ζ0) will be in the set

{(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b} , (20)

which, by definition of ε0,b, is a subset of the basin of
attraction of (P ,K0). Then, the supervisor is designed
to apply K0 as long as z0 is smaller or equal than ε0,a,
and when is larger or equal to that parameter, a jump
to q = 1 is triggered. Note that the logic for q = 1
eventually forces flows for at least τ∗ units of time, which
allows t or j to become large enough, and with that,
guarantee that (ξ, ζ0) is in the set (20). This mechanism
is implemented as follows:

• Flow according to

ξ̇ = fp(ξ, κc,0(h0(ξ), ζ0)), ζ̇0 = fc,0(h0(ξ), ζ0),

ζ̇1 = 0, ż0 = −ε0z0 + γ0(|h0(ξ)|),

ż1 = 0, q̇ = 0, τ̇ = 0

(21)

when

{
(ξ, ζ0) ∈ C0, ζ1 ∈ Φ1, ε0,a ≥ z0 ≥ 0,

z1 = 0, q = 0, τ = 0.
(22)

• Jump according to

ξ+ = ξ, ζ+0 ∈ Φ0, ζ+1 ∈ Φ1, z+0 = 0,

z+1 = 0, q+ = 1, τ+ = 0,
(23)

when

ζ1 ∈ Φ1, z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0. (24)

As (15), the flows defined in (21) enforce, in particular,
that q remains constant and that the estimate of |ξ|A0

converges. In fact, condition (22) allows flows when the
estimate of |ξ|A0

is small enough, permitting it to con-
verge. When condition (24) holds, a jump back to q = 1
occurs. As explained below (19), such a jump would oc-
cur when after a jump from q = 1 to q = 0, the state
(ξ, ζ0) is not in B0. The state ζ1 is updated to any value
in Φ1 and the estimator state z1 is reset to zero. These
selections properly initialize K1 and enable our main re-
sult in Section 3.3.

3.2.3 Closed-loop system

We are now ready to write the resulting closed loop as a
hybrid system. The closed-loop hybrid system has state
χ = (ξ, ζ0, ζ1, z0, z1, q, τ) ∈ R

np×R
nc×R

nc×R×R×Q×
R =: X. Collecting the definitions in Sections 3.2.1 and
3.2.2, the resulting closed-loop system, which is denoted

by Hcl, has dynamics given as follows:

χ̇ =




fp(ξ, κc,q(hq(ξ), ζq))

(1− q)fc,0(h0(ξ), ζ0)

q fc,1(h1(ξ), ζ1)

(1− q)(−ε0z0 + γ0(|h0(ξ)|))

q(−ε1z1 + γ1(|h1(ξ)|))

0

q




=: F (χ), χ ∈ C̃,

χ+ ∈ G0(χ) ∪G1(χ) ∪Gs(χ) =: G(χ), χ ∈ D̃,

where: for each q = 0, (ξ, ζ0) ∈ D0

G0(χ) =




ξ

gc,0(h0(ξ), ζ0)

ζ1

(1 − ε0)z0 + γ0(|h0(ξ)|)

z1

q

τ




,

G0(χ) = ∅ otherwise; for each q = 1, (ξ, ζ1) ∈ D1

G1(χ) =




ξ

ζ0

gc,1(h1(ξ), ζ1)

z0

(1 − ε1)z1 + γ1(|h1(ξ)|)

q

τ




,

G1(χ) = ∅ otherwise; for each χ ∈ Ds,a ∪Ds,b,

Gs(χ) = (ξ,Φ0,Φ1, 0, 0, 1− q, 0) ,

Gs(χ) = ∅ otherwise;

C̃ :={χ : (ξ, ζq) ∈ Cq} ∩ (Cs,a ∪ Cs,b ∪ Cs,c) ,

Cs,a :={χ : ζ1 ∈ Φ1, ε0,a ≥ z0 ≥ 0, z1 = 0, q = 0, τ = 0} ,

Cs,b :={χ : ζ0 ∈ Φ0, z0 = 0, z1 ≥ ε1,a, q = 1} ,

Cs,c :={χ : ζ0 ∈ Φ0, z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ∗} ,

D̃ :={χ : (ξ, ζq) ∈ Dq} ∪Ds,a ∪Ds,b,

Ds,a :={χ : ζ1 ∈ Φ1, z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0} ,

Ds,b :={χ : ζ0 ∈ Φ0, z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ∗} .

8



The flow map F is defined in terms of the discrete state
q to “select” the appropriate flow dynamics when K0

and K1 are applied. The flow set C̃ allows flow when
both (ξ, ζq) is in the flow set Cq and the conditions for
flow imposed by the hybrid supervisor are satisfied. The
latter are given in (22), (16), and (17), which are cap-
tured in the sets Cs,a, Cs,b, and Cs,c, respectively. The
jump maps G0, G1, and Gs above are defined to exe-
cute the jumps of the individual hybrid controllers when
their state jumps due to (hq(ξ), ζq) ∈ Dc,q or when reset
of the appropriate states is required by the supervisor
jump sets Ds,a and Ds,b, which are given in (24) and
(19), respectively. Note that since gc,q is only defined on
Dc,q, the set-valued maps G0 and G1 are nonempty at
points χ with components in Dc,q. For each i = 0, 1, the
functions γi and constants εi are obtained from the OSS
properties of (P ,Ki) imposed in Assumption 3.1. Exis-
tence of parameters ε1,a and τ∗ guaranteeing a solution
to Problem (⋆) is established in the next section. A de-
sign method for these parameters is given in Section 3.4.

3.3 Nominal Properties of Closed-loop System

Our main result is as follows.

Theorem 3.5 (semi-global asymptotic stability)
Suppose Assumption 3.1 holds. Then, for each compact
set M ⊂ X of initial conditions there exists an output-
feedback hybrid supervisor Ks such that the compact set

As := A0 × Φ0 × Φ1 × {0} × {0} × {0} × {0}

is asymptotically stable for the closed-loop system Hcl

with a basin of attraction containing M; i.e., for each
ǫ > 0 there exists δ > 0 such that each solution χ to
Hcl with |χ(0, 0)|As

≤ δ satisfies |χ(t, j)|As
≤ ǫ for all

(t, j) ∈ domχ, and every solution χ to H with χ(0, 0) ∈
M is complete and satisfies limt+j→∞ |χ(t, j)|As

= 0.

Proof: By the continuity of fp, hi, and κc,i for each
i = 0, 1 imposed by Assumption 3.1, and continuity of
γi, F is continuous. By the regularity properties of gc,i
guaranteed by well posedness of Ki and continuity of hi

from Assumption 3.1, compactness of Φi for each i =
0, 1, and the definition of the set-valued map G, G :

D̃ ⇉ X is outer semicontinuous, locally bounded, and

nonempty for all points in D̃. By closedness of Cq and
Dq guaranteed by well posedness of Ki and continuity

of hi, C̃ and D̃ are closed sets. This establishes that the
hybrid supervisor is such that the closed-loop system is
a well-posed hybrid system. Moreover, the construction
ofKs is such that solutions to the closed-loop systemHcl

exist from points inR
np×R

nc×R
nc×R≥0×R≥0×Q×R.

Now we show that A0 is attractive from M. By the at-
tractivity property induced by K1 in Assumption 3.1.2.a

and Assumption 3.1.3, for every maximal solution χ to

Hcl from C̃ ∪ D̃ with q(0, 0) = 1 there exists (T, J) ∈
domχ such that χ(T, J) ∈ Ds,b. By definition ofG, there
exists J ′ > J , (T, J ′) ∈ domχ such that χ∗ = χ(T, J ′) ∈
Cs,a. Let χ

′ be the tail of the maximal solution χ. With
some abuse of notation, every solution χ′ to Hcl, with
χ′(0, 0) ∈ Cs,a (in particular, with χ′(0, 0) = χ∗) and
(ξ′(0, 0), ζ′0(0, 0)) in the set (20), is complete and, by As-
sumption 3.1.1.a and b, satisfies limt+j→∞ |ξ′(t, j)|A0

=
0. If (ξ′(t, j), ζ′0(t, j)) never reaches (20), we claim that
there exists (t, j) such that z′0(t, j) > ε0,a, and then,
by the definition of D and G, q is mapped to 1. Sup-
pose not. Then, the solution χ′ remains in Cs,a for all
(t′, j′) ∈ domχ′ such that t′ + j′ ≥ t+ j, which implies
that z′0(t

′, j′) ≤ ε0,a since the norm estimator (10) for
i = 0 remains on. Then, since ε0,a < ε0,b, from (11) for
i = 0, there exists large enough t + j, (t, j) ∈ domχ′,
such that V0(ξ

′(t, j), ζ′0(t, j)) ≤ ε0,b. This is a contradic-
tion. Then, a jump to q = 1 occurs. By the construction
of Cs,c and Ds,b, the closed-loop system will remain at
q = 1 for at least τ∗ units of time. Repeating this ar-
gument if needed, the fact that the norm estimator (10)
for i = 1 guarantees that the estimates converge (even
when reset to zero) implies that, eventually, a jump to
q = 0will occur with (ξ, ζ0) in the set (20). Note that this
is the case due to the fact that there are finitely many
jumps from q = 0 to q = 1 and back, as the following
result guarantees.

Lemma 3.6 There exist positive parameters τ∗, ε1,a,
and ε1,b such that there is no nondecreasing sequence of
times 10 {(t′n, j

′
n)}n∈N ∈ domχ for which, for all n ∈ N,

q(t′2n, j
′
2n) = 0, q(t′2n+1, j

′
2n+1) = 1. (25)

Proof: By contradiction, suppose that there exist a
complete solution χ and a nondecreasing sequence
{(t′n, j

′
n)}n∈N ∈ domχ, which can always be chosen so

that (25) holds, j′0 > 0, z0(t
′
0, j

′
0) = 0, flows with q = 0

occur with (t, j) ∈ domχ, t ∈ [t′2n, t
′
2n+1), and flows

with q = 1 occur with (t, j) ∈ domχ, t ∈ [t′2n+1, t
′
2n+2),

n ∈ N. Due to the dynamics of the timer τ , which en-
forces that the time between two jumps from q = 1 to
q = 0 of the supervisor have t’s separated by at least
τ∗ > 0 seconds, the solution cannot be Zeno (see Sec-
tion 2 for a definition). It follows that, for each n ∈ N,

(t′n, j
′
n − 1) ∈ domχ, (t′n, j

′
n) ∈ domχ,

z0(t
′
2n+1, j

′
2n+1 − 1) ≥ ε0,a, z1(t

′
2n+2, j

′
2n+2 − 1) ≤ ε1,a.

(26)
By considering the restriction on {(t, j) ∈ domχ′ :
t ∈ [t′2n+1, t

′
2n+2], q(t, j) = 1} of the solution χ as a so-

lution to (P ,K1) issuing from χ(t′2n+1, j
′
2n+1), we get,

from (11) with i = 1 and (26), that V1(ξ(t
′
2n+2, j

′
2n+2 −

10 In the sense that t′n+1 + j′n+1 ≥ t′n + j′n for all n ∈ N.
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1), ζ1(t
′
2n+2, j

′
2n+2 − 1)) ≤ z1(t

′
2n+2, j

′
2n+2 − 1) +

β1(|(ξ(t′2n+1, j
′
2n+1), ζ1(t

′
2n+1, j

′
2n+1))|A1×Φ1

+|z1(t′2n+1, j
′
2n+1)|, δ

′
2n+2) ≤ ε1,a

+β1(|(ξ(t′2n+1, j
′
2n+1), ζ1(t

′
2n+1, j

′
2n+1))|A1×Φ1

, δ′2n+2),
where δ′s = (t′s − t′s−1, j

′
s − j′s−1 − 1) and we have used

the facts that z1(t
′
2n+1, j

′
2n+1) = 0. Due to the expres-

sion of Gs, we have ξ(t
′
2n+2, j

′
2n+2) = ξ(t′2n+2, j

′
2n+2−1)

and ζ1(t
′
2n+2, j

′
2n+2) ∈ Φ1. Then, since j′2n+2 > 0 and

|(ξ, ζ1)(t
′
2n+2, j

′
2n+2)|A1×Φ1

= |ξ(t′2n+2, j
′
2n+2)|A1

, using
(6) we obtain

α1,1(|(ξ, ζ1)(t′2n+2, j
′
2n+2)|A1×Φ1

) ≤

V1(ξ(t
′
2n+2, j

′
2n+2 − 1), ζ1(t

′
2n+2, j

′
2n+2 − 1)).

Using (26) we get

|(ξ, ζ1)(t′2n+2, j
′
2n+2)|A1×Φ1

≤ (27)

α−1
1,1

(
ε1,a + β1(|(ξ, ζ1)(t′2n+1, j

′
2n+1)|A1×Φ1

, δ′2n+2)
)
.

In the same way, from (11) with i = 0we have, for eachn,
V0(ξ(t

′
2n+1, j

′
2n+1), ζ0(t

′
2n+1, j

′
2n+1)) ≤ z0(t

′
2n+1, j

′
2n+1−

1) + β0(|(ξ, ζ0)(t′2n, j
′
2n)|A0×Φ0

+ |z0(t′2n, j
′
2n)|, δ

′
2n+1).

This implies

|(ξ, ζ0)(t′2n+1, j
′
2n+1)|A0×Φ0

≤ α−1
0,1

(
z0(t

′
2n+1, j

′
2n+1 − 1)

+β0(|(ξ, ζ0)(t′2n, j
′
2n)|A0×Φ0

, δ′2n+1)
)
, (28)

where we have used the fact that z0(t
′
2n, j

′
2n) = 0.

Since q(t′0, j
′
0) = 0 by construction of the sequence

(t′n, j
′
n), we have, from (28), |(ξ, ζ0)(t

′
1, j

′
1)|A0×Φ0

≤
α−1
0,1 (z0(t

′
1, j

′
1 − 1) + β0(|(ξ, ζ0)(t

′
0, j

′
0)|A0×Φ0

, δ′1)) and,

from (27), |(ξ, ζ1)(t′2, j
′
2)|A1×Φ1

≤ α−1
1,1 (ε1,a+

β1(|(ξ, ζ1)(t′1, j
′
1)|A1×Φ1

, δ′2)) , which implies

|(ξ, ζ1)(t′2, j
′
2)|A1×Φ1

≤ (29)

α−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1 (z0(t
′
1, j

′
1 − 1)

+β0(|(ξ, ζ0)(t′0, j
′
0)|A0×Φ0

, δ′1)) , δ
′
2)) ,

where ∆ = maxx∈A0×Φ0, y∈A1×Φ1
|x − y|, which de-

notes the maximal distance between the sets A0 × Φ0

and A1 × Φ1, which is finite since both sets are com-
pact. Consider the compact set M in the assumption
of Theorem 3.5. Due to (12), there exists a com-
pact set containing all solutions of (P ,Ks) starting
from M. By this compactness property, the values
∆1 := max z0(t, j) and ∆2 = max |(ξ, ζ0)(t, j)|A0×Φ0

are finite, where the maximum are taken on {(t, j) ∈
domχ, χ is a solution of (P ,Ks) starting from M}. There-
fore, either there does not exist a sequence {(t′n, j

′
n)}n∈N ∈

domχ satisfying (25), or there exists such a sequence
and inequality (29) holds. However, in this latter case,
using max{t′1 + j′1, t

′
2 + j′2} < τ∗, pick τ∗ > 0 and ε1,a,

ε1,b such that

α1,2(α
−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1

(
∆1 + β0(∆2, τ

∗)
)
, τ∗

))

≤ ε1,b (30)

where βi(s, t) := 2 exp(−εit)αi,2(s). Then, using (6)
with i = 1, we get V1(ξ(t

′
2, j

′
2),

ζ1(t
′
2, j

′
2)) ≤ ε1,b. With (9), since ζ1(t

′
2, j

′
2) ∈ Φ1 and

ζ0(t
′
2, j

′
2) ∈ Φ0, we get γ0(h0(ξ(t

′
2, j

′
2))) < ε0,a. Since the

supervisor uses K0 at (t′2, j
′
2), the arguments below (9)

imply that no future jump of the supervisor is possible,
which is a contradiction. Then, no sequence satisfying
(25) exists. �

By the attractivity properties of the basin of attraction
of and completeness of solutions to (P ,K0), it follows
that every maximal solution converges to As. Hence, so-
lutions are bounded. By the construction of the jump
map in equation (18), the state ζ1 converges to Φ1 while
z1 and τ0 converge to zero. To conclude the proof, note
that the local stability properties induced by K0 estab-
lish that As is stable. �

Remark 3.7 Note that when assuming the existence of
a norm-observer for P (and not a pair of norm-observers
forP in closed loop withK0 and with P in closed loop with
K1 as in Assumption 3.1), we obtain a globally asymp-
totic stabilizing hybrid controller Ks. Indeed, following
the proof of Theorem 3.5 with this additional assumption,
we may strength the result of Lemma 3.6 and obtain that
there does no nondecreasing sequence of times satisfying
(25) for any initial condition (globally). With such a de-
tectability assumption, the obtained result would be close
in spirit to [23], but generalizes it since [23] pertains to
the problem of uniting continuous-time controllers with
same objectives.

3.4 A Design Procedure

Theorem 3.5 guarantees the existence of an output-
feedback hybrid supervisor solving Problem (⋆). While
this result does not explicitly provide values of the su-
pervisor parameters, the steps in its proof provide guide-
lines (potentially conservative) on how to choose these
parameters. When exponential-decay OSS-Lyapunov
functions and associated functions certifying the OSS
properties in Assumption 3.1 are available (see (6)-(8)),
the design procedure in the following result is a conse-
quence of the arguments in the proof of Theorem 3.5.

Corollary 3.8 (design procedure) Suppose Assump-
tion 3.1 holds. The output-feedback hybrid supervisor Ks

designed following the next steps solves Problem (⋆).

(1) Let ε0,b > 0 such thatΓ0 :={(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b}
is a subset of the basin of attraction B0 for the
asymptotic stabilization of A0 with K0.

(2) Choose ε0,a > 0 and ε1,b > 0 so that ε0,a < ε0,b,
Γ1 := {ξ ∈ R

np : V1(ξ, ζ1) ≤ ε1,b, ζ1 ∈ Φ1}×Φ0 is
a subset of Γ0, and every solution (ξ, ζ0) to (P ,K0)
from Γ1 satisfies γ0(|h0(ξ(t, j))|) < ε0,aε0 for all
(t, j) ∈ dom(ξ, ζ0).
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(3) Design ε1,a > 0 and τ∗ > 0 such that

α1,2(α
−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1

(
∆1 + β0(∆2, τ

∗)
)
, τ∗

))

≤ ε1,b.

where ∆ = maxx∈A0×Φ0, y∈A1×Φ1
|x − y|, ∆1 =

max z0(t, j), ∆2 = max |(ξ, ζ0)(t, j)|A0×Φ0
for

each solution (ξ, ζ0) to (P ,K0) from M (projected
onto R

np × R
nc), and βi(s, t) = 2 exp(−εit)αi,2(s)

for each i = 0, 1.

Note that the condition in Step 3 can always be satisfied
by picking small enough parameter ε1,a, which defines
the threshold for z1 to switch from q = 1 to q = 0, and
large enough parameter τ∗, which forces flows with con-
troller K1 until the timer reaches such value. Such selec-
tions have the effect of enlarging the time the controller
K1 is in the loop, making it possible that, after a jump
from q = 1 to q = 0, the state of the plant is such that
controller K0 stabilizes A0 × Φ0 without further jump
back to q = 1. Note that the condition in Step 3 is a
consequence of the proof of Lemma 3.6, which guaran-
tees that there are finitely many jumps from q = 0 to
q = 1 and back (but does not quantify the number of
such jumps). The design procedure and, in particular,
the tuning of ε1,a and τ∗ are illustrated in Section 4.1
when revisiting Example 3.4.

3.5 Robustness of the Closed-loop System

The following model of the plant with perturbations is
considered

ξ̇ = fp(ξ, u + d1) + d2 (31)

with outputs yp,0 = h0(ξ) + d3 and yp,1 = h1(ξ) + d4,
where d1 corresponds to actuator error, d2 captures un-
modeled dynamics, and d3, d4 represent measurement

noise. 11 Then, denoting by d̃i the signals di extended to
the state space of χ, the overall closed-loop system Hcl

results in a perturbed hybrid system, which is denoted

by H̃cl, with dynamics

χ̇ = F (χ+ d̃1) + d̃2 χ+ d̃1 ∈ C̃

χ+ ∈ G(χ+ d̃1) + d̃2 χ+ d̃1 ∈ D̃ .

The following qualitative result asserts that the stability
of the closed-loop system is robust to a class of perturba-
tions. It follows from the asymptotic stability property

11 The exogenous signals di, i = 1, . . . , 4, are given on hybrid
time domains, and in general, their value can jump at jump
times. For exogenous signals di(t), that is, given by functions
of time, given a hybrid time domain S it is possible to define,
with some abuse of notation, di(t, j) := di(t) for each (t, j) ∈
S. Solutions to hybrid systems with the perturbations above
is understood similarly to the concept of solution defined in
Section 2.

established in Theorem 3.5 and the fact that the con-
struction of the hybrid supervisor leads to a well-posed
closed-loop system.

Theorem 3.9 (stability under perturbations)
Suppose Assumption 3.1 holds. Then, there exists
β ∈ KLL such that, for each ε > 0 and each compact
set M ⊂ X, there exists δ > 0 such that for each mea-

surable d̃1, d̃2 : R≥0 → δB every solution χ to H̃cl with
χ(0, 0) ∈ M satisfies

|χ(t, j)|As
≤ β(|χ(0, 0)|As

, t, j) + ε ∀(t, j) ∈ domχ.

Proof: By Theorem 6.5 in [13], there exists β ∈ KLL
such that all solutions χ to Hcl satisfy |χ(t, j)|As

≤
β(|χ(0, 0)|As

, t, j) for all (t, j) ∈ domχ. Consider the

perturbed hybrid system H̃cl. Since d̃1(t), d̃2(t) ∈ δB for

all t ≥ 0, the closed-loop system H̃cl can be written as

χ̇ ∈ Fδ(χ) χ ∈ Cδ

χ+ ∈ Gδ(χ) χ ∈ Dδ,
(32)

where Fδ(χ) := coF (χ+ δB) + δB,
Gδ(χ) := {η : η ∈ χ′ + δB, χ′ ∈ G(χ+ δB)},

Cδ :=
{
χ : (χ+ δB) ∩ C̃ 6= ∅

}
, and

Dδ :=
{
χ : (χ+ δB) ∩ D̃ 6= ∅

}
. This hybrid system

corresponds to an outer perturbation ofHcl and satisfies
(C1), (C2), (C3), and (C4) in [13] (see Example 5.3 in [13]
formore details). Then, the claim follows byTheorem 6.6
in [13] since, for each compact set M of the state space
and each ε > 0, there exists δ∗ > 0 such that for each
δ ∈ (0, δ∗], every solution χδ to (32) from M satisfy, for
all (t, j) ∈ domχδ, |χδ(t, j)|As

≤ β(|χδ(0, 0)|As
, t, j)+ε.

�

Remark 3.10 The stability and attractivity assump-
tions imposed in Theorem 3.5 and Theorem 3.9 can be
further relaxed as in [23]. In particular, the attractivity
induced by K1 can be relaxed to be semi-global and prac-
tical (by adapting the considered compact set M ⊂ X
to these “semi-global and practical” properties). Also, it
can be relaxed to allow the individual controllers to have
solutions that are bounded but not complete, as long
as the solutions to the closed-loop system are all com-
plete. Lastly, note that Theorem 3.9 gives a qualitative
robustness result. When focusing on specific nonlinear
systems (such as linear systems with saturation at the
input) estimations of basins of attraction of individual
continuous-time controllers have been used in [23] and
thus it may be possible, for this class of specific nonlinear
systems, to derive qualitative results and more explicit
bounds for the robustness issue.

4 Examples
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The proposed control algorithm piecing together two
output-feedback hybrid controllers is applicable to nu-
merous control systems where the design of a single ro-
bust stabilizing controller is difficult or even impossi-
ble. Such applications include the stabilization of the in-
verted position of the single pendulum [27], the inverted
position of the pendubot [25], the position and orien-
tation of a mobile robot [26], and the synchronization
of Lorenz oscillators [8]. An implementation of the pro-
posed controller in a real-world system will result in a
logic-based algorithm that triggers the discrete updates
of the variables z0, z1, q, and τ by checking via if/else
statements if the variables and measurements are in the
jump set D̃. In such situations, the algorithm will up-
date the values of the variables at the next time step.
For an example of such an implementation, see [19].

Next, we revisit Examples 3.3 and 3.4.

4.1 Stabilization with constrained inputs and limited in-
formation

Consider the stabilization of the origin of (13) in Ex-
ample 3.4. Suppose that the inputs are constrained to
u1u2 = 0 and that α is a constant satisfying |α| ∈

(0,
√
3
3 ). Measurements of ξ1 and ξ2 are available but

not simultaneously. Due to these constraints, the task
of designing a single controller or a controller uniting
two controllers with the same objectives for the sta-
bilization of the origin is daunting. However, a hybrid
controller Ks, as presented in this paper, can be de-
signed to accomplish this task by coordinating two con-
trollers, K0 and K1, with different objectives. Consider
the controller K0 in Example 3.4 which consists of a
static feedback controller that measures h0(ξ) := ξ1 to
stabilize ξ to A0 = (0, 0). From (14), it can be verified
that

{
ξ : V0(ξ) ≤

1
6

}
⊂ B0, with B0 being the basin

of attraction for K0. Since |α| ∈ (0,
√
3
3 ), we have that

V0((0, α)) < 1
6 and thus the point (0, α) is in the inte-

rior of B0. A controller K1 can be designed to steer the
solutions to A1 := (0, α). From (14), it follows that the
point (0, α) belongs to the interior of B0; hence item 3
in Assumption 3.1 holds. Let h1(ξ) := ξ2 − α. The con-
troller K1 is given as in (4) with nc = 0, κc,1(ξ) :=
[h1(ξ) + α, 0]⊤, and no dynamical state (i.e., Cc,1 =
Dc,1 = ∅ and fc,1, gc,1 are arbitrary). With this con-
troller, the function V1(ξ) = 1

4ξ
4
1 + 1

2 (ξ2 − α)2 satis-

fies, for all ξ ∈ R
2, 〈∇V1(ξ), fp(ξ, κc,1(ξ))〉 ≤ −V1(ξ),

from where a norm observer for |ξ|A1
follows; e.g., we

can use ż1 = −z1. Then, Assumption 3.1 holds with
mc,0 = mc,1 = 1, Φ0 = Φ1 = ∅, ε0 = 1, and ε1 = 1.
Then, using Theorem 3.5 there exists a hybrid supervi-
sor Ks such that the origin of (13) is asymptotically sta-
ble. Following Section 3.2.3, the closed-loop system has
state χ = (ξ, z0, z1, q, τ) ∈ R

2 × R × R × Q × R =: X

and is given by 12

F (χ) :=




[
−ξ1 + (κ1

c,q(ξ)− ξ2)ξ
2
1

−ξ2 + ξ21 + α+ κ2
c,q(ξ)

]

(1− q)(−z0 + |h0(ξ)|4(1 + |h0(ξ)|2))

−q z1

0

q




,

G(χ) := [ξ⊤ 0 0 1− q 0]⊤, C̃ := Cs,a ∪ Cs,b ∪ Cs,c,

Cs,a := {χ : ε0,a ≥ z0 ≥ 0, z1 = 0, q = 0, τ = 0} ,

Cs,b := {χ : z0 = 0, z1 ≥ ε1,a, q = 1} ,

Cs,c := {χ : z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ∗} ,

D̃ := Ds,a ∪Ds,b,

Ds,a := {χ : z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0} ,

Ds,b := {χ : z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ∗} .

Figure 2 shows a trajectory to the closed-loop system
when α = 1

4 , ε0,a = ε1,a = 0.01, τ∗ = 1, and M0 = 10B,
which are parameters found numerically. The trajec-
tory starts from ξ(0, 0) = (3,−3) with controller K1

connected to the plant (q = 1), which steers the plant
component to a neighborhood of the origin. At about
(t, j) ≈ (4.65, 0), z1 reaches ε1,a and τ is above τ∗, trig-
gering a jump to q = 0. In that mode, the local controller
steers the plant component to zero, z0 approaches zero,
and the other controller components remain at zero. Fig-
ure 3 shows a trajectory to the closed-loop system with
q(0, 0) = 0 and ξ(0, 0) = (30,−30). In this case, a jump
of the supervisor to q = 1 occurs initially. 13 Since after
the jump z1 is mapped to zero, z1 remains at zero for the
remainder of the solution, jumps back to q = 0 are trig-
gered every τ∗ seconds, with instantaneous jumps back
to q = 1 until the local controller is capable of stabilizing
A0.

The design procedure in Corollary 3.8 can be used to sys-
tematically select parameters ε1,a and τ∗. In this way, we
follow the steps proposed therein with ᾱ = 1

4 and M0 =

10B. Since, as shown earlier, we have
{
ξ : V0(ξ) ≤

1
6

}
⊂

B0, then we pick ε0,b = 1
6 in Step 1 and define Γ0.

When 4
27 ≤ ε0,a < ε0,b and ε1,b ≤ 0.015, we have

that the conditions in Step 2 hold. In fact, solutions ξ

from Γ0 satisfy |ξ(t, j)| ≤
√
3
3 for all (t, j) ∈ dom ξ and,

12 We denote the i-th component of κc,q by κi
c,0(ξ), i = 1, 2,

q = 0, 1.
13Dashed (red) lines denote jumps in the state components.
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since γ0(s) = s4(1 + s2), we have γ0(|h0(ξ(t, j))|) ≤
4
27 .

Moreover, a simple check on level sets indicates that
Γ1 :=

{
ξ ∈ R

2 : V1(ξ) ≤ 0.015
}
⊂ Γ0. To pick ε1,a and

τ∗ in Step 3, we first obtain the following values af-
ter straightforward computations: ∆ = |ᾱ|, ∆1 = ε0,a,

∆2 = α−1
0,1 (ε0,a + 2α0,2(10 + ε0,a)), α

−1
0,1(s) = (2s)1/2,

α0,2(s) = 1
2s

2, and α−1
1,1(s) = 2max

{
s1/4, s1/2

}
. Using

ε0,a = 4
27 , then the condition in Step 3 is satisfied with

ε1,a = 0.00005 and τ∗ = 15. Figure 4 shows a simulation
of the closed-loop system with these parameters, which
indicates that convergence to the origin occurs after only
one jump.

4.2 Stabilization under topological obstructions

Consider the stabilization of the point A0 := {ξ∗}, for
the point-mass system in Example 3.3. Following the
discussions therein, the measurements available are

y1 = h1(ξ) := (ϕ1(ξ),∇ϕ1(ξ), ϕ2(ξ),∇ϕ2(ξ)) ∀ξ ∈ R
2,

y2 = h2(ξ) := ξ ∀ξ ∈ ξ∗ + εB

(33)
for some ε > 0, where ϕi, i = 1, 2, are continuously
differentiable functions given by

ϕi(ξ) :=
1

2
(ξ − ξ◦)⊤(ξ − ξ◦) +B(di(ξ))

with B : R≥0 → R a continuously differentiable func-
tion defined as B(z) := max{0, (z − 1)2 ln 1

z} and

di : R
2 → R≥0 a continuously differentiable function

that measures the distance from any point in Oi to
the set N . These functions define “potential” func-
tions relative to the intermediate target point ξ◦ that
include the presence of the obstacle. The sets N for
α̂ = 0.07 and ξ = (1, 0), A0 for {ξ∗} = {(4,− 1

4 )},

and Oi given by O1 =
{
ξ ∈ R

2 : |ξ1| − 1.1 ≥ ξ2
}
,

O2 =
{
ξ ∈ R

2 : |ξ1|+ 1.1 ≤ ξ2
}

are depicted in Fig-
ure 5. The point ξ◦ is the point at which ϕi vanishes.
The local controller can measure the full state ξ in the
neighborhood A0 + εB for ε = 1.

We design a hybrid supervisor Ks to coordinate two
output-feedback controllers. The controller while in
mode q = 1 is hybrid with a discrete state ζ1 ∈ {1, 2}
evolving continuously according to ζ̇1 = 0. The tar-
get stabilization set for this controller is taken to
be A1 = {ξ◦}. Let µ > 1, λ ∈ (0, µ − 1). The fol-
lowing hybrid controller defines the feedback law K1

κc,1(ξ, ζ1) := −∇ϕζ1(ξ) when (ξ, ζ1) ∈ Cc,1, where

Cc,1 := {(ξ, ζ1) ∈ ∪ζ1∈{1,2}(Oζ1 × {ζ1}) :

ϕζ1(ξ) ≤ µminζ1∈{1,2} ϕζ1(ξ)}
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(b) Controller trajectory

Fig. 2. Plant and controller states of a closed-loop trajectory.
(a) Plant component ξ(t, j) for (13) from ξ(0, 0) = (3,−3),
q(0, 0) = 1, τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines
denote an estimate of B0, ⋆ (red) the jump from q = 1 to 0,
and × the sets A1 = (0, α) and A0 = (0, 0), with α = 1

4
. (b)

Controller states of hybrid supervisor Ks. The dashed lines
represent the jumps in the variables. Controller parameters:
ε0,a = ε1,a = 0.01, and τ∗ = 1.

and has discrete dynamics given by

ζ+1 ∈ G1(y1, ζ1) :=
{
ζ′1 ∈ {1, 2} : ϕζ1(ξ) ≥ (µ− λ)ϕζ′

1
(ξ)

}

when (ξ, ζ1) ∈ Dc,1, where

Dc,1 :=
{
(y1, ζ1) : ϕζ1(ξ) ≥ (µ− λ)minζ′

1
∈{1,2} ϕζ′

1
(ξ)

}
.

The design parameters of the controller K1 are µ and λ.

Take V (ξ, ζ1) = ϕζ1(ξ), then with the K1 dynamics we
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Fig. 3. Plant and controller states of a closed-loop trajectory.
(a) Plant component ξ(t, j) for (13) from ξ(0, 0) = (30,−30),
q(0, 0) = τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines
denote an estimate of B0, ⋆ (red) the jump from q = 1 to
0, and × the sets A1 = (0, α) and A0 = (0, 0)(= A), with
α = 1

4
. (b) Controller states of hybrid supervisor Ks. The

dashed lines represent the jumps in the variables. Controller
parameters: ε0,a = ε1,a = 0.01, and τ∗ = 1.

obtain, with γ′ := (µ− λ)−1, γ′ ∈ (0, 1), ρ(s) = s2,

V (ξ, ζ′1) ≤ γ′V (ξ, ζ1) ∀ζ′1 ∈ G1(ξ, ζ1), ∀(ξ, ζ1) ∈ Dc,1 ,

and, ∀(ξ, ζ1) ∈ Cc,1,

〈∇V (ξ, ζ′1), fp(ξ, κ1(ξ, ζ1))〉 ≤ −2V (ξ, ζ1) .

Global asymptotic stability ofA1 (onCc,1∪Dc,1) follows,
from where a norm observer for |ξ|A1

exists; e.g., we
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(b) Controller trajectory

Fig. 4. Plant and controller states of a closed-loop trajectory.
(a) Plant component ξ(t, j) for (13) from ξ(0, 0) = (3,−3),
q(0, 0) = 1, τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines
denote an estimate of B0, ⋆ (red) the jump from q = 1 to 0,
and × the sets A1 = (0, α) and A0 = (0, 0), with α = 1

4
. (b)

Controller states of hybrid supervisor Ks. The dashed lines
represent the jumps in the variables. Controller parameters:
ε0,a = 4

27
, ε1,a = 0.00005, and τ∗ = 15.

can use ε1 = 1 − γ′ and any class-K function γ1 for
the norm observer in (10). The local controller to use in
mode q = 0 is a static, continuous-time feedback of the
form κc,0(ξ) := −ξ+ξ∗. Local asymptotic stability ofA0

follows with basin of attraction A0 + εB and ż0 = −z0
is a norm observer for |ξ|A0

.

Figure 5 depicts trajectories to the plant with the pro-
posed hybrid supervisor for two different initial condi-
tions of the state ζ1 of the controllerK1. The trajectories
converge first to a neighborhood of A1, and when z1 be-
comes small enough, a jump to K0 is triggered and the
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trajectories converge to A0.

5 Conclusion

A solution to a general uniting problem was formulated
and exercised in examples. The controllers considered
can be hybrid, nonlinear, output-feedback, and have dif-
ferent objectives. The solution consists of constructing
a well-posed hybrid supervisor that appropriately com-
bines two hybrid controllers to accomplish the task. In
addition to stability and attractivity properties, to guar-
antee the existence of norm estimators, the individual
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(a) Plant trajectory with initial conditions ξ(0, 0) = 0,
q(0, 0) = 1, ζ1(0, 0) = 1, steered below the obstacle using
κ1(ξ, 1) while in ζ1 = 1.
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(b) Plant trajectory with initial conditions ξ(0, 0) = 0,
q(0, 0) = 1, ζ1(0, 0) = 2, steered above the obstacle using
κ1(ξ, 2) while in ζ1 = 2.

Fig. 5. Trajectories ξ(t, j) to point-mass system with hybrid
supervisor Ks. Dotted circle denotes an estimate of B0 and
× the sets A1 = {(3, 0)} and A0 = {(4,− 1

4
)}. The set O1 is

the region below the upper “wedge,” while the set O2 is the
region above the lower “wedge,” which is depicted in dotted
line. The cone emanating from the initial condition depicts
that, initially, the target point is not in the line-of-sight of
the point-mass system. The controller parameters used are
µ = 1.1 and λ = 0.09.

controllers are assumed to induce an output-to-state sta-
bility property. Robustness of the full closed-loop sys-
tem is asserted via results for perturbed hybrid systems.
Examples illustrating the design methodology of the hy-
brid supervisor were presented. The proposed algorithm
can also be used for waypoint navigation and loitering
control of unmanned aerial vehicles [7]. The proposed
solution does not assume a detectability property for the
plant and thus, in contrast to [23], a global norm ob-
server may not exist. When this stronger property is as-
sumed, the proposed hybrid supervisor achieves robust,
global asymptotic stability. Moreover, the attractivity
property in Assumption 3.1 can be relaxed to a semi-
global, practical attractivity property.
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