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Abstract— In this paper, we analyze the properties of the
vector fields associated with all possible configurations ofa
single-phase DC/AC inverter with the objective of designing a
hybrid controller for the generation of an approximation of
a sinusoidal reference signal. Using forward invariance tools
for general hybrid systems, a hybrid controller is designedfor
the switched differential equations capturing the dynamics of
the DC/AC inverter. Then, global asymptotic stability of a set
of points nearby the reference trajectory, called the tracking
band, is established. This property is found to be robust to small
perturbations, and variation of the input voltage. Simulations
illustrating the major results are included.

I. I NTRODUCTION

Besides fossil and nuclear-based power, future energy
distribution systems ought to be capable of interconnecting
diverse renewable sources, such as hydroelectric generators,
photovoltaic arrays, and wind turbines, as well as energy
storage systems. A particular challenge imposed by these
“smart grid” futuristic views is the high variability of the
power provided by the renewable sources, mainly due to
their high dependence on environmental conditions. In turn,
this variability imposes a challenge to power conversion, in
particular, between DC and AC signals.

In this paper, a single-phase DC/AC inverter, one of
the most common topologies used in power conversion, is
studied. This circuit is capable of transforming DC input
voltage into an approximate AC output voltage. As shown
in Figure 1, by controlling the positions of the four switches
of the inverter, the sign of the input DC voltage to the RLC
filter changes, and when appropriately controlled, the voltage
across the capacitor and the current though the inductor
can evolve almost sinusoidally. Typically, DC/AC invert-
ers are controlled using Pulse Width Modulation (PWM)
techniques. PWM-based controllers trigger switches of the
inverters whenever the difference of a carrier signal, usually
a triangular wave, and the reference sinusoidal signal changes
sign. The performance of PWM-based controllers has been
thoroughly studied in the literature [1], [2], [3]. One of the
shortcomings of PWM-based controllers is that the control
of the output voltage magnitude is not robust to changes
of the input DC voltage. Without a DC voltage regulator
at its input, the “sinusoidal” output would be significantly
affected. Another disadvantage of PWM-based controllers
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is relative high harmonic distortions. This kind of critical
issues in power conversion has led to the development of
new control algorithms relying on recent advances of the
theory of switching and hybrid systems [4], [5], [6].

In this paper, we propose a hybrid controller for a single
phase DC/AC inverter designed using hybrid system theory.
The proposed control law manages to accomplish the task
of getting a sinusoidal output signal as close as possible to
the reference signal by controlling the four switches. For this
purpose, we use a switched differential equation to capture
the dynamics of the DC/AC inverter. The proposed controller
triggers switches based on the value of the current and
voltage of the RLC filter. Results on forward invariance of
sets for general hybrid systems are used to analyze the effect
of the proposed controller. More precisely, we show that our
controller renders a region around the reference trajectory,
which we refer to as the tracking band, forward invariant
and that solutions from outside this region converge to it in
finite time. This property allows us to show global asymp-
totic stability of the tracking band, which, in turn, implies
robustness to small perturbations and variation of the input
voltage. Additionally, the harmonic distortion introduced by
our controller is small according to our FFT analysis (and it
appears to outperform a PWM-based controller).

The structure of this paper is as follows. After modeling
the DC/AC inverter, basic concepts of hybrid systems are
presented in Section III. Then, in Section IV-A, we introduce
the reference trajectory, a ellipse-shaped limit cycle, onthe
current-voltage plane. The proposed control law is introduced
in Sections IV-B. The properties of closed-loop system
with our controller are studied in Sections V. Finally, in
Section VI, simulations are presented to show the capabilities
of the proposed controller.

II. M ODELING A SINGLE-PHASE DC/AC INVERTER

A single-phase DC/AC inverter circuit consists of four
controlled switches connecting to a series RLC filter, as
shown in Figure 1.The DC signalVDC is the input signal
to the inverter. The output signalvC denotes the voltage
across the capacitorC, and iL denotes the current through
the inductorL. The objective of a controller selecting the
positions of the switchesS1−S4 is to generate an outputvC
that approximates a sinusoidal signal of a desired frequency
by appropriately toggling the switches.

The presence of switches in the circuit introduces
non-smooth dynamics. By controlling the position of the
switches, to either “ON” or “OFF” position, the voltageVin
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Fig. 1: Single-phase DC/AC inverter circuit diagram.

to the RLC filter will equal eitherVDC , −VDC , or 0.
Differential equations describing the system dynamics are
given as

[

i̇L
v̇C

]

= fq(z) :=

[

VDC

L
q − R

L
iL − 1

L
vC

1
C
iL

]

, (1)

whereR,L,C are parameters of the circuit,z := (iL, vC) ∈
R

2, and q is a logic variable that describes the position of
the switches. In this way,q ∈ Q := {−1, 0, 1} leads to the
following states of interest of the inverter circuit:

i̇L =































VDC

L
− R

L
iL − 1

L
vC whenS1 = S3 = ON and

S2 = S4 = OFF;

−VDC

L
− R

L
iL − 1

L
vC whenS1 = S3 = OFF and

S2 = S4 = ON;
−R

L
iL − 1

L
vC whenS1 = S4 = OFF and

S2 = S3 = ON

(2)

v̇C =
1

C
iL

Typically, DC/AC inverters are controlled by an algorithm
generating a switching profile following the so-called Pulse
Width Modulation (PWM) technique. In this paper, moti-
vated by the shortcomings of PWM-based control for in-
verters discussed in the introduction, a new control law is
developed and analyzed through a hybrid control approach
for the purpose of having robust control of the inverter. Next,
we introduce basic concepts of hybrid systems and develop
new supporting results in the next section.

III. B ASIC CONCEPTS OFHYBRID SYSTEMS

A hybrid systemH, or more precisely, a closed-loop
system with a hybrid controller in our case, can be written
as

H
{

ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D,

(3)

whereC, f,D, andG represent the flow set, the flow map,
the jump set, and the jump map, respectively. Solutions
to (3) have continuous and/or discrete behavior depending
on the system data(C, f,D, G). Following [7], besides the
usual time variablet ∈ R≥0, we consider the number of
jumps, j ∈ N := {0, 1, 2, ...}, as an independent variable.
Thus, hybrid time is parametrized by(t, j). The domain
of a solution toH is given by a hybrid time domain. A
hybrid time domain is defined as a subsetE of R≥0 × N

that, for each(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) can
be written as∪J−1

j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2... ≤ tJ . A solution to the hybrid
system (3) is given by a hybrid arcφ satisfying the dynamics
of (3). A hybrid arcφ is a function on a hybrid time domain
that, for eachj ∈ N, t 7→ φ(t, j) is absolutely continuous on
the interval{t : (t, j) ∈ domφ }. A solutionφ to (3) is said
to becomplete if domφ is unbounded andmaximal if there
does not exist another pairφ′ such thatφ is a truncation
of φ′ to some proper subset ofdomφ′. Furthermore, we
say that a setK ⊂ R

n is forward invariant forH if every
maximal solutionφ from K is complete andφ(t, j) ∈ K
for all (t, j) ∈ domφ. For more details about solutions to
hybrid systems, see [7].

IV. A H YBRID CONTROLLER FOR THEGENERATION OF

AN APPROXIMATION OF A SINUSOIDAL VOLTAGE

A. Sinusoidal Reference Trajectory

Reference signalst 7→ (i∗L(t), v
∗
C(t)) are given by the

steady-state response of the RLC filter in Figure 1 to si-
nusoidal input signalst 7→ Vin(t) = A sin (ωt+ θ), where
A,ω > 0 are the magnitude and angular frequency, respec-
tively, andθ is the initial phase. Using the equations of the
filter, under the effect of the inputVin(t), every steady-state
solution, in particular,(i∗L, v

∗
C), satisfiesV (i∗L(t), v

∗
C(t)) = c

for all t ≥ 0, where

V (z) :=

(

iL
a

)2

+
(vC

b

)2

z ∈ R
2 (4)

with constantsa andb given by

a :=
1

√

R2 + (Lω − 1
Cω

)2
, b :=

1

Cω
√

R2 + (Lω − 1
Cω

)2
.

B. Control strategy

A hybrid control strategy is developed for the inverter to
switch among the three operation modes described in (2).
This hybrid control strategy provides an alternative to the
traditional PWM control approach with arbitrary precision
for an inverter. More precisely, the hybrid control strategy
guarantees that the output trajectory converges to a region
(tracking band) nearby the reference trajectory satisfying (4).

1) Tracking Band: The tracking band is defined as a
neighborhood around the set{z : V (z) = c}, which defines
the reference trajectory. More precisely, givenci andco such
that ci < c < co, the tracking band is given by

{z ∈ R
2 : ci ≤ V (z) ≤ co}. (5)

On the (iL, vC) plane, the tracking band has an outer
boundary given bySo = {z ∈ R

2 : V (z) = co}, which is the
outer green dashed line in Figure 2, and an inner boundary
given by Si = {z ∈ R

2 : V (z) = ci}, which is the inner
green dash line in Figure 2. The reference trajectory, which
is the blue solid line in Figure 2, is enclosed by the tracking
band. A trajectory to (2) with the proposed control strategyis
shown in red solid line and, as the figure depicts, remains in
the tracking band for all time while describing a “periodic”
orbit. The parameters used for Figure 2 are:R = 0.6Ω,



L = 0.1H, C = 0.04F, VDC = 5V, ci = 0.9, co = 1.1, and
c = 1.
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Fig. 2: A sample trajectory resulting from using the proposed
control law.

2) Control Logic for Strong Forward Invariance of the
Tracking Band: In Section IV-B.1,So, Si, ci, co were intro-
duced to define the tracking band. Here, for the ease of
introducing the control logic, we define a (small enough)
positive parameterǫ and the sets

M1 = {z ∈ R
2 : V (z) = co, 0 ≤ iL ≤ ǫ, vC ≤ 0};

M2 = {z ∈ R
2 : V (z) = co,−ǫ ≤ iL ≤ 0, vC ≥ 0}.

Proposed control algorithm for forward invariance :
Using current values ofz and q, switch q according to the
following rules (see Figure 3):

i. if z ∈ (So \ M1) ∩ {z ∈ R
2 : iL ≥ 0} and q 6= −1,

switch to vector field forq = −1 to steer the trajectory
to Si;

ii. if z ∈ (So \M2)∩{z ∈ R
2 : iL ≤ 0} andq 6= 1, switch

to vector field forq = 1 to steer the trajectory toSi;
iii. if z ∈ Si ∩ {z ∈ R

2 : iL ≥ 0} and q = −1 or q = 0,
switch to vector field forq = 1 to steer the trajectory to
So;

iv. if z ∈ Si ∩ {z ∈ R
2 : iL ≤ 0} and q = 1 or q = 0,

switch to vector field forq = −1 to steer the trajectory
to So;

v. if z ∈ M1 andq = 1, switch to vector field forq = 0 to
steer the trajectory to the right hand side of the(iL, vC)
plane;

vi. if z ∈ M2 andq = −1, switch to vector field forq = 0
to steer the trajectory to the left hand side of the(iL, vC)
plane.

Note that the proposed control algorithm includes regions
M1 andM2, on which switches to modeq = 0 inside the
tracking band take place. This mechanism is included to
prevent fast switching at points in{z : V (z) = co, iL =
0}, from where, whenq ∈ {−1, 1}, solutions would flow
“horizontally” (to the left or to the right) on the(iL, vC)
plane.

Next, we propose a controller implementing the control
logic described above, and state key properties of the vector
fields for q ∈ Q.
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Fig. 3: Regions on the(iL, vC) plane for eachq ∈ Q used
in rules i-vi of the algorithm for forward invariance. The
corresponding rules are also indicated.

A hybrid controller denoted byHfw = (Cfw , ffw ,Dfw , Gfw)
is constructed based on the proposed control logic above.
The controller has a logic state, which, with some abuse of
notation, we denote asq ∈ Q, and has inputz. Its dynamics
are given by the hybrid system

Hfw

{

q̇ = ffw(q) (q, z) ∈ Cfw

q+ ∈ Gfw(q) (q, z) ∈ Dfw

where the flow mapffw is defined as

ffw(q) := 0,

the flow setCfw is defined as
Cfw :=

{

(q, z) ∈ Q× R
2 : V (z) ∈ [ci, co]

}

, (6)

the jump mapGfw is defined as

Gfw(q) :=
























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



















































−1 if q 6= −1 and

[(V (z) = co and iL ≥ 0 andz /∈ M1)

or (V (z) = ci and iL ≤ 0)];

0 if (z ∈ M1 and iL 6= ǫ andq = 1)

or (z ∈ M2 and iL 6= −ǫ andq = −1);

1 if q 6= 1 and

[(V (z) = co and iL ≤ 0 andz /∈ M2)

or (V (z) = ci and iL ≥ 0)];

{0, 1} if (V (z) = co, iL = −ǫ, vC ≥ 0);

{−1, 0} if (V (z) = co, iL = ǫ, vC ≤ 0);

and the jump setDfw is defined as

Dfw := {(q, z) ∈ Q × R
2 : V (z) = ci, iLq ≤ 0, q 6= 0}

⋃

{(q, z) ∈ Q× R
2 : V (z) = co, iLq ≥ 0, q 6= 0}

⋃{(q, z) ∈ Q× R
2 : V (z) = ci, q = 0}.

WhenHfw is used to control the plant in (1), the output of
the plant, which isz, becomes the input ofHfw , and its output



q becomes the input of the plant. This yields a hybrid closed-
loop system with state variableη = [q z⊤]⊤, which can
be written as the hybrid systemHcl

fw = (Cfw , f
cl
fw ,Dfw , G

cl
fw)

given by

Hcl
fw

{

η̇ = f cl
fw(η) η ∈ Cfw

η+ ∈ Gcl
fw(η) η ∈ Dfw ,

where

f cl
fw(η) =





0
VDC

L
q − R

L
iL − 1

L
vC

1
C
iL



 , Gcl
fw(η) =





Gfw(q)
iL
vC



 .

The closed-loop systemHcl
fw satisfies the hybrid basic con-

ditions introduced in [7, Assumption 6.5].
Lemma 1 (Hybrid basic conditions): The hybrid model

Hcl
fw of the inverter system satisfies the basic hybrid con-

ditions, i.e., its data(Cfw , f
cl
fw ,Dfw , G

cl
fw) is such that

(A1) Cfw andDfw are closed sets;
(A2) f cl

fw : Q× R
2 → Q× R

2 is continuous;
(A3) Gcl

fw : Q × R
2
⇉ Q × R

2 is outer semicontinu-
ous and locally bounded relative toDfw, and Dfw ⊂
domGcl

fw .
Thus, according to [7, Section 6.1], the hybrid closed-loop
systemHcl

fw is a well-posed hybrid system. Then, the behav-
ior of the hybrid systemHcl

fw is robust to small perturbations.
Lemma 2 (Inner product properties): Given positive sys-

tem constantsR,L,C, ω, VDC such thatLCω2 ≥ 1, the
following hold:

a) 〈∇V (z), fq(z)〉 ≤ 0, for all (q, z) ∈ Q × R
2 such that

z ∈ Γ, (q, iL) ∈ {(q, iL) ∈ Q × R : iL ≤ 0, q =
1} ∪ {(q, iL) ∈ Q× R : iL ≥ 0, q = −1};

b) 〈∇V (z), fq(z)〉 ≥ 0, for all (q, z ∈ Q × R
2) such that

z ∈ Γ, (q, iL) ∈ {(q, iL) ∈ Q × R : iL ≤ 0, q =
−1} ∪ {(q, iL) ∈ Q× R : iL ≥ 0, q = 1};

c) 〈∇V (z), fq(z)〉 ≤ 0, for all (q, z) ∈ Q × R
2 such that

z ∈ M1 ∪M2 andq = 0;

whereΓ is defined as

Γ = {z ∈ R
2 : −αVDC ≤ −αRiL + (β − α)vC ≤ αVDC}

with α =
2

a2L
andβ =

2

b2C
.

Define the setT := Q×{z ∈ R
2 : V (z) ∈ [c1, co]}, i.e.,

points inT are located in the tracking band on the(iL, vC)
plane, and have stateq ∈ Q. The following result states that
the setT is a forward invariant set for the closed-loop system
Hcl

fw .
Proposition 1 (Forward invariance): Given positive sys-

tem constantsR,L,C, ω, VDC such thatLCω2 > 1, and
ci < co such thatT ⊂ Q × Γ (see Lemma 2 for the
definition ofΓ), T is forward invariant for the hybrid closed-
loop systemHcl

fw = (Cfw , f
cl
fw ,Dfw , G

cl
fw).

Proposition 1 implies that all solutions to the hybrid
closed-loop systemHcl

fw stay inT . Within T , the solutions
to Hcl

fw evolve counterclockwise due to the direction of the
vector fields. This property follows directly from the closed-
loop flow mapf cl

fw .

3) Augmented Logic for Global Convergence: Global
convergence toT can be guaranteed by adding a controller
that steers solutions intoT globally. To obtain such a prop-
erty, a controller that guarantees the following is required:

1) solutions from every point outside ofSo converge toSo

in finite time;
2) solutions from every point inside ofSi converge toSi

in finite time.
In this section, we introduce one possible controller that
guarantees the global convergence property.

The controller is defined as follows. Whenz is outside the
(interior of) the tracking band (5), we use a static controller
Hg defined on

Cg := {z ∈ R
2 : V (z) ≥ co}

⋃

{z ∈ R
2 : V (z) ≤ ci}

and given by

κ(z) :=

{

0 if V (z) ≥ co

m if V (z) ≤ ci,

wherem is a constant parameter taking value from{−1, 1}.
The static feedback lawκ is the output ofHg, which is used
to controlq of the plant (1), while its input is the current and
voltage vectorz. In this way, the choiceκ = 0, which selects
the vector fieldf0(z) of (1), is used to steer the solutions
to So from outside of{z ∈ R

2 : V (z) < co}. The choice
κ = −1 (or κ = 1 depending on the value ofm) is used to
steer the solution toSi from inside{z ∈ R

2 : V (z) > ci}.
Now, similar toHcl

fw , we define a closed-loop systemHcl
g

by applying controllerHg to the plant (1). The systemHcl
g

has statez and is defined onCg. The dynamics ofHcl
g are

given by
ż = fg(z) := fκ(z)(z) z ∈ Cg.

Proposition 2 (Global Convergence): Given positive sys-
tem constantsR,L,C, ω, VDC and ci < co such that
LCω2 > 1 and VDC > b

√
co, from every pointz such

that V (z) ≤ ci or V (z) ≥ co, the unique solution toHcl
g

converges to the tracking band (5) in finite time.
4) Supervisor Controller: With appropriately chosen pa-

rameters for controllersHfw andHg, we can globally “track”
any reference trajectory(i∗L, v

∗
C) described by (4). For this

purpose, we introduce a hybrid supervisor controller denoted
Hs that uses information of the location ofz and switches
between controllerHfw andHg to guarantee global conver-
gence and forward invariance of the tracking band. Figure 4
shows the feedback control architecture.

p
q

q i̇L = −

R

L
iL −

1

L
vC +

VDC

L
q

v̇C =
1

C
iL

Hg

Hfw
Hs

z

κ(z)

Fig. 4: Full closed-loop system withHs,Hg, andHfw .



The supervisorHs = (Cs, fs,Ds, gs) has statep and input
z. The state variablep takes values fromP := {1, 2}, which
denotes the following:

p =

{

1 indicates that controllerHfw is in the loop

2 indicates that controllerHg is in the loop.

The dynamics of the hybrid controllerHs can be described
as

Hs

{

ṗ = fs(p) (p, z) ∈ Cs

p+ = gs(p) (p, z) ∈ Ds

with flow map given byfs(p) := 0, flow set defined as
Cs :={(p, z) ∈ P × R

2 : V (z) ∈ [c1, co], p = 1}
⋃

{(p, z) ∈ P × R
2 : V (z) ≥ co, p = 2}

⋃

{(p, z) ∈ P × R
2 : V (z) ≤ ci, p = 2},

jump map given bygs(p) := 1, and jump set defined as
Ds := {(p, z) ∈ {1, 2} × R

2 : ci ≤ V (z) ≤ co, p = 2}

Note that we constraint the definitions ofCs andDs such that
jumps fromp = 1 to p = 2 are not allowed.1

V. PROPERTIES OF THEFULL CLOSED-LOOPSYSTEM

In this section, the properties of full closed-loop system
H that combines the dynamics of three controllers,Hfw , Hg

andHs, are analyzed. The closed-loop system is autonomous
and has state variablex = [p q z⊤]⊤. Its hybrid model is
given by

H
{

ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D (7)

where the flow mapf is given as

f(x) =













0
0

−R

L
iL − 1

L
vC +

VDC

L
q

1

C
iL













,

the flow setC is given as2

C ={x ∈ P ×Q× R
2 : p = 1, (q, z) ∈ Cfw}

⋃

{x ∈ P ×Q× R
2 : p = 2, z ∈ Cg},

the jump map is given as

G(x) =









1
Gfw(q)
iL
vC









,

and the jump set is given as
D =

{

x ∈ P ×Q× R
2 : (p, z) ∈ Ds

}

⋃

{

x ∈ P ×Q× R
2 : p = 1, (q, z) ∈ Dfw

}

⋃

{

x ∈ P ×Q× R
2 : p = 2, z ∈ Dg

}

.

1If we allow jumps fromp = 1 to p = 2, there would appear Zeno
solutions on the boundaries of the tracking bandT .

2Note thatCs is not part of the definition ofC since, by the definition of
Cfw andCg, x ∈ C if and only if (p, z) ∈ Cs.

Using the fact that the closed-loop systemH is a well-
posed hybrid system, we can show global asymptotic stability
of the tracking bandT .

Theorem 1 (Global asymptotic stability): Given a desired
reference trajectory (4), for the hybrid systemH in (7) with
positive system parametersR,L,C, ω, VDC andci < co such
that LCω2 > 1 andVDC > b

√
co, the (compact) setT is

globally asymptotically stable forH.
The result in Theorem 1 implies that our controller is

robust to variations in the input voltageVDC . In fact,
whenVDC varies and remains in the range(b

√
co,∞), the

controller is capable of steering the trajectory to the tracking
band and render it forward invariant. Moreover, since the
closed-loop systemH satisfies the hybrid basic conditions
in [7], the stability property is robust, in particular, to small
measurement noise and unmodeled dynamics.

VI. SIMULATION RESULTS

In this section, we show simulation results to highlight the
features of full closed-loop hybrid system. All simulations
are implemented in the Hybrid Equations (HyEQ) Toolbox
via Simulink (see [8]). Unless stated otherwise, all simula-
tions have the following system constants:R = 0.6Ω, L =
0.1H,C = 0.04F, ω = 100π , VDC = 5V, ǫ = 0.05, co =
1.1, ci = 0.9, a = 0.15, andc = 1.

A. Simulations of closed-loop system Hcl
fw

1) Simulation results of the closed-loop systemHcl
fw with

initial location of z inside the interior of tracking band
at (0.1, 0.009) and initial q given by q0 ∈ Q are
shown in Figure 5. As shown, with the same initialz
at (0.1, 0.009), for each possible initial logic variable
value q ∈ Q, the solution toHcl

fw stays inside the
tracking band.
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Fig. 5: Simulations ofHcl
fw with initial z = (0.1, 0.009), and

different initial values ofq.

2) The FFT for the signalt 7→ vc(t, ·) for the given set of
system parameters set with 4 random initial conditions
and z = (0.1, 0.009) are presented in Figure 6a. As
shown, the peak frequencies are at50.0488 Hz, which
is quite close to the reference frequency of50 Hz.
The harmonic distortion introduced by our controller is
relatively small, when compared to the FFT of the same
signal for a PWM-based controller, see Figure 6b. The



PWM controller in Figure 6b is a double sided PWM
controller, which has a triangular shape carrier and a
sinusoidal reference signal. Note that the spectrum for
the latter is much richer for small frequency values.

0 100 200 300 400 500
Frequency (Hz)

50.0488

(a) with proposedHcl

fw .
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Frequency (Hz)
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2.5635

(b) with PWM-based controller.

Fig. 6: FFT ofvC output obtained by different controllers.

3) This simulation confirms that the proposed controller is
robust to variations ofVDC , which is a key robustness
property of our controller when compare to a PWM-
based controller. Figure 7a shows steadyvC output
of the inverter with the proposed controller (in red),
even when there is a step change in the value ofVDC ,
see Figure 7b. On the other hand, thevC output of
the inverter with a PWM-based controller (in blue) has
significant transient response and enlarged magnitude
after the step inVDC from 5V to 7V at 3s. Both
solutions have the same initial conditionz(0, 0) =
(0.1, 0.01).
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(a) vC output of the single-phase inverter with PWM-based
and proposed hybrid controllers forVDC with a step at3s.
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Fig. 7: Simulations with a step inVDC at 3s.

B. Simulations of full closed-loop system H
For the full closed-loop systemH, which employs the

supervisorHs, we show simulations with different initial

conditions. A simulation ofH with initial condition x0 =
(p0, q0, z0) = (2, 1,−0.1, 0.02), which is outsideSo, is
shown in Figure 8a. The solution starts from the outside of
So, Hs keepsp at 2, and the solution flows with the vector
field for q = κ(z) = 0 until it hits So. Then,p is switched
to 1 by Hs, and the switching mechanism ofHfw is used to
keep the solution within the tracking band from then on.
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(a) Solution to initial condition
outsideSo.
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(b) Solution to initial condition
insideSi.

Fig. 8: Simulations of full controller setup when initial
condition is outsideT .

A simulation ofH with initial condition x0 insideSi is
shown in Figure 8b. The solution starts withp = 2. Then,
p is switched to1 by Hs, and the solution stays within the
tracking band from then on.

VII. C ONCLUSION

In this paper, a hybrid controller for a single-phase DC/AC
inverter has been designed. Given appropriate system con-
stants and reference signal, the proposed hybrid controller
is robust to variable input voltage and small perturbations,
while guaranteeing global convergence to the forward in-
variant tracking band in finite time. Numerical results show
that the output voltage has less harmonic distortion than the
output of PWM-based control technique.
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