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Abstract— We propose a hybrid model for simulations of
hybrid systems and we establish conditions on its data so
that the asymptotically stable sets observed in simulations are
continuous. The most important components of the hybrid
model for simulations are a discrete integration scheme for
the computation of the flows and an approximated jump
mapping for the computation of the jumps. Our main result
is built on the facts that, on compact hybrid time domains,
every simulation to a hybrid system is arbitrarily close (in the
graphical sense) to some solution to the actual hybrid system,
and that asymptotically stable compact sets of hybrid systems
are semiglobally practically asymptotically stable compact sets
for the hybrid model for simulations. We present these results
and illustrate them in simulations of the bouncing ball system.

I. INTRODUCTION

As the combination of continuous-time and discrete-time
systems becomes a standard in the control of dynamical
systems, researchers have been focusing on the development
of analysis tools for hybrid systems. In this topic, numerical
simulation is a very important tool for analysis, design, and
verification of hybrid systems. A partial list of the available
simulation packages for hybrid systems includes Simulink,
Modelica [7], Ptolemy [15], Charon [2], HYSDEL [24],
and HyVisual [14]. Recently, in the literature of simulation
of hybrid systems, special attention has been given to the
definition of semantics [18], [14], [22], event detection [16],
[8], [13], and analysis of numerical solvers and error control
[8], [13], [1].

The theory of numerical simulation for differential equa-
tions is well-developed and several textbooks in the subject
are available, see e.g. [23], [3]. The properties of integration
schemes for differential equations are generally studied as
dynamical systems. The analysis of stability and convergence
of one-step integration schemes (like Euler and Runge-
Kutta), multi-step algorithms (like Adams method and back-
ward differentiation), and their variable step versions estab-
lishes conditions on the step size for integration and on the
discrete map used to approximate the solutions of the system
so that the simulations are close of the actual solutions.
The ultimate goal in these numerical integration schemes
is to reproduce with arbitrary precision the trajectories to
the mathematical model under simulation. In other words,
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it is desired that the simulated solutions are close to the
solutions to the actual model, and that this level of closeness
can be adjusted with the integration step size of the numerical
solver. Moreover, it is also desired that when the dynamical
system to be simulated has an asymptotically stable set,
the simulated model preserves that asymptotic stability in
a practical sense. Results of this type, though currently not
available for hybrid systems, can be found for differential
equations and inclusions in the numerical analysis literature;
see e.g. [23], [6], and the references therein.

In this paper, we propose a hybrid simulator model for the
hybrid systems framework introduced in [9], [10], where a
hybrid system H is given by a flow map F , a jump map G,
and sets C and D where those maps are enabled, respectively.
We establish conditions on the data of the hybrid simulator
to show the following sequence of results: 1) On compact
hybrid time domains, every simulation to a hybrid system
is arbitrarily close to a solution of the hybrid system; 2)
asymptotically stable compact sets for a hybrid system are
semiglobally practically asymptotically stable compact sets
for the hybrid simulator; 3) asymptotically stable compact
sets for the hybrid simulator are continuous in the step size
s. These conditions basically consist on a closeness property
for the integration scheme that is used to simulate the flows
of the hybrid system, plus additional conditions on inflations
of the jump mapping and the jump and flow sets. To obtain
our results we do not need to force the jumps of the hybrid
system to happen when the trajectories hit the boundary of
the jump set, sometimes considered as forcing or triggering
semantics [22]. Alternatively, we allow trajectories to “enter”
the jump set, sometimes referred as enabling semantics.

This paper is organized as follows. We give a brief descrip-
tion of the hybrid systems framework under consideration
in Section II and we introduce a model for simulations of
these hybrid systems in Section III. In Section IV we give
conditions on the data of the hybrid simulator and we state
the main technical results. In the same section we illustrate
some of the ideas by simulation the bouncing ball system.

II. HYBRID SYSTEMS

We consider hybrid systems given by data H =
(F,G,C,D,O) where the open set O ⊂ R

n is the state space
of the hybrid system H, F is a set-valued mapping from O

to R
n called the “flow map”, G is a set-valued mapping from

O to O called the “jump map”, C is a subset of O called
the “flow set” and indicates where in the state space flow
may occur, D is a subset of O called the “jump set” and
indicates from where in the state space jumps may occur;



see [9], [10] for more details. Note that it is not necessary to
have C∪D = O. By considering set-valued right-hand sides,
we allow for the possibility of discontinuous continuous and
discrete dynamics that, after regularized, become set-valued
dynamics (see [21] for a discussion on Filippov, Krasovskii,
and Hermes regularizations for hybrid systems). Moreover,
the set-valued valued framework permits the inclusion of
perturbations in the system dynamics. We denote the state of
the hybrid system H by x ∈ O, in which the continuous and
discrete (or logic) states of the hybrid system are embedded.
Hybrid systems with multiple discrete states defining the
modes are modeled by describing the conditions for mode
transitions in the jump set D and for flows in the set C with
dynamics laws given in F and G, respectively. We write the
hybrid system H = (F,G,C,D,O) in the compact form

H

{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

Throughout the paper, we write R≥0 for [0,+∞), N for
{0, 1, 2, ...}, and | · | for the Euclidean vector norm. Given a
set A ⊂ R

n and a point x ∈ R
n, the distance from x to A

is given by |x|A = infy∈A |x − y|.
Definition 2.1 (hybrid time domain): A subset D ⊂

R≥0 × N is a compact hybrid time domain if

D =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ D, D ∩
([0, T ] × {0, 1, ...J}) is a compact hybrid time domain.

Hybrid time domains are similar to hybrid time trajectories
in [17] and [4], and to the concept of time evolution in [25],
but give a more prominent role to the number of jumps j

(c.f. the definition of hybrid time set by Collins in [5]). On
each hybrid time domain there is a natural ordering of points:
we write (t, j) ¹ (t′, j′) for (t, j), (t′, j′) ∈ D if t ≤ t′ and
j ≤ j′.

Definition 2.2 (hybrid arc): A hybrid arc is a pair
(x,dom x) consisting of a hybrid time domain dom x and a
function x : dom x → O that is locally absolutely continuous
in t on dom x ∩ (R≥0 × {j}) for each j ∈ N.

We will not mention dom x explicitly, and understand that
with each hybrid arc x comes a hybrid time domain dom x.

Definition 2.3 (solution to H): A hybrid arc x : dom x 7→
O is a solution to the hybrid system H if x(0, 0) ∈ C ∪ D;

(S1) for all j ∈ N and almost all t such that (t, j) ∈
dom x,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j)); and (2)

(S2) for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)); (3)

where the domain of the solution x is a hybrid time domain.
Hybrid arcs, and solutions to H in particular, are parameter-
ized by pairs (t, j) where t is the ordinary time component

and j is the discrete time component that keeps track of the
number of jumps. A hybrid arc x is said to be nontrivial
if dom x contains at least one point different from (0, 0),
complete if dom x is unbounded, and Zeno if it is complete
but the projection of dom x onto R≥0 is bounded.

We impose the following assumptions on the data of H
that guarantee several structural properties, like that of a limit
of solutions to hybrid systems is itself a solution.

Standing Assumption 2.4 (basic conditions [10]):
(A0) O ⊂ R

n is an open set.
(A1) C and D are relatively closed sets in O.
(A2) F : O →→ R

n is outer semicontinuous and locally
bounded, and F (x) is nonempty and convex ∀x ∈ C.

(A3) G : O →→ R
n is outer semicontinuous and G(x) is

a nonempty subset of O for all x ∈ D.
(A4) G : O →→ R

n is locally bounded.
For a hybrid system H on a state space O, the compact

set A is said to be: stable if for each ε > 0 there exists
δ > 0 such that each solution x to H starting at x0 ∈
(A + δB)∩ (C ∪D) is complete and satisfies |x(t, j)|A ≤ ε

for all (t, j) ∈ dom x; attractive if there exists µ > 0 so that
every maximal solution to H starting in (A + µB)∩(C∪D)
is complete and satisfies limt+j→∞ |x(t, j)|A = 0; and
asymptotically stable if it is both stable and attractive. We
denote the basin of attraction of A, the set of all points from
which all maximal solutions are complete and converge to
A, by BA. For results about compact attractors for hybrid
systems, see [10, Section VI] and [20, Section VI and VII].

III. A MODEL FOR SIMULATIONS OF HYBRID SYSTEMS

Given a hybrid system H = (F,G,C,D,O), we define
a hybrid simulator for H as the family of systems Hs =
(Fs, Gs, Cs, Ds, O) parameterized by the step size s > 0,
where

• Fs : O →→ R
n is the integration scheme for the flows or

continuous dynamics of the hybrid system H;
• Gs : O →→ R

n is the discrete mapping that approximates
the discrete dynamics of the hybrid system H;

• Cs is a subset of the state space O where the integration
scheme Fs is enabled;

• Ds is a subset of the state space O where the mapping
Gs is enabled.

Following (1), the hybrid simulator Hs can be written as

Hs

{

x+ ∈ Fs(x) x ∈ Cs

x+ ∈ Gs(x) x ∈ Ds .
(4)

Comparing (1) with (4), the dynamics for the continuous
flows of the hybrid system H have been replaced by the
integration scheme x+ ∈ Fs(x), where Fs is constructed
from F by a particular integration scheme (e.g. forward
Euler, Runge-Kutta, etc.). The discrete dynamics of H have
been replaced by the discrete mapping Gs, and the flow and
jump sets C and D by the sets Cs and Ds, respectively.

Note that the dynamics of the hybrid simulator Hs are
purely discrete. For that reason, the solutions to Hs will be
given on discrete versions of hybrid time domains.



Definition 3.1 (discrete time domain): A subset D ⊂ N×
N is a compact discrete time domain if

D =

J−1
⋃

j=0

Kj+1
⋃

k=Kj

(k, j)

for some finite sequence 0 = K0 ≤ K1 ≤ K2 ... ≤ KJ ,
Kj ∈ N for every j ≤ J , j ∈ N. It is a discrete time domain
if for all (K,J) ∈ D, D ∩ ({0, 1, . . . K} × {0, 1, . . . J}) is
a compact discrete time domain.

Solutions to Hs are parameterized by the discrete variables
j and k where k keeps track of the step of the integration
scheme for flows and j counts the steps of the simulation.

Definition 3.2 (discrete arc): A discrete arc is a pair
(xs,dom xs) consisting of a discrete time domain dom xs

and a function xs : dom xs → O.
We define what we mean by a simulation to H, i.e. a

solution to the hybrid simulator Hs.
Definition 3.3 (simulation to H): A discrete arc xs :

dom xs 7→ O is a simulation to the hybrid system H with a
hybrid simulator Hs for a given s > 0 if xs(0, 0) ∈ Cs∪Ds,

(S1’) for all k, j ∈ N such that (k, j), (k+1, j) ∈ dom xs,

xs(k, j) ∈ Cs, xs(k + 1, j) ∈ Fs(xs(k, j)); (5)

(S2’) for all k, j ∈ N such that (k, j), (k, j+1) ∈ dom xs,

xs(k, j) ∈ Ds, xs(k, j + 1) ∈ Gs(xs(k, j)) (6)

where dom xs is such that if (k, j) ∈ dom xs then either
(k+1, j) ∈ dom xs, (k, j+1) ∈ dom xs, or (l,m) 6∈ dom xs

for all (l,m) Â (k, j).
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Fig. 1. Solution to the bouncing ball model. Initial conditions x1(0, 0) =
6, x2(0, 0) = 0.1, constants g = 9.8, γ = 0.6. Position x1 (blue) and
hybrid time domain (red).

One way to translate a simulation xs on the discrete time
domain dom xs to a hybrid arc ξs on a hybrid time domain
dom ξs is by piecewise linear interpolation of the flows:
• ∀(t, j) s.t. (k, j), (k+1, j) ∈ dom xs, ks ≤ t ≤ (k+1)s,

ξs(t, j) = xs(k, j) + 1
s
(t − ks)(xs(k + 1, j) − xs(k, j)),

tj = ks, tj+1 = (k + 1)s;
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Fig. 2. Simulation to the bouncing ball model. Step size s = 0.1sec, initial
conditions x1(0, 0) = 6, x2(0, 0) = 0.1, and constants g = 9.8, γ = 0.6.
Discrete arc xs denoted with + (blue), hybrid arc ξs denoted with −−
(green), and discrete domain denoted with ∗ (red).

• ∀(t, j) s.t. (k, j), (k, j + 1) ∈ dom xs, t = ks,

ξs(t, j) = xs(k, j), tj = tj+1 = ks;

• J = sup(k,j)∈dom xs
j and the hybrid time domain

dom ξs is a union of a finite or infinite sequence of intervals
[tj , tj+1] × {j}, j ∈ {0, 1, . . . , J} with the “last” interval
possibly of the form [tj ,+∞) × {j}.

To illustrate the transformation of a simulation xs into a
hybrid arc ξs, consider the model for a bouncing ball (see
Example 4.10 for more details). A solution x starting at
x1(0, 0), x2(0, 0) > 0 on a hybrid time domain is depicted
in Figure 1. Taking s = 0.2sec and using the forward Euler
scheme for the flows, a simulation xs to the bouncing ball
with xs(0, 0) = x(0, 0) and its discrete domain are shown
in Figure 2 along with its respective hybrid arc ξs.

IV. MAIN RESULTS:
CONTINUITY OF ASYMPTOTICALLY STABLE SETS

In this section, given a hybrid system H with an asymptot-
ically stable compact set A, we find conditions on the data of
the hybrid simulator Hs so that there exists an asymptotically
stable compact set for Hs, denoted by Ss, that is continuous
at s = 0 with S0 = A, i.e.

dH(Ss, S0) → 0 as s ↘ 0 (7)

where dH is the Hausdorff distance. We start by establishing
the following conditions on the data of Hs.

Assumption 4.1: The data of the hybrid simulator
Hs = (Fs, Gs, Cs, Ds, O) for the hybrid system H =
(F,G,C,D,O) satisfies
(B1) Fs implements a specific integration algorithm and is

such that, for each compact set K ⊂ O, there exists
ρ ∈ K∞ such that for each x ∈ Cs∩K and each s > 0

Fs(x) ⊂ x + sρ(s)B + s co F (x + ρ(s)B);



(B2) Gs is such that G0(x) ⊂ G(x) where G0 is the outer
graphical limit of Gsi

, for any si ↘ 0;
(B3) Cs and Ds are such that for any sequence si ↘ 0,

(

lim sup
i→∞

Csi

)

∩ O ⊂ C,

(

lim sup
i→∞

Dsi

)

∩ O ⊂ D

where lim supi→∞ Csi
and lim supi→∞ Dsi

are the
outer limits of the sequence of sets Csi

and Dsi
,

respectively; see [19] for details.

Remark 4.2: Assumption (B1) is a condition on the inte-
grator scheme for flows. It implies that, given a compact set
K ⊂ R

n, at every point in Cs ∩ K where the integration
scheme is active, the new value is close to a perturbed
solution to ẋ ∈ F (x). When simulating a hybrid system, the
projection function is required since there is no guarantee
that the integration step s keeps the simulations in Cs ∪Ds,
even if it keeps them in O. For Assumption (B2) recall
that G0 is the outer graphical limit of Gsi

when gph G0 =
lim supi→∞ gph Gsi

and Gsi
is locally eventually bounded

with respect to O [19]. Assumption (B3) is a condition on
the inflation by s of the flow and jump sets. Both conditions
(B2) and (B3) are satisfied when Gs, Cs, and Ds are outer
perturbations of G,C, and D, respectively. More precisely,
given a continuous function α : O → R≥0 such that, for all
x ∈ O, x + α(x)B ⊂ O, the outer perturbation of G,C, and
D for δ ∈ (0, 1) is given by the set-valued mapping Gδ and
sets Cδ, Dδ defined by

Gδ := {y | y ∈ η + δα(η)B, η ∈ G(x + δα(x)B)}

Cδ := {x ∈ O | (x + δα(x)B) ∩ C 6= ∅}

Dδ := {x ∈ O | (x + δα(x)B) ∩ D 6= ∅}

which satisfy (B2)-(B3) by Theorem 5.4 in [10] (see Exam-
ple 5.3 in [10] for more details). However, very often, the
jump mapping G and the sets C and D are so that it is
sufficient to choose Gs ≡ G, Cs = C, and Ds = D.

Example 4.3 (forward Euler method): The simplest nu-
merical method to approximate solutions to differential equa-
tions/inclusions is the forward Euler rule [3, Chapter 3], [6,
Chapter 2]. This method is based on the first-order Taylor’s
expansion of the continuous right-hand side around the given
state and is given by

FE
s (x) = x + sF (x) .

Condition (B1) is automatically satisfied.

Example 4.4 (p-stage Runge-Kutta consistent methods):
For differential equations/inclusions, the update law for
p-stage Runge-Kutta integration schemes is given by

FRK
s (x) = x + s

p
∑

i=1

biξi (8)

where bi ∈ R and ξi ∈ F (Yi), i ∈ I := {1, 2, . . . , p}. The
variables Yi are called stage variables and are given by

Yi = x + s

p
∑

j=1

aijξj , ξj ∈ F (Yj) (9)

where aij ∈ R, (i, j) ∈ I × I . (When aij = 0 for all j ≥ i,
the method is called explicit since the stage variables can be
solved without recursion.)

Provided that the equations (9) are solvable, either in a
explicit or implicit manner, for every compact set K ⊂ R

n

there exists ρ ∈ K∞ such that the stage variables satisfy
Yi ∈ x + sρ(s) ∀i ∈ I .

Moreover, when the Runge-Kutta method is consistent (see
e.g. [23, Definition 3.4.2]), the coefficients bi satisfy [23]

p
∑

i=1

bi = 1 .

(This condition is usually required for stability of the Runge-
Kutta integration method, see [12] and [11].) Then, the sum
in (8) corresponds to a convex hull condition and Assumption
(B1) is satisfied since
FRK

s (x) ⊂ x + s co
i∈I

F (Yi) ⊂ x + s co F (x + ρ(s)) .

We regard the hybrid simulator Hs = (Fs, Gs, Cs, Ds, O)
as a perturbation of the hybrid system H = (f, g, C,D,O).
In this way, it can be shown that for the given simulation
horizon (T, J), by proper choice of the step size, every
simulation to the hybrid system is close to some solution
of the hybrid system with a desired level of closeness.

Theorem 4.5: (closeness on compact domains) Assume
that H satisfies (A0)-(A4) and that, for some compact set
K ⊂ O, it is forward complete at every x0 ∈ K. Assume
that the family of hybrid systems Hs satisfy Assumption 4.1.
Then, for any ε > 0 and (T, J) ∈ R≥0 × N there exists
s∗ > 0 with the following property: for any s ∈ (0, s∗] and
any simulation xs to Hs with xs(0, 0) = x0

s ∈ (K +εB)∩O

there exists a solution x to H with x(0, 0) ∈ K such that
for all (k, j) ∈ dom xs with ks ≤ T , j ≤ J , there exists m

such that (m, j) ∈ dom x, |ks − m| ≤ ε, and
|xs(k, j) − x(m, j)| ≤ ε . (10)

When a hybrid system H has an asymptotically stable
compact set A, we show that the hybrid simulator Hs has
the same set semiglobally practically asymptotically stable.

Theorem 4.6: (practical semiglobal stability of simula-
tions) Suppose that the hybrid system H = (F,G,C,D,O)
satisfies (A0)-(A4) and that A is an asymptotically stable
compact set with basin of attraction BA open relative to
C ∪ D. Let U ⊂ O be any open set such that BA =
(C ∪ D) ∩ U . Assume that the family of hybrid systems
Hs = (Fs, Gs, Cs, Ds, O) satisfies Assumption 4.1. Then,
there exists s∗ such that, for each s ∈ (0, s∗], the set A
is semiglobally practically asymptotically stable for Hs, i.e.
for each proper indicator ω : U → R≥0 of A w.r.t. U and
for each compact set K ⊂ BA and each ε > 0 there exists
β ∈ KLL, s∗ > 0, and (T, J) ∈ R≥0×N such that for each
s ∈ (0, s∗] the simulations xs to H starting from K satisfy
for each (k, j) ∈ dom xs

ω(xs(k, j)) ≤ β(ω(xs(0, 0)), ks, j) +
ε

2
, (ks, j) ≺ (T, J)

ω(xs(k, j)) ≤ ε, (ks, j) º (T, J).



Remark 4.7: Note that for a pair (K, ε) that comes from
Theorem 4.6, the simulations to the hybrid system H start-
ing from points in K approach the compact set Aε :=
{x ∈ O | ω(x) ≤ ε} for large enough simulation horizon
(T ∗, J∗) on which a simulation exists. Theorem 4.6 guar-
antees that such a property holds for small enough step size
s. Clearly, as the desired level of closeness ε to the attractor
decreases, the required step size s decreases as well. Also
note that the set K is included in the basin of attraction of
Aε for the hybrid simulator Hs.

To establish any type of asymptotic stability result for the
hybrid simulator, simulations need to be complete; i.e. exist
for arbitrarily large simulation horizon. We guarantee that by
strengthening assumptions (B1) and (B2) in Assumption 4.1
as follows.

Assumption 4.8: The hybrid simulator Hs = (Fs, Gs, Cs,

Ds, O) for the hybrid system H = (F,G,C,D,O) is s.t.
(B1?) Fs is such that for each compact set K ⊂ O, there

exists ρ ∈ K∞ such that ∀x ∈ Cs ∩K and ∀s > 0

Fs(x) ⊂ x+sρ(s)B+s co F (x+ρ(s)B) ⊂ Cs∪Ds;

(B2?) Gs is such that Gs(Ds) ⊂ Cs ∪ Ds.

Theorem 4.9: (continuity of asymptotically stable sets) Let
Assumption 4.1 and 4.8 hold and suppose that the hybrid
system H = (F,G,C,D,O) satisfies (A0)-(A4) and that A is
an asymptotically stable compact set with basin of attraction
BA which is open relative to C ∪ D. Then, there exists s∗

such that for all s ∈ (0, s∗), the hybrid simulator Hs has an
asymptotically stable set Ss which satisfies

dH(Ss, S0) → 0 as s ↘ 0 (11)

with S0 = A.
The main idea in the proof is to use Theorem 4.5 and 4.6

to establish that the asymptotically stable and continuous set
Ss for the hybrid simulator Hs is actually the reachable set
from a neighborhood of A of a perturbed version of H which
set of solutions contains the piecewise interpolations of all
the simulations to H. The corresponding technical details
will be reported elsewhere due to space constraints.

Example 4.10: Consider a ball bouncing on the ground
with vertical position x1 and vertical velocity x2. We model
the dynamics between bounces by ẋ1 = x2, ẋ2 = −g,
when x1 ≥ 0, where g is the gravity constant. The bouncing
condition of the ball is when x1 = 0 and x2 ≤ 0, and the
jump map is given by x+

1 = 0, x+
2 = −γx2, where γ ∈ [0, 1)

is the coefficient of restitution at bounces. We define a hybrid
system for the bouncing ball denoted by HBB with data

f(x) =

[

x2

−g

]

, C = {x ∈ O | x1 ≥ 0} ,

g(x) =

[

0
−γx2

]

, D = {x ∈ O | x1 = 0, x2 ≤ 0} ,

and with state space O = R
2. Note that C ∪ D ⊂ O.

We propose a hybrid simulator HBB
s for HBB given by

fs(x) = x + sf(x), Cs = C,

gs(x) = g(x), Ds = {x ∈ O | −λ(s)|x2| ≤ x1 ≤ 0, x2 } ,

where s > 0 is the integration step for the integration scheme
for flows and λ : R≥0 → R≥0 is a continuous function
satisfying λ(s) > s for all s > 0, λ(0) = 0. Note that
HBB

s = (fs, gs, Cs, Ds, O) satisfies Assumption 4.1. Note
that one of the perturbations included are due to integration
scheme for the flows which is implemented as a forward
Euler rule (this type of integration scheme has been used to
simulate the continuous dynamics of hybrid systems in the
literature before, see e.g. [16], [18]). Moreover, we perturb
the jump set D in order to satisfy Assumption 4.8 and
consequently, guarantee that simulations to the bouncing ball
starting in C ∪ D exist for all simulation horizon.

The bouncing ball example is appropriate to illustrate
that simulations to HBB are close to some solution to
HBB (Theorem 4.5) since its solutions can be analytically
computed. Given a finite simulation horizon (T ∗, J∗), a
level of closeness ε, and a compact set K ⊂ R

2 of initial
conditions, there exists s∗ so that for each 0 < s ≤ s∗ the
simulations xs to HBB are ε-close to solution to HBB . The
solution to which each simulation is close to is uniquely
defined since HBB has unique solutions. In Figure 3, the
first component of a solution x and the first component of a
simulation xs to HBB are plotted in a compact domain and
for a particular step size s. It is clear to see that the level
of closeness can only be satisfied on compact time domains.
In Figure 4 we show a zoomed version of the trajectories
to indicate that at points (k, j) ∈ dom xs (denoted by ◦) for
which xs(k, j) enters the set Ds closeness between x and xs

is not possible for the same hybrid time (k, j). The desired
level of closeness is obtained by considering the distance
between graphs of x and xs (see [9], [10] for more details).

It can be shown with invariance principles for hybrid
systems, like the ones in [20], that the compact set A = (0, 0)
is a globally asymptotically stable set for HBB . By Theo-
rem 4.6, the set A is semiglobally practically asymptotically
stable for HBB

s . Provided a desired neighborhood of A for
the convergence of the simulations, it is possible to obtain an
upper bound on the sampling time s so that simulations to
HBB approach A+εB for large enough simulation horizon.

Remark 4.11: With the bouncing ball example we have
illustrated the closeness between the graph of the simulation
and the graph of the exact solution to the bouncing ball. As
stated in the results above, this closeness property is on com-
pact hybrid/discrete time domains. As a matter of fact, the
hybrid simulator is able to approximate the Zeno trajectories
to the bouncing ball with arbitrary precision for any finite
simulation horizon (finite flow time and number of jumps) by
choosing sufficiently small step size. In general, simulations
obtained on finite simulation horizons have the closeness
property to some exact solution by virtue of a proper choice
of the step size. Note that the hybrid simulator model does
not require event/zero-cross detection algorithms to trigger



0

50 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

j [jumps]

t [ordinary time]

x 1 [m
]

Fig. 3. Closeness of simulations to solutions. Step size s = 0.02sec, λ(s) =
2s, initial conditions x1(0, 0) = 6, x2(0, 0) = 0.1, constants g = 9.8, γ =
0.6. Discrete arc xs denoted with + (blue), exact hybrid arc solution x
denoted with solid line (black) and exact hybrid time domain with solid line
(red). The graphs of the simulation and of the solution are close until some
finite hybrid time (T, J). The closeness property can be tuned with the step
size s.
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Fig. 4. Detail on closeness of solutions. The circled points of simulation xs

are not close in the “standard” sense to the exact solution x. The closeness
property is between the graphs of xs and x.

the jumps. The jumps are detected by only checking whether
the simulation has reached the jump set Ds or not. The step
size required to detect jumps is expected to be small when
the jump set D, and consequently its approximation Ds, are
very thin. Indeed, in the limiting case when those sets have
measure zero, no matter how small the step size is chosen,
the hybrid simulator may not detect the jump. However, in
this case, there will exist a solution to the hybrid system
(solutions will be non unique) that does not jump when the
jump set is reached. This is the solution that is close to the
simulation that did not jump when the jump was not detected.
Note that the usage of some type of detection algorithm for
the jumps would prevent this from happening, but at the same
time, alters the hybrid system H under simulation.
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Dynamical properties of hybrid automata. IEEE Trans. Aut. Cont.,
48(1):2–17, 2003.

[18] P.J. Mosterman and G. Biswas. A hybrid modeling and simulation
methodology for dynamic physical systems. Simulation, 78:5–17,
2002.

[19] R.T. Rockafellar and R. J-B Wets. Variational Analysis. Springer,
1998.

[20] R.G. Sanfelice, R. Goebel, and A.R. Teel. Results on convergence in
hybrid systems via detectability and an invariance principle. In Proc.
24th American Control Conference, pages 551–556, 2005.

[21] R.G. Sanfelice, R. Goebel, and A.R. Teel. A feedback control
motivation for generalized solutions to hybrid systems. In J. P.
Hespanha and A. Tiwari, editors, Hybrid Systems: Computation and
Control: 9th International Workshop, volume LNCS 3927, pages 522–
536, 2006.

[22] J. Sprinkle, A. D. Ames, A. Pinto, H. Zheng, and S. S. Sastry. On
the partitioning of syntax and semantics for hybrid systems tools. In
Proc. 44th IEEE Conference on Decision and Control and European
Control Conference, 2005.

[23] A. M. Stuart and A.R. Humphries. Dynamical Systems and Numerical
Analysis. Cambridge University Press, 1996.

[24] F.D. Torrisi and A. Bemporad. Hysdel - A tool for generating
computational hybrid models for analysis and synthesis problems.
IEEE Transactions on Control Systems Technology, 12:235–249, 2004.

[25] A. van der Schaft and H. Schumacher. An Introduction to Hybrid
Dynamical Systems. Lecture Notes in Control and Information
Sciences, Springer, 2000.


