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Abstract

Motivated by the recent development of advanced experimental techniques in molecular biology, this paper
focuses on the study of the dynamical properties of a two-gene regulatory network. A mathematical model
for a two-gene regulatory network is derived and several of their properties are analyzed. Due to the
presence of mixed continuous/discrete dynamics and hysteresis, we employ hybrid systems models to capture
the dynamics of the system. The proposed model incorporates binary hysteresis with different thresholds
capturing the interaction between the genes. We analyze properties of the solutions and asymptotic stability
of equilibria in the system as a function of their parameters. As a difference to previous efforts employing
piecewise-linear models, the analysis of our hybrid system model reveals the presence of limit cycles for a
certain range of parameters, behavior that is associated with the presence of hysteresis. The set of points
defining the limit cycle is characterized and its asymptotic stability properties are studied. Furthermore,
we determine conditions under which the stability properties of the limit cycle are robust to changes of
parameters. Numerical simulations are presented to illustrate the findings.
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1. Introduction

1.1. Mathematical modeling of genetic regulatory networks

In recent years, the development of advanced experimental techniques in molecular biology has led to a
growing interest in mathematical modeling methods for the study of genetic regulatory networks; see [1] for
a literature review. A number of gene regulatory network models have been proposed to capture their main
properties [2], [3], [4], [5], [6], [7], [8]. Boolean models capture the dynamics of the discrete switch in genetic
networks. As introduced by Glass and Kauffman in [3], Boolean regulation functions, typically modeled
as sigmoidal or step functions, can be combined with linear system models to enforce certain logic rules.
The properties of such a class of piecewise linear models have been studied in the mathematical biology
literature, e.g., [4, 5, 2, 6]. Snoussi presented a discrete mapping approach in [4] to study the qualitative
properties of the dynamics of genetic regulatory networks. In this work, the properties of the discrete
mapping were studied to determine stable isolated steady states as well as limit cycles. In [5], Gouzé and
Sari employ the concept of Filippov solution to study piecewise linear models of genetic regulatory networks
with discontinuities occurring on hyperplanes defined by thresholds on the variables. Chaves and coauthors
[2] studied the robustness of Boolean models of gene control networks. de Jong and coauthors [6] presented
a method for qualitative simulation of genetic regulatory networks based on the piecewise linear model of [3].
Genetic regulatory networks with continuous dynamics coupled with switching can be written as a hybrid
system. In [7] and [8], the authors apply hybrid systems tools to model a variety of cell biology problems.
More recently, hybrid models have been used in [9] for the study of molecular interactions. It is important
to note that hysteresis behavior, which is typically present in genetic regulatory networks, has not been
considered in the models mentioned above.
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1.2. The role of hysteresis in genetic regulatory networks

Hysteresis is an important phenomenon in genetic regulatory networks. It is characterized by behavior
in which, for instance, once a gene has been inhibited due to the concentration of cellular protein reaching
a particularly low value, a higher value of cellular protein concentration is required to express it. In his
survey paper on the impact of genetic modeling on tumorigenesis and drug discovery [10], Huang stated that
“hysteresis is a feature that a synthetic model has to capture.” Through experiments, Das and coauthors
[11] demonstrated the existence of hysteresis in lymphoid cells and the interaction of continuous evolution of
some cellular proteins. Hysteresis was also found to be present in mammalian genetic regulatory networks;
see, e.g., [12, 13]. More importantly, it has been observed that hysteresis is a key mechanism contributing to
oscillatory behavior in computational biological models [14], [15]. On the other hand, it is well known that
hysteresis is one of the key factors that makes a system robust to noise and parametric uncertainties [16],
[17].

1.3. Contributions and organization of the paper

Our work is motivated by the following facts:

1. Piecewise linear models do not incorporate hysteresis, although it plays a key role in the dynamics of
genetic regulatory networks. In fact, as we establish in this paper, hysteresis leads to oscillatory, robust
behavior in two-gene networks.

2. The discontinuities introduced by the Boolean regulation functions yield a non-smooth dynamical sys-
tem, for which classical analysis tools cannot be applied to study existence of solutions, stability, ro-
bustness, etc.

Motivated by these two limitations, we propose a hybrid system model that captures both continuous and
discrete dynamics of genetic regulatory networks with hysteresis behavior. We combine the methodology of
piecewise linear modeling of genetic regulatory networks with the framework of hybrid dynamical systems
in [18], and construct a hybrid system model for a genetic network with two genes. Our model incorporates
hysteresis explicitly, which we found leads to limit cycles. We prove existence of solutions and compute
the equilibrium points in terms of parameters for the system. We analyze the stability of the isolated
equilibrium points and determined conditions under which a limit cycle exists. It is found that hysteresis
is the key mechanism leading to hysteresis, as without hysteresis, the limit cycle converges to an isolated
equilibrium point (cf. [4]). The stability of the limit cycle is established using a novel approach consisting
of measuring distance between solutions of hybrid systems (rather than the distance to the limit cycle as
in classical continuous-time systems). Moreover, we show that the asymptotic stability of the limit cycle is
robust to small perturbations.

The remainder of this paper is organized as follows. In Section 2, a mathematical framework of hybrid
dynamical system is introduced and then applied to model a two-gene network. The analysis of existence
of solutions, stability, and robustness are presented in Section 3. Section 4 presents simulations validating
our results. Proofs of some of the results that due to space limitations are not included here can be found
in [19].

2. A Hybrid Systems Model for Genetic Regulatory Networks with Hysteresis

Models of genetic regulatory networks given by piecewise-linear differential equations have been proposed
in [8], [20]. Such models take the form 2

ẋ = f(x)− γx, x ≥ 0, (1)

where x = [x1, x2, . . . , xn]
⊤ and xi represents the concentration of the protein in the i-th cell, f = [f1, f2, . . . , fn]

⊤

is a function, γ = [γ1, γ2, . . . , γn]
⊤ is a vector of constants, and 1 ≤ i ≤ n. For each i, fi is a function repre-

senting the rate of synthesis, while γi represents the degradation rate constant of the protein. The function

2The notation x ≥ 0 is equivalent to xi ≥ 0 for each i.

2



fi is typically defined as the linear combination fi(x) =
∑

ℓ∈L kiℓbiℓ(x) where kiℓ is the nonzero and non-
negative growth rate constants, biℓ is a Boolean regulation function that describes the gene regulation logic,
and L = {1, 2 . . . , n} is the set of indices of regulation functions.

The modeling strategy for the Boolean regulation functions bil is a key element that captures the behavior
of a particular genetic regulatory network. A major feature of a genetic regulatory network is the presence
of threshold-like relationships between the system variables, i.e., if a variable xi is above (or below) a certain
level, it could cause little or no effect on another variable xj , whereas if xi is below (or above) this certain
value, the effect on xj would become more significant (for example, it may increase the value of xj or inhibit
the growth of the value of xj). Boolean regulation functions can be modeled by sigmoidal or step functions,
an approach that was first proposed by Glass and Kauffmann [3]. When modeling as a step function, the
functions biℓ are given by the combination (linear or nonlinear) of

s+(xi, θ) =

{
1 if xi ≥ θ
0 if xi < θ

, s−(xi, θ) = 1− s+(xi, θ), (2)

where s+(xi, θ) represents the logic for gene expression when the protein concentration exceeds a threshold
θ, while s−(xi, θ) represents the logic for gene inhibition.

To illustrate this modeling approach, let us consider the genetic regulatory network shown in Figure 1.
Genes a and b encode proteins A and B , respectively. When the concentration of protein A is below certain
threshold, it will inhibit gene b. Similarly, protein B inhibits gene a when the concentration of protein B is
above certain threshold. In this way, a set of piecewise-linear differential equations representing the behavior
in Figure 1 is given by

ẋ1 = k1s
−(x2, θ2)− γ1x1, ẋ2 = k2s

+(x1, θ1)− γ2x2, (3)

where x1 is representing the concentration of protein A, while x2 is the concentration of protein B . The
constants θ1, θ2 are the thresholds associated with concentrations of protein A and B, respectively.

a b

A

B

Figure 1: A genetic regulatory network of two genes (a and b), each encoding for a protein (A and B). Lines ending in arrows
represent genetic expression triggers, while lines ending in flatheads refer to genetic inhibition triggers.

In this model, gene a is expressed at a rate k1 when x2 is below the threshold θ2. Similarly, gene b is
expressed at a rate k2 when x1 is above the threshold θ1. Degradations of both proteins are assumed to be
proportional to their own concentrations, a mechanism that is captured by −γ1x1 and −γ2x2, respectively.

Note that the model in (3) capturing the interaction between gene a and gene b does not incorporate
binary hysteresis. Furthermore, due to the discontinuities introduced by the Boolean regulation functions, it
is not straightforward to argue that solutions to (3) exist from every initial value of x. In order to overcome
such limitations, we propose a hybrid system with hysteresis for this two gene genetic regulatory network,
to which hybrid systems tools for analysis of existence of solutions and asymptotic stability can be applied.

2.1. Introduction to Hybrid System Modeling

Following [18] and [21], a hybrid system in this paper is defined by four objects:

• A set C ⊂ R
n, called the flow set.
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• A set D ⊂ R
n, called the jump set.

• A single-valued mapping F : Rn → R
n, called the flow map.

• A set-valued mapping G: Rn
⇒ R

n, called the jump map.

The flow map F defines the continuous dynamics on the flow set C, while the jump map G defines the
discrete dynamics or jumps on the jump set D. These objects are referred to as the data of the hybrid
system H. Then, defining z ∈ R

n to be the state of the system, H can be written in the compact form

H :

{
ż = F (z) z ∈ C
z+ ∈ G(z) z ∈ D

Solutions to hybrid systems are given by hybrid arcs which are trajectories defined on hybrid time
domains.

Definition 2.1 (hybrid time domain). A set E is a hybrid time domain if for all (T, J) ∈ E,E∩([0, T ]×
{0, 1, ..., J}) is a compact hybrid time domain; that is, it can be written as ∪j−1

j=0([tj , tj+1], j) for some finite
sequence of times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tj.

Definition 2.2 (hybrid arc). A hybrid arc φ is a function that takes values from R
n, is defined on a hybrid

time domain domφ, and is such that t 7→ φ(t, j) is locally absolutely continuous for every j, (t, j) ∈ domφ.

Hybrid time domains impose a specific structure on the domains of solutions to hybrid systems. In simple
words, solutions to H are defined on intervals of flow [tj , tj+1] indexed by the jump time j when tj+1 > tj .
Hybrid arcs specify the functions that define solutions to hybrid systems when the following conditions are
satisfied. We refer the reader to [21, 18] for more details on the definition of solutions to hybrid systems.

Definition 2.3 (solution). A hybrid arc φ is a solution to the hybrid system H if φ(0, 0) ∈ C ∪D and
(S1) For all j ∈ N := {0, 1, 2, . . .} and almost all t such that (t, j) ∈ domφ,

φ(t, j) ∈ C, φ(t, j) = F (φ(t, j))

(S2) For all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j))

Solutions to hybrid systems are classified as follows:

• A solution φ to H is said to be nontrivial if domφ contains at least two points.

• A solution φ to H is said to be complete if domφ is unbounded.

• A solution φ to H is said to be Zeno if it is complete and the projection of domφ onto R
n
≥0 is bounded.

• A solution φ to H is said to be maximal if there does not exist another solution ϕ to H such that
domϕ is a proper subset of domφ, and ϕ(t, j) = φ(t, j) for all (t, j) ∈ domφ.

The reader is referred to [18] and [21] for more details on this hybrid system framework.
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qi

0
xi

1

θi − hi θi + hi θmax
i

Figure 2: The update mechanism of qi as a function of xi and previous values of qi.

2.2. Modeling of a Two-Gene Network

To model the genetic network in (3) as a hybrid system H, two discrete logic variables, q1 and q2, are
introduced. The dynamics of these variables depend on the thresholds, θ1 and θ2, respectively. As one of
our goals is to introduce binary hysteresis in the model in (3), we define hysteresis level constants h1 and
h2 associated with gene a and gene b, respectively. In this way, qi is governed by dynamics such that the
evolution in Figure 2 holds.

The state of the hybrid system is defined as

z = [x1, x2, q1, q2]
⊤,

where z ∈ Z := R
2
≥0×{0, 1}2; x1, x2 are (nonnegative) continuous states representing protein concentrations;

and q1, q2 are discrete variables. Here, R≥0 := [0,+∞). We specify constants θ1 and θ2, usually inferred
from biological data, satisfying 0 < θ1 < θmax

1 , 0 < θ2 < θmax
2 , where θmax

1 and θmax
2 are the maximal value

of the concentration of protein A and of the protein B , respectively.
To define the continuous dynamics of the hybrid system capturing the evolution of (3), we rewrite the

piecewise-linear differential equation (3) by replacing the s+ term with the logic variables qi, and the s−

term with the complement of the logic variable qi, i.e., 1− qi. Note that the discrete logic variables qi only
change at jumps, i.e., they are constants during flows. Then, q̇i = 0. In this way, the continuous dynamics
are governed by the differential equation

ẋ1 = k1(1 − q2)− γ1x1, ẋ2 = k2q1 − γ2x2, q̇1 = q̇2 = 0,

from where we obtain the flow map

F (z) =




k1(1− q2)− γ1x1

k2q1 − γ2x2

0
0


 . (4)

Now, we describe the discrete update of the state vector z, i.e., we define G and D. To illustrate this
construction, we explain how to model the mechanism in Figure 2 for q1. When

q1 = 0 and x1 = θ1 + h1

the state q1 is updated to 1. We write this update law as

q+1 = 1.

When
q1 = 1 and x1 = θ1 − h1,
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then the state q1 is updated to 0, i.e.,
q+1 = 0.

It follows that the mechanism of q1 in Figure 2 can be captured by triggering jumps when the components
of z satisfy

q1 = 0, x1 = θ1 + h1 or q1 = 1, x1 = θ1 − h1

Note that the update mechanism for q2 is similar to that of q1 just discussed.
We can define the flow and jump sets in a compact form by defining functions

η1(x1, q1) := (2q1 − 1)(−x1 + θ1 + (1− 2q1)h1)

η2(x2, q2) := (2q2 − 1)(−x2 + θ2 + (1 − 2q2)h2).

In this way, the flow set is given by

C := {z ∈ Z : η1(x1, q1) ≤ 0, η2(x2, q2) ≤ 0} (5)

and the jump set is given by

D = {z ∈ C : η1(x1, q1) = 0} ∪ {z ∈ C : η2(x2, q2) = 0} (6)

To define the jump map, first note that at jumps, the continuous states x1 and x2 do not change. Then,
we conveniently define

g1(z) :=




x1

x2

1− q1
q2


 , g2(z) :=




x1

x2

q1
1− q2


 ,

so that the jump map G is given by

G(z) :=





g1(z) if η1(x1, q1) = 0, η2(x2, q2) < 0

g2(z) if η1(x1, q1) < 0, η2(x2, q2) = 0

{g1(z), g2(z)} if η1(x1, q1) = 0, η2(x2, q2) = 0.

(7)

The above definitions determine a hybrid system for (3), which is given by

H : z ∈ Z





ż = F (z) =




k1(1− q2)− γ1x1

k2q1 − γ2x2

0
0


 z ∈ C

z+ ∈ G(z) z ∈ D,

(8)

where C is in (5), G is in (7), and D is in (6). Its parameters are given by the positive constants k1,
k2, γ1, γ2, θ1, θ2, h1, h2, which satisfy θ1 + h1 < θmax

1 , θ2 + h2 < θmax
2 , θ1 − h1 > 0, θ2 − h2 > 0.

Figure 3 depicts a hybrid automaton representation of this system when sequentially transitioning between
(q1, q2) = (0, 0), (1, 0), (1, 1), (0, 1).

Lemma 2.4. The data (C,F,D,G) satisfies the following conditions:

(A1) The sets C and D are closed.

(A2) The map z 7→ F (z) is continuous on C.

(A3) The set-valued mapping z 7→ G(z) is outer semicontinuous3 relative to R
4 and locally bounded,

and, for all z ∈ D, G(z) is nonempty.

Proof: Properties (A1) and (A2) are obvious. Property (A3) holds since the graph of G, which is given by
{(x, y) : y ∈ G(z) } , is closed.

3A set-valued mapping G : S ⇒ Rn with S ⊂ Rn is outer semicontinuous relative to S if for any z ∈ S and any sequence
{zi}∞i=1 with zi ∈ S, limi→∞ zi = z, and any sequence {wi}∞i=1 with wi ∈ G(zi) and limi→∞ wi = w we have w ∈ G(z).
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ẋ1 = k1 − γ1x1ẋ1 = k1 − γ1x1

ẋ2 = k2 − γ2x2

ẋ2 = k2 − γ2x2

ẋ1 = −γ1x1
ẋ1 = −γ1x1

ẋ2 = −γ2x2

ẋ2 = −γ2x2

q1 = 0

q1 = 0

q2 = 0q2 = 0

q1 = 1

q1 = 1

q2 = 1q2 = 1

x1 < θ1 + h1 x1 > θ1 − h1
x2 = θ2 − h2

x2 = θ2 + h2

x1 = θ1 − h1, x2 > θ2 − h2

x1 = θ1 + h1, x2 < θ2 + h2

Figure 3: A hybrid automaton representation of the two-gene genetic regulatory network for sequential transitions of (q1, q2).

3. Dynamical Properties of the Two-Gene Hybrid System Model

3.1. Existence of solutions

Proposition 3.1. From every point in C ∪D, there exists a nontrivial solution for the hybrid system H in
(8). Furthermore, every maximal solution is complete and the projection of its hybrid time domain on R≥0

is unbounded, i.e., every solution is not Zeno.

The proof of this result uses the conditions for the existence of solutions to H in [18] for general hybrid
systems. More precisely, consider the hybrid system H and let z(0, 0) ∈ C ∪D. If z(0, 0) ∈ D or

(VC) there exists a neighborhood U of z(0, 0) such that4 for every z ∈ U ∩ C,

F (z) ∩ TC(z) 6= ∅,

then there exists a nontrivial solution to H from z(0, 0). If (VC) holds for every z(0, 0) ∈ C \D, then there
exists a nontrivial solution to H from every initial point in C ∪ D, and every maximal solution z satisfies
exactly one of the following conditions:

1. z is complete;

2. dom z is bounded and the last interval is of the form [tJ , tJ+1), where J = sup(t,j)∈dom z j has nonempty
interior and t 7→ φ(t, J) is a maximal solution to ż = F (z), in fact limt→T |z(t, J)|=∞, where T =
sup(t,j)∈dom z t;

3. z(T, J) /∈ C ∪D, where (T, J) = sup dom z.

Furthermore, if G(D) ⊂ C ∪D, then 3) above does not occur.

4TC(z) denotes the tangent cone of C at z, i.e., it is the set of all v for which there exists a sequence of real numbers αi ց 0
and a sequence vi → v such that for every i = 1, 2, ..., x+ αivi ∈ C.
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3.2. Characterization of equilibria

We compute the set of isolated equilibrium points z∗ as well as (nonisolated, dense) sets of equilibria for
the hybrid system H in (8). For general hybrid systems, isolated equilibrium points are points that are an
isolated equilibrium point of ż ∈ F (z), z ∈ C or of z+ ∈ G(z), z ∈ D. On the other hand, an equilibrium set
(not necessarily an isolated equilibrium point) for a hybrid system H is defined as a set that is (strongly)
forward invariant.

Definition 3.2 (Equilibrium set). A set S ⊂ C∪D is an equilibrium set of H if for every initial condition
z(0, 0) ∈ S, every solution z to H satisfies z(t, j) ∈ S for all (t, j) ∈ S.

The following results determine the equilibria of (8) for a range of parameters of the system.

Proposition 3.3. The equilibria of the hybrid system H in (8) is given in Table 1 in terms of the positive
constants k1, k2, γ1, γ2, θ1, θ

max
1 , θ2, θ

max
2 , h1, and h2 satisfying the conditions therein. The set S ⊂ C ∪D

in case 5 is an equilibrium set and is given by

S =

4⋃

i=1

Si, (9)

where5

S1 :=

{
x ∈ R

2 : x =

[
k1

γ1

−
(

k1

γ1

− p0(1)
)
exp(−γ1s)

p0(2) exp(−γ2s)

]
, s ∈ [0, t′1]

}
× {(0, 0)}

S2 :=



x ∈ R

2 : x =




k1

γ1

−
(

k1

γ1

− p1(1)
)
exp(−γ1s)

k2

γ2

−
(

k2

γ2

− p1(2)
)
exp(−γ2s)


 , s ∈ [0, t′2]



× {(1, 0)}

S3 :=

{
x ∈ R

2 : x =

[
p2(1) exp(−γ1s)

k2

γ2

−
(

k2

γ2

− p2(2)
)
exp(−γ2s)

]
, s ∈ [0, t′3]

}
× {(1, 1)}

S4 :=

{
x ∈ R

2 : x =

[
p3(1) exp(−γ1s)
p3(2) exp(−γ2s)

]
, s ∈ [0, t′4]

}
× {(0, 1)}

and p0, p1, p2, p3 ∈ R
2 are the vertices of the set S (see Figure 4), where

t′1 = ln

[
k1

γ1

− p0(1)
k1

γ1

− (θ1 + h1)

] 1

γ1

, t′2 = ln

[
k2

γ2

− p1(2)
k2

γ2

− (θ2 + h2)

] 1

γ2

,

t′3 = ln

[
p2(1)

θ1 − h1

] 1

γ1

, t′4 = ln

[
p3(2)

θ2 − h2

] 1

γ2

,

and

p0 =


 (θ1 − h1)

(
θ2−h2

p3(2)

) γ1
γ2

θ2 − h2


 , (10)

p1=




θ1 + h1

(θ2 − h2)

(
k1
γ1

−(θ1+h1)
k1
γ1

−p0(1)

) γ2
γ1



 , (11)

5pi(j) is the j-th component of pi.
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p2 =


 k1

γ1

−
(

k1

γ1

− (θ1 + h1)
)( k2

γ2
−(θ2+h2)

k2
γ2

−p1(2)

) γ1
γ2

θ2 + h2


 , (12)

p3 =




θ1 − h1

k2

γ2

−
(

k2

γ2

− (θ2 + h2)
)(

θ1−h1

p2(1)

) γ2
γ1



 . (13)

Moreover, the period of the limit cycle is given by

T = t′1 + t′2 + t′3 + t′4. (14)

Table 1: Equilibria of the hybrid system (8).

Conditions on constants Equilibria

1
θ1 + h1 < k1

γ1

< θmax
1

0 < k2

γ2

< θ2 + h2
z∗1 :=

[
k1

γ1

k2

γ2

1 0
]⊤

2 0 < k1

γ1

< θ1 − h1 z∗2 :=
[

k1

γ1

0 0 0
]⊤

3
θ1 − h1 < k1

γ1

< θ1 + h1

0 < k2

γ2

< θ2 + h2
z∗1 or z∗2

4
θ1 − h1 < k1

γ1

< θ1 + h1

θ2 + h2 < k2

γ2

< θmax
2

z∗2

5
θ1 + h1 < k1

γ1

< θmax
1

θ2 + h2 < k2

γ2

< θmax
2

equilibrium set S defined in (9)

The following result provides a more constructive characterization of S.

Corollary 3.4. Under the conditions of Proposition 3.3, if furthermore, γ1 = γ2 = γ, then

p0(1) =
−d6 + d8 + d7 − d5 − d4 − d3 + d2

d1
, (15)

where

d1 = 2h1k
2
2γ + h2k1k2γ + k1k2γθ2 − 2h1h2k2γ

2 − 2h1k2γ
2θ2

d2 = k1k2γθ1θ2, d3 = h2k1k2γθ1, d4 = h1k1k2γθ2,

d5 = h1h2k1k2γ, d7 = h2k
2
1k2, d8 = h1k1k

2
2

d6 = k
1

2

1 k
1

2

2 (h1k2 + h2k1 − 2h1h2γ)
1

2

(2h2
1h

2
2γ

3 − 2h2
1h2k2γ

2 + 2h2
1k2γ

2θ2 − 2h2
1γ

3θ22

−2h1h
2
2k1γ

2 + d8 − 2h1k1k2γθ2 + 2h1k1γ
2θ22

+2h2
2k1γ

2θ1 − 2h2
2γ

3θ21 + d7 − 2h2k1k2γθ1

+2h2k2γ
2θ21 + 2k1k2γθ1θ2 − 2k1γ

2θ1θ
2
2

−2k2γ
2θ21θ2 + 2γ3θ21θ

2
2)

1

2
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Figure 4: Set S and its vertices corresponding to case 5 of Table 1.

Moreover, the sets Si are given by

S1 = {x ∈ R
2 : x2 = m1x1 −m1p1(1) + p1(2),

p0(1) ≤ x1 < θ1 + h1, p1(2) ≤ x2 < θ2 − h2} × {(0, 0)},

S2 = {x ∈ R
2 : x2 = m2x1 −m2p1(1) + p1(2),

θ1 + h1 ≤ x1 < p2(1), p1(2) < x2 ≤ θ2 + h2} × {(1, 0)},

S3 = {x ∈ R
2 : x2 = m3x1 −m3p3(1) + p3(2),

θ1 − h1 < x1 ≤ p2(1), θ2 + h2 < x2 ≤ p3(2)} × {(1, 1)},

S4 = {x ∈ R
2 : x2 = m4x1 −m4p3(1) + p3(2),

p0(1) < x1 ≤ θ1 − h1, θ2 − h2 ≤ x2 < p3(2)} × {(0, 1)},

where

m1 =
p0(2)− p1(2)

p0(1)− p1(1)
, m2 =

p2(2)− p1(2)

p2(1)− p1(1)
,

m3 =
p2(2)− p3(2)

p2(1)− p3(1)
, m4 =

p0(2)− p3(2)

p0(1)− p3(1)

(16)

and the points p0, p1, p2, p3 ∈ R
2 are given in (10)-(13).

Proof: When γ1 = γ2 = γ, the definitions in (10)-(13) lead to

p0(1) = (θ1 − h1)

(
θ2 − h2

p3(2)

)
,

p1(2) = (θ2 − h2)

(
k1

γ
− (θ1 + h1)

k1

γ
− p0(1)

)

p2(1) =
k1
γ

−

(
k1
γ

− (θ1 + h1)

)( k2

γ
− (θ2 + h2)
k2

γ
− p1(2)

)

p3(2) =
k2
γ

−

(
k2
γ

− (θ2 + h2)

)(
θ1 − h1

p2(1)

)

10



Letting λ = p0(1), we obtain

(θ1 − h1)(θ2 − h2)

λ
=

k2
γ

−

(
k2
γ

− (θ2 + h2)

)(
θ1 − h1

p2(1)

)

p2(1) =
k1
γ

−

(
k1
γ

− (θ1 + h1)

)



k2

γ
− (θ2 + h2)

k2

γ
− (θ2 − h2)

(
k1
γ

−(θ1+h1)
k1
γ

−λ

)




Replacing the second equation into the first one, after elementary but tedious manipulations, we obtain that
λ = p0(1) as in (15).6

3.3. Stability analysis

For convenience in the following analysis, we rewrite the flow set C as C =
⋃4

i=1 Ci (see Figure 4), where

C1 := {z ∈ Z : q1 = 0, q2 = 0, x1 ≤ θ1 + h1, x2 ≤ θ2 + h2},

C2 := {z ∈ Z : q1 = 1, q2 = 0, x1 ≥ θ1 − h1, x2 ≤ θ2 + h2},

C3 := {z ∈ Z : q1 = 1, q2 = 1, x1 ≥ θ1 − h1, x2 ≥ θ2 − h2},

C4 := {z ∈ Z : q1 = 0, q2 = 1, x1 ≤ θ1 + h1, x2 ≥ θ2 − h2}.

3.3.1. Asymptotic stability of isolated equilibrium points

The following propositions determine the stability properties of the isolated equilibrium points in Table 1.

Proposition 3.5. For cases 1, 2, and 4 in Table 1, the corresponding equilibrium points to H in (8) are
globally asymptotically stable.

Proposition 3.6. For case 3 in Table 1, if z(0, 0) ∈ C2, then we have that limt+j→∞ z(t, j) = z∗1 ; if
z(0, 0) ∈ C1 or z(0, 0) ∈ C4, then limt+j→∞ z(t, j) = z∗2 . If z(0, 0) ∈ C3, then limt+j→∞ z(t, j) = z∗1 or z∗2 .
Furthermore, z∗1 and z∗2 are stable.

3.3.2. Stability properties of the limit cycle

Now, we determine conditions on the parameters under which the limit cycle S defined in (9) is asymptot-
ically stable. As shown in Figure 5(b), the natural metric defined by the distance between the trajectories z
of H and the set S is not necessarily decreasing, even though Figure 5(a) shows that the trajectory converges
to S. In fact, as depicted in the figures, the trajectory x approaches S for some time and then gets far away
from it (around the corners), until a jump to a new value of q occurs.

6When γ1 = γ2 = γ, the sets Si in Proposition 3.3 reduce to straight lines. In fact, define the new coordinates

e := x−

[

k1(1−q2)
γ1

k2q1
γ2

]

. (17)

The continuous dynamics of e are given by

ė = ẋ =

[

k1(1 − q2)− γ1x1

k2q1 − γ2x2

]

= −γe, (18)

which implies that the trajectories on the plane are straight lines.

11
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(a) Trajectory x on the plane converging to S.
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(b) Distance between trajectory x and the set S, denoted
|z|S.

Figure 5: Trajectory z of H on the plane and distance between it and the set S with θ1 = 0.6, θ2 = 0.5, γ1 = 1, γ2 = 1, k1 = 1,
k2 = 1, h1 = 0.01, h1 = 0.01, x1(0, 0) = 0.4, x2(0, 0) = 0.4, q1(0, 0) = 0, and q2(0, 0) = 0.

To overcome this issue, we augment the hybrid system H with a state ζ ∈ R
2 and with continuous

dynamics governed by a flow map given by a copy of the one for x, that is,

ζ̇ =

[
k1(1− q2)− γ1ζ1

k2q1 − γ2ζ2

]
.

The discrete dynamics of ζ are chosen so that jumps occur when jumps of H occur and, at such jumps, ζ is
updated via the difference inclusion

ζ+ ∈ G̃(x, q, ζ).

To define the jump map G̃, consider the case γ1 = γ2 and, using Corollary 3.4, we extend to R
2 the set of

points Si, i ∈ {1, 2, 3, 4}, that is, we define the (unbounded) set

S̃ =
4⋃

i=1

S̃i, (19)

where
S̃1 =

{
x ∈ R

2 : x2 = m1x1 −m1p1(1) + p1(2)
}
× {(0, 0)},

S̃2 =
{
x ∈ R

2 : x2 = m2x1 −m2p1(1) + p1(2)
}
× {(1, 0)},

S̃3 =
{
x ∈ R

2 : x2 = m3x1 −m3p3(1) + p3(2)
}
× {(1, 1)},

S̃4 =
{
x ∈ R

2 : x2 = m4x1 −m4p3(1) + p3(2)
}
× {(0, 1)}.

During flows, the set S̃ is forward invariant for the state component ζ (both during flows and jumps)

along the dynamics of q governed by H. This is the reason we restrict ζ to belong to S̃ for the current value
of q. Then, due to the stability properties of the error system with state ζ − x, the distance between x and
ζ strictly decreases during flows. With this useful property of the trajectories while flowing, at jumps due
to H, which occur when (x(t, j), q(t, j)) ∈ D and map q(t, j) to q(t, j + 1) (following the definition of G in

(7)), the jump map G̃ is constructed to map the state ζ to satisfy (ζ(t, j + 1), q(t, j + 1)) ∈ S̃ such that, if

(ζ(t, j), q(t, j)) ∈ S̃q(t,j) before the jump, then (ζ(t, j + 1), q(t, j + 1)) ∈ S̃q(t,j+1) and with the property that

dist(x(t, j + 1), ζ(t, j + 1)) ≤ dist(x(t, j), ζ(t, j))

where dist is the Euclidean distance between two points in R
2. In this way, the new value of ζ at jumps can

be determined for each x ∈ R
2 from the set

g̃(x, q, ζ) :=
{
ζ′ : dist(x, ζ′) ≤ dist(x, ζ), (ζ′, q′) ∈ S̃q′ , (x, q

′) ∈ G(x, q)
}

12



(when it is not empty). Since the distance between x and ζ decreases during flows, asymptotic stability of

S̃ can be established when G̃(x, q, ζ) is nonempty since this guarantees that the distance between x and ζ is

nonincreasing. The following result imposes conditions on the parameters guaranteeing that G̃ is nonempty
and, furthermore, extends the attractivity property to the set S.

Theorem 3.7. For positive constants k1, k2, γ1, γ2, θ1, θ
max
1 , θ2, θ

max
2 , h1, and h2 such that

γ1 = γ2 = γ, |m1| ≤ min{|m2|, |m4|}, |m3| ≤ min{|m2|, |m4|}, (20)

where, for each i ∈ {1, 2, 3, 4}, mi are given in (16), the following holds:

1. The set S̃ is globally asymptotically stable for H. In particular, each maximal solution to H satisfies

d((x(t, j), q(t, j)), S̃) ≤ exp(−γt)d((x(0, 0), q(0, 0)), S̃) (21)

for all (t, j) ∈ dom(x, q), where d((x, q), S̃) = min(ζ,q)∈S̃
|x− ζ|.

2. The set S in case 5 of Table 1 is globally attractive for H, i.e., every solution to H converges to S.
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(a) Trajectories x and ζ on the plane.
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Figure 6: Trajectories x and ζ on the plane, and distance between x and ζ compared to distance between x and the set S

(dashed) with the same parameters and initial conditions as in Figure 5.

Figure 6 shows trajectories x and ζ as well as the distance between them obtained from the hybrid system
augmented with the state ζ. As Figure 6(b) indicates, this distance (solid) decreases to zero while, as pointed
out earlier, the natural distance between x and S (dashed) does not. The extended version of the hybrid
system H in (8) can be written as

H̃ : (x, q, ζ) ∈ Z × R
2
≥0









ẋ1

ẋ2

q̇1
q̇2
ζ̇1
ζ̇2



=




k1(1− q2)− γ1x1

k2q1 − γ2x2

0
0

k1(1− q2)− γ1ζ1
k2q1 − γ2ζ2



=: F̃ (x, q, ζ)

(x, q) ∈ C, (ζ, q) ∈ S̃,[
z+

ζ+

]
∈

[
G(z)

G̃(x, q, ζ)

]
=: G̃(x, q, ζ)

(x, q) ∈ D, (ζ, q) ∈ S̃.

(22)

We are now ready to prove Theorem 3.7.
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Proof: (of Theorem 3.7) First, we show that G̃ is nonempty for each (x, q, ζ) such that (x, q) ∈ D and

(ζ, q) ∈ S̃. For each (x, q) ∈ D, the minimum possible value for dist(x, ζ) with (ζ, q) ∈ S̃ is given by the

minimum distance between x and the projection on R
2 of S̃ for the chosen q. There are four possible cases

for this distance (one per possible value of q) and each distance can be computed as the minimum distance

between the point x and the line defined by S̃ for the chosen q. For jumps from q = (0, 1) to q = (0, 0), in
which case x1 ∈ [0, p0(1)], x2 = θ2 − h2, the minimum distance is

|m4||x1 − p0(1)|√
m2

4 + 1
(23)

Similarly, the minimum distance from x to the line defined by S̃ for q = (0, 0), which is the distance between

(x, q) and S̃ after the jump, is given by
|m1||x1 − p0(1)|√

m2
1 + 1

. (24)

Then, imposing that (24) is no larger than (23) guarantees that, in the worst case, dist(x, ζ′) ≤ dist(x, ζ).
Then, we require

|m1||x1 − p0(1)|√
m2

1 + 1
≤

|m4||x1 − p0(1)|√
m2

4 + 1
⇐⇒ |m1| ≤ |m4|. (25)

Proceeding in this way, for jumps from q = (0, 0) to q = (1, 0), from q = (1, 0) to q = (1, 1), and from
q = (1, 1) to q = (0, 1) we require

|m1| ≤ |m2|, |m3| ≤ |m2|, |m3| ≤ |m4|, (26)

respectively. Under these conditions, which can be rewritten as in (20), G̃ is nonempty.
For each (x, q, ζ) ∈ R

2 × {0, 1}2 × R
2, let

V (x, q, ζ) = dist(x, ζ)2

and note that V is positive definite with respect to the closed set

A :=
{
(x, q, ζ) : x = ζ, (x, q) ∈ C ∪D, (ζ, q) ∈ S̃

}
. (27)

For each (x, q) ∈ C and (ζ, q) ∈ S̃, we obtain

〈∇V (x, q, ζ), F̃ (x, q, ζ)〉 = −2
(
γ1(x1 − ζ1)

2 + γ2(x2 − ζ2)
2
)

= −2γV (x, q, ζ), (28)

where we have used the condition γ1 = γ2 = γ. For each (x, q) ∈ D and (ζ, q) ∈ S̃, we have

max
ξ∈G̃(x,q,ζ)

V (ξ)− V (x, q, ζ) = max
(x,ξ2)∈G(x,q),(ξ3,ξ2)∈G̃(x,q,ζ)

dist(x, ξ3)
2 − dist(x, ζ)2

≤ 0 (29)

since, by definition of G̃, we have that any possible value of ξ3 obtained from G̃ is such that dist(x, ξ3)
2 ≤

dist(x, ζ)2. Then, since every maximal solution to H (and, hence, to H̃) is complete and has a hybrid time
domain unbounded in the t direction, [21, Proposition 3.29] implies that A is globally asymptotically stable.7

In fact, combining (28) and (29), and simple integration, we get that every solution (x, q, ζ) to H̃ satisfies

dist(x(t, j), ζ(t, j)) ≤ exp(−γt)dist(x(0, 0), ζ(0, 0)) (30)

for all (t, j) ∈ dom(x, q, ζ).

7The same result can be obtained using the invariance principle for hybrid systems in [22].
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Now, we relate the asymptotic stability property above to S̃. The bound (30) holds for any ζ(0, 0) such

that (ζ(0, 0), q(0, 0)) ∈ S̃, in particular, when ζ(0, 0) is such that8 dist(x(0, 0), ζ(0, 0)) = d((x(0, 0), q(0, 0)), S̃).

Moreover, note that since (ζ(t, j), q(t, j)) ∈ S̃ for all (t, j) ∈ dom(x, q, ζ), we have

d((x(t, j), q(t, j)), S̃) ≤ dist(x(t, j), ζ(t, j)) (31)

for all (t, j) ∈ dom(x, q, ζ). Then, from (30) and the above arguments, we obtain

d((x(t, j), q(t, j)), S̃) ≤ exp(−γt)d((x(0, 0), q(0, 0)), S̃) (32)

for all (t, j) ∈ dom(x, q, ζ).

To show that the components (x, q) of the solutions to H̃ converge to S, we proceed by contradiction and

suppose that there exists a maximal solution to H̃ with components (x, q) with ω-limit set Ω(x, q) such that

Ω(x, q)∩(S̃ \S) 6= ∅. Let z◦ ∈ Ω(x, q)∩(S̃ \S) 6= ∅. By the properties of the ω-limit set of complete solutions
to hybrid systems (see [22, Definition 3.2 and Lemma 3.3]), there exists at least one solution starting from

z◦, which is impossible since points in S̃ \ S are not in C ∪ D and H̃ satisfies the hybrid basic conditions.
Then, Ω(x, q) cannot contain points that are not in S, which implies that Ω(x, q) ⊂ S. Convergence of

components (x, q) of the solutions to H̃ to S follows by the very definition of ω-limit set of a solution.

3.4. Robustness properties

When the system H in (8) is restricted to a compact set of the initial conditions for the state component

x, the asymptotic stability of the set S̃ guaranteed in Theorem 3.7 is robust to small perturbations. We
define this set of initial conditions as the compact box in R

2
≥0 as

K := [0, xmax
1 ]× [0, xmax

2 ]

with positive constants xmax
1 and xmax

2 such that S ⊂ K × {0, 1}2. We consider perturbations on the state
and on the continuous dynamics of the system. The signal d1 : R≥0 → δ1B ⊂ R

2 defines the perturbation
on the state and the signal d2 : R≥0 → δ2B ⊂ R

2 defines the perturbation on the flow of x, where δ1, δ2 > 0.
In this way, the perturbed hybrid system is given by

Hδ : z ∈ Z






ż =




k1(1− q2)− γ1(x1 + d11(t)) + d2(t)
k2q1 − γ2(x2 + d12(t)) + d2(t)

0
0


 (x + d1(t), q) ∈ C ∩K

z+ ∈ G(z) (x + d1(t), q) ∈ D ∩K,

(33)

where C is defined in (5), G in (7), and D in (6). The perturbation d1 captures uncertainty in the values
of the protein concentrations x while d2 models the uncertainty in the dynamical model governing x.9 In
particular, the latter perturbation allows for uncertainty in the parameters k1, k2. For instance, if k1 is
replaced by k1 + kδ1 with kδ1 ∈ R then the continuous dynamics of x1 along a solution (x, q) to H can be
rewritten as

d

dt
x1(t, j) = (k1 + kδ1)(1− q2(t, j)) − γ1(x1 + d11(t))

= k1(1− q2(t, j))− γ1(x1(t, j) + d11(t)) + kδ1(1 − q2(t, j)),

which leads to10 d21(t) = kδ1(1 − q2(t, j(t))). Note that since q2 takes values from {0, 1}, then we have that

|d2(t)| ≤ δ2 when |kδ1 | ≤
√
2
2 δ2.

Due toH satisfying conditions (A1)-(A3) in Lemma 2.4, the stability property guaranteed by Theorem 3.7
is robust to small perturbations. This property follows from the results on robustness of stability for hybrid
systems in [21].

8Note that we could also pick ζ(0, 0) such that the distance to S matches.
9Perturbations on each of the system parameters, in particular, the thresholds θi and hysteresis half widths hi, can be

treated similarly.
10For each t such that (t, j) ∈ dom(x, q), the function j : R≥0 → N is given by j(t) = j′, where j′ =

max {j : (t, j) ∈ dom(x, q) }.
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Theorem 3.8. For each positive constants xmax
1 and xmax

2 defining K := [0, xmax
1 ] × [0, xmax

2 ] such that
S ⊂ K ×{0, 1}2 and system constants satisfying case 5 of Table 1, there exists11 β ∈ KL such that, for each
ε > 0 there exists δ > 0 such that for each measurable functions d1 : R≥0 → δ1B, d2 : R≥0 → δ2B with
δ1, δ2 ∈ (0, δ], every solution (x, q) to Hδ with (x(0, 0), q(0, 0)) ∈ K satisfies

|(x(t, j), q(t, j))|
S̃∩K

≤ β(|(x(0, 0), q(0, 0))|
S̃∩K

, t+ j) + ε ∀(t, j) ∈ dom(x, q).

4. Numerical results

In this section, we simulate the hybrid system H in (8) within Matlab/Simulink using the HyEQ Toolbox
[23].

4.1. Isolated equilibrium points in Table 1

We perform simulations with parameters satisfying the conditions in Table 1 for which there are isolated
equilibrium points.

4.1.1. Case 1 of Table 1

Figure 7 illustrates that, when θ1 + h1 < k1

γ1

< θmax
1 , 0 < k2

γ2

< θ2 + h2, the solution converges to

z∗1 = [k1

γ1

, k2

γ2

, 1, 0]⊤. Initially, the concentration of protein A (x1) is low, which inhibits the expression of gene

b, hence the concentration of protein B (x2) decreases and activates the expression of gene a. However, after
finite time, while the concentration of protein A is above the level θ1 + h1, which can permit the expression
of gene b, the concentration of protein B increases. Finally, the concentrations of protein A and B come to
the equilibrium (k1

γ1

, k2

γ2

). This confirms the result in Proposition 3.5.
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Figure 7: The x and q components of a solution to H in (8) converging to z∗1 . The initial condition is given by q1(0, 0) = 0,
q2(0, 0) = 0, x1(0, 0) = 0.4, x2(0, 0) = 0.4. The parameters are as follows: θ1 = 0.6, θ2 = 0.5, k1 = 0.7, k2 = 0.4, γ1 = 1,
γ2 = 1, h1 = 0.01, h2 = 0.01. The symbol ∗ denotes the initial point and ◦ the point that the solution converges to (i.e., z∗1).

4.1.2. Case 2 of Table 1

Figure 8 shows a solution to the equilibrium point z∗2 = [k1

γ1

, 0, 0, 0]⊤ with 0 < k1

γ1

< θ1 − h1. While
both gene a and gene b are expressed at rate ki, for gene a, its degradation is faster than synthesis. When
the concentration of protein A (x1) is below some level, gene b is inhibited. This confirms the result in
Proposition 3.5.

11A function β is of class KL if it is continuous, r 7→ β(r, s) is zero at zero and nondecreasing, and s 7→ β(r, s) is nonincreasing
and converges to zero as s goes to ∞.
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Figure 8: The x and q components of a solution to H in (8) converging to z∗2 . The initial condition is given by q1(0, 0) = 1,
q2(0, 0) = 0, x1(0, 0) = 0.7, x2(0, 0) = 0.3. The parameters are as follows: θ1 = 0.6, θ2 = 0.5, k1 = 0.4, k2 = 0.7, γ1 = 1,
γ2 = 1, h1 = 0.01, h1 = 0.01. The symbol ∗ denotes the initial point and ◦ is the point that the solution converges to (i.e., z∗2).

4.1.3. Case 3 of Table 1

Figure 9 indicates that, when θ1 − h1 < k1

γ1

< θ1 + h1, 0 < k2

γ2

< θ2 + h2 with the initial value z(0, 0) ∈

C2 := {q1 = 1, q2 = 0, x1 ≥ θ1 − h1, x2 ≤ θ2 + h2}. The solution flows towards z∗1 = [k1

γ1

, k2

γ2

, 1, 0]⊤. Under
these conditions, gene a and gene b are expressed at rate ki, i = 1, 2, respectively. However, for gene a, its
degradation is faster than its synthesis. This confirms the result in Proposition 3.6.
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Figure 9: The x and q components of a solution to H in (8) converging to z∗1 . The initial conditions are given by q1(0, 0) = 1,
q2(0, 0) = 0, x1(0, 0) = 0.7, x2(0, 0) = 0.3. The parameters are as follows: θ1 = 0.6, θ2 = 0.5, k1 = 0.601, k2 = 0.501, γ1 = 1,
γ2 = 1, h1 = 0.02, h1 = 0.02. The symbol ∗ denotes the initial point and ◦ is the point that the solution converges to (i.e., z∗1).

Figure 10 illustrates the case when θ1−h1 ≤ k1

γ1

≤ θ1+h1,
k2

γ2

≤ θ2+h2. With the initial value z(0, 0) /∈ C2,

the solution converges to z∗2 = [k1

γ1

, 0, 0, 0]⊤. With these conditions, initially, gene b is expressed at k2 and

gene a is inhibited. After finite time, as the concentration of protein A (x1) is lower than θ1 − h1, gene b
becomes inhibited. Gene a is expressed at k1 while the concentration of protein B (x2) is below a certain
level. This confirms the result in Proposition 3.6.
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Figure 10: The x and q components of a solution to H in (8) converging to z∗1 . The initial conditions are given by q1(0, 0) = 1,
q2(0, 0) = 1, x1(0, 0) = 0.7, x2(0, 0) = 0.7. The parameters are as follows: θ1 = 0.6, θ2 = 0.5, k1 = 0.601, k2 = 0.501, γ1 = 1,
γ2 = 1, h1 = 0.02, h1 = 0.02. The symbol ∗ is the initial point and ◦ is the point that the solution converges to (i.e., z∗2).

4.1.4. Case 4 of Table 1

Figure 11 indicates that, when θ1 − h1 < k1

γ1

< θ1 + h1, θ2 + h2 < k2

γ2

< θmax
2 with the initial value

z(0, 0) ∈ C2 := {q1 = 1, q2 = 0, x1 ≥ θ1 − h1, x2 ≤ θ2 + h2}. The solution flows towards z∗2 = [k1

γ1

, 0, 0, 0]⊤.
Under these conditions, gene a and gene b are expressed at rate ki, i = 1, 2 initially. At some extend,
the concentration of protein B exceeds a centain level, the expression of gene a is inhibited. When the
concentraion of protein A decreases to some extend, the expression of gene b is inhibited as well. However,
at last, for the concentration of protein B belows certain level, it iactivates the expression of gene a. This
confirms the result in Proposition 3.6.
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Figure 11: The x and q components of a solution to H in (8) converging to z∗2 . The initial conditions are given by q1(0, 0) = 1,
q2(0, 0) = 0, x1(0, 0) = 0.7, x2(0, 0) = 0.3. The parameters are as follows: θ1 = 0.6, θ2 = 0.5, k1 = 0.61, k2 = 1, γ1 = 1,
γ2 = 1, h1 = 0.02, h1 = 0.02. The symbol ∗ denotes the initial point and ◦ is the point that the solution converges to (i.e., z∗2).

4.2. Equilibrium set S

When the parameters are in the region θ1 + h1 < k1

γ1

< θmax
1 , θ2 + h2 < k2

γ2

< θmax
2 , the set of points S

in (9) defines the equilibria. First, we compute this set of points for particular values of k1, k2, h1, h2, γ1 =
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γ2 = γ, θ1, θ2. Let k1 = 1, k2 = 1, γ1 = γ2 = γ = 1, θ1 = 0.6, θ2 = 0.5, h1 = 0.01, h2 = 0.01.
Then, using Corollary 3.4, the point p0 is given by p0(1) = 0.4966. Then, from (10)-(13), we obtain

p0 =

[
0.4966
0.49

]
, p1 =

[
0.61
0.3796

]
, p2 =

[
0.692
0.51

]
, p3 =

[
0.59
0.5822

]
. With the values of p0, p1, p2, p3, the

set S in (9) is given by

S1 = {x : x2 = −0.973381x1 + 0.973381,

0.4966 ≤ x1 ≤ 0.61, 0.3796 ≤ x2 ≤ 0.49} × {(0, 0)},

S2 = {x : x2 = 1.590722x1 − 0.590722,

0.61 ≤ x1 ≤ 0.692, 0.3796≤ x2 ≤ 0.51} × {(1, 0)},

S3 = {x : x2 = −0.7081296x1 + 1,

0.59 ≤ x1 ≤ 0.692, 0.51 ≤ x2 ≤ 0.5822} × {(1, 1)},

S4 = {x : x2 = 0.9871896x1 − 0.000238,

0.4966 ≤ x1 ≤ 0.59, 0.49 ≤ x2 ≤ 0.5822}× {(0, 1)}.
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Figure 12: Set S for parameters k1 = 1, k2 = 1, γ1 = 1, γ2 = 1, θ1 = 0.6, θ2 = 0.5, h1 = 0.01, h2 = 0.01.

Figure 12(a) shows the set of points S projected to R
2 for these parameters. For the same parameter

values, the period of the limit cycle obtained from Corollary 3.4 is T = 0.8230 sec, where t′1 = 0.2552 sec,
t′2 = 0.2359 sec, t′3 = 0.1594 sec, t′4 = 0.1724 sec. Figure 12(b) confirms this result.
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(c) h1 = 0.006, h2 = 0.006
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Figure 13: Solutions approaching the set S with different initial conditions of z and fixed parameters θ1 = 0.6, θ2 = 0.5, γ1 = 1,
γ2 = 1, k1 = 1, k2 = 1.

Figure 13 shows simulations with several initial conditions and common parameters θ1 = 0.6, θ2 =
0.5, γ1 = 1, γ2 = 1, k1 = 1, k2 = 1, but decreasing h1, h2. Each solution converges to the limit cycle S. The
size of the limit cycle is reduced as h1, h2 gets smaller. From our results we know that the size of the limit
cycle depends on the value of hysteresis parameters. When the magnitude of hysteresis tends to zero, the
set S approaches a point, which is given by (θ1, θ2) (see similar case shown in Figure 13(d).)

Figure 14 shows simulations with several initial conditions and common parameters θ1 = 0.6, θ2 =
0.5, γ1 = 1, γ2 = 1, h1 = 0.01, h2 = 0.01, but changing k1, k2. Each solution converges to the limit cycle S
(in cyan). The blue set of points defines the limit cycle S generated when k1 = k2 = 1. The variations of
k1 and k2 can be considered to be perturbations as in Theorem 3.8. The simulations show that the smaller
the perturbation on these constants, the closer the limit cycle becomes to the nominal one. Figure 15 shows
simulations with several initial conditions and common parameters θ1 = 0.6, θ2 = 0.5, k1 = 1, k2 = 1, h1 =
0.01, h2 = 0.01, but now with γ1 and γ2 varying.
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(b) k1 = 0.9, k2 = 0.9
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(c) k1 = 1.1, k2 = 1.1
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Figure 14: Solutions approaching the set S with different initial conditions of z and fixed parameters θ1 = 0.6, θ2 = 0.5, γ1 = 1,
γ2 = 1, h1 = 0.01, h2 = 0.01.
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Figure 15: Solutions approaching the set S with different initial conditions of z and fixed parameters θ1 = 0.6, θ2 = 0.5, k1 = 1,
k2 = 1, h1 = 0.01, h2 = 0.01.

Finally, Figure 16 shows the case when γ1 6= γ2. In this case, the trajectories approach the limit cycle
given in (9).
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Figure 16: Solutions approaching the set S with different initial conditions of xi and fixed parameters. Values of parameters:
θ1 = 0.6, θ2 = 0.5, γ1 = 5, γ2 = 1, k1 = 5, k2 = 1, h1 = 0.01, h1 = 0.01. The blue line is the set S. The symbol ∗ denotes the
initial point.

5. Conclusion

In this paper, a mathematical model of a genetic regulatory network has been developed under the for-
malism of hybrid dynamical systems. The model presented in this paper permits a quantitative analysis of
the cellular protein dynamics under the influence of protein concentration thresholds and initial conditions.
The analysis of the hybrid model with two genes determines conditions guaranteeing the existence of solu-
tions, the equilibria of the system, stability properties of the equilibria and its robustness. In particular,
we have revealed conditions on the parameters that, when hysteresis is present, the interaction between the
concentrations of two proteins leads to oscillatory behavior. Such a behavior is impossible in a two-gene
network without hysteresis. The obtained results are an important initial step in the analysis of genetic reg-
ulatory networks using hybrid systems theory, which we believe has great potential for the understanding of
the complex mechanisms in such networks, in particular, when treated as (larger than two) interconnections
of hybrid systems.
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