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Abstract— A hybrid systems framework for modeling and
analysis of robust stability of spiking neurons is proposed.
The framework is developed for a population of n intercon-
nected neurons. Several well-known neuron models are studied
within the framework, including both excitatory and inhibitory
simplified Hodgkin-Huxley, Hopf, and SNIPER models. For
each model, we characterize the sets that the solutions to each
system converge to. Using Lyapunov stability tools for hybrid
systems, the stability properties for each case are established.
An external stimuli is introduced to the simplified Hodgkin-
Huxley model to achieve a global asymptotic stability property.
Due to the regularity properties of the data of the hybrid models
considered, the asserted stability properties are robust to small
perturbations. Simulations provide insight on the results and
the capabilities of the proposed framework.

I. INTRODUCTION

Neuron models are commonly regarded as a typical non-
smooth/impulsive system. The literature proposes many dif-
ferent frameworks for analysis of such systems, including
compartmental models [1], phase plane models [2], [3],
integrate-and-fire and impulsive differential equations [3],
[4], [5], and large populations of interconnected neurons
(neuron population models) [6], [3], [7]. Furthermore, being
a natural process, these interconnections between neurons
are inherently noisy [8], [9]. Unfortunately, there is a distinct
lack of systematic methods for analysis of robustness of such
interconnections.

Building from recent results on robustness of stability of
hybrid systems and motivated by the lack of tools for analysis
of robustness in neurons, we propose a unifying framework
to model and analyze spiking neuron models. Due to the
impulsive nature of spiking neurons, hybrid systems provide
a very promising platform for their study. In this paper,
we model spiking neurons as hybrid dynamical systems for
which asymptotic stability and robustness can be systemat-
ically studied. The proposed hybrid framework captures the
continuous evolution of the phase dynamics of the neurons as
well as their spiking/discontinuous behavior due to internal
and external stimuli. The study of the asymptotic stability
properties of these systems is performed using the tools in
[10], [11].

This paper is organized as follows. In Section II we
introduce the general framework and specific models under
consideration then, in Section III-A, we characterize the
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sets where solutions converge for several well-known neuron
models. In particular, within the proposed framework, we
consider the simplified Hodgkin-Huxley model [3], [12]; an
inhibitory version of the Hodgkin-Huxley model; a “saddle-
node on a periodic orbit” model, known as the SNIPER
model [2]; and the Hopf model proposed in [13]. In Sec-
tions III-B - III-E, details of the stability analysis for the
case of two neurons and for each one of the phase response
curves associated with the models just listed are given. In
addition to the cases without external stimuli, in Section IV,
we design a external stimuli for the simplified Hodgkin-
Huxley model that guarantees a global stability property.
Simulations that validate our results are also included. In
Section V, we compare our results to those established in
the literature.
Notation: R denotes the real numbers space. R

n denotes
the n-dimensional Euclidean space. N denotes the natural
numbers including zero. Given an interval S = [0, t] and
n ∈ N \ {0}, Sn is the cartesian product of the interval, i.e.,
[0, t]3 = [0, t] × [0, t] × [0, t]. The Euclidean distance from
x ∈ R

n to a set S ⊂ R
n is denoted by d(x, S). A column

vector of N ones is denoted by 1. The graph of a set-valued
mapping F : Rn

⇉ R
n is gph(F ) = {(x, y) : x ∈ R

n, y ∈
F (x)}. A class-KL function β : R≥0 × R≥0 → R≥0 is
nondecreasing in its first argument and nonincreasing in its
second argument, furthermore, limr→0+ β(r, s) = 0 for each
s ∈ R≥0 and lims→0− β(r, s) = 0 for each r ∈ R≥0.

II. A FRAMEWORK FOR ANALYSIS FOR SPIKING

NEURONS

A. Introduction to Neuron Models

A single neuron can be expressed by the general N -order,
conductance based model given generically by

ẋ = I(x) + Ig(x, t), (1)

where x = (v, w) ∈ R
N , v ∈ R is the voltage difference

across the membrane, w is the (N − 1)-dimensional vector
comprising the gating variables, I(x) is the baseline vector
field, and Ig(x, t) is the stimulus effect, see [3], [2], [14].

Using a change in parameters and an approximation (seen
in [3], [6], [15]), the evolution of the phase of the single
neuron can be captured by the first order differential equation

dθ

dt
= ω + z(θ)I(t), (2)

with the natural frequency ω = 2π
T

> 0. The period T is the
time between the spiking and reset events of the singular
neuron model in (1), while z and is the phase response
curve (PRC) characterizing the neurons sensitivity to the



given stimulus. PRCs can be calculated from experimental,
numerical, and analytical studies [14], [16].

B. Hybrid Modeling

Due to its impulsive nature, the neuron model presented
in Section II-A can be modeled as a hybrid system. Specif-
ically, the phase angle θ will flow continuously according
to the natural frequency and jump when the neuron spiking
condition is met. Utilizing the formulation of hybrid systems
in [10], [11], we propose a framework for modeling neurons
given by

H : x ∈ R
n

{
θ̇ = f(θ) θ ∈ C
θ+ ∈ G(θ) θ ∈ D

, (3)

where θ = [θ1, . . . , θn]
⊤ ∈ [0, 2π]n is the phase of n

neurons, with θi ∈ [0, 2π] being the phase of the i-th neuron.
The continuous dynamics of each neuron are represented
by a natural frequency ωi, i.e., θ̇i = ωi, which leads to
f(θ) := [ω1, . . . , ωn]

⊤. From the neuron model (2), the
natural frequency is related to the spiking period T , in
that, when the phase angle reaches 2π, the neuron activates
the PRC. Then, the flow set is given by C := [0, 2π]n

while jumps occur when θ is in the jump set given by
D := {θ ∈ C : ∃ i s.t. θi = 2π}. Lastly, as previously
described, each neuron jumps impulsively once any i-th
neuron reaches a full period, i.e., θi = 2π from some i. At
such an event, the neuron resets itself to zero and induces
a reset on all other neurons by instantaneously changing
their phase angles according to the PRC, namely, θi is reset
to γ(θi) = θi + hz(θi), where h > 0 is the synapse
coupling strength. In this way, the jump map is given as
G(θ) = [g(γ(θi)), . . . , g(γ(θn))]

⊤ +Gu(θ), where

g(s) =





0 if s > 2π or s ≤ 0
{0, s} if s = 2π
s if s < 2π and s > 0

(4)

and Gu : R
n

⇉ R
n is a set-valued map representing an

external stimuli. Note that g is set valued when the state is
such that, after the jump, it is exactly 2π. By defining it
set valued, (rather than just discontinuous) robust stability
results for hybrid systems can be applied.

Solutions to the hybrid system H evolve continuously
(flow) and/or discretely (jump) depending on the continuous
and discrete dynamics, and the sets where those dynamics
apply. As in [11], we treat the number of jumps as an
independent variable j and the amount of time of flows by
the independent variable t. Then, solutions θ to H are given
by hybrid arcs parameterized by (t, j), which take values on
the hybrid time domain dom θ: see [10], [11] for details.1

This general framework for neurons can be used to study
the stability of different PRCs (synchronizing and desynchro-
nizing) as well as their robustness. In our study of dynamical
properties of neurons, we consider the following PRCs:

1A solution θ is said to be nontrivial if dom θ contains at least one point
different from (0, 0), maximal if there does not exist a solution θ′ such that
θ is a truncation of θ′ to some proper subset of dom θ′, complete if dom θ
is unbounded, and Zeno if it is complete but the projection of dom θ onto
R≥0 is bounded.

1) Simplified Hodgkin-Huxley model: z(θ) = − sin(θ);
2) Inhibited simplified Hodgkin-Huxley model: z(θ) =

sin(θ);
3) SNIPER model: z(θ) = 1− cos(θ);
4) Hopf model: z(θ) = − sin(θ − θ0).

C. Basic Properties of H

To apply the stability analysis tools for hybrid systems
outlined in [11], the hybrid system (3) must satisfy certain
conditions, namely, the hybrid basic conditions. These con-
ditions are as follows:

A1) C and D are closed sets in R
n.

A2) f : Rn → R
n is continuous on C.

A3) G : Rn
⇉ R

n is an outer semicontinuous2 set-valued
mapping, locally bounded on D, and such that G(θ)
is nonempty for each θ ∈ D.

Lemma 2.1: Let z be continuous and Gu be outer semi-
continuous. Then, the hybrid system H satisfies the hybrid
basic conditions.

With these conditions being satisfied, asymptotic stability
of a compact set automatically implies that it is robust to
vanishing state disturbances as well as other types of small
perturbations [11].

III. STABILITY ANALYSIS OF SYNCHRONIZATION AND

DESYNCHRONIZATION WITH ZERO INPUTS

A. Proposed Approach

Our goal is to characterize the set of points, denoted A,
that, for each of the considered PRC cases, is asymptotically
stable. Asymptotic stability for hybrid systems is defined as
the property of a set being both stable and attractive [10],
[11]. These properties are defined as follows:

Definition 3.1: (stability) A compact set A ⊂ R
n is said

to be

• stable if for each ε > 0 there exists δ > 0 such that each
solution x with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε
for all (t, j) ∈ dom x;

• attractive if there exists µ > 0 such that every solu-
tion x with |x(0, 0)|A ≤ µ is complete and satisfies
lim(t,j)∈dom x,t+j→∞ |x(t, j)|A = 0;

• asymptotically stable if stable and attractive.

The basin of attraction for asymptotic stability, denoted
BA, is the set of points where the attractivity property holds.
It excludes points from where solutions may never converge
to A. We denote this set as X . Since, in this paper, we will
analyze neuron model with PRCs, and each case is inherently
different, we will characterize this specific set for each case.

For example, for the study of synchronization in neuron
models, the set A for n = 2 is given by the points in the
jump set and away from A where |θ1− θ2| remains constant
before and after the jump. Namely, it is defined by the values
of θ satisfying

|θ1 − θ2| = |θ+1 − θ+2 |. (5)

2A set-valued mapping G : RN
⇉ RN is outer semicontinuous if its

graph is closed [11, Lemma 5.10], see, e.g., [17].



To solve (5), let h1 = h2 = h, θ ∈ D \A with θ1 = 2π and
θ2 = θ∗ such that θ∗ + hz(θ∗) ∈ (0, 2π). After the jump,
θ+1 = 0 and θ+2 = θ∗ + hz(θ∗). Then

|2π − θ∗| = |0− (θ∗ + hz(θ∗))|

=⇒ 2π − 2θ∗ = hz(θ∗). (6)

Similar results hold if θ1 = θ∗ and θ2 = 2π. Then, the set X
is given by X := {θ ∈ [0, 2π]2 : |θ1 − θ2| = 2π − θ∗, 2π −
2θ∗ = hz(θ∗)}.

The approach in this paper is to employ Lyapunov stability
results for hybrid systems in [10], [11] to establish that the
set A is asymptotically stable for the hybrid system H. To
establish this property, a definition of a Lyapunov function
candidate for hybrid systems and sufficient conditions for
asymptotic stability are needed.

Definition 3.2: (Lyapunov candidate) Given the hybrid
system H with state (C, f,D,G) and a compact set A ⊂ R

n,
the function V : dom V → R is a Lyapunov function
candidate for (H,A) if

i) V is continuous and nonnegative on (C ∪ D) \ A ⊂
dom V ;

ii) V is continuously differentiable on an open set O
satisfying C \ A ⊂ O ⊂ dom V ;

iii) limx→A,x∈dom V ∩(C∪D) V (x) = 0.

Sufficient conditions for asymptotic stability in terms of
Lyapunov functions can be found in [11], [10].

B. Simplified Hodgkin-Huxley (HH) Model (n = 2)

From [3], the simplified Hodgkin-Huxley model has a
PRC function z given by z(θ) = − sin(θ). The associated
neuron model with n = 2, ω1 = ω2 = ω > 0, h ∈ (0, π) and
no external stimuli (Gu = 0) can be written in the framework
(3) with data

HHH :=






C := [0, 2π]× [0, 2π]
f(θ) = [ω, ω]⊤ ∀θ ∈ C
D := {(θ1, θ2) ∈ C : ∃i ∈ {1, 2} s.t. θi = 2π}
G(θ) = [g(γ(θ1)), g(γ(θ2))]

⊤ ∀θ ∈ D
(7)

and the PRC given by z(θ) = − sin(θ). The function g in the
jump map G is defined as in (4) with γ(θi) = θi−h sin(θi),
for each i ∈ {1, 2}. Note that when θ ∈ D is such that
θi + h sin(θi) = 2π, the function g(θi + h sin(θi)) is set
valued.

The simplified Hodgkin-Huxley model is known to syn-
chronize the phases of the neurons, i.e., |θ1−θ2| approaches
zero. For this system, the set to be stabilized is denoted
AHH . It is defined as AHH = {(θ1, θ2) ∈ [0, 2π]2 :
|θ1 − θ2| = 0} and represents a synchronization condition.
To determine the set of points (X in Section III) from where
solutions to HHH never converge to AHH , we follow the
computation to arrive to (6). With z(θ) = − sin(θ), (6)
becomes 2π = 2θ∗ − h sin θ∗. The only solution to this
expression is θ∗ = π, for any h ∈ (0, π). Then, the set XHH

for HHH is defined by XHH := {(θ1, θ2) : |θ1 − θ2| = π}.

Now, to establish that AHH is asymptotically stable,
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Fig. 1. A solution θ to the simplified Hodgkin-Huxley hybrid system
HHH with θ(0, 0) = [0, 3.1]⊤. Note that solutions become synchronized
(θ1(t, j) = θ2(t, j)) and V (θ(t, j)) = 0 at (t, j) = (7.5, 9).

consider the function defined on C as in (7) as

VHH(θ) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}. (8)

This function satisfies the conditions for it to be a candidate
Lyapunov function on (C∪D)\XHH (see Definition 3.2). In
fact, it is continuous everywhere, continuously differentiable
away from XHH , positive for all θ ∈ (C ∪ D) \ (AHH ∪
XHH), and VHH(θ) = 0 for all θ ∈ AHH . In fact, we have
the following result.

Lemma 3.3: The function VHH in (8) is a Lyapunov
function candidate for HHH on {θ ∈ [0, 2π]2 : V (θ) < π}.

With this function, it can be shown that for every point in the
flow set we have V̇ = 0 while, for points θ ∈ D \ (XHH ∪
AHH), we have that V (G(θ))−V (θ) < 0. These properties
lead to the following result.

Theorem 3.4: The hybrid system (7) with z(θ) = − sin(θ)
has the set AHH asymptotically stable with the basin of
attraction given by (C ∪D) \ XHH .

Figure 1 is a solution to HHH with h = 0.9 and initial
condition θ(0, 0) = [0, 3.1]⊤; this solution starts just outside
of the set XHH .

C. Inhibited Simplified Hodgkin-Huxley (IHH) Model (n =
2)

In this section, we consider the inhibited simplified
Hodgkin-Huxley model. The PRC for this case is given by
z(θ) = sin(θ). The positive sign on the sine function of the
PRC has an inhibitory effect (compared to the excitatory
response of the case in Section III-B): after every jump,
the distance between the phases grows until they are a
maximum distance apart. The resulting hybrid system is
denoted as HIHH , which has the same data as in (7) except
that γ(θi) = θi + h sin(θi) with h ∈ (0, π).

The set XIHH is given by the points θ such that θ1 = θ2
and the points from where there could be a jump to θ1 =
θ2. This set is given by XIHH := {θ ∈ C : θ1 = θ2} ∪
{(0, 2π), (0, 2π)}.

We define the set A for HIHH as AIHH := ℓ1∪ℓ2 where
ℓ1 := {θ ∈ R

2 : θ = θ̃1 + 1s, s ∈ R} and ℓ2 := {θ ∈ R
2 :
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(a) A solution to the hybrid system HIHH .
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Fig. 2. A solution θ to the simplified Inverse Hodgkin-Huxley hybrid system
HIHH with θ(0, 0) = [0, 0.1]⊤.

θ = θ̃2 + 1s, s ∈ R} with θ̃1 =

[
2π
π

]
and θ̃2 =

[
π
2π

]
.

The sets ℓi represent lines in R
2. Following [18], a Lyapunov

function VIHH can be defined as the distance from θ to the
set AIHH . More specifically, VIHH(θ) = d(θ,AIHH ) for
each θ ∈ [0, 2π]2 \ XIHH . The expression of the function
VIHH can be further reduced to the minimum distance
to each set ℓi, namely VIHH(θ) = min{d(θ, ℓ1), d(θ, ℓ2)}
while the distance d(θ, ℓi) can be rewritten as d(θ, ℓi) =∣∣∣(θ − θ̃i)−

1
2 ((θ − θ̃i)

⊤
1)1

∣∣∣ , where θ̃i is defined for each
ℓi as above. We have the following result.

Lemma 3.5: The function VIHH is a Lyapunov function
candidate for HIHH on {θ ∈ [0, 2π]2 : V (θ) < π√

2
}.

Similar to HHH , we can use a Lyapunov stability argument
to show the stability of AIHH for HIHH . The proof of this
theorem follows closely that of the one for HHH , in that,
during flows we have that V̇ = 0 everywhere, during jumps
the difference is strictly decreasing, i.e., V (G(θ))−V (θ) < 0
for each θ ∈ D \ (XIHH ∪ AIHH).

Theorem 3.6: The hybrid system HIHH with the PRC
z(θ) = sin(θ) has the set AIHH asymptotically stable with
basin of attraction (C ∪D) \ XIHH .

Figure 2 shows a solution to HIHH with h = 1 and
θ(0, 0) = [0, 0.1]⊤, and the values of the corresponding
Lyapunov function along the solutions.

D. SNIPER (S) Model (n = 2)

The SNIPER model has the PRC given by z(θ) =
(1 − cos(θ)). The resulting hybrid system with this PRC
is denoted as HS . It has the same data as in (7) except that
γ(θi) = θi+h(1− cos(θi)) with h > 0. The solutions to the
SNIPER system converge to the set

AS := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 0} (9)

which represents a synchronization condition. To determine
the set of points (X in Section III) from where solutions to
HS never converge to AS , we follow the computation to (6),
leading to

2π − 2θ∗ = h(1− cos(θ∗)), (10)
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Fig. 3. A solution to HS that never converges to AS with z(θ) = 1 −

cos(θ), h = π/8, and initial condition θ(0, 0) = [0, 2π − θ∗]⊤ ∈ X .
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Fig. 4. The (θ1, θ2)-plane for the hybrid system HS with h = 2.67.

which is an implicit expression on θ∗. As h increases, the
right-hand side of (10) increases, and θ∗ decreases. It follows
that for h > 0, we have θ∗ ∈ (0, π) and from (10), we obtain

XS := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 2π − θ∗,

2π − 2θ∗ = h(1 − cos(θ∗))}.

Figure 3 shows a specific example of a solution to HS with
initial conditions θ(0, 0) = [0, 3.52] ∈ X , andh = π/8.

To prove that AS is asymptotically stable for HS , define
the sets Si as

S1 = {(θ1, θ2) ∈ [0, 2π]2 : θ2 − θ1 > 2π − θ∗} (11)

S2 = {(θ1, θ2) ∈ [0, 2π]2 : 0 < θ2 − θ1 < 2π − θ∗} (12)

S3 = {(θ1, θ2) ∈ [0, 2π]2 : 0 < θ1 − θ2 < 2π − θ∗} (13)

S4 = {(θ1, θ2) ∈ [0, 2π]2 : θ1 − θ2 > 2π − θ∗}. (14)

Figure 4 indicates each of the sets Si, AS and XS . Note that
solutions to HS that do not jump into AS will jump between
two Si sets cyclicly. More precisely, we have the following
result.

Lemma 3.7: Given the sets S1, S2, S3, and S4 in (11)-
(14), if θ ∈ D ∩ Si and θ+ ∈ G(θ) \ (AS ∪ XS), then:
(1) If θ ∈ S1, then θ+ ∈ S3;
(2) If θ ∈ S2, then θ+ ∈ S4;
(3) If θ ∈ S3, then θ+ ∈ S1;
(4) If θ ∈ S4, then θ+ ∈ S2.

Using a trajectory-based approach, we establish that AS

is attractive for HS .

Theorem 3.8: The hybrid system HS with h satisfying
cos(θo − h(1− cos(θo)) > cos(θo) for all θo ∈ (0, 2π− θ∗),
where θ∗ satisfies (10), is such that the set AS is attractive
with basin of attraction (C ∪D) \ XS .

Remark 3.9: It can be determined numerically, that the
condition in Theorem 3.8 holds for h ∈ (0, 2.67). However,
simulations show that solutions converge to AS for larger
values of h. In fact, since h proportionally affects the size of



the ‘impulse,’ the larger the value of h is the sooner solutions
converge to AS .

E. Hopf (H) Model (n = 2)

The Hopf model has a PRC given by z(θi) = − sin(θi −
θ0), where θ0 ∈ (−π

2 ,
π
2 ) and h ∈ (0, π), see, e.g., [19]. This

PRC is similar to that of HHH with a phase shift θ0. The
resulting hybrid system is denoted HH . It has the same data
as in (7) except that γi(θi) = θi+h sin(θi−θ0). For the range
of θ0 ∈ (−π

2 ,
π
2 ), solutions to this system approach the set

AH := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 0}. To determine
the set from where solutions never converge to the set AH ,
namely to determine the set XH , from the computation in
(6) with z given above, we obtain

2π − 2θ∗ = −h sin(θ∗ − θ0) (15)

which is an implicit equation parameterized by both h and θ0.
Then, the set XH is defined by XH := {(θ1, θ2) : |θ1−θ2| =
2π − θ∗, 2π − 2θ∗ = −h sin(θ∗ − θ0)}.

The function γ in the jump map can be rewritten as
γ(θi) = θi − h sin(θi) cos(θ0) + h cos(θi) sin(θ0). If we let
ρ(θi, θ0) = h cos(θi) sin(θ0) and h̃ = h cos(θ0) then γ can
be rewritten as

γ(θi) = θi − h̃ sin(θi) + ρ(θi, θ0) (16)

We can now consider the offset θ0 as a perturbation of
the jump map in the simplified Hodgkin-Huxley model
in Section III-B. This perturbation satisfies |ρ(θi, θ0)| ≤
h| sin(θ0)| for all θi ∈ [0, 2π]. In this way, HHH can be
considered to be the unperturbed version of HH . Since HHH

satisfies the hybrid basic conditions from Lemma 2.1 and
with AHH being asymptotically stable for HHH , then using
[11, Theorem 7.20], we have the following result.

Theorem 3.10: The hybrid system HH has the set AH

practically asymptotically stable in the parameter θ0 ∈
(−π

2 , π
2 ), i.e., for each ε > 0 there exists θ∗0 > 0 and

a KL function β such that, for each |θ0| ∈ [0, θ∗0), every
solution θ to HH from [0, 2π]2 \ XH satisfies |θ(t, j)|AH

≤
β(|θ(t, j)|AH

, t+ j) + ε for all (t, j) ∈ dom θ.

Figure 5 shows numerical results for large values of θ0.
The red regions correspond to points from where solutions
converge to AH (dashed cyan line), while the blue regions
correspond to the points from where solutions “get stuck”
due to the dynamics of the jump map. Moreover, the figure
shows that as |θ0| increases the blue regions get larger.

IV. CONTROL OF NEURONS FOR

GLOBAL ASYMPTOTIC STABILITY

This section illustrates the framework introduced in Sec-
tion II on the HHH model with an input given by an
external stimuli. We design this input so that the almost
global asymptotic stability property asserted by Theorem 3.4
becomes global.

Consider the hybrid system HHH . To guarantee that the
set XHH belongs to the basin of attraction, we define the
external stimuli Gu that injects a small signal of value
δi > 0 around a small neighborhood of the set XHH .
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Fig. 5. Numerical solutions to HH with initial conditions θ(0, 0) ∈

[0, 2π]2. The red regions correspond to the points that converge to AH

(dashed cyan) while the blue region corresponds to the points that “get
stuck” near AH due to the offset θ0.

To this end, let λi > 0 and define the external input as
Gu(θ) := [gu1(θ), gu2(θ)]⊤, where

gui(θ) =






δi if λi < |θ1 − θ2| < π + λi,
{0, δi} if |θ1 − θ2| = λi

or |θ1 − θ2| = π + λi,
0 if |θ1 − θ2| < λi

or |θ1 − θ2| > π + λi.

(17)

The function gui has a small value δi > 0 on a band of size
λi > 0 around the set XHH . These parameters need to be
chosen so that G(D) ⊂ [0, 2π]2. For example, if we choose
λi = π

5 and δi = π
6 the function gui

i leads to the bands
around |θ1 − θ2| = π seen in the middle graph in Figure 6.
For the same parameters, Figure 6 suggests that for θ ∈
[0, 2π]2 the jump map is such that G(θ) ⊂ C ∪D. Picking
λi and δi to satisfy this property, it follows that by adding the
set valued map Gu to the jump map of the hybrid system
HHH , the jump map continues to satisfy the hybrid basic
conditions. To show global asymptotic stability, we use the
same Lyapunov function as in Theorem 3.4, namely V (θ) =
min{|θ1 − θ2|, 2π − |θ1 − θ2|}.

Theorem 4.1: The hybrid system HHH with outer semi-
continuous Gu(θ) = [gu1(θ), gu2 (θ)]⊤ and gui as in (17)
such that G(D) ⊂ [0, 2π]2, has AHH globally asymptoti-
cally stable.

By adding the input term gui

i , it follows from the proof
of Theorem 3.4 and the results in [11] that we have global
asymptotic stability of the set AHH for the hybrid system in
Section III-B.

V. RELATIONSHIP WITH PREVIOUS WORK

In Sections III-B and III-C, we consider the PRC given by
z(s) = − sin(s) and z(s) = sin(s), respectively. These PRCs
describe a simplified Hodgkin-Huxley model for different
bifurcations points, as seen in [12]. As seen in Theorem 3.4
and Theorem 3.6, the hybrid system with negative PRC has
solutions that converge to synchronization while the one with
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Fig. 7. A solution to HHH with input injection initial condition θ(0, 0) =
[π, 2π]⊤, and parameters δ = π/8, γ = 0.1, ω = 4, and h = π/8.

positive PRC has solutions that converge to desynchroniza-
tion. These models follow from the simplification performed
in [3]. On the other hand, Hodgkin and Huxley developed
a complex model with multiple parameters corresponding to
many bifurcations of solutions [12], each of which have been
considered in vast detail in the literature [20], [21], while the
desynchronizing bifurcation has been studied in [22].

The next model covered in this paper was the SNIPER
model. This model is considered a type I neuron model
(possessing a strictly positive PRC), which was initially
derived in [2] for the n = 2 case and shown to synchronize
under certain conditions on the speed of synapse. The phase
response curve z(θ) = (1 − cos(θ)) was indeed derived in
[3], for which here we showed that this model does indeed
synchronize the phase of each neuron asymptotically for
almost every initial condition.

Lastly, we discussed the Hopf model. Its phase response
curve was studied in [15], [19], [2]. In [3], the PRC is also
dependent on a phase constant of the PRC. Here, we restrict
this phase constant to a region about 0 so as to evaluate the
stability of synchronization.

VI. CONCLUSION

A framework for modeling and analyzing groups of
spiking neurons was introduced. Within the hybrid sys-
tem framework, several well-known neuron models were
studied, including the excitatory and inhibitory Hodgkin-
Huxley model, the saddle-point node on a periodic orbit
model (SNIPER), and the Hopf model. For each model,
we characterized the sets to which their respective solutions
converge. Using Lyapunov stability tools for hybrid systems,
asymptotic stability properties were established for each

system for the case of n = 2. The introduction of an
external stimulation in the Hodgkin-Huxley neuron model
is paramount in achieving global asymptotic stability. Since
the data of the hybrid systems satisfies certain regularity
properties, the stability of these systems is robust to small
perturbations.
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