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Abstract—The property of desynchronization in impulse-
coupled oscillators is studied. Each impulsive oscillator is mod-
eled as a hybrid system with a single timer state that self-resets
to zero when it reaches a threshold, at which point any other
impulsive oscillator adjusts their timers following a common
law. This law dictates the reaction to an external reset. In this
setting, desynchronization is considered as timers having equal
separation among each other and between successive resets.
We show that, for the considered model, desynchronization is
an (almost global) asymptotic stability property, which, due
to the regularity properties of the hybrid systems, is robust
to small perturbations. To establish this result, we recast
desynchronization as a set stabilization problem and employ
Lyapunov stability tools for hybrid systems. The results are
illustrated in examples and simulations.

I. INTRODUCTION
Impulse-coupled oscillators are systems that continuously

evolve until a state-triggered event occurs. Networks of such
oscillators have been used to model the dynamics of a
wide range of biological systems, including fireflies, neurons,
cyclic behaviors, and even muscle cells [1], [2], [3]. Such
networks have been found to synchronize their variables, by
conveying only a small amount of information between the
oscillators.
The dual of synchronization is desynchronization. In sim-

ple terms, desynchronization in multi-agent systems is the
notion that the agents’ actions are separated as far apart as
possible, similar to clustering or splay-state configurations
[4], [5]. For impulse-coupled oscillators, which is the class
of systems this paper addresses, desynchronization is the
configuration in which all oscillators are evenly spread out
while oscillating at the same rate [6]. This action is seen in
nature [7] and in neural networks [8], [9]. Desynchronization
of oscillators has recently been shown to be of importance in
the understanding of Parkinson’s disease; see, e.g., [10], [11].
It is also an important property in wireless digital networks
[12] and for round-robin scheduling in sensor networks [13].
The approach taken in this paper consists of model-

ing a network of impulse-coupled oscillators as a hybrid
system. The dynamics of the hybrid system capture the
(linear) continuous evolution of the timers as well their
impulsive/discontinuous behavior due to internal and exter-
nal events. Analysis of the asymptotic stability properties
of the solutions to these systems is performed using the
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framework of hybrid systems in [14], [15]. To this end, we
recast the study of desynchronization as a set stabilization
problem. Unlike synchronization, for which the set of points
to stabilize is obvious, the complexity of desynchronization
requires first to determine such a collection of points, which
we refer to as the desynchronization set. We propose an
algorithm to compute such a set of points. Then, using
Lyapunov stability theory for hybrid systems, we prove that
the desynchronization set is asymptotically stable. Details of
the analysis for the cases of two and three impulse-coupled
oscillators are given. In our context, asymptotic stability of
the desynchronization set implies that the distance between
the states and the set converge to zero as the amount of
time and number of jumps gets large. We define a Lyapunov
function as the distance between the state and (an inflated
version of) the desynchronization set. We characterize the
time for the state to reach a neighborhood of the said set
and verify the results numerically.
The remainder of the paper is organized as follows. Sec-

tion II is devoted to hybrid modeling of impulse-coupled os-
cillators. Section III-A introduces an algorithm to determine
the desynchronization set. Section III-B presents the stability
results while the time to convergence is characterized in
Section III-C. Section III-D presents numerical results. Final
remarks are given in Section IV.
Notation: We use the following notation: R denotes the

real numbers space. Rn denotes the n-dimensional Euclidean
space. N denotes the natural numbers including zero. Given
an interval S = [0, t] and n ∈ N \ {0}, Sn is the cartesian
product of the interval, i.e., [0, t]3 = [0, t] × [0, t] × [0, t].
Finally, B is the closed unit ball centered around the origin
in Euclidean space. The Euclidean distance from x ∈ Rn

and a set S ⊂ Rn is denoted by d(x, S). A column vector of
N ones is denoted by 1. The c-level set of V : domV → R

is given by LV (c) = {x : V (x) = c}. The c-sublevel set of
V is given by L̃V (c) = {x : V (x) ≤ c}.

II. HYBRID MODEL OF IMPULSE-COUPLED
OSCILLATORS

A. Overview
In this paper, each impulse-coupled oscillator has a con-

tinuous state defining its internal timer. Once any of the
oscillator’s timer reaches a threshold, it triggers an impulse
and reset to zero. At such event, all the other impulse-coupled
oscillators decrease their timer by an amount given by (1+ε)
times the value of their timer, where ε ∈ (−1, 0).1 Figure 1
1Cf. the model for synchronization in [2] where ε > 0.
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Fig. 1. An example of two impulse-coupled oscillators reaching desynchro-
nization as ∆ti converges to a constant. The internal resets (red circles)
reset the timers to zero. The external resets (green circles) reset the timers
to a fraction (1 + ε) of their current value.

shows a trajectory of two impulse-coupled oscillators with
states τ1 and τ2. In this figure, the red circles indicate when
a timer state has reached the threshold (denoted τ̄ ) and thus
resets to zero. The green circles indicate when an oscillator
is externally reset and, hence, decreases its timer by (1 + ε)
times its current state.

B. Hybrid Modeling
Following the overview in Section II-A, the dynamics of

the impulse-coupled oscillators involve impulses and timer
resets, which are treated as true discrete events and instan-
taneous updates, while the smooth evolution of the timer
before/after these events define the continuous dynamics. We
follow the hybrid formalism of [14], [15], where a hybrid
system is given by four objects (C, f,D,G) defining its data:

• Flow map: a single-valued map f : Rn → Rn defining
the flows (or continuous evolution).

• Flow set: a set C ⊂ Rn specifying the points where
flows are possible.

• Jump map: a set-valued map G : Rn ⇒ Rn defining
the jumps (or discrete evolution).

• Flow set: a set D ⊂ Rn specifying the points where
jumps are possible.

A hybrid system capturing the dynamics of the impulse-
coupled oscillators is denoted as HN := (C, f,D,G) and
can be written in the compact form

HN : τ ∈ R
N

{
τ̇ = f(τ) τ ∈ C
τ+ ∈ G(τ) τ ∈ D

, (1)

where N ∈ N \ {0, 1} is the number of impulse-coupled
oscillators. The state of HN is given by

τ := [τ1 τ2 . . . τN ]! ∈ PN := [0, τ̄ ]N .

The flow and jump sets are defined to constrain the evolution
of the timers. The flow set is defined by

C := {τ ∈ PN : τi ∈ [0, τ̄ ], ∀ i ∈ I} (= [0, τ̄ ]N = PN ),
(2)

where I := {1, 2, . . . , N} and τ̄ > 0 is the threshold. During
flows, the timers simply count ordinary time. Then, the flow
map is defined as

f(τ) := 1 ∀τ ∈ C.

The impulsive events described in Section II-A are modeled
by a jump map G. Jumps occur when the state is in the jump
set D, e.g., belongs to the set

D :=
{
τ ∈ PN : ∃i ∈ I s.t. τi = τ̄

}
. (3)

From such points, the i-th timer will be reset to zero and
force a jump of all other timers. Such discrete dynamics are
captured by the following jump map: for each τ ∈ D define
G(τ) = [g1(τ) g2(τ) . . . gN (τ)]! , where

gi(τ) =






0 if τi = τ̄ , τj < τ̄ ∀j ∈ I \ {i}
{0, τi(1 + ε)} if τi = τ̄ ∃j ∈ I \ {i} s.t. τj = τ̄
(1 + ε)τi if τi < τ̄ ∃j ∈ I s.t. τj = τ̄

(4)
with parameters ε ∈ (−1, 0) and τ̄ > 0. When a jump is
triggered by the jump set, the state τi jumps according to the
i-th component of the jump map gi. When a state reaches the
threshold τ̄ , it is reset to zero only when all other states are
less than that threshold; otherwise, if multiple timers reach
the threshold simultaneously, the jump map is set valued to
indicate that either gi(τ) = 0 or gi(τ) = (1+ε)τi is possible.
This is to ensure that the jump map satisfies the regularity
conditions outlined in Section II-C2.
Solutions to the hybrid system HN evolve continuously

(flow) and/or discretely (jump) depending on the continuous
and discrete dynamics and the sets where those dynamics
apply. As in [15], we treat the number of jumps as an
independent variable j and the amount of time of flows by the
independent variable t. Then, solutions τ to HN are given
by hybrid arcs parameterized by (t, j) which takes values
on the hybrid time domain dom τ ; see [14], [15] for more
details.3

C. Basic Properties of HN

To apply analysis tools for hybrid systems, which will be
presented in Section III, the data of the hybrid system HN

must meet certain mild conditions. These conditions, referred
to as hybrid basic conditions, are as follows:
A1) C and D are closed sets in RN .
A2) f : RN → RN is continuous on C.
A3) G : RN ⇒ RN is an outer semicontinuous 4 set-valued

mapping, locally bounded on D, and such that G(x)
is nonempty for each x ∈ D.

Lemma 2.1: HN satisfies the hybrid basic conditions.
Note that satisfying the hybrid basic conditions allow for
this hybrid system to be considered as well-posed which au-
tomatically gives robustness to vanishing state disturbances,
see [14], [15].

2In [4], a more general flow map and a jump map incrementing τi by
ε > 0 are considered.
3A solution τ is said to be nontrivial if dom τ contains at least one point

different from (0, 0), maximal if there does not exist a solution τ ′ such that
τ is a truncation of τ ′ to some proper subset of dom τ ′, complete if dom τ
is unbounded, and Zeno if it is complete but the projection of dom τ onto
R≥0 is bounded.
4A set-valued mapping G : RN ⇒ RN is outer semicontinuous if its

graph {(x, y) : x ∈ Rn, y ∈ G(x)} is closed.



III. ASYMPTOTIC STABILITY PROPERTIES OF HN

Our goal is to show that the desynchronization con-
figuration is asymptotically stable. A precise definition of
asymptotic stability for hybrid systems HN is given in
[14], [15] and is defined as the property of a set being
both stable and attractive. The set of points from where
the attractivity property holds is the basin of attraction
and excludes all points where the system trajectories never
converge to desynchronization. The basin of attraction for
HN does not include any point τ such that any two or more
timers are equal or after a jump become equal. This set is
denoted by XN and is defined as

XN :=
⋃

i,j∈I,i#=j

(
{τ ∈ PN : τi = τj}

∪{τ ∈ D : τi = gj(τ)}) .

For example, consider the case N = 2, i.e., H2. Then the
set X2 is defined as

X2 = {τ ∈ P 2 : τ1 = τ2} ∪ {τ ∈ D : g1(τ) = τ2}
∪ {τ ∈ D : g2(τ) = τ1}. (5)

This set defines the line τ1 = τ2 and the points
{(0, τ̄), (τ̄ , 0)}, see Figure 2(a).
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(a) The sets X2 and A2. The set A2

defined by the union of #1 and #2.
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τ1, τ2 for the hybrid system H2
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Fig. 2. Sets associated with H2 and a solution to it from τ(0, 0) =
[0.7, 0.75]# with ε = 0.3 and τ̄ = 1.

A. Construction of set AN for HN

In this section, we identify the set of points corresponding
to the impulse-coupled oscillators being desynchronized,
namely, the desynchronization set. We define desynchro-
nization as the behavior in which the separation between
all of the timers’ impulses is maximized. It leads to an
ordered sequence of impulse times with equal separation.
The desynchronization set for the hybrid system HN is
denoted as AN and will be parameterized by ε, threshold
τ̄ , and the number of impulse-coupled oscillators N .
To compute this set, first we provide some basic intuition

about the dynamics of HN when desynchronized. The set
AN must be forward invariant. Hence, the definition of the
constant flow map f admits a set in the form of “lines” #k,
each of them with the direction 1 intersecting the jump set at
a point which, for the k-th line, we denote as τ̃k . Then, the

desynchronization set is given by the union of sets #k defined
by points τ = τ̃k + 1s ∈ PN parameterized by s ∈ R. To
identify τ̃k, consider a point τ̃k ∈ D \XN with components
satisfying τ̃k1 = τ̄ > τ̃k2 > τ̃k3 > ... > τ̃kN . This point belongs
to AN only if the distance between the expiring timer (τ̃k1 )
and each of its other components (τ̃ki , i ∈ I \ {1}) is equal
to the distance between the value after the jump of the timer
expiring next (τ̃k2 +) and the value after the jump of its other
components (τ̃ki +, i ∈ I \ {2}), respectively. More precisely,

τ̃k1 − τ̃ki = τ̃k2
+ − τ̃knext(i)

+ ∀ i ∈ I \ {1}, (6)

where τ̃k+ = G(τ̃k) and next(i) = i + 1 if i + 1 ≤ N
and 1 otherwise. Since XN contains all points such that at
least two or more timers are the same, we can consider the
case when one component of τ̃k is equal to τ̄ at a time.
For each such case, we have (N − 1)! possible permutations
of the other components and N possible timer components
equal to τ̄ , leading to N ! total possible sets #k. To illustrate
the algorithm outlined above for the construction of AN ,
consider the case of N = 2 and τ̃11 = τ̄ > τ̃12 . For i = 2, (6)
becomes

τ̄ − τ̃12 = τ̃12 (ε+ 1)

which leads to τ̃12 = τ̄
ε+2 and it follows that τ̃

1 = [τ̄ , τ̄
ε+2 ]

!.
Similarly for τ̃12 = τ̄ > τ̃11 , we get from (6) the equation
τ̄− τ̃11 = τ̃12 (ε+1) which implies τ̃2 = [ τ̄

ε+2 , τ̄ ]
!. A glimpse

at the case for N = 3 with τ̃11 = τ̄ > τ̃12 > τ̃13 , (6) leads to

τ̄ − τ̃12 = τ̃12 (1 + ε)− τ̃13 (1 + ε),

τ̄ − τ̃13 = τ̃12 (1 + ε)− 0.

The solution to these equations is τ̃1 = [τ̄ , τ̄(ε + 2)/(ε2 +
3ε+ 3), τ̄/(ε2 + 3ε+ 3)]!.
The algorithm above for the N case results in the system

of equations Γτs = b, where τs is the state τ̃k sorted into
decreasing order. For example, if τ̃k is such that τ̃k2 = τ̄ >
τ̃k1 > τ̃k3 , then τs is given as [τ̃k2 , τ̃k1 , τ̃k3 ]!. The matrices Γ
and b are given by

Γ =





1 0 0 0 0
0 (2 + ε) −(1 + ε) . . . 0

0 (1 + ε) 1
. . .

...
...

...
...

. . . −(1 + ε)
0 (1 + ε) 0 . . . 1




(7)

and
b = τ̄1. (8)

It can be shown that Γ is invertible for any ε ∈ (−1, 0).
Then, the solution τs needs to be unsorted and becomes τ̃k
in the definition of the set #k.
The solution to Γτs = b is the result of a single case of

τ ∈ D \ XN . As indicated above, to get a full definition of
the set AN , the N ! sets #k should be computed. For arbitrary
N , the set AN is given as a collection of sets #k given by

AN =
N !⋃

k=1

#k, (9)



where, for each k ∈ {1, 2, . . . , N !}, #k := {τ : τ = τ̃ i+1s ∈
PN , s ∈ R}. For the case N = 2, the points τ̃k for k ∈ {1, 2}
lead to the set A2 given by

A2 = #1 ∪ #2 =

{
τ : τ =

[
τ̄
τ̄

ε+2

]
+ 1s ∈ PN , s ∈ R

}

∪
{
τ : τ =

[
τ̄

ε+2
τ̄

]
+ 1s ∈ PN , s ∈ R

}
.

Figure 2(a) shows these sets in the (τ1, τ2)-plane. Figure 2(b)
shows a solution to H2. The initial conditions for the
simulation are τ(0, 0) = (0.75, 0.7).

B. Lyapunov Stability

Lyapunov theory for hybrid systems is employed to show
that the set of points AN is asymptotically stable.
1) Lyapunov Stability Analysis for H2: Section III-A

arrived to the set given by A2 = #1∪#2 for the hybrid system
H2. Our goal is to use a Lyapunov function to establish,
via [15, Theorem 23], that the desynchronization set is
(almost) globally asymptotically stable for H2. Consider the
Lyapunov function V2 given by the distance from τ to A2.
The desynchronization set must be inflated to avoid situations
where there may be an increase in distance during flows near
the corners {(0, 0), (τ̄ , τ̄ )}, see Figure 2(a). From the figure,
as solutions flow to points near {τ̄ , τ̄}, the minimum distance
to the lines #k will increase due to the fact that the lines live
in P 2. Then, we define

Ã2 := #̃1 ∪ #̃2 ⊃ A2,

where #̃1 and #̃2 are extensions of #1 and #2 given by

#̃1 = {τ : τ =

[
τ̄
τ̄

ε+2

]
+ 1s ∈ P 2 ∪

√
2τ̄B, s ∈ R},

#̃2 = {τ : τ =

[
τ̄

ε+2
τ̄

]
+ 1s ∈ P 2 ∪

√
2τ̄B, s ∈ R}.

(10)

The proposed Lyapunov function is given by

V2(τ) = |τ |Ã2
= min

{
d(τ, #̃1), d(τ, #̃2)

}
∀τ ∈ P2\(Ã2∪X2)

(11)
with X2 defined as in (5). The Lyapunov function (11) is
the minimum distance from the state to the union of the
sets #̃1 and #̃2. The distance between a point τ and #̃k, in
R2, is given by d(τ, #̃k) =

∣∣∣(τ̃k − τ) − (τ̃k−τ)!1

2

∣∣∣, where τ̃k

corresponds to #̃k. Then, d(τ, #̃k) reduces to

d(τ, #̃k) =
1√
2
|τ1 − τ2 + (τ̃k2 − τ̃k1 )|. (12)

Using the expressions in (10), then V2 in (11) reduces to

V2(τ) = |τ |Ã2
=

1√
2
min{|τ2−τ1−B|, |τ2−τ1+B|} ∀τ ∈ P 2

(13)
where B = ε+1

ε+2 τ̄ .

Along flows, we have that for each τ ∈ C \ (Ã2 ∪ X2)
and each k ∈ {−B,B},

〈∇V2(τ), f(τ)〉 =

〈
1√
2
∇|τ2 − τ1 + k|, [1, 1]!

〉

=
1√
2
〈[∓1, ±1]!, [1, 1]!〉

= ∓
1√
2
±

1√
2

= 0.

Then, it follows that

〈∇V2(τ), f(τ)〉 = 0 ∀τ ∈ C \ (Ã2 ∪ X2).

We now evaluate V2 at jumps, that is, ∆V2(τ) = V2(G(τ))−
V2(τ). Considering the case when τ ∈ D \ (Ã2 ∪X2), with
τ1 = τ̄ > τ2 leads to g1(τ) = 0 and g2(τ) = (1+ε)τ2. Note
that V2(τ) = d(τ, #̃1) =

1√
2

∣∣∣τ2 − τ̄
ε+2

∣∣∣ and |(1+ε)τ2−B| <
|(1 + ε)τ2 +B|. Then, we have
√
2∆V2(τ) = min{|g2(τ) +B|, |g2(τ)−B|}

−min{|τ2 − τ̄ +B|, |τ2 − τ̄ −B|}
= |(1 + ε)τ2 −B|− |τ2 − τ̄ +B|

=

∣∣∣∣(1 + ε)τ2 −
ε+ 1

ε+ 2
τ̄

∣∣∣∣−
∣∣∣∣τ2 − τ̄ +

ε+ 1

ε+ 2
τ̄

∣∣∣∣

= ε

∣∣∣∣τ2 −
τ̄

ε+ 2

∣∣∣∣

Similarly, consider the case when τ ∈ D \ (Ã2 ∪ X2), with
τ2 = τ̄ > τ1. After the jump, we have g2(τ) = 0 and
g1(τ) = (1 + ε)τ1. Then, similarly,
√
2∆V2(τ) = min{|− g1(τ) +B|, |− g1(τ) −B|}

−min{|τ̄ − τ1 +B|, |τ̄ − τ1 −B|}
= |− (1 + ε)τ̄ +B|− |τ̄ − τ1 −B|

=

∣∣∣∣−(1 + ε)τ̄ +
ε+ 1

ε+ 2
τ̄

∣∣∣∣−
∣∣∣∣τ̄ − τ1 −

ε+ 1

ε+ 2
τ̄

∣∣∣∣

= ε

∣∣∣∣τ1 +
τ̄

ε+ 2

∣∣∣∣

Combining the above calculations, we have

V2(G(τ)) − V2(τ) = εV2(τ) < 0 ∀τ ∈ D \ (Ã2 ∪ X2).

Since we have this property at jumps, there is no complete
solution to H2 that remains in LV2

(µ) for µ > 0. From [15,
Theorem 23], we have that Ã2 is asymptotically stable for
H2. Since the set (C∪D)\(X2∪Ã2) is compact and forward
invariant, we have that the basin of attraction for Ã2 contains
every point in (C ∪D) \ X2, and the points τ ∈ C ∪D that
do not converge to Ã2 are in X2. Finally, since A2 ⊂ Ã2

and there are no solutions from Ã2 \ A2, we have that the
stability properties of Ã2 are transferred to A2 (though V2

in (11) is not a Lyapunov function certifying such property
for A2).
Remark 3.1: The analysis above excluded all points where

the jump map is set valued, i.e., when τ ∈ X2. We can



further show that not all solutions remain in X2 for all (t, j).
For example, if τ(0, 0) = [τ̄ , τ̄ ]! ∈ D ∩ X2, then there are
nonunique solutions. After the jump,

G(τ) = ({0, τ1(1 + ε)}, {0, τ2(1 + ε)}),

which leads to any of the following four options of the state
after such a jump: (0, 0), (0, τ̄(1 + ε)), (τ̄ (1 + ε), 0), and
(τ̄ (1 + ε), τ̄ (1 + ε)). If the state chooses either (0, 0) or
(τ̄ (1+ε), τ̄(1+ε)), then the state is mapped back to X2. But,
if either one of the other options are chosen, then G(τ) /∈ X2

because τ1 1= τ2 and the solution will converge to the set A2.
In fact, the only solutions that never desynchronize are those
that continuously pick (0, 0) or (τ̄ (1+ε), τ̄(1+ε)) at jumps.
2) Lyapunov Stability Analysis for H3: For the case when

N = 3, we have a state vector given by τ = [τ1, τ2, τ3]!

and a Lyapunov function can be defined as V3(τ) =
|τ |Ã3

= min{d(τ, #̃1), . . . , d(τ, #̃6)}, where d(τ, #̃k) =∣∣(τ̃k − τ)− ((τ̃k − τ)!1)1/3
∣∣ and each inflation of the set

#k is defined as #̃k := {τ : τ+τ̃k+1s ∈ P 3∪
√
3τ̄B, s ∈ R}.

Then we can use [15, Theorem 23] to establish (almost)
global asymptotic stability for Ã3. It follows that for each
τ ∈ C \ (X3 ∪ Ã3), 〈∇V3(τ), f(τ)〉 = 0. During jumps,
consider the case of τ1 = τ̄ > τ2 > τ3 and V3(τ) = d(τ, #̃1).
Then, after the jump, G(τ) = [0, (1 + ε)τ2, (1 + ε)τ3]!

with τ2 > τ3 and V3(G(τ)) = d(τ, #̃4). From (6), the τ̃k

corresponding to each #̃k is τ̃1 = [τ̄ , (ε + 2)τ̄/(ε2 + 3ε +
3), τ̄/(ε2 + 3ε + 3)]! and τ̃4 = [τ̄/(ε2 + 3ε + 3), τ̄ , (ε +
2)τ̄/(ε2 + 3ε+ 3)]!. It follows that

V3(τ) =

∣∣∣∣(τ̃
1 − τ)−

(τ̃1 − τ)!1

3
1

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣





τ̄ − τ̄ − 1
3

(
ε+3

(ε2+3ε+3) τ̄ − τ2 − τ3
)

(ε+2)τ̄
(ε2+3ε+3) − τ2 − 1

3

(
ε+3

(ε2+3ε+3) τ̄ − τ2 − τ3
)

τ̄
(ε2+3ε+3) − τ3 − 1

3

(
ε+3

(ε2+3ε+3) τ̄ − τ2 − τ3
)





∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣





−(ε+3)τ̄
3(ε2+3ε+3) +

τ2
3 + τ3

3
(2ε+3)τ̄

3(ε2+3ε+3) +
2τ2
3 + τ3

3
−ετ̄

3(ε2+3ε+3) +
τ2
3 + 2τ3

3





∣∣∣∣∣∣∣
.

Then, V3(G(τ)) is given by

V3(G(τ)) =

∣∣∣∣(τ̃
4 − τ+)−

(τ̃4 − τ+)!1

3
1

∣∣∣∣

=

∣∣∣∣∣∣∣∣





3τ̄
3(ε2+3ε+3) −

(ε2+4ε+6)τ̄
3(ε2+3ε+3) +

τ2(1+ε)
3 + τ3(1+ε)

3
3(ε2+3ε+3)τ̄
3(ε2+3ε+3) − (ε2+4ε+6)τ̄

3(ε2+3ε+3) +
2(1+ε)τ2

3 + τ3(1+ε)
3

3(ε+2)τ̄
3(ε2+3ε+3) −

(ε2+4ε+6)τ̄
3(ε2+3ε+3) +

τ2(1+ε)
3 + 2(1+ε)τ3

3





∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣






−(ε2+4ε+3)τ̄
3(ε2+3ε+3) + τ2(1+ε)

3 + τ3(1+ε)
3

(2ε2+5ε+3)τ̄
3(ε2+3ε+3) + 2(1+ε)τ2

3 + τ3(1+ε)
3

−(ε2+ε)τ̄
3(ε2+3ε+3) +

τ2(1+ε)
3 + 2(1+ε)τ3

3






∣∣∣∣∣∣∣∣

= (1 + ε)

∣∣∣∣∣∣∣





−(ε+3)τ̄
3(ε2+3ε+3) +

τ2
3 + τ3

3
(2ε+3)τ̄

3(ε2+3ε+3) +
2τ2
3 + τ3

3
−ετ̄

3(ε2+3ε+3) +
τ2
3 + 2τ3

3





∣∣∣∣∣∣∣

= (1 + ε)V3(τ)

and for the case of τ ∈ D \ (Ã3 ∪ X3) such that τ1 = τ̄ >
τ2 > τ3, it follows that V3(G(τ))−V3(τ) = εV3(τ). Similar
results can be found for each case of τ ∈ D \ (Ã3 ∪ X3).
Since we have that no complete solutions remain in

LV3
(µ) for µ > 0 and the set P 3 \ (X3 ∪ Ã3) is compact

and forward invariant, the basin of attraction for Ã3 is
given by P 3 \ X3. Also, since A3 ⊂ Ã3 and there are no
solutions from Ã3 \ A3 we can conclude that the set A3 is
asymptotically stable with the basin of attraction P 3 \ X3.
Similar to Remark 3.1, if the solutions to H3 are initially
in X3 then they will be nonunique. These solutions have the
opportunity to jump out of X3 at every jump. If this occurs,
these such solutions will converge to A3.
The arguments above lead to the following definition of a

Lyapunov function for the N case:

VN (τ) = |τ |ÃN
= min{d(τ, #̃1), d(τ, #̃2), . . . , d(τ, #̃N !)},

where d(τ, #̃k) =
∣∣(τ̃k − τ)− ((τ̃k − τ)!1)1/N

∣∣, k ∈
{1, 2, . . . , N !} (note that this function satisfies the regularity
properties required by [15, Theorem 23]). The next result
follows using arguments similar to those outlined above5.
Theorem 3.2: For every integer N > 1, τ̄ > 0, and

ε ∈ (−1, 0), the hybrid system HN is such that AN

is asymptotically stable with basin of attraction given by
PN \ XN .

C. Characterization of Time of Convergence

In this section, we characterize the time to converge to
a neighborhood of AN . The proposed (upper bound) of the
time to converge depends on the initial distance to the set
AN and the parameters of the hybrid system (ε, τ̄).
Theorem 3.3: For every integer N > 1 and every c1, c2

such that minx∈XN
d(x,AN ) > c2 > c1 > 0, every maximal

solution to HN with initial conditions τ(0, 0) ∈ L̃VN
(c2) is

such that

τ(t, j) ∈ L̃VN
(c1) ∀(t, j) ∈ dom τ, t+ j ≥ M,

where

M = (τ̄ + 1)
log c2

c1

log 1
1+ε

and L̃VN
(µ) := {τ ∈ C ∪D : VN (τ) ≤ µ}.

Figure 3 shows the time to converge (divided by τ̄ + 1)
versus ε with constant c2 = 0.99τ̄ and varying values of c1.
As the figure indicates, the time to converge decreases as
|ε| increases, which confirms the intuition that the larger the
jump the faster oscillators desynchronize. Some performance
analysis was for impulse-coupled oscillators with communi-
cation constraints in [16].
5Cf. the global attractivity property of the model in [4].



0

5

10

15

20

25

30

35

40

45

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

T∗

τ̄+1

ε

c1 = .5
c1 = .3
c1 = .1
c1 = .05

Fig. 3. Time to converge (over τ̄ + 1) as a function of ε ∈ [−0.9,−0.1],
with c2 = 0.99τ̄ and c1 ∈ {0.5τ̄ , 0.3τ̄ , 0.1τ̄ , 0.05τ̄}

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−0.1

0

0.1

0.2

0.3

0.4

τ 1
,τ

2

t [sec]

t [sec]

V
2
(τ
)

(a) Solutions to H2 and the
Lyapunov function V2.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−0.1

0

0.1

0.2

0.3

0.4

t [sec]

t [sec]

V
3
(τ
)

τ 1
,τ

2
,τ

3

(b) Solutions to H3 and the
Lyapunov function V3.

Fig. 4. Solutions to HN for N ∈ {2, 3} that are initially in the set AN

and Lyapunov function evaluated along solutions.

D. Numerical Analysis
The possible solutions to the hybrid system HN fall

into three categories: always desynchronized, asymptotically
desynchronized, and never desynchronized. The following
simulation results show the evolution of solutions for each
category. The parameters used in these simulations are τ̄ = 1
and ε = −0.2.
1) Always desynchronized (N ∈ {2, 3}): A solution to

HN that has initial condition τ(0, 0) ∈ AN stays desyn-
chronized. Figure 4 shows the evolution of such a solution
for systems H2 and H3. Furthermore, as also shown in the
figures, for these solutions the Lyapunov function is initially
zero and stays zero as time goes on.
2) Asymptotically desynchronized (N ∈ {2, 3, 7, 10}):

A solution of HN that starts in PN \ (XN ∪AN ) asymptot-
ically converges to AN as Theorem 3.3 indicates. Figure 5
shows both H2 and H3 converging to A2 and A3, respec-
tively.
For H2, if τ(0, 0) = [0, 0.1]!, then the initial sublevel set

is L̃V2
(0.34). Using Theorem 3.3, the time to converge to the

sublevel set L̃V2
(0.1) leads to M = 7.98. Figure 5(a) shows
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Fig. 5. Asymptotic convergence to the set AN for N ∈ {2, 3}.
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Fig. 6. Asymptotic convergence to the set AN for N ∈ {7, 10}.

a solution to the system for 10 seconds. From the figure, it
can be seen that V2(τ) ≈ 0.1 at 3 seconds and 4 jumps.
Then, t+ j < M is satisfied since 7 < 7.98.
Figure 6 shows solutions toHN that asymptotically desyn-

chronize for N ∈ {7, 10}.
IV. CONCLUSION

A class of impulse-coupled oscillators was modeled using
a hybrid systems framework for the study of asymptotic
stability and performance. Desynchronization was recast as
a set stabilization problem. An algorithm to define the
desynchronization set was proposed. A Lyapunov function to
certify that desynchronization is an (almost global) asymp-
totic stability property was proposed and, via Lyapunov
theory for hybrid systems, used to establish this property
for a network of N impulse-coupled oscillators.
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