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Abstract— Minimum-norm control laws for hybrid dynami-
cal systems are proposed. Hybrid systems are given by differ-
ential equations capturing the continuous dynamics orflows,
and by difference equations capturing the discrete dynamics or
jumps. The proposed control laws are defined as the pointwise
minimum norm selection from the set of inputs guaranteeing
a decrease of a control Lyapunov function. The cases of
individual and common inputs during flows and jumps, as well
as when inputs enter through one of the system dynamics, are
considered. Examples illustrate the results.

I. I NTRODUCTION

The construction of asymptotically stabilizing control laws
from control Lyapunov functions (CLFs) has enabled the
systematic design of feedback laws for nonlinear systems.
Building from earlier results in [1], which revealed a key
link between the availability of a control Lyapunov function
and stabilizability (with relaxed controls), the construction of
control laws from Lyapunov inequalities was rendered as a
powerful control design methodology (see also, e.g., [2], [3],
for the connections between CLFs and asymptotic controlla-
bility to the origin). More importantly, design techniquesthat
go beyond the possibility of determining the control law from
the expression of the Lyapunov inequalities were proposed
and employed in several applications. The control law intro-
duced in [4], known as Sontag’s universal formula, provides
a generic controller construction for nonlinear systems in
affine form that (modulo some extra properties at the origin)
only requires the existence of a CLF. (Recent extensions
to polynomial systems appeared in [5]). The constructions
introduced in [6] have the extra property that their pointwise
norm is minimum (for a given CLF). More notably, as shown
in [6] by making a link between CLFs and the solution to
a differential game, under additional properties, pointwise
minimum norm control laws guarantee robustness of the
closed-loop system.

In this paper, pointwise minimum norm control laws for
hybrid dynamical systems are proposed. Hybrid dynamical
systems are given by differential equations capturing the
continuous dynamics orflows, and by difference equations
capturing the discrete dynamics orjumps. The conditions
determining whether flows or jumps should occur are given
in terms of both the state and the inputs. For this class
of hybrid systems, control Lyapunov functions are defined
by continuously differentiable functions whose change, both
along flows and jumps, is upper bounded by a negative
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definite function of the state. The proposed control law
consists of a pointwise minimum norm selection from the
set of inputs that guarantees a decrease of the Lyapunov
function on each regime. We consider the case when the
inputs acting during flows are different than the inputs acting
during jumps, the case when the inputs are the same, as
well as cases when inputs affect only the flows or the
jumps. Conditions guaranteeing continuity and globality of
the proposed pointwise minimum norm control laws are also
presented. Our results not only recover the results in [7] when
specialized to continuous-time systems, but also provide the
discrete-time versions, which do not seem available in the
literature.

The remainder of the paper is organized as follows. Sec-
tion II introduces the framework for hybrid systems, the no-
tion of solution, and control Lyapunov functions. Section III
presents the results on stabilization by pointwise minimum
norm control laws. Examples in Section IV illustrate some
of the results.

Notation: R
n denotesn-dimensional Euclidean space,R

denotes the real numbers.R≥0 denotes the nonnegative real
numbers, i.e.,R≥0 = [0,∞). N denotes the natural numbers
including 0, i.e., N = {0, 1, . . .}. B denotes the closed unit
ball in a Euclidean space. Given a setK, K denotes its
closure. Given a setS, ∂S denotes its boundary. Given
x ∈ R

n, |x| denotes the Euclidean vector norm. Given a set
K ⊂ R

n andx ∈ R
n, |x|K := infy∈K |x− y|. Givenx and

y, 〈x, y〉 denotes their inner product. A functionα : R≥0 →
R≥0 is said to belong to class-K∞ if it is continuous, zero
at zero, strictly increasing, and unbounded. Given a closed
set K ⊂ R

n × U⋆ with ⋆ being eitherc or d and U⋆ ⊂
R
m⋆ , define Π(K) := {x : ∃u⋆ ∈ U⋆ s.t. (x, u⋆) ∈ K }

and Ψ(x,K) := {u : (x, u) ∈ K } . That is, given a set
K, Π(K) denotes the “projection” ofK onto R

n while,
given x, Ψ(x,K) denotes the set of valuesu such that
(x, u) ∈ K. Then, for eachx ∈ R

n, define the set-valued
mapsΨc : R

n
⇉ Uc, Ψd : R

n
⇉ Ud as Ψc(x) := Ψ(x,C)

and Ψd(x) := Ψ(x,D), respectively. Given a mapf , its
graph is denoted by gph(f).

II. PRELIMINARIES ON HYBRID SYSTEMS AND CONTROL

LYAPUNOV FUNCTIONS

In this section, we define control Lyapunov functions
(CLFs) for hybrid systemsH with data (C, f,D, g) and
given by

H

{
ẋ = f(x, uc) (x, uc) ∈ C
x+ = g(x, ud) (x, ud) ∈ D,

(1)



where the setC ⊂ R
n × Uc is the flow set, the mapf :

R
n × R

mc → R
n is the flow map, the setD ⊂ R

n × Ud
is the jump set, and the mapg : R

n → R
n is the jump

map. The space for the state isx ∈ R
n and the space for

the inputu = (uc, ud) is U = Uc × Ud, whereUc ⊂ R
mc

andUd ⊂ R
md . At times, we will requireH to satisfy the

following mild properties.

Definition 2.1 (hybrid basic conditions):A hybrid sys-
tem H is said to satisfy thehybrid basic conditionsif its
data(C, f,D, g) is such that

(A1) C andD are closed subsets ofR
n×Uc andR

n×Ud,
respectively;

(A2) f : R
n × R

mc → R
n is continuous;

(A3) g : R
n × R

md → R
n is continuous.

Solutions to hybrid systemsH are given in terms of hybrid
arcs and hybrid inputs on hybrid time domains. Hybrid
time domains are subsetsE of R≥0 × N that, for each
(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) can be written
as ∪J−1

j=0 ([tj , tj+1], j) for some finite sequence of times
0 = t0 ≤ t1 ≤ t2... ≤ tJ .1 A hybrid arc φ is a function
on a hybrid time domain that, for eachj ∈ N, t 7→ φ(t, j) is
absolutely continuous on the interval{t : (t, j) ∈ domφ },
while a hybrid inputu is a function on a hybrid time
domain that, for eachj ∈ N, t 7→ u(t, j) is Lebesgue
measurable and locally essentially bounded on the interval
{t : (t, j) ∈ domu }. Then, a solution to the hybrid system
H is given by a pair(φ, u), u = (uc, ud), with domφ =
domu(= dom(φ, u)) and satisfying the dynamics ofH,
whereφ is a hybrid arc andu a hybrid input. A solution pair
(φ, u) to H is said to becompleteif dom(φ, u) is unbounded
andmaximalif there does not exist another pair(φ, u)′ such
that (φ, u) is a truncation of(φ, u)′ to some proper subset
of dom(φ, u)′. For more details about solutions to hybrid
systems, see [8].

We introduce the concept of control Lyapunov function for
hybrid systemsH; see [9] for more details and conditions
on H guaranteeing its existence.

Definition 2.2 (control Lyapunov function):Given a com-
pact setA ⊂ R

n and setsUc ⊂ R
mc ,Ud ⊂ R

md , a contin-
uous functionV : R

n → R, continuously differentiable on
an open set containingΠ(C) is a control Lyapunov function
with U controls for H if there existα1, α2 ∈ K∞ and a
positive definite functionα3 such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) (2)

∀x ∈ Π(C) ∪ Π(D) ∪ g(D),

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 ≤ −α3(|x|A) (3)

∀x ∈ Π(C),

inf
ud∈Ψd(x)

V (g(x, ud)) − V (x) ≤ −α3(|x|A) (4)

∀x ∈ Π(D).

1This property is to hold at each(T, J) ∈ E, but E can be unbounded.

III. M INIMUM NORM STATE-FEEDBACK LAWS FOR

HYBRID SYSTEMS

Given a hybrid systemH satisfying the hybrid basic
conditions, a compact setA, and a control Lyapunov function
V satisfying Definition 2.2, define, for eachr ∈ R≥0, the
set

I(r) := {x ∈ R
n : V (x) ≥ r } .

Moreover, for each(x, uc) ∈ R
n×R

mc andr ∈ R≥0, define
the function

Γc(x, uc, r) :=






〈∇V (x), f(x, uc)〉 + α3(|x|A)
if (x, uc) ∈ C ∩ (I(r) × R

mc),
−∞ otherwise

and, for each(x, ud) ∈ R
n×R

md andr ∈ R≥0, the function

Γd(x, ud, r) :=






V (g(x, ud)) − V (x) + α3(|x|A)
if (x, ud) ∈ D ∩ (I(r) × R

md),
−∞ otherwise.

Then, evaluate the functionsΓc and Γd at points(x, uc, r)
and (x, ud, r) wherer = V (x) to define the functions

(x, uc) 7→ Υc(x, uc) := Γc(x, uc, V (x)),
(x, ud) 7→ Υd(x, ud) := Γd(x, ud, V (x))

(5)

and the set-valued maps

Tc(x) :=Ψc(x) ∩ {uc ∈ Uc : Υc(x, uc) ≤ 0 } ,
Td(x) :=Ψd(x) ∩ {ud ∈ Ud : Υd(x, ud) ≤ 0 } .

(6)

Furthermore, define

Rc := Π(C) ∩ {x ∈ R
n : V (x) > 0 } (7)

and
Rd := Π(D) ∩ {x ∈ R

n : V (x) > 0 } . (8)

When, for eachx, the functionsuc 7→ Υc(x, uc) andud 7→
Υd(x, uc) are convex, and the set-valued mapsΨc and Ψd

have nonempty closed convex values onRc andRd, respec-
tively, we have thatTc(x) andTd(x) have nonempty convex
closed values on (7) and on (8), respectively (this follows
from [7, Proposition 4.4]). Then,Tc and Td have unique
elements of minimum norm onRc andRd, respectively, and
their minimal selections

ρc : Rc → Uc, ρd : Rd → Ud

are given by

ρc(x) := arg min {|uc| : uc ∈ Tc(x) } , (9)

ρd(x) := arg min {|ud| : ud ∈ Td(x) } . (10)

Moreover, these selections are continuous under further
properties ofΨc andΨd.

The hybrid systemH under the effect of the control pair
(ρc, ρd) in (9), (10) is given by

H̃

{
ẋ = f̃(x) := f(x, ρc(x)) x ∈ C̃

x+ = g̃(x) := g(x, ρd(x)) x ∈ D̃
(11)

with C̃ := {x ∈ R
n : (x, ρc(x)) ∈ C } and D̃ :=

{x ∈ R
n : (x, ρd(x)) ∈ D }. The above arguments and

constructions enable the stabilization results in the following
sections.



A. Practical stabilization using min-norm hybrid control

Proposition 3.1 below establishes that the pointwise min-
imum norm controller in (9)-(10) asymptotically stabilizes
the compact set2

Ar := {x ∈ R
n : V (x) ≤ r } (12)

for the hybrid system restricted toI(r). More precisely,
givenr > 0, we restrict the flow and jump sets of the hybrid
systemH by the setI(r), which leads to

HI

{
ẋ = f(x, uc) (x, uc) ∈ C ∩ (I(r) × R

mc)
x+ = g(x, ud) (x, ud) ∈ D ∩ (I(r) × R

md).

Proposition 3.1: Given a compact setA ⊂ R
n and a

hybrid systemH = (C, f,D, g) satisfying the hybrid basic
conditions, suppose there exists a control Lyapunov function
V with U controls forH. Furthermore, suppose the following
conditions hold:

(M1) The set-valued mapsΨc and Ψd are lower semi-
continuous3 with convex values.

(M2) For everyr > 0 and everyx ∈ Π(C) ∩ I(r), the
functionuc 7→ Γc(x, uc, r) is convex onΨc(x) and, for
everyr > 0 and everyx ∈ Π(D) ∩ I(r), the function
ud 7→ Γc(x, ud, r) is convex onΨd(x).

Then, for everyr > 0, the state-feedback law pair

ρc : Rc ∩ I(r) → Uc, ρd : Rd ∩ I(r) → Ud

defined as

ρc(x) := arg min {|uc| : uc ∈ Tc(x) } (13)

∀x ∈ Rc ∩ I(r),

ρd(x) := arg min {|ud| : ud ∈ Td(x) } (14)

∀x ∈ Rd ∩ I(r)

renders the compact setAr asymptotically stable forHI .
Furthermore, if the set-valued mapsΨc andΨd have closed
graph thenρc and ρd are continuous.

Remark 3.2:The state-feedback law (13)-(14) asymptot-
ically stabilizesAr for HI (but not necessarily forH as
without an appropriate extension of these laws toΠ(C) and
Π(D), respectively, there could exist solutions to the closed-
loop system that jump out ofAr). This point motivates
the following result on stabilization by a control law that
has pointwise minimum norm at points inI(r), but not
everywhere, andthe global stabilization result in the next
section. Finally, note that the assumptions placed onH, such
as the existence of a CLF, can be relaxed by imposing them
on HI instead.

2A compact setA is said to be asymptotically stable for a closed-loop
system (e.g.,eH in (11)) if: • for eachε > 0 there existsδ > 0 such that
each maximal solutionφ starting fromA + δB satisfiesφ(t, j) ∈ A + εB

for each(t, j) ∈ dom φ, and• each maximal solution is bounded and the
complete ones satisfylimt+j→∞ |φ(t, j)|A = 0.

3A set-valued mapS : R
n

⇉ R
m is lower semicontinuous if

for each x ∈ R
n one has thatlim infxi→x S(xi) ⊃ S(x), where

lim infxi→x S(xi) = {z : ∀xi → x,∃zi → z s.t. zi ∈ S(xi) } is the
inner limit of S (see [10, Chapter 5.B]).

Theorem 3.3: Under the conditions of Proposition 3.1, for
everyr > 0 there exists a state-feedback law pair

ρ′c : Rc → Uc, ρ′d : Rd → Ud

defined onRc ∩ I(r) andRd ∩ I(r) as

ρ′c(x) := arg min {|uc| : uc ∈ Tc(x) } (15)

∀x ∈ Rc ∩ I(r),

ρ′d(x) := arg min {|ud| : ud ∈ Td(x) } (16)

∀x ∈ Rd ∩ I(r)

respectively, that renders the compact setAr asymptotically
stable forH. Furthermore, if the set-valued mapsΨc and
Ψd have closed graph thenρ′c and ρ′d are continuous on
Rc ∩ I(r) andRd ∩ I(r), respectively.

The result follows using Proposition 3.1 and the fact
that, from the definition of CLF in Definition 2.2, since the
right-hand side of (3) is negative definite with respect toA
(respectively, (4)) the state-feedbackρc (respectively,ρd) in
(9) (respectively, (10)) can be extended – not necessarily
as a pointwise minimum norm law – to every point in
Π(C) ∩Ar (respectively,Π(D) ∩Ar) and guarantee thatV
is nonincreasing. The asymptotic stability ofAr for H then
follows from an application of [11, Theorem 3.18].Finally,
as the definition ofTc andTd suggest, the norm-minimality
of ρc and ρd are functions ofV and α3, and different
such choices would give different pointwise minimum norm
control laws.

B. Global stabilization using min-norm hybrid control

The result in the previous section guarantees a practical
stability property through the use of a pointwise minimum
norm state-feedback control law. Now, we consider the global
stabilization of a compact set via continuous state-feedback
laws (ρc, ρd) with pointwise minimum norm. For such a
purpose, extra conditions are required to hold nearby the
compact set. For continuous-time systems, such conditions
correspond to the so-calledcontinuous control propertyand
small control property[4], [6], [12]. To that end, given a
compact setA and a control Lyapunov functionV satisfying
Definition 2.2, for eachx ∈ R

n, define

T ′
c (x) := Ψc(x) ∩ S

′
c(x, V (x)), (17)

T ′
d (x) := Ψd(x) ∩ S

′
d(x, V (x)), (18)

where, for eachx ∈ R
n and eachr ≥ 0,

S′
c(x, r) :=

{
S◦
c (x, r) if r > 0,
ρc,0(x) if r = 0,

S′
d(x, r) :=

{
S◦
d(x, r) if r > 0,
ρd,0(x) if r = 0,

(19)

S◦
c (x, r) =





{uc ∈ Uc : Γc(x, uc, r) ≤ 0 }
if x ∈ Π(C) ∩ I(r),

R
mc otherwise,

S◦
d(x, r) =





{ud ∈ Ud : Γd(x, ud, r) ≤ 0 }
if x ∈ Π(D) ∩ I(r),

R
md otherwise,



and the feedback law pair

ρc,0 : R
n → Uc, ρd,0 : R

n → Ud

induces (strong) forward invariance ofA, that is,

(M3) Every maximal solutiont 7→ φ(t, 0) to ẋ =
f(x, ρc,0(x)), x ∈ Π(C) ∩ A satisfies|φ(t, 0)|A = 0
for all (t, 0) ∈ domφ;

(M4) Every maximal solutionj 7→ φ(0, j) to x+ =
g(x, ρd,0(x)), x ∈ Π(D) ∩ A satisfies|φ(0, j)|A = 0
for all (0, j) ∈ domφ.

Under the conditions in Proposition 3.1, the maps in (19) are
lower semicontinuous for everyr > 0. To be able to make
continuous selections atA, these maps are further required
to be lower semicontinuous forr = 0. These conditions
resemble those already reported in [6] for continuous-time
systems.

Theorem 3.4: Given a compact setA ⊂ R
n and a

hybrid systemH = (C, f,D, g) satisfying the hybrid basic
conditions, suppose there exists a control Lyapunov function
V with U controls forH. Moreover, suppose that conditions
(M1)-(M2) of Proposition 3.1 hold. If thefeedback law pair
(ρc,0 : R

n → Uc, ρd,0 : R
n → Ud) is such thatconditions

(M3) and (M4) hold, and

(M5) The set-valued mapT ′
c in (17) is lower semicon-

tinuous at eachx ∈ Π(C) ∩ I(0),

(M6) The set-valued mapT ′
d in (18) is lower semicon-

tinuous at eachx ∈ Π(D) ∩ I(0)

hold, then the state-feedback law pair

ρc : Π(C) → Uc, ρd : Π(D) → Ud

defined as

ρc(x) := argmin {|uc| : uc ∈ T ′
c (x) } ∀x ∈ Π(C) (20)

ρd(x) := arg min {|ud| : ud ∈ T ′
d (x) } ∀x ∈ Π(D) (21)

renders the compact setA globally asymptotically stable for
H. Furthermore, if the set-valued mapsΨc and Ψd have
closed graphand (ρc,0, ρd,0)(A) = 0 then ρc and ρd are
continuous.

C. The case when the inputs affect only flows or only jumps

The results in the previous sections also hold when inputs
only affect either the flows or jumps, but not both. In
particular, we consider the special case whenuc is the only
input, in which caseH becomes

Hc

{
ẋ = f(x, uc) (x, uc) ∈ C
x+ = g(x) x ∈ D

(22)

with D ⊂ R
n andg : R

n → R
n. When the only input isud,

H becomes

Hd

{
ẋ = f(x) x ∈ C
x+ = g(x, ud) (x, ud) ∈ D

(23)

with, in this case,C ⊂ R
n andf : R

n → R
n. The following

results follow by combining the earlier results.

Corollary 3.5: Given a compact setA ⊂ R
n and a hybrid

systemHc = (C, f,D, g) as in (22) satisfying the hybrid
basic conditions, suppose there exists a control Lyapunov
function V with U controls for Hc. Furthermore, suppose
the following conditions hold:

(M1c) The set-valued mapΨc is lower semicontinuous
with convex values.

(M2c) For everyr > 0 and everyx ∈ Π(C) ∩ I(r), the
functionuc 7→ Γc(x, uc, r) is convex onΨc(x).

Then, for everyr > 0, there exists a state-feedback law

ρ′c : Π(C) → Uc (24)

defined onRc∩I(r) as in (15) that renders the compact set
Ar asymptotically stable forHc. Moreover, if the set-valued
mapΨc has a closed graph thenρ′c is continuous onΠ(C)∩
I(r). Furthermore, if the zero feedback lawρc,0 : R

n →
{0} ⊂ Uc is such that condition (M3) holds and if (M5)
holds, thenρc in (20) is globally asymptotically stabilizing.
Furthermore, if the set-valued mapΨc has closed graph then
ρc is continuous.

Corollary 3.6: Given a compact setA ⊂ R
n and a hybrid

systemHd = (C, f,D, g) as in (23) satisfying the hybrid
basic conditions, suppose there exists a control Lyapunov
function V with U controls for Hd. Furthermore, suppose
the following conditions hold:

(M1d) The set-valued mapΨd is lower semicontinuous
with convex values.

(M2d) For everyr > 0 and everyx ∈ Π(D)∩ I(r), the
functionud 7→ Γd(x, ud, r) is convex onΨd(x).

Then, for everyr > 0, there exists a state-feedback law

ρ′d : Π(D) → Ud (25)

defined onRd∩I(r) as in (16) that renders the compact set
Ar asymptotically stable forHd. Moreover, if the set-valued
mapΨd has a closed graph thenρ′d is continuous onΠ(D)∩
I(r). Furthermore, if the zero feedback lawρd,0 : R

n →
{0} ⊂ Ud is such that condition (M4) holds and if (M6)
holds, thenρd in (21) is globally asymptotically stabilizing.
Furthermore, if the set-valued mapΨd has closed graph then
ρd is continuous.

IV. EXAMPLES

Now, we present examples illustrating some of the results
in the previous sections. Complete details are presented for
the first example.

Example 4.1 (Rotate and dissipate):Given v1, v2 ∈ R
2,

let W(v1, v2) := {ξ ∈ R
2 : ξ = r(λv1 + (1 − λ)v2), r ≥

0, λ ∈ [0, 1]} and definev1
1 = [1 1]⊤, v1

2 = [−1 1]⊤, v2
1 =

[1 − 1]⊤, v2
2 = [−1 − 1]⊤. Let ω > 0 and consider the

hybrid system

H





ẋ = f(x, uc) := uc

[
0 ω
−ω 0

]
x

(x, uc) ∈ C,
x+ = g(x, ud) (x, ud) ∈ D,

(26)



C :=
{
(x, uc) ∈ R

2 × R : uc ∈ {−1, 1}, x ∈ Ĉ
}
,

Ĉ := R2 \ (W(v1
1 , v

1
2) ∪W(v2

1 , v
2
2)),

D :=
{
(x, ud) ∈ R

2 × R≥0 : ud ≥ γ|x|, x ∈ ∂W(v2
1 , v

2
2)

}
,

for each(x, ud) ∈ R
2 × R≥0 the jump mapg is given by

g(x, ud) := R(π/4)

[
0
ud

]
, R(s) =

[
cos s sin s
− sin s cos s

]
,

and γ > 0 is such thatexp(π/(2ω))γ2 < 1. For eachi ∈
{1, 2}, the vectorsvi1, v

i
2 ∈ R

2 are such thatW(v1
1 , v

1
2) ∩

W(v2
1 , v

2
2) = {0}. The set of interest isA := {0} ⊂ R

2.
Figure 1 depicts the flow and jump sets projected onto the
x plane.

C

D

x1

x2

W(v1
1 , v

1
2)

W(v2
1 , v

2
2)

Fig. 1. Sets for Example 4.1. The white region (and its boundary) corre-
sponds to the flow set projected onto thex plane. The dashed line represents
D.

To construct a state-feedback law for (26), consider the
candidate control Lyapunov functionV given by

V (x) = exp(T (x))x⊤x ∀x ∈ R
2, (27)

where T denotes the minimum time to reach the set
W(v2

1 , v
2
2) with the continuous dynamics of (26) anduc ∈

{−1, 1}. The functionT is precisely defined as follows. It is
defined as a continuously differentiable function fromR

2 to
[0, π2ω ] given asT (x) := 1

ω
arcsin

(√
2

2
|x1|+x2

|x|

)
on Ĉ and

zero for every other point inW(v2
1 , v

2
2). The definition of

V is such that (2) holds withα1(s) := s2 and α2(s) :=
exp

(
π
2ω

)
s2 for eachs ≥ 0.

Next, we construct the set-valued mapsΨc and Ψd and
then check (3) and (4). Note thatΠ(C) = Ĉ and Π(D) =
∂W(v2

1 , v
2
2). For eachx ∈ R

2,

Ψc(x) =

{
{−1, 1} if x ∈ Ĉ
∅ otherwise,

Ψd(x) =






{ud ∈ R≥0 : ud ≥ γ|x| }
if x ∈ ∂W(v2

1 , v
2
2),

∅ otherwise.

During flows, we have that

〈∇V (x), f(x, uc)〉 = 〈∇T (x), f(x, uc)〉V (x)

=
uc
ω

[
x2

|x|2 − x1

|x|2
] [

0 ω
−ω 0

]
xV (x)

for all (x, uc) ∈ C. Forx ∈ Ĉ, x1 > 0, 〈∇T (x), f(x, uc)〉 =
1 when uc = 1, and for x ∈ Ĉ, x1 < 0,

〈∇T (x), f(x, uc)〉 = −1 whenuc = −1. Then

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 ≤ −x⊤x (28)

for all x ∈ Π(C). During jumps, we have that, for each
(x, ud) ∈ D,

V (g(x, ud)) = exp(T (g(x, ud)))g(x, ud)
⊤g(x, ud)

= exp
( π

2ω

)
u2
d.

It follows that

inf
ud∈Ψd(x)

V (g(x, ud)) − V (x) ≤ −
(
1 − exp

( π

2ω

)
γ2

)
x⊤x

for eachx ∈ Π(D). Finally, both (3) and (4) hold with
s 7→ α3(s) :=

(
1 − exp

(
π
2ω

)
γ2

)
s2. Then,V is a CLF for

(26).
Now, we determine an asymptotic stabilizing control law

for the above hybrid system.First, we compute the set-valued
mapTc in (6). To this end, the definition ofΓc gives, for each
r ≥ 0,

Γc(x, uc, r)=






uc
ω

[
x2

|x|2 − x1

|x|2
] [

0 ω
−ω 0

]
xV (x)

+α3(|x|A) if (x, uc) ∈ C ∩ (I(r) × R
mc),

−∞ otherwise

from where we getΥc(x, uc) = Γc(x, uc, V (x)). Then, for
eachr > 0 and (x, uc) ∈ C ∩ (I(r) × R

mc), the set-valued
mapTc is given by

Tc(x) = Ψc(x) ∩ {uc ∈ Uc : Υc(x, uc) ≤ 0 }

= {−1, 1} ∩ ({1 : x1 > 0 } ∪ {−1 : x1 < 0 }) ,

which reduces to

Tc(x) =

{
1 x1 > 0
−1 x1 < 0

(29)

for eachx ∈ Π(C) ∩
{
x ∈ R

2 : V (x) > 0
}

.
Proceeding in the same way, the definition ofΓd gives,

for eachr ≥ 0,

Γd(x, ud, r) =






exp
( π

2ω

)
u2
d − V (x) + α3(|x|A)

if (x, ud) ∈ D ∩ (I(r) × R
md),

−∞ otherwise

from where we getΥd(x, uc) = Γd(x, ud, V (x)). Then, for
eachr > 0 and(x, ud) ∈ D ∩ (I(r) × R

md), the set-valued
mapTd is given by

Td(x) = Ψd(x) ∩ {ud ∈ Ud : Υd(x, ud) ≤ 0 }

= {ud ∈ R≥0 : ud ≥ γ|x| }

∩
{
ud ∈ R≥0 : exp

( π

2ω

)
u2
d − x⊤x+ α3(|x|A) ≤ 0

}

and using the definition ofα3, we get

Td(x) = {ud ∈ R≥0 : ud = γ|x| }

for each x ∈ Π(D) ∩
{
x ∈ R

2 : V (x) > 0
}

. Then,
according to (9), from (29), for eachx ∈ Π(C) ∩



{
x ∈ R

2 : V (x) > 0
}

we can take the pointwise mini-
mum norm control selection

ρc(x) :=

{
1 x1 > 0
−1 x1 < 0

According to (10), from (30), for eachx ∈ Π(D) ∩{
x ∈ R

2 : V (x) > 0
}

we can take the pointwise mini-
mum norm control selection

ρd(x) := γ|x|.

Figure 2 depicts a closed-loop trajectory with the control
selections above when the region of operation is restricted
to

{
x ∈ R

2 : V (x) ≥ r
}

, r = 0.15.
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Fig. 2. Closed-loop trajectory to the system in Example 4.1 starting from
x(0, 0) = (2, 0.9) and evolving within

˘
x ∈ R

2 : V (x) ≥ r
¯

, r =
0.15. The lines at±45 deg define the boundary of the flow and jump sets
projected onto thex plane. Ther-contour plot ofV is also shown.

Example 4.2 (Impact control of a pendulum):The model
of a point-mass pendulum impacting on a controlled slanted
surface can be captured by the hybrid systemH given by

ẋ1 = x2

ẋ2 = −a sinx1 − bx2 + uc,1

}
=: f(x, uc)

(x, uc) ∈ C,
x+

1 = x1 + ρ̃(ud)x1

x+
2 = −e(ud)x2

}
=: g(x, ud)

(x, ud) ∈ D,

whereuc = [uc,1 uc,2]
⊤ = [τ µ]⊤ ∈ R × [−π

2 , 0] =: Uc,
ud = µ ∈ [−π

2 , 0] =: Ud,

C :=
{

(x, uc) ∈
[
−
π

2
, π

]
× R × Uc : x1 ≥ uc,2

}
,

D :=
{
(x, ud) ∈

[
−
π

2
, π

]
× R × Ud : x1 ≤ ud, x2 ≤ 0

}
.

The pendulum’s angle (with respect to the vertical) is repre-
sented byx1 ∈ [−π

2 , π] and the pendulum’s velocity (positive
when the pendulum rotates in the clockwise direction) byx2.
The angle of the surface is given byµ ∈ [−π

2 , 0], the torque
actuation at the pendulum’s end is given byτ , and a >
0, b ≥ 0 capture the system constants (e.g., gravity, mass,
length, and friction). The functions̃ρ : [−π/2, 0] → (−1, 0)

and e : [−π/2, 0] → [0, 1) are continuous and capture the
effect of pendulum compression and restitution at impacts,
respectively, as a function ofµ.

It can be shown that, withA = {(0, 0)}, the function

V (x) = x⊤Px, P =

[
2 1
1 1

]
.

is a control Lyapunov function withU controls forH and
that

ρc,1(x) :=

{
−ψ0(x)
ψ1(x)

ψ0(x) > 0

0 ψ0(x) ≤ 0
ρc,2(x) = ρd(x) := 0

are pointwise minimum norm control laws on
Π(C) ∩

{
x ∈ R

2 : V (x) > 0
}

and on Π(D) ∩{
x ∈ R

2 : V (x) > 0
}

, respectively.

V. CONCLUSION

Minimum-norm control laws for hybrid dynamical sys-
tems were proposed for a broad class of hybrid dynamical
systems. The existence of a control Lyapunov function plus
some properties of the data of the hybrid system guarantee
the existence of pointwise minimum norm selections yielding
a stabilizing control law. To the best of our knowledge, the
results in this paper provide the first constructive control
algorithm for hybrid systems.
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